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ON THE HAUSDORFF DIMENSION OF RIEMANN’S

NON-DIFFERENTIABLE FUNCTION

DANIEL ECEIZABARRENA

Abstract. Recent findings show that the classical Riemann’s non-differentiable function has a
physical and geometric nature as the irregular trajectory of a polygonal vortex filament driven by the
binormal flow. In this article, we give an upper estimate of its Hausdorff dimension. We also adapt
this result to the multifractal setting. To prove these results, we recalculate the asymptotic behavior
of Riemann’s function around rationals from a novel perspective, underlining its connections with
the Talbot effect and Gauss sums, with the hope that it is useful to give a lower bound of its
dimension and to answer further geometric questions.

1. Introduction

1.1. Riemann’s non-differentiable function. In a lecture in the Royal Prussian Academy of
Sciences in 1872, in Berlin, Weierstrass [37] explained against the belief of the time that a continuous
function need not have a well-defined derivative, proposing the famous Weierstrass functions,

W (x) =

∞∑

n=1

an cos(2πbkx), 0 < a < 1, b > 1, ab ≥ 1, (1)

as counterexamples. However, his main motivation to tackle this problem was the function

R(x) =

∞∑

n=1

sin (n2x)

n2
(2)

proposed by Riemann some years earlier. Riemann is believed to have claimed that R was con-
tinuous but nowhere differentiable. Even if no written nor oral proof survived, (2) became widely
known as Riemann’s non-differentiable function. Weierstrass claimed that this conjecture was a
somewhat difficult problem, and he was correct indeed, since one century had to pass until Gerver
[15] disproved the conjecture in 1970. He showed that R is differentiable at points πx where x ∈ Q

is a quotient of two odd numbers, with derivative equal to −1/2. Previously, in 1916, Hardy [18]
had shown that R is not differentiable in πx if x is irrational. The problem was completely solved
in 1971 by Gerver himself [16], showing that it was also the case of the remaining rationals. Later,
Duistermaat [11], Jaffard [21] and Jaffard and Meyer [22] studied the regularity of R deeper. In all
these works, a common technique is to study a generalization of R to the complex plane,

φD(t) =
∞∑

n=1

eiπn
2t

iπn2
, (3)

for which ReφD(t) = R(πt)/π.
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1.2. A physical and geometric version of Riemann’s function. Recently, De la Hoz and
Vega [10] found a version of Riemann’s non-differentiable function,

φ(t) =
∑

k∈Z

e−4π2ik2t − 1

−4π2k2
, (4)

in a novel context concerning the evolution of vortex filaments, thus giving it a fantastic geometric
and physical interpretation. They showed that (4), which is related to the previous φD by

φ(t) = − i

2π
φD(−4πt) + it+

1

12
, ∀t ∈ R, (5)

approximates accurately the trajectories of the corners of polygonal vortex filaments that follow
the binormal flow, a model for the evolution of a single vortex filament that is represented by the
vortex filament equation (VFE) or localized induction approximation (LIA),

Xt = Xs ×Xss, or equivalently Xt = κB.

Here, the vortex is represented by the curve X : R2 → R3 with variables s and t, the arclength
and the time respectively, and is given an initial condition X(s, 0). Also, κ = κ(s, t) represents the
curvature and B = B(s, t) is the binormal vector.

The VFE was originally proposed by Da Rios [9], though forgotten and rediscovered many times
by different authors, as discussed in [32]. A landmark result in the study of this equation is due
to Hasimoto [19], who established a direct connection between the VFE and the cubic nonlinear
Schrödinger equation (NLS). The relationship works as follows: let κ and τ be the curvature and
torsion of the filamentX that evolves according to the VFE, and define the complex-valued function

ψ(s, t) = κ(s, t) ei
∫ s
0
τ(σ,t) dσ. (6)

This is often called the filament function. Hasimoto showed that ψ satisfies

ψt = iψss +
i

2

(
|ψ|2 +A(t)

)
ψ,

where A(t) is a real function of time. This function A(t) supposes no extra inconvenient in practice

because the function Ψ(s, t) = ψ(s, t) e−i/2
∫ t
0
A(τ)dτ solves the standard cubic NLS

Ψt = iΨss +
i

2
|Ψ|2Ψ.

The usefulness of this transformation is evident because, under the condition that it can be unmade,
it allows to work directly with the cubic NLS. In principle, if ψ is found, its definition yields κ and τ
directly and the tangent vector is obtained integrating the Frenet-Serret system. The curve is then
recovered integrating the tangent. Unfortunately, it is not always trivial to materialize these ideas.
Even in the simple case of a partially straight filament with κ = 0, the Frenet-Serret frame is not
well-defined! In fact, Hasimoto needed to assume this non-vanishing restriction for the curvature.
However, Koiso [26] showed that a parallel frame can used instead of the classic Frenet-Serret frame
to remove this restriction, unmake the transformation and recover X .

We are particularly interested in the evolution of closed vortex filaments. Think of smoke rings of
cigarettes which, as we know, essentially maintain their shape while they travel. But what happens
if the ring has the shape of a triangle? In [25] they did this experiment with a clover-shaped
filament, and its evolution is nothing close to that of the circular ring. De la Hoz and Vega [10]
then showed that the triangle behaves in a similar way. More generally, they studied general regular
polygonal vortices, and they showed that surprisingly their evolution is ruled by the Talbot effect,
an originally optical phenomenon. A numeric simulation of the evolution of the triangular vortex
is available in [27] or in the video https://youtu.be/f3HQFfTtFtU by Sandeep Kumar.
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The video above also shows the trajectory of one of the corners of the triangle. These trajectories
were also numerically simulated in [10, Figure 2], which turn out to be plane and some of which are
shown in Figure 1. Comparing them to the image of φ (4) shown in Figure 2, there is little doubt
that this version of Riemann’s non-differentiable is a very good approximation of these trajectories.

Figure 1. Numeric simulations of the trajectory of a corner of theM -sided regular
polygon, for M = 3, 4, 5. Image by F. De la Hoz and L. Vega.

Figure 2. The set φ([0, 1/(2π)]) ⊂ C. The resemblance to the numeric trajectories in
Figure 1 is astonishing.

Let us briefly explain why Riemann’s function appears in this context. For that, we need to
describe the evolution of polygonal vortices with the VFE. Let M ∈ N and XM be the solution
to the VFE when the initial datum XM (s, 0) is a planar regular polygon of M sides. An option
to parametrize it is to do it first in the interval [0, 2π) and then to extend it periodically to R, so
that the problem becomes periodic in space. Thanks to Hasimoto’s transformation, we can work
with the filament function ψM (6) instead, so we need to parametrize the curvature and the torsion
of the polygon. The torsion is zero because the polygon is planar. Regarding the curvature, we
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may think of each corner as a Dirac delta, so placing M of them uniformly in [0, 2π) and extending
periodically, it is reasonable to set

ψM (s, 0) = κM (s, 0) =
2π

M

∑

k∈Z
δ

(
s− 2π

M
k

)
. (7)

We now do heuristic but clarifying computations. Instead of solving NLS for ψM , forget about the
nonlinearity and assume ψM solves the free Schrödinger equation

ψt = i ψss (8)

With the help of the Poisson summation formula, the well-known solution is

ψM (s, t) = eit∂
2
s

(
2π

M

∑

k∈Z
δ(· − 2π

M k)

)
(s) =

∑

k∈Z
eiMks−iM2k2t. (9)

To recover XM , we should integrate the Frenet-Serret system in s to get the tangent, and integrate
the latter also in s. Again, a very heuristic shortcut is to integrate ψM twice in s, and since ψM

solves the free Schrödinger equation, that amounts to integrate it once in t. Thus, we would get

XM (s, t) ≈ i

∫ t

0

∑

k∈Z
eiMks−iM2k2τ dτ.

The point XM (0, 0) represents a corner, whose trajectory is XM (0, t). According to the definition
of φ in (4), we get

XM (0, t) ≈
∑

k∈Z

e−iM2k2t − 1

−M2 k2
=

4π2

M2
φ

(
M2

4π2
t

)
.

In view of the resemblance of the numeric trajectories of Figure 1 and the image of φ in Figure 2,
this crude approximation is surprisingly precise. Moreover, the larger M , the better the matching,
which suggests some kind of convergence of the trajectories XM to φ whenM → ∞. The first result
in this direction has been given recently by Banica and Vega [2] for initial polygons of M = 2n+1
sides with a particular parametrization. For completeness, we reproduce their result here in a
simplified way. To put ourselves in context, observe that the parametrization of the periodic data
we considered in (7) gives infinitely many loops around the polygon.

Theorem. ([2, Theorem 1.1]) Let n ∈ N and the planar regular polygon of 2n + 1 sides be
parametrized by Xn(s, 0), which gives a single loop to the polygon when |s| ≤ n with its cor-
ners located at the integers, and which escapes to infinity by two straight lines when |s| > n. Then,
limn→∞ nXn(0, t) = φ(t)

Hence, this theorem and the novel point of view gives Riemann’s non-differentiable function an
intrinsic geometric and physical nature that makes its study from these perspectives an interesting
topic. For instance, related to physics and the theory of turbulence, it was shown in [6] that it is
intermittent. However, in this article we focus in geometric aspects.

1.3. Geometric study of Riemann’s function. A quick look at Figure 2 is enough to be con-
vinced of the geometric complexity of Riemann’s non-differentiable function. Related to this, for
instance, in [12] its geometric differentiability was analyzed. It is also quite natural to wonder
whether this is a fractal or not; this is precisely the focus of this paper.

Questions about the dimension (either Hausdorff, Minkowski or others) of non-differentiable
functions are popular. A famous, long-lived problem is to prove that the dimension of the graph
of the Weierstrass function (1) is 2 + log(a)/ log(b), as was conjectured by Mandelbrot [28] in
1977. While the result for the Minkowski dimension was proved in 1984 [23], the conjecture for the
Hausdorff dimension resists, at least partially. Aside from a randomized version by Hunt [20], the
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best known result known is by Shen in 2018 [33], who proved the conjecture for any 0 < a < 1 and
b ∈ N, b ≥ 2 using dynamical systems.

Riemann’s non-differentiable function is also an interesting case of study, and in the spirit of
Weierstrass’ words, even a more difficult one due to the slower convergence of the series. The
main result in the literature is by Chamizo and Córdoba [7, 8], who proved that the Minkowski
dimension of the graph of the original function (2) is 5/4. Concerning the Hausdorff dimension, to
my knowledge, no result is known yet.

The discoveries in the context of vortex filaments, though, make us focus on the image of the
complex valued function (4) shown in Figure 2 rather than in the graph of the original function.
The question about the dimension of φ is in principle more challenging than studying the dimension
of the graph of the original Riemann’s function. Indeed, in the case of a graph, we have a complete
control of the speed of the curve in the direction of the abscissa, while the image of a parametric
curve can move in the plane arbitrarily. Also, the fact that Figure 2 is not a graph makes it have
plenty of self-intersections that make its study harder.

1.4. Results. In this paper, we give a first approach to computing the Hausdorff dimension of the
image of φ.

Theorem 1.1. The Hausdorff dimension of the image of Riemann’s non-differentiable function φ
defined in (4) satisfies

1 ≤ dimH φ(R) ≤
4

3
.

This theorem can be generalized to the context of multifractality, a very popular topic in the
mathematical study of turbulence which deals with the local Hölder regularity of functions. Let
us briefly introduce it. For α ≥ 0, a function f is said to be α-Hölder in x0 ∈ R, and denoted
f ∈ Cα(x0), if there exists a polynomial P with degP ≤ α such that

|f(x0 + h)− P (h)| ≤ C|h|α, when h is small.

The Hölder exponent of f at a given point x0 is the maximal Hölder regularity of f at x0,

αf (x0) = sup
{
β ≥ 0 | f ∈ Cβ(x0)

}
. (10)

Then, the Hausdorff dimension of the set of points with exponent α, that is,

d(α) = dimH{x ∈ R | αf (x) = α}, ∀α ≥ 0, (11)

when regarded as a function of α, is called the spectrum of singularities. This definition is usually
extended to values of α yielding an empty set by setting their image to be −∞. The spectrum of
singularities is the principal object of study in multifractal analysis, and in fact a function is said
to be multifractal if its spectrum of singularities is defined by (11) at least on an open interval of
Hölder exponents α.

Riemann’s non-differentiable function was shown to be a multifractal by Jaffard [21], who proved

dR(α) =





4α − 2, if α ∈ [1/2, 3/4],
0, if α = 3/2,

−∞, otherwise.
(12)

The three functions R, φD and φ have the same regularity, so in fact (12) holds for all of them.
With this result in hand, he also proved the validity of the Frisch-Parisi multifractal formalism
[14] for Riemann’s function. To prove (12), Jaffard established a relationship between the Hölder
exponent of R at an irrational point and a particular irrationality exponent of that irrational point
that is related to the rate of convergence of its sequence of approximations by continued fractions.
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Multifractality is, thus, a concept measured in the domain of a function. With the geometric
interpretation of Riemann’s function in mind, a natural question is whether the multifractality of
φ is translated from its domain to its image φ(R). We prove a partial result in this direction.

Theorem 1.2. Let φ be Riemann’s non-differentiable function (4) and Dσ = {x ∈ R | αφ(x) = σ}.
Then,

dimH φ(Dα) ≤ dimH φ
( ⋃

σ≤α

Dσ

)
≤ 4α− 2

α
, ∀α ∈ [1/2, 3/4].

Observe that according to (12), the range α ∈ [1/2, 3/4] is the only one of interest. Also,
Theorem 1.2 generalizes Theorem 1.1 because the union ∪σ≤3/4Dσ covers the whole real line ex-
cept a countable number of points, which are precisely those in D3/2, the set of points where φ

is differentiable. Then, the classical results of Hardy and Gerver imply that D3/2 ⊂ 1
2π Q, so

dimH φ(R) = dimH φ(∪σ≤3/4Dσ) ≤ 4/3.
Taking the periodic property

φ

(
t+

1

2π

)
= φ(t) +

i

2π
, ∀t ∈ R, (13)

into account, Theorems 1.1 and 1.2 can be proved using the asymptotic behavior of φ(tx+h)−φ(tx)
when h→ 0 for x ∈ [0, 1], where we denote tx = x/(2π). If x = p/q ∈ Q is an irreducible fraction, we
will also write tp/q = tp,q. The proof of Theorem 1.2 is also based on the classification of irrational
points according to the rate of convergence of their approximations by continued fractions.

1.5. Auxiliary geometric result: the asymptotic behavior of φ around rationals. The
asymptotic behavior of the original generalization φD of Riemann’s function was computed by
Duistermaat [11]. Thanks to it, he could explain the self-similar patterns of the graph of R an-
alytically. While one can get the asymptotic behavior of φ from Duistermaat’s work using the
relationship (5), in this paper we will prove it directly. The reasons to do this are the following:

• We do the computations from a different and, arguably, more intuitive perspective.
• Like in [11], the main vehicle will be the relationship between the modular group and the
Jacobi θ function, but this new approach allows to unravel the relationships with phenomena
in other fields like Gauss sums in number theory and the Talbot effect in optics.

• To prove Theorems 1.1 and 1.2 it is enough to work with the leading terms of the asymp-
totics, which can easily be deduced from Duistermaat’s work. Even so, we compute the
asymptotic behavior of φ so that machinery to prove future results is fully and explicitly
available. It is the lower order terms which capture the self-similar properties of φ, so they
may be critical to tackle other geometric questions. For instance, it seems reasonable to
think that they will be needed to obtain a lower bound for the Hausdorff dimension. They
already proved to be vital in [12] to study the geometric differentiability of φ.

For the sake of clarity, let us write here a simplified introductory version of the asymptotic
behavior of φ. It can be classified very cleanly, since the situation around any rational can be
reduced to what happens around either 0 or 1/2. For the precise expressions I refer the reader to
Propositions 5.3, 5.4, 6.1 and 6.6.

Proposition 1.3. Let p, q ∈ Z such that 0 ≤ p < q and gcd(p, q) = 1. The asymptotic behavior of
φ around the rational point tp,q = (p/q)/(2π) depends on q (mod 4) as follows:

• The asymptotic behavior of φ around 0 is

φ(h) =
3

2

1 + i√
2π

(
h1/2 − 8π2

3
i

[
1

6
− 2φ

( −1

16π2h

)]
h3/2 +O

(
h5/2

))
.
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and if q ≡ 0, 1, 3 (mod 4), there exists an eighth root of unity ep,q such that

φ(tp,q + h)− φ(tp,q) ≈
ep,q

q3/2
φ(q2 h).

• The asymptotic behavior of φ around 1/2 is

φ(t1,2 + h)− φ(t1,2) = −16
1− i√

2

∞∑

k=1
k odd

eik
2/(16h)

k2
h3/2 +O

(
h5/2

)
,

and if q ≡ 2 (mod 4), there exists an eighth root of unity ep,q such that

φ(tp,q + h)− φ(tp,q) ≈
ep,q

q3/2

(
φ(t1,2 + q2 h)− φ(t1,2)

)
.

The second term in the asymptotic behavior around 0 captures the self-similar patterns of φ
that can be identified in Figure 2. Most importantly, this pattern appears around every rational
tp,q with q ≡ 0, 1, 3 (mod 4). This should play an important role to compute a lower bound for its
Hausdorff dimension, but as already said, it is not needed to prove Theorems 1.1 and 1.2. Indeed,
the following corollary with the leading order term is enough.

Corollary 1.4. Let p, q ∈ N such that gcd(p, q) = 1. Let also M > 0. Then, there exists CM > 0
independent of p and q such that

• if q ≡ 0, 1, 3 (mod 4),

|φ(tp,q + h)− φ(tp,q)| ≤ CM
|h|1/2
q1/2

, whenever |h| < M

q2
.

• if q ≡ 2 (mod 4),

|φ(tp,q + h)− φ(tp,q)| ≤ CMq
3/2 |h|3/2, whenever |h| ≤ M

q2
.

This corollary corresponds to Corollaries 6.5 and 6.8 in the main text.

1.6. Discussion on a lower bound for the Hausdorff dimension. The theorems in this
paper are a first approach to the Hausdorff dimension of Riemann’s non-differentiable function
in its version shown in Figure 2, which represents the trajectory of a polygonal vortex filament.
Of course, the objective now turns into knowing whether the exact value of the dimension is
precisely 4/3. Some difficulties with respect to previous works are the following. First, dealing
with Riemann’s function is more complicated than working with Weierstrass’ function due to its
quadratic rather than exponential convergence. Also, Figure 2 is not a graph, so the control over
the abscissa direction is lost. What is more, the set self-intersects many times, in a way that seems
difficult to measure. Regarding self-similarity, unlike exactly self-similar fractals that have finitely
many scaling laws, Figure 2 and specially the fact that the self-similar term in Proposition 1.3 is
multiplied by the continuously decreasing term h3/2 suggest that φ may have a continuum of scaling
laws.

There are some clues that vaguely suggest that the dimension might be 4/3, like the fact that
the cover used in the proof of Theorem 1.1 would no longer cover the set if the diameters are
made slightly smaller and that the estimates used are sharp. A possible line of attack comes from
deepening in the study of the multifractal setting of Theorem 1.2. In fact, analyzing the subsets
Dα for a fixed α means studying irrationals with a fixed irrationality exponent, and this could be
a way to isolate a set that has a single scaling, or at least a simpler scaling law.

What we can be more convinced is the dimension being strictly greater than 1, due to the
self-similar patterns already mentioned. Even showing this would be an interesting contribution.
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1.7. Structure of the document. Since Corollary 1.4 suffices to tackle Theorems 1.1 and 1.2,
we begin by proving them in Section 2. In Section 3 we prove some technical results corresponding
to the multifractal setting of Theorem 1.2. In Section 4, we explain the heuristics on how the
asymptotic behavior of φ around rationals can be reduced to the asymptotic behavior around
either 0 or 1/2. We also explain how such reduction is deeply related to Gauss sums and the Talbot
effect. Then, in Section 5 we compute the asymptotics around 0 and 1/2, and in Section 6 we
compute the asymptotics around rationals by making the already mentioned reduction rigorous.
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2. The Hausdorff dimension

In this last section, we prove Theorems 1.1 and 1.2 based on Corollary 1.4. Before going into the
proofs, we recall that given d ≥ 0, the d-Hausdorff content of diameter δ > 0 of a set A ⊂ Rn is

Hd
δ(A) = inf

{∑

i∈I
(diamUi)

d | A ⊂
⋃

i∈I
Ui, diamUi < δ ∀i ∈ I, I countable

}
, (14)

where the sets Ui can be chosen to be open if needed. This is a decreasing function of δ, and taking
the limit δ → 0 yields the d-Hausdorff measure of A,

Hd(A) = lim
δ→0

Hd
δ(A) = sup

δ>0
Hd

δ (A).

Finally, the Hausdorff dimension of A is

dimHA = inf{ d | Hd(A) = 0} = sup{ d | Hd(A) = ∞}. (15)

2.1. Proof of Theorem 1.1. The lower bound of Theorem 1.1 is just a consequence of φ being a
continuous and non-constant curve. Indeed, there exist s, t ∈ R with s < t such that φ(s) 6= φ(t).
Let [φ(s), φ(t)] ⊂ R2 denote the line segment connecting φ(s) and φ(t), and L its infinite extension.
Then, the orthogonal projection P⊥ : φ([s, t]) → L is a Lipschitz map, so

dimH P⊥φ([s, t]) ≤ dimH φ([s, t]),

see, for instance, [13, Proposition 3.3]. Since the continuity of φ implies [φ(s), φ(t)] ⊂ P⊥(φ([s, t])),
we get

dimH φ([0, 1/(2π)]) ≥ dimH φ([s, t]) ≥ dimH P⊥φ([s, t]) ≥ dimH[φ(s), φ(t)] = 1.

Regarding the upper bound, it is enough to work with the set φ( 1
2π ((0, 1) ∩ I)), where I stands

for the set of irrational numbers. This is because the periodic property (13) implies

φ(R) =
⋃

k∈Z
φ([k, k + 1/2π]) =

⋃

k∈Z

(
φ([0, 1/2π]) +

i

2π
k

)
,
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and since the Hausdorff dimension of a countable union of sets is the supremum among the Hausdorff
dimensions of each of the sets (see, for instance, [30, Chapter 4]), we have

dimH φ(R) = sup
k∈Z

dimH

(
φ([0, 1/2π]) +

i

2π
k

)
.

Of course, all such sets have the same Hausdorff dimension, so it is enough to work with, say, k = 0.
On the other hand, the set of rational points is countable and has therefore Hd-measure zero for
every d > 0. Thus, φ([0, 1/2π]) has the same Hd-measure as φ( 1

2π ((0, 1) ∩ I)). As a consequence,

dimH φ(R) = dimH φ(I), where I = 1
2π ((0, 1) ∩ I).

It will be enough to find a proper countable cover of the set φ(I). First, we see that

(0, 1) ∩ I ⊂
⋃

1≤p<q
gcd(p,q)=1

q≥Q0

B

(
p

q
,
1

q2

)
, ∀Q0 ∈ N. (16)

This cover is a direct consequence of the theory of continued fractions. Let ρ ∈ (0, 1) ∩ I and
ρn = pn/qn be its convergents by continued fractions for all n ∈ N. These convergents are irreducible
rationals such that limn→∞ qn = +∞ and |ρ− pn/qn| < q−2

n for every n ∈ N. Consequently, for no
matter how large Q0 ∈ N, we can find N0 ∈ N such that qn ≥ Q0 and |ρ − pn/qn| < q−2

n for every
n > N0, hence (16).

Let now the asymptotics in Corollary 1.4 with p = pn and q = qn be evaluated at h = hn =

tρ−tpn,qn such that tpn,qn+hn = tρ. Then, |hn| < 1/(2πq2n), which implies q
3/2
n |hn|3/2 < q

−1/2
n |hn|1/2.

Thus, there exists C > 0 such that

|φ(tρ)− φ(tpn,qn)| ≤ C
|hn|1/2

q
1/2
n

<
C

q
3/2
n

, ∀n ∈ N. (17)

Thus, (16) is translated to the image of φ because (17) shows that

φ(I) ⊂
⋃

1≤p<q
gcd(p,q)=1

q≥Q0

B

(
φ (tp,q) ,

C

q3/2

)
, ∀Q0 ∈ N. (18)

Let d > 0. This cover for φ(I) yields an upper bound of the d-Hausdorff content (14) of diameter

δ < C/Q
3/2
0 , since we have

Hd

C/Q
3/2
0

(φ(I)) ≤
∑

1≤p<q
gcd(p,q)=1

q≥Q0

(
diamB

(
φ (tp,q) ,

C

q3/2

))d

= Cd
∞∑

q=Q0

ϕ(q)

q3d/2
≤ Cd

∞∑

q=Q0

1

q3d/2−1
(19)

for every Q0 ∈ N. Here, ϕ is Euler’s totient function, whose trivial but in general best bound
ϕ(q) < q we used above. Then, take the limit Q0 → ∞ so that

Hd(φ(I)) = lim
Q0→∞

Hd

C/Q
3/2
0

(φ(I)) ≤ Cd lim
Q0→∞

∞∑

q=Q0

1

q3d/2−1
.

The sum inside the limit converges if and only if 3d/2−1 > 1, or equivalently is and only if d > 4/3,
so

Hd(φ(I)) = 0, ∀d > 4/3.

According to the definition of the Hausdorff dimension (15), this implies dimH(φ(I)) ≤ 4/3. �
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Remark 2.1. Using the Dirichlet approximation theorem instead of the continued fraction theory to
obtain a cover like (16) gives some extra information about H4/3(φ(I)). Dirichlet’s theorem states
that given a natural number N ∈ N and any irrational ρ, there exist p, q ∈ Z, such that 1 ≤ q ≤ N
and |ρ− p/q| < 1/(qN). This implies that

(0, 1) ∩ I ⊂
⋃

1≤q≤N
1≤p≤q

B

(
p

q
,

1

qN

)
, ∀N ∈ N.

Fix N ∈ N and let pN (ρ)/qN (ρ) be the approximation of ρ corresponding to N . Plug this in (17)
so that we get

∣∣φ(tρ)− φ(tpN (ρ),qN (ρ))
∣∣ ≤ C

|ρ− pN (ρ)/qN (ρ)|1/2
qN (ρ)1/2

≤ C

qN (ρ)N1/2
,

which means that

φ(I) ⊂
⋃

1≤q≤N
1≤p≤q

B

(
φ(tp,q),

C

qN1/2

)
, ∀N ∈ N.

Moreover, the diameters of the balls satisfy 1/(qN1/2) ≤ N−1/2. Thus, for 1 ≤ d < 2,

Hd
N−1/2(φ(I)) ≤

∑

1≤q≤N
1≤p≤q

Cd

(qN1/2)d
=

Cd

Nd/2

N∑

q=1

1

qd−1
≤ Cd N

2−3d/2

(2− d)
,

which shows as before that Hd(φ(I)) = limN→∞Hd
N−1/2(φ(I)) = 0 for every d > 4/3, but also and

more interestingly,

H4/3(φ(I)) = lim
N→∞

H4/3

N−1/2(φ(I)) ≤
Cd

2− 4/3
=

3

2
Cd.

2.2. Proof of Theorem 1.2. We follow the structure of the proof of Theorem 1.1, but we use
deeper results that relate the rate of convergence of the approximations by continued fractions with
the Hölder regularity coefficients defined in (10).

Let pn/qn be the n-th covergent by continued fractions of ρ ∈ (0, 1) ∩ I. As above, |ρ− pn/qn| <
q−2
n , but now we want to quantify how smaller than q−2

n this error is. For that, define the sequence
(γn)n∈N as ∣∣∣∣ρ−

pn
qn

∣∣∣∣ =
1

qγnn
, ∀n ∈ N.

It is clear that γn > 2 for every n ∈ N. Of all convergents, let us work only with the approximations
with qn ≡ 0, 1, 3 (mod 4), which are always infinitely many (see Lemma 3.4), and define

γ(ρ) = sup {τ | γn ≥ τ for infinitely many n ∈ N such that qn ≡ 0, 1, 3 (mod 4)}
= lim sup

n→∞
qn≡0,1,3 (mod 4)

γn, (20)

There is a direct connection between γ and the Hölder exponent αφ (10) given by

αφ(tρ) =
1

2
+

1

2γ(ρ)
. (21)

This identity is an adaptation of the original result for φD shown by Jaffard in [21], see Subsec-
tion 3.1 for details and proof.
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The idea of the proof is that the definition of γn allows to improve the bound in (17) because
now, if hn = tρ − tpn,qn,

|φ(tρ)− φ(tpn,qn)| ≤ C
|hn|1/2

q
1/2
n

=
C

q
(1+γn)/2
n

, ∀n ∈ N, (22)

which is smaller than C/q
3/2
n , and then γ(ρ) can be used to control the exponent (1+ γn)/2. Thus,

we take the set of points with fixed γ(ρ) = γ and we cover it like in (18) but with balls of smaller
diameter, yielding a better estimation for the Hausdorff dimension. Finally, the correspondence
(21) connects these sets with the sets where φ has a given regularity.

Define the sets of points of a determinate coefficient β ≥ 2,

Rβ = {tρ ∈ I | γ(ρ) = β} = D 1

2
+ 1

2β
∩ I, (23)

where tρ = ρ/2π, Dσ = {x ∈ R | α(x) = σ} and the last equality holds because of (21). Let
β > 2 and tρ ∈ ∪σ≥βRσ so that γ(ρ) ≥ β. Then, choose ǫ > 0 such that γ(ρ) − ǫ ≥ β − ǫ > 2. By
definition of γ(ρ), the set of indices

Aρ,ǫ = {n ∈ N | qn ≡ 0, 1, 3 (mod 4) and γn > β − ǫ}
is infinite for all ǫ > 0 as above, and hence, from (22) we get

|φ(tρ)− φ(tpn,qn)| <
C

q
(1+β−ǫ)/2
n

, ∀n ∈ Aρ,ǫ.

As in (18), this shows that

φ
( ⋃

σ≥β

Rσ

)
⊂

⋃

1≤p<q
gcd(p,q)=1

q≥Q0

B

(
φ(tp,q),

C

q(1+β−ǫ)/2

)
, ∀Q0 ∈ N.

Repeating the same procedure as in (19), we get

Hd


φ
( ⋃

σ≥β

Rσ

)

 ≤ Cd lim

Q0→∞

∞∑

q=Q0

1

q
1+β−ǫ

2
d−1

= 0, ∀d > 4

1 + β − ǫ
,

so dimH φ
(⋃

σ≥β Rσ

)
≤ d for every d > 4/(1 + β − ǫ) and every ǫ > 0. Since this is valid for every

0 < ǫ < β − 2, let ǫ → 0 to we conclude that

dimH φ
( ⋃

σ≥β

Rσ

)
≤ 4

1 + β
, ∀β > 2.

By the correspondences (21) and (23), we get the result for the Hölder regularity sets,

dimH φ
(
I ∩

⋃

σ≤α

Dσ

)
≤ 4α− 2

α
, for every

1

2
≤ α <

3

4
.

This is also valid for α = 3/4. Indeed, every irrational ρ satisfies γ(ρ) ≥ 2, which according to (21)
means that α(tρ) ≤ 3/4. This means that all the irrational tρ are in I ∩ ⋃σ≤3/4Dσ, so that the

difference with the whole interval [0, 1/(2π)] is a subset of the rationals {tx | x ∈ Q ∩ [0, 1]}, at
most a countable set which has Hausdorff dimension 0. Hence, according to Theorem 1.1,

dimH φ
(
I ∩

⋃

σ≤3/4

Dσ

)
= dimH φ([0, 1/(2π)]) ≤ 4/3.

11



Like in the proof of Theorem 1.1, the theorem follows because the periodic property (13) implies

that φ
(⋃

σ≤αDσ

)
is a countable union of translates of φ

(
I ∩

⋃
σ≤αDσ

)
. Also, the first inequality

of the theorem is just a consequence of the inclusion Dα ⊂ ⋃σ≤αDσ.

3. Technical results for Section 2

3.1. Proof of the correspondence (21). In [21], Jaffard proved

αφD
(ρ) =

1

2
+

1

2τ(ρ)
, (24)

where φD is Duistermaat’s version (3), αφD
is the Hölder exponent of φD defined in (10) and

τ(x) = sup

{
τ :

∣∣∣x− pn
qn

∣∣∣ < 1

qτn
, for infinitely many

pn
qn

such that not both pn, qn are odd

}
,

which is similar to the irrationality exponent of ρ 1. In this subsection, we check that (21) is the
equivalent expression for φ, where τ is replaced by γ (20).

It is clear from (5) that φD and φ share regularity properties. More precisely, φ has at tρ = ρ/2π
the regularity that φD has at 2ρ, so

αφ(tρ) = αφD
(2ρ).

Therefore, from (24) we immediately get

αφ(tρ) =
1

2
+

1

2τ(2ρ)
.

However, we want to connect αφ(tρ) directly with some irrationality exponent of ρ, not of 2ρ. It is
usual in this transition (see Section 4.2, (51)) that the condition of pn, qn not being both odd for
φD turns into qn ≡ 0, 1, 3 (mod 4) for φ, so we expect the correct exponent to be

γ(x) = sup

{
γ :

∣∣∣x− pn
qn

∣∣∣ < 1

qγn
for infinitely many n ∈ N with qn ≡ 0, 1, 3 (mod 4)

}
,

which is the same as (20). We prove the following:

Lemma 3.1. Let x ∈ R \Q. Then, γ(x) = τ(2x).

We split the proof in two steps. First, we prove in Lemma 3.2 that γ and τ can be defined using
any rational, that is, by

τR(x) = sup

{
τ :

∣∣∣x− p

q

∣∣∣ < 1

qτ
, for infinitely many rationals

p

q
not both odd

}
, (25)

and

γR(x) = sup

{
γ :
∣∣∣x− p

q

∣∣∣ < 1

qγ
for infinitely many rationals

p

q
with q ≡ 0, 1, 3 (mod 4)

}
, (26)

where in both definitions all fractions must be irreducible. Then, we prove the equality of (25) and
(26) in Lemma 3.3.

1The irrationality exponent of an irrational ρ is defined as

µ(ρ) = sup

{

µ > 0 :
∣

∣

∣
ρ−

p

q

∣

∣

∣
<

1

qµ
for infinitely many rationals

p

q

}

,

and it can be proved (as in Lemma 3.2) that equivalently, if pn/qn are the convergents of ρ, then

µ(ρ) = sup

{

µ > 0 :
∣

∣

∣ρ−
pn
qn

∣

∣

∣ <
1

qµ
for infinitely many n ∈ N

}

.

12



Lemma 3.2. Let x ∈ R \Q. Then, τR(x) = τ(x) and γR(x) = γ(x).

Proof. We prove τR(x) = τ(x), the proof for γ is analogous. First, it is clear that
{
τ :

∣∣∣x− pn
qn

∣∣∣ < 1

qτn
for infinitely many convergents

pn
qn

not both odd

}

⊂
{
τ :

∣∣∣x− p

q

∣∣∣ < 1

qτ
for infinitely many rationals

p

q
not both odd

}
,

(27)

so taking the supremum we get τ(x) ≤ τR(x). Let now τ such that there are infinitely many
rationals p/q such that p and q are not both odd and |x− p/q| < q−τ . Assume that τ > 2, so that

∣∣∣x− p

q

∣∣∣ < 1

qτ
≤ 1

2q2
⇐⇒ 2 ≤ qτ−2

holds whenever q > 21/(τ−2). Since we are working with infinitely many rationals p/q, in particular
infinitely many of them satisfy this last property. It is a property of continued fractions (see [24,
Theorem 19]) that every approximation satisfying the left hand side of (27) is a convergent of x, so
there are infinitely many continued fraction convergents pn/qn such that |ρ− pn/qn| < q−τ

n . Thus,
{
τ > 2 :

∣∣∣x− p

q

∣∣∣ < 1

qτ
for infinitely many rationals

p

q
not both odd

}

⊂
{
τ > 2 :

∣∣∣x− pn
qn

∣∣∣ < 1

qτn
for infinitely many convergents

pn
qn

not both odd

}
.

(28)

To continue, we need to check that τ(x) ≥ 2. This is a consequence of |x − pn/qn| < q−2
n

being true for all n ∈ N and the fact that there are infinitely many convergents pn/qn with not
both pn and qn odd (in fact, consecutive convergents pn, qn, pn−1, qn−1 cannot all be odd because
qnpn−1 − qn−1pn = (−1)n, see [24, Theorem 2]).

Now, the trivial inequality we proved in the beginning of the proof implies that 2 ≤ τ(x) ≤ τR(x).
Thus, we separate two cases. If τR(x) = 2, then 2 ≤ τ(x) ≤ τR(x) = 2 and hence τ(x) = τR(x).
Otherwise, τR(x) > 2, and by the definition of the supremum and by (28),

τR(x) = sup

{
τ > 2 :

∣∣∣x− p

q

∣∣∣ < 1

qτ
for infinitely many rationals

p

q
not both odd

}

≤ sup

{
τ > 2 :

∣∣∣x− pn
qn

∣∣∣ < 1

qτn
for infinitely many convergents

pn
qn

not both odd

}

≤ sup

{
τ ≥ 2 :

∣∣∣x− pn
qn

∣∣∣ < 1

qτn
for infinitely many convergents

pn
qn

not both odd

}

= τ(ρ),

and the proof is complete. �

Thanks to Lemma 3.2, Lemma 3.1 follows from the following.

Lemma 3.3. Let x ∈ R \Q. Then, γR(x) = τR(2x).

Proof. Rewrite τR(2x) as

τR(2x) = sup

{
τ :

∣∣∣2x− p

q

∣∣∣ < 1

qτ
, for infinitely many

p

q
not both odd

}

= sup

{
τ :

∣∣∣x− 1

2

p

q

∣∣∣ < 1

2qτ
, for infinitely many

p

q
not both odd

}
.

We want to write the bound 1/(2qτ ) in terms of the denominator of the new fraction p/(2q), and
there are two different cases:
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( a) If p is even and q is odd, then p/(2q) = (p/2)/q, and the denominator is q. We let the
condition as |x− (p/2)/q| < 1/(2qτ ).

( b) If p is odd and q is even, then p/(2q), and the denominator is 2q. We rewrite the condition
as |x− p/(2q)| < 2τ−1/(2q)τ .

The condition must hold for infinitely many rationals, so if we relabel as
∣∣∣x− p

q

∣∣∣ < 1

2qτ
, if q odd (P1τ )

and ∣∣∣x− p

q

∣∣∣ < 2τ−1

qτ
, if q ≡ 0 (mod 4), (P2τ )

then τR(2x) is equivalently given by

τR(2x) = sup

{
τ : infinitely many

p

q
satisfy their corresponding (P1τ ) or (P2τ )

}
,

where the rationals have to be such that q ≡ 0, 1, 3 (mod 4).
By Lemma 3.2, we know that τR(2x), γR(x) ≥ 2, so we may work only with τ, γ ≥ 2 all along

the proof. Fix ǫ > 0.
With the definition of γR(x) in mind, assume that γ ≥ 2 is such that |x − p/q| < 1/qγ+ǫ for

infinitely many rationals with q ≡ 0, 1, 3 (mod 4). For the ones satisfying q ≡ 0 (mod 4),

1

qγ+ǫ
<

2

qγ
≤ 2γ−1

qγ

always holds, so (P2γ) holds. Also, for those with q ≡ 1, 3 (mod 4),

1

qγ+ǫ
<

1

2qγ
⇐⇒ 2 < qǫ,

so (P1γ) holds for q > 21/ǫ. In short, all rationals that satisfy q > 21/ǫ, which are infinitely many,
satisfy their corresponding (P1γ) or (P2γ), so

{
γ ≥ 2 |

∣∣∣x− p

q

∣∣∣ < 1

qγ+ǫ
for infinitely many

p

q
with q ≡ 0, 1, 3 (mod 4)

}

⊂
{
τ ≥ 2 : infinitely many

p

q
satisfy (P1τ ) or (P2τ )

}
,

or equivalently,
{
σ ≥ 2 + ǫ |

∣∣∣x− p

q

∣∣∣ < 1

qσ
for infinitely many

p

q
with q ≡ 0, 1, 3 (mod 4)

}
− ǫ

⊂
{
τ ≥ 2 : infinitely many

p

q
satisfy (P1τ ) or (P2τ )

}
.

(29)

Then, if we assume that γR(x) > 2 and choose ǫ < γR(x)−2, then γR(x) > 2+ǫ and the supremum
of the left hand side set of (29) is γR(x)− ǫ. Then, taking supremums in (29), we get

γR(x) > 2 =⇒ γR(x)− ǫ ≤ τR(2x), ∀ǫ < γR(x)− 2. (30)

This is one of the inequalities we need. In particular, 2 < γR(x)− ǫ ≤ τR(2x). Thus,

γR(x) > 2 =⇒ τR(2x) > 2. (31)
14



We look now for the reverse inequality. Let τ ≥ 2 and assume that there are infinitely many
rationals satisfying their corresponding (P1τ+ǫ) or (P2τ+ǫ). For the rationals satisfying (P1τ+ǫ),

∣∣∣x− p

q

∣∣∣ < 1

2qτ+ǫ
<

1

qτ

always holds, and for those satisfying (P2τ+ǫ), we have
∣∣∣x− p

q

∣∣∣ < 2τ+ǫ−1

qτ+ǫ
<

1

qτ
⇐⇒ 2τ+ǫ−1 < qǫ,

which holds for all that satisfy q > 2(τ+ǫ−1)/ǫ. We are working with an infinite set of rationals, so
infinitely many of them satisfy q > 2(τ+ǫ−1)/ǫ. Thus, infinitely many of them, all with q ≡ 0, 1, 3
(mod 4), satisfy |x− p/q| < 1/qτ . Hence,

{
τ ≥ 2 : infinitely many

p

q
satisfy (P1τ+ǫ) or (P2τ+ǫ)

}

⊂
{
γ ≥ 2 :

∣∣∣x− p

q

∣∣∣ < 1

qγ
for infinitely many

p

q
with q ≡ 0, 1, 3 (mod 4)

}
,

or equivalently,
{
σ ≥ 2 + ǫ : infinitely many

p

q
satisfy (P1σ) or (P2σ)

}
− ǫ

⊂
{
γ ≥ 2 :

∣∣∣x− p

q

∣∣∣ < 1

qγ
for infinitely many

p

q
with q ≡ 0, 1, 3 (mod 4)

}
,

(32)

As before, if we assume τR(2x) > 2, then choose ǫ < τR(2x)−2 so that 2+ǫ < τR(2x). This implies
that the supremum of the set on the left hand side of (32) is precisely τR(2x)− ǫ, so we get

τR(2x) > 2 =⇒ τR(2x)− ǫ ≤ γR(x), ∀ǫ < τR(2x)− 2. (33)

In particular, 2 < τR(2x)− ǫ ≤ γR(x), so we also get

τR(2x) > 2 =⇒ γR(x) > 2. (34)

We are ready to conclude. Joining (31) and (34) gives

γR(x) = 2 ⇐⇒ τR(2x) = 2.

Also, when γR(x), τR(2x) > 2, from (30) and (33) we get

γR(x)− ǫ ≤ τR(2x) ≤ γR(x) + ǫ, ∀ǫ < min{γR(x)− 2, τR(2x)− 2}.
Consequently, γR(x) = τR(2x) and the proof is complete. �

3.2. A lemma about continued fractions.

Lemma 3.4. Let ρ ∈ R\Q and its convergents by continued fractions pn/qn. Then, for any n ∈ N,
qn and qn+1 are not both even. Consequently, there exists a subsequence of convergents pnj/qnj

such that qnj is odd for all j ∈ N.

Proof. By contradiction, let N ∈ N be such that qN and qN+1 are both even. It is a basic fact of
continued fractions [24, Theorem 1] that if the continued fraction of ρ is [a0; a1, a2, . . .], then the
convergents satisfy qn+1 = an+1qn + qn−1 for every n ≥ 2. In particular,

qN−1 = qN+1 − aN+1qN = 0 (mod 2),

so qN−1 is even. By induction, qn is even for every n ≤ N . However, p0/q0 = a0 = [ρ] ∈ N, so
q0 = 1, which is a contradiction. Hence, there are never two consecutive convergents with even
denominator, and convergents with odd denominator are infinitely many. �
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4. The asymptotic behavior: heuristics

We now turn to the asymptotic behavior of Riemann’s non-differentiable function φ. Recall that
we are looking for the precise behavior of φ(tx + h)− φ(tx) when h→ 0, where tx = x/2π. We will
always work with rationals x = p/q such that p and q are coprime, and in that case we will often
denote tp/q as tp,q. In this section we explain the heuristics of this computation. The arguments
here will be rigorously established in Sections 5 and 6.

4.1. Overview. We mentioned in the introduction that Duistermaat [11] computed the asymptotic
behavior of φD near rational points. For that, he first realized that the derivative of φD is directly
related to the Jacobi θ function

θ(z) =
∑

k∈Z
eπik

2z, z ∈ H = {z ∈ C | Im(z) > 0},

because

φ′D(z) =
1

2
(θ(z)− 1) , ∀z ∈ H. (35)

The θ function interacts with the modular group Γ of Möbius transformations γ that satisfy

γ(z) =
az + b

cz + d
, a, b, c, d ∈ Z, ad− bc = 1,

which is a group under the operation of composition that is generated by the transformations

S(x) = 1/z and T (z) = z + 1; Γ = 〈S, T 〉.
It is well-known that the Jacobi θ function interacts very well with S, since the inversion identity

θ

(−1

z

)
=

√
z

i
θ(z), ∀z ∈ H, (36)

holds with the principal branch of the square root. But θ interacts not with T but with T 2(z) = z+2,
since trivially

θ(z + 2) = θ(z), ∀z ∈ H. (37)

Thus, the group linked to θ is the subgroup Γθ = 〈S, T 2〉, the so-called θ-modular group. It can be
equivalently written as

Γθ =

{
γ(x) =

ax+ b

cx+ d
| a, b, c, d ∈ Z, ad− bc = 1, a ≡ d 6≡ b ≡ c (mod 2)

}
. (38)

Properties (36) and (37) and the fact that Γθ is a group imply that for every γ ∈ Γθ there exists
an identity relating θ(γ(z)) with θ(z). In fact, it is

θ(γ(z)) = eγ
√
cz + d θ(z), ∀γ ∈ Γθ, (39)

where eγ is an eighth root of the unity depending only on c and d. Details on the properties of the
Jacobi θ function and of the modular group can be found in [1, 35].

Duistermaat used the transformation (39) in (35) and integrated the identity to obtain an as-
ymptotic expansion for φD(x)− φD(r), where r is the rational pole of the γ ∈ Γθ chosen. Here, as
stated in the introduction, instead of using (5) to translate the asymptotic behavior for φD to φ,
we will compute the asymptotic behavior of φ directly.

In our case, the identity (35) takes the form

φ(t) = i

∫ t

0
θ(−4πτ) dτ,
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at least formally because θ is not well-defined on R. Then, the asymptotic at tx is

φ(tx + h)− φ(tx) = i

∫ tx+h

tx

θ(−4πτ) dτ = i

∫ tx+h

tx

ψ(0, τ) dτ , (40)

where ψ is the Schrödinger solution (9). This expression, together with the θ-modular transforma-
tions, will allow us to reduce the asymptotics around any rational to the behavior around either 0
or t1,2. These two, on the other hand, can be computed by hand. This reduction is related to the
Talbot effect and the generalized Gauss sums

G(a, b, c) =

c−1∑

m=0

e2πi
am2

+bm
c , a, b ∈ Z, c ∈ N. (41)

Indeed, we are going to see in Subsection 4.2 that the Talbot effect, which happens at the level of
ψ, combined to the pseudoconformal invariance of the Schrödinger solution (9) yields an iterative
algorithm to reduce any Gauss sum G(p, 0, q) to the trivial G(0, 0, 1) or G(1, 0, 2). Thus, (40)
suggests that this iterative algorithm can be translated to the level of φ to reduce the behavior
around tp,q to either t0,1 = 0 or t1,2. In fact, these iterations will materialize in a single θ-modular
transformation, so the reduction will be the consequence of combining (39) and (40). However, the
algorithm does not supply the transformation explicitly, so we will compute it in Subsection 4.3
following ideas of [21].

4.2. Heuristics of the reduction: the Talbot effect and Gauss sums. The Talbot effect is
an optic phenomenon consisting in the interference caused by the diffracted light after crossing a
grating with equidistant parallel slits. In 1836, Talbot [36] discovered a distance, called the Talbot
distance nowadays, where the interference pattern matches the original grating. Later, it was
discovered that in every fraction p/q of the Talbot distance, the interference pattern is a grating
with q times as many slits as the original (see [4]).

It turns out that the Talbot effect is mathematically expressed in terms of the solution ψ (9) to
the Schrödinger equation [5, 29]. More precisely,

ψ(s, tp,q) =
∑

k∈Z
e
2πi

(

ks−k2 p
q

)

=
1

q

∑

k∈Z

q−1∑

r=0

G(−p, r, q) δ
(
s− k − r

q

)
, (42)

where G(−p, r, q) are Gauss sums (41), see [10, Section 3.3] for the details.
The Talbot effect (42) and the prseudoconformal symmetry of the Schrödinger equation can

be used to compute Gauss sums iteratively. The basic idea is that a symmetry together with
an invariant initial datum yields an invariance for the corresponding solution, in case uniqueness
of solutions is granted. For example, the free Schrödinger equation is translation invariant: if
u(s, t) is a solution, then so is u(s + 1, t). This symmetry takes the initial condition u(s, 0) to
u(s+1, 0). In (8), ψ0(s) = ψ0(s+1), so assuming uniqueness, the two solutions must also coincide,
so ψ(s, t) = ψ(s + 1, t).

We repeat this procedure with the pseudoconformal symmetry

Pu(s, t) = 1√
4πit

u

(
s

t
,
1

t

)
eis

2/(4t), Pu(s, 0) = F−1 (u(4π·, 0)) (s) = 1

4π
F−1u

( s

4π
, 0
)
,

where the bar represents complex conjugation. Due to the Poisson summation formula, the initial

datum ψ0(s) = ψ(s, 0) satisfies ψ̂0 = ψ0 = ψ0, so

Pψ0(s) =
1

4π
ψ0

( s

4π

)
.
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Then, if uniqueness of solution is assumed, we get

Pψ(s, t) = 1

4π
ψ

(
s

4π
,

t

(4π)2

)
.

Rearranging the above leads to the pseudoconformal invariance of ψ,

ψ(s, t) =
1

(4πit)1/2
eis

2/(4t) ψ

(
s

4πt
,

1

(4π)2t

)
. (43)

The key point is that (43) allows the reduction

tp,q →
1

(4π)2
1

tp,q
=

1

2π

q

4p
= tq,4p. (44)

To see the effect of this at the level of Gauss sums, evaluate (43) in tp,q and use the Talbot effect
(42) to get

1

q

∑

k∈Z

q−1∑

r=0

G(−p, r, q) δ
(
s− k − r

q

)
=

e
iπ
2

q
p
s2

2
√
2ipq

∑

k∈Z

4p−1∑

r=0

G(−q, r, 4p) δ
(
s− 2p

q
k − r

2q

)
.

Compare the coefficients of the respective Dirac deltas at s = 0 to get the well-known reciprocity
formula for Gauss sums,

G(p, 0, q) =

√
q

p

1 + i

4
G(−q, 0, 4p), (45)

which can be found, for instance, in [3, Theorem 1.2.2].
Gauss sums are easy to compute by hand when q is small. For instance, (45) immediately

implies the non-trivial G(1, 0, q) =
√
q (1 + i)(1 + (−i)q)/2 for every q ∈ N. In the same way, we

may combine it with the trivial modular property

G(a, 0, c) = G(a(mod c), 0, c), (46)

to compute G(p, 0, q) iteratively. We do that in Algorithm 4.1. We do not take care of the
multiplying factors coming from each time we use the reciprocity formula (45), but just control the
reduction of the variables (p, q) of the Gauss sums.

Algorithm 4.1. Let p, q ∈ N coprime integers such that q 6= 1, 2, 4 and p < q. Denote by R the
reciprocity formula (45) and by M the modularity formula (46).

• If p < q/2, do (p, q)
R−→ (−q, 4p) M−→ (4p− q, 4p).

– If p < q/4, then 4p < q. The denominator has been reduced.

– If q/4 < p < q/2, iterate again (4p − q, 4p)
R−→ (−p, 4p − q)

M−→ (3p − q, 4p − q). And
0 < 4p− q < q. The denominator has been reduced.

• If q/2 < p < q, do (p, q)
M−→ (p− q, q)

R−→ (q, 4(q − p)).
– If p > 3q/4, then 4(q − p) < q. The denominator has been reduced.

– If q/2 < p < 3q/4, iterate again (q, 4(q− p))
M−→ (4p− 3q, 4(q− p))

R−→ (q− p, 3q− 4p),
where 3q − 4p < q. The denominator has been reduced.

If q = 4, then (p, 4)
R−→ (−4, 4p) = (−1, p)

M−→ (p − 1, p), where p = 1 or p = 3. Therefore, the

denominator q can always be reduced to q = 1 or q = 2. When q = 2, then (1, 2)
R−→ (−2, 4) =

(−1, 2)
M−→ (1, 2), so the algorithm takes q = 2 to itself.

Remark 4.2. In the same way that the reciprocity formula (45) is a consequence of the pseudocon-
formal invariance (43), the modular property (46) can be seen a consequence of the time periodicity
of ψ,

ψ(s, t) = ψ(s, t+ 1/2π), (47)
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and corresponds to the time transformation

tp,q → tp,q +
k

2π
=

1

2π

(
p

q
+ k

)
= tp+kq,q, ∀k ∈ Z. (48)

In short, Algorithm 4.1 shows that for every irreducible rational number p/q there exists a
transformation γ, formed by several combinations of (44) and (48), and which has attached two
other transformations aγ and bγ coming from the corresponding (43) and (47), such that

ψ(s, t) = aγ(s, t)ψ (bγ(s, t), γ(t))

and either γ(tp,q) = t0,1 = 0 or γ(tp,q) = t1,2. This identity can now be plugged in (40), so a change
of variables γ(t) = τ should lead to the asymptotic behavior around 0 or t1,2.

At this stage, we do not know an explicit expression for γ, but we can guess the nature of γ
anyways. For that, rewrite (40) by changing variables r = 2πτ as

φ(tx + h)− φ(tx) = i

∫ x+2πh

x
ψ(0, r/2π) dr =

i

2π

∫ x+2πh

x
θ(−2r) dr. (49)

This way, it is adapted to the setting of Algorithm 4.1 with r ∈ (x, x+2πh) in the same scale as p/q.
That means that the time transformations coming from (43) and (47) are applied to η(r) = θ(−2r).
According to (44), reciprocity changes η(r) → η(−1/4r), that is, θ(r) → θ(−1/r). On the other
hand, in view of (48) with k = 1, modularity changes η(r) → η(r + 1), that is, θ(r) → θ(r + 2).
These two transformations,

r → 1/r and r → r + 2,

are precisely the generators of the θ-modular group Γθ (38). Since γ is a combination of both, then
it must be a θ-modular transformation γ ∈ Γθ. Observe that we have changed the scale in (49)
again, with a change of variables 2r = σ. The proper setting is now

φ(tx + h)− φ(tx) =
i

4π

∫ 2x+4πh

2x
θ(−σ) dσ, (50)

and for x = p/q, since the reduction will yield asymptotics at 0 or t1,2, then either γ(2p/q) = 0 or
γ(2p/q) = 1 will hold. From now on, we will denote by p̃/q̃ the irreducible fraction of 2p/q, so that

p̃ = 2p, q̃ = q, if q is odd,
p̃ = p, q̃ = q/2, if q is even.

At this point, we can guess which rational numbers can be sent to 0 and which cannot. Assume
both p̃, q̃ are odd and that γ ∈ Γθ is such that γ(p̃/q̃) = 0. The coefficients in the numerator of γ,
a and b (see (38)), are coprime, so either a = q̃ and b = −p̃ or a = −q̃ and b = p̃ must hold. But
then the parity condition in (38) is not kept, hence γ does not exist. These points are precisely
corresponding to p/q with q ≡ 2 (mod 4), because then p is odd and p̃/q̃ = p/(q/2), where q/2 is
odd. On the other hand, if q ≡ 0 (mod 4), then p̃/q̃ = p/(q/2) with p odd and q/2 even, and if
q ≡ 1, 3 (mod 4), then p̃/q̃ = 2p/q with 2p even and q odd.

In Subsection 4.3, we prove that the general scheme for the θ-modular transformations corre-
sponding to tp,q is

q odd =⇒ p̃ = 2p, q̃ = q, ∃γ ∈ Γθ such that γ(p̃/q̃) = 0.
q ≡ 0 (mod 4) =⇒ p̃ = p, q̃ = q/2, ∃γ ∈ Γθ such that γ(p̃/q̃) = 0.
q ≡ 2 (mod 4) =⇒ p̃ = p, q̃ = q/2, ∃γ ∈ Γθ such that γ(p̃/q̃) = 1.

(51)

We will also compute these transformations.
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4.3. Formal reduction and θ-modular functions. We now compute the θ-modular transfor-
mations of classification (51) explicitly, which were essentially given in [21]. Then, combining them
with (50), we will reduce the asymptotics around tp,q to either 0 or t1,2 formally. The conclusions,
though heuristic, are very enlightening.

We determine the coefficients a, b, c, d of γ ∈ Γθ as in (38) using continued fractions. Let p̃n/q̃n
be the n-th convergent of p̃/q̃ by continued fractions. As a rational number, it has finitely many
convergents, so there exists N ∈ N such that p̃/q̃ = p̃N/q̃N . Also, recall that p̃n q̃n−1 − q̃n p̃n−1 =
(−1)n−1 for every n ≤ N . Details about continued fractions can be found in [24].

4.3.1. Transformation for rationals p/q such that q ≡ 0, 1, 3 (mod 4). According to (51), these
rationals can be sent to 0. Indeed, p̃ and q̃ are not both odd, so choose

a = q̃, b = −p̃.
Since p̃ = p̃N and q̃ = q̃N , the other coefficients will depend on p̃N−1 and q̃N−1:

• If p̃N−1 and q̃N−1 are not both odd, we choose

c = (−1)N−1 q̃N−1, d = (−1)N p̃N−1,

so that ad− bc = (−1)N (q̃ p̃N−1 − p̃ q̃N−1) = (−1)2N = 1.
• If p̃N−1 and q̃N−1 are both odd, the above does not satisfy the parity conditions, so choose

c = (−1)N−1 q̃N−1 + q̃, d = (−1)N p̃N−1 − p̃.

Remark 4.3. The choice of c and d is not unique. Indeed, parity and the determinant are preserved
with c′ = c + 2kq̃ and d′ = d − 2kp̃ for any k ∈ Z. If k = 1, we may work with q̃ < c < 4q̃ in
both cases. If k = −1 in the first case and k = −2 in the second one, we may also work with
−4q̃ < c < −q̃.
4.3.2. Transformation for rationals p/q such that q ≡ 2 (mod 4). According to (51), they cannot
be sent to 0. In this case, both p̃ and q̃ are odd, so choose

a = (−1)N−1 q̃N−1 + q̃, b = (−1)N p̃N−1 − p̃, c = (−1)N−1q̃N−1, d = (−1)N p̃N−1.

Indeed, p̃N−1 and q̃N−1 cannot both be odd, so parity conditions are preserved. Also ad− bc = 1.
One can easily check that γ(p̃/q̃) = 1.

Remark 4.4. Here too, the choice of a, b, c, d is not unique, since all properties are preserved if

a = (−1)N−1 q̃N−1 + (2k + 1)q̃, b = (−1)N p̃N−1 − (2k + 1)p̃,
c = (−1)N−1q̃N−1 + 2kq̃, d = (−1)N pN−1 − 2kp̃,

for any k ∈ Z. With k = 1, we may assume q̃ < c < 3q̃, and with k = −1, we may work with
−3q̃ < c < −q̃.
4.3.3. Formal reduction. Once we have the transformations, let us use them in (50) to reduce from
tp,q to either 0 or t1,2 formally.

We begin with 0 < p ≤ q coprime such that q ≡ 0, 1, 3 (mod 4). We just saw that there exists
γ ∈ Γθ such that γ(p̃/q̃) = 0. According to (50), for h ∈ R we have

φ(tp,q + h)− φ(tp,q) =
i

4π

∫ p̃/q̃+4πh

p̃/q̃
θ(−σ) dσ. (52)

Conjugate and use the transformation (39) with the γ above so that

φ(tp,q + h)− φ(tp,q) =
i eγ
4π

∫ p̃/q̃+4πh

p̃/q̃

θ(γ(σ))√
cσ + d

dσ. (53)
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Now, change variables γ(σ) = r. Since a = q̃, b = −p̃ and ad− bc = 1, we have

γ(x) =
ax+ b

cx+ d
=⇒ γ−1(x) =

dx− b

−cx+ a
, γ′(x) =

1

(cx+ d)2
. (54)

Then, the boundaries of the integral become γ(p̃/q̃) = 0 and

γ(p̃/q̃ + 4πh) =
4πq̃2h

1 + 4πcq̃h
. (55)

At this point, the cases h > 0 and h < 0 have to be considered separately. To avoid a null
denominator, if h ≥ 0, following Subsections 4.3.1 and 4.3.2 we let c = c+ be such that q̃ < c+ < 4q̃.
On the other hand, if h < 0, choose c = c− such that −4q̃ < c− < −q̃. This way, we have 4πcq̃h ≥ 0
in both cases. With (55) in mind, define

b(h) =
q̃2h

1 + 4πc±q̃h
=

{
q̃2h

1+4πc+q̃h , when h ≥ 0,
q̃2h

1+4πc−q̃h , when h < 0.
(56)

Then, (53) turns into

φ(tp,q + h)− φ(tp,q) =
i eγ
4π

∫ 4πb(h)

0

θ(r)

(q̃ − c±r)3/2
dr, for all h.

When |h| is small, b(h) behaves like q̃2h, so the variable r of the integral is small and q̃ − cr is
similar to q̃. Thus, by (52), the asymptotic around tp,q will behave approximately as

φ(tp,q + h)− φ(tp,q) ≈
eγ

q̃3/2
i

4π

∫ 4πq̃2h

0
θ(−r) dr = eγ

q̃3/2
φ(q̃2 h). (57)

This means that when h → 0, the behavior of φ around tp,q is essentially the same as around 0,

except that we need to rescale by q̃2 in the variable and by q̃−3/2 in the image.
On the other hand, if q ≡ 2 (mod 4), there exists γ ∈ Γθ such that γ(p̃/q̃) = 1. The same steps

as before lead to

φ(tp,q + h)− φ(tp,q) =
i eγ
4π

∫ 1+4πb(h)

1

θ(r)

(q̃ − c±(r − 1))3/2
dr.

Like before, when |h| is small we have b(h) ≈ q̃2h, so

φ(tp,q + h)− φ(tp,q) ≈
eγ

q̃3/2
i

4π

∫ 1+4πq̃2h

1
θ(−r) dr = eγ

q̃3/2
(
φ(t1,2 + q̃2 h)− φ(t1,2)

)
. (58)

Thus, up to the same scaling as before, the behavior of φ around tp,q is essentially the same as
around t1,2 when h→ 0.

We will make make this formal reduction rigorous in Section 6. However, that will be of no use if
we do not know how φ behaves around 0 and t1,2. We devote Section 5 to compute the asymptotic
behavior of φ around those two points by hand.

5. Asymptotic behavior around 0 and t1,2

5.1. Asymptotic behavior around 0. Since φ(0) = 0, we need to compute an asymptotic ex-
pression for φ(h). The main idea, which can be traced back to Smith [34], is to use the Poisson
summation formula. We begin assuming h > 0 and writing

φ(h) = −h
∑

k∈Z
g(2πk

√
h), where g(x) =

e−ix2 − 1

x2
. (59)
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The Poisson summation formula (see [17, Theorem 3.1.17]) gives

φ(h) = −
√
h

2π

∑

k∈Z
ĝ

(
k

2π
√
h

)
(60)

if |g(x)|+ |ĝ(x)| ≤ C(1+ |x|)−1−δ for some C, δ > 0. The function g satisfies that property because
it is analytic, so bounded in any compact set, and it decreases as |x|−2 when |x| → ∞. To prove
that property for ĝ, we need the following lemma, very similar to [31, Lemma 1].

Lemma 5.1. The Fourier transform of g defined in (59) is

ĝ(ξ) = 2π2 |ξ| erfc
(
1− i√

2
π |ξ|

)
−

√
2π (1 + i) eiπ

2ξ2 , ∀ξ ∈ R,

where erfc(z) = 1− erf(z) stands for the complementary error function and erf(z) = 2√
π

∫ z
0 e

−w2

dw

is the error function for z ∈ C. Its asymptotic expansion for x ∈ R at infinity is

erfc(x) =
e−x2

√
π

(
1

x
+

N∑

n=1

(−1)n
(2n − 1)!!

2n x2n+1

)
+O

(
1

x2N+3

)
, ∀N ∈ N. (61)

Remark 5.2. The integral of the holomorphic function e−w2

, w ∈ C in the definition of the error
function can be computed along any path connecting 0 and z.

Proof. From the definition of g, integrating by parts we get

ĝ(ξ) = −2i

∫

R

e−ix2

e−2πiξx dx+ 2πiξ

∫

R

e−2πiξx

x
dx− 2πiξ

∫

R

e−ix2

x
e−2πiξx dx.

The first two integrals are the well-known

Fx

(
e−ix2

)
(ξ) =

√
π
1− i√

2
eiπ

2ξ2 , Fx (1/x) (ξ) = −πi sign(ξ),

while the third one is the convolution of both of them, that is,
∫

R

eiπ
2x2

sign(ξ − x) dx =

∫ ξ

−∞
eiπ

2x2

dx−
∫ ∞

ξ
eiπ

2x2

dx = sign(ξ)

∫ |ξ|

−|ξ|
eiπ

2x2

dx.

Hence,

ĝ(ξ) = −
√
2π (1 + i) eiπ

2ξ2 + 2π2|ξ| − 4π2
√
π
1− i√

2
|ξ|
∫ |ξ|

0
eiπ

2y2 dy.

The last integral is essentially erf(1−i√
2
π|ξ|), because with the path η(t) = 1−i√

2
πt, t ∈ (0, |ξ|) we get

erf

(
1− i√

2
π|ξ|

)
=

2√
π

∫ |ξ|

0
e−η(t)2 η′(t) dt = 2

√
π
1− i√

2

∫ |ξ|

0
eiπ

2t2 dt.

Thus,

ĝ(ξ) = −
√
2π (1 + i) eiπ

2ξ2 + 2π2|ξ|
(
1− erf

(
1− i√

2
π|ξ|

))
.

The asymptotic expansion of erfc(x) for x ∈ R is well-known and is obtained integrating its defini-
tion by parts N times. �

Since the error function is analytic, so is ĝ. Also, erfc(x) = π−1/2e−x2 (
x−1 +O(x−3)

)
, so we get

ĝ(ξ) = 2π2 |ξ|π− 1

2 eiπ
2ξ2
(
1 + i√

2
π−1|ξ|−1 +O(|ξ|−3)

)
−

√
2π (1 + i) eiπ

2ξ2 = O(|ξ|−2)

when |ξ| > 1. Thus, the hypotheses for the Poisson summation formula are satisfied and (60) holds.
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Given that ĝ(0) =
∫
R
g(x) dx = −

√
2π (1 + i) and that g and ĝ are even, Lemma 5.1 implies

φ(h) =
1 + i√
2π

√
h−

√
h

π

∞∑

k=1

(
πk√
h

erfc

(
1− i

2
√
2

k√
h

)
−

√
2π (1 + i) e

ik2

4h

)
.

For each k ∈ N and for any N ∈ N, the asymptotic expansion of erfc in (61) gives

πk√
h

erfc

(
1− i

2
√
2

k√
h

)
−

√
2π e

ik2

4h (1 + i) =
√
π
1 + i√

2
e

ik2

4h

N∑

n=1

(2n− 1)!! 2n+1 hn

in k2n
+O

(√
h

k

)2N+2

.

Sum in k ∈ N and change the order of summation to get

φ(h) =
1 + i√
2π

√
h− 1− i√

2π

N∑

n=1

2n+1 (2n − 1)!!

in−1

( ∞∑

k=1

eik
2/(4h)

k2n

)
hn+

1

2 +O
(
hN+ 3

2

)
(62)

for any N ∈ N, which is the asymptotic behavior of φ around 0.
For negative values h < 0, the property φ(−h) = φ(h) implies that (62) is correct up to deter-

mining
√
h = ±i

√
|h|. Indeed, writing h = −|h| < 0 and conjugating (62) we have

φ(−|h|) = 1− i√
2π

√
|h| − 1 + i√

2π

N∑

n=1

2n+1 in−1 (2n− 1)!!




∞∑

k=1

e
−ik2

4|h|

k2n


 |h|n+ 1

2 +O
(
hN+ 3

2

)
,

while direct substitution in (62) leads to

φ(−|h|) = 1 + i√
2π

√
−|h| − 1− i√

2π

N∑

n=1

2n+1 (2n− 1)!!

in−1




∞∑

k=1

e
ik2

−4|h|

k2n


 (−|h|)n+ 1

2 +O
(
hN+ 3

2

)
.

These two expressions coincide if
√
−1 = −i, so (62) works also for h < 0 with the branch of the

complex square root with
√
−1 = −i.

In short, we have proved the following proposition.

Proposition 5.3. Let

Yn(h) =

∞∑

k=1

eik
2/(4h)

k2n
, n ∈ N,

and N ∈ N. Then,

φ(h) =
1 + i√
2π

√
h− 1− i√

2π

N∑

n=1

2n+1 (2n− 1)!!

in−1
Yn(h)h

n+ 1

2 +O
(
hN+ 3

2

)

for every h ∈ R, where
√
−1 = −i if h < 0. In particular, when N = 1, we get the self-similar

asymptotic expression

φ(h) =
3

2

1 + i√
2π

√
h− 4π2

1− i√
2π

[
1

6
− 2φ

( −1

16π2h

)]
h3/2 +O

(
h5/2

)
. (63)

The only thing left to prove is the self-similar expression (63), which holds because

Y1(h) =
π2

6
− i

8h
− 2π2 φ

( −1

16π2h

)
. (64)

In turn, this last identity is easy to prove using (5), given that Y1(h) = iπφD(1/(4πh)).
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(a) Zoom of φ(R) around φ(0) = 0, located on
the lower left corner.

(b) Zoom of φ(R) around φ(t1,2), located in the
center of the spiral.

Figure 3. Graphic visualization of the asymptotic behavior of φ around 0 and
t1,2. Compare Figure 3a to Figure 2 to appreciate the self-similar patterns, which
are analytically explained by (63) in Proposition 5.3. In Figure 3b, the spiraling
pattern is a consequence of (67) in Proposition 5.4 and the definition of Z1 (66).

5.2. Asymptotic behavior around t1,2. An easy way to deduce the asymptotic behavior of φ
around t1,2 is by means of the identity

φ(h + t1,2) =
1

8
+

i

4π
+
φ(4h)

2
− φ(h), (65)

which can be proved by splitting the sum in the definition of φ into the even and odd indices. What
is more, evaluating it at h = 0 gives φ(t1,2) = 1/8 + i/(4π), so

φ(t1,2 + h)− φ(t1,2) =
φ(4h)

2
− φ(h).

We can now use Proposition 5.3. The leading square root terms cancel, so h3/2 becomes the leading
order. Moreover, the coefficients of the higher order terms are

4n Yn(4h) − Yn(h) = 4n Zn(h), where Zn(h) =
∞∑

k=1
k odd

eik
2/(16h)

k2n
. (66)

As a consequence, the asymptotic behavior of φ around t1,2 can be written as follows.

Proposition 5.4. Let N ∈ N. Then,

φ(t1,2 + h)− φ(t1,2) = −1− i√
2π

N∑

n=1

23n+1 (2n− 1)!!

in−1
Zn(h)h

n+ 1

2 +O
(
hN+ 3

2

)

for every h ∈ R, where
√
−1 = −i when h < 0. In particular, when N = 1,

φ(t1,2 + h)− φ(t1,2) = −16
1− i√
2π

Z1(h)h
3/2 +O

(
h5/2

)
. (67)
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Remark 5.5. The function Z1(h) turns around the origin in a circular pattern, and the more h

approaches to zero, the faster it does it. Since in (67) it is multiplied by h3/2, which tends to zero
when h→ 0, this circular pattern turns into a spiral that concentrates in φ(t1,2) (see Figure 3b).

Remark 5.6. Identities similar to (65) can be obtained for other rationals such as t1,3, t1,4, t1,6 and
t1,8. Consequently, one can prove the asymptotic behavior of φ around those points with as much
precision as wanted.

6. Asymptotic behavior around rationals

Once we know the asymptotic behavior around 0 and t1,2, we compute the case of a general
rational tp,q. For that, we make the reduction process explained in Subsection 4.3 rigorous. First
of all, the formal identity (40) in which the reduction is based is made precise by

φ(t) = i lim
ǫ→0+

∫ t

0
θ(−4πτ + iǫ) dτ.

This is a consequence of Fubini’s theorem and the dominated convergence theorem. Consequently,
we get the rigorous version of (52),

φ (tp,q + h)− φ(tp,q) =
i

4π
lim
ǫ→0+

∫ p̃/q̃+4πh

p̃/q̃
θ(−τ + iǫ) dτ . (68)

Let now γ ∈ Γθ and use the transformation (39) for the Jacobi θ function so that, after conjugation,
(68) turns into

φ(tp,q + h)− φ(tp,q) =
1

4πieγ
lim
ǫ→0+

∫ p̃/q̃+4πh

p̃/q̃

θ(γ(τ + iǫ))√
c(τ + iǫ) + d

dτ. (69)

Observing that φ′(z) = iθ(−4πz) whenever Im z > 0, integrate by parts choosing

u = 1

γ′(τ+iǫ)
√

c(τ+iǫ)+d
= (c(τ + iǫ) + d)3/2, du = 3c

2

√
c(τ + iǫ) + d dτ,

dv = θ(γ(τ + iǫ))) γ′(τ + iǫ) dτ, v = 4πi φ
(
−γ(τ+iǫ)

4π

)
,

which yields

1

eγ
lim
ǫ→0

[
φ

(
−γ(τ + iǫ)

4π

)
(c(τ+iǫ)+d)

3

2

∣∣∣∣∣

p̃/q̃+4πh

p̃/q̃

−3c

2

∫ p̃/q̃+4πh

p̃/q̃
φ

(
−γ(τ + iǫ)

4π

) √
c(τ + iǫ) + d dτ

]
.

This allows to work exclusively with φ, which is well-defined on the real line. Clearly, we can now
take the limit ǫ → 0 in the first term. In the second term, due to the fact that the integrating
interval is finite, everything inside the integral is bounded independently of ǫ. Thus, the limit can
be taken inside by the theorem of dominated convergence to get

φ(tp,q + h)− φ(tp,q) = eγ

[
φ

(
γ(τ)

4π

)
(cτ + d)3/2

∣∣∣∣∣

p̃/q̃+4πh

p̃/q̃

− 3c

2

∫ p̃/q̃+4πh

p̃/q̃
φ

(
γ(τ)

4π

) √
cτ + d dτ

]
.

6.1. Asymptotic behavior around tp,q with q ≡ 0, 1, 3 (mod 4). Let p/q be an irreducible
fraction such that q ≡ 0, 1, 3 (mod 4). In Subsection 4.3 we found γ ∈ Γθ such that γ(p̃/q̃) = 0,
where p̃/q̃ = 2p/q. Recalling (55), the definition of b(h) in (56) and c = c±,

φ(tp,q + h)− φ(tp,q) = eγ

[
(1 + 4πc±q̃h)3/2

q̃3/2
φ (b(h)) − 3

2
c±

∫ p̃/q̃+4πh

p̃/q̃
φ

(
γ(τ)

4π

)√
c±τ + d dτ

]
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Change variables γ(τ)/4π = r as in (54) to get

φ(tp,q + h)− φ(tp,q) = eγ

[
φ (b(h))

(q̃ − 4πc±b(h))
3/2

− 6πc±

∫ b(h)

0

φ(r)

(q̃ − 4πc±r)5/2
dr

]
. (70)

We can already use the asymptotic behavior around 0 in φ(b(h)) and φ(r) because b(h) behaves
like q̃2h when h is small. For simplicity, call b = b(h). Develop (q̃−4πc±b)−3/2 and (q̃−4πc±b)−5/2

using the Taylor series

(1− x)−α =
∞∑

n=0

(
n+ α− 1

n

)
xn, |x| < 1, (71)

which can be done because 4πc±b(h)/q̃ < 1 for all h ∈ R. Also, develop φ(b) following Proposi-
tion 5.3 so that we get

φ(tp,q + h)− φ(tp,q) =
eγ

q̃3/2

[
1 + i√
2π

b
1

2 +

(
2π

1 + i√
2π

c±
q̃

− 4
1− i√
2π

Y1(b)

)
b
3

2 +O
(
b
5

2

)]
. (72)

Computing further terms requires integrating r3/2Y1(r). Using (71) again, expand

b(h)1/2 = q̃ h1/2
(
1− 2π c±q̃h+O

(
c2± q̃

2 |h|3/2
))

, b(h)3/2 = q̃3 h3/2 (1 +O (q̃ |c±h|)) ,

b5/2(h) = O
(
q5|h|5/2

)
,

(73)

which according to the definition of b(h) are valid only if 4π|c±q̃h| < 1. We use them to expand
(72) in terms of h and obtain

φ(tp,q + h)− φ(tp,q) = eγ

(
1 + i√
2π

h1/2

q̃1/2
− 4

1− i√
2π

Y1(b(h)) q̃
3/2 t3/2 +O

(
q̃

7

2 h
5

2

))
,

valid for q̃2 h < 1/(4πc+/q̃) when h > 0 and for q̃2 |h| < 1/(4π|c−|/q̃) when h < 0. This is the
asymptotic behavior we looked for, which we write in the following proposition:

Proposition 6.1. Let p, q ∈ N such that q ≡ 0, 1, 3 (mod 4), p < q and gcd(p, q) = 1. Define p̃ and
q̃ so that p̃/q̃ = 2p/q is an irreducible fraction, and set

Y1(h) =

∞∑

k=1

eik
2/(4h)

k2
and b(h) =

{
q̃2h

1+4πc+q̃h , when h ≥ 0,
q̃2h

1+4πc−q̃h , when h < 0,

where q̃ ≤ c+, |c−| ≤ 4q̃ as in Subsection 4.3. Then, there exists a complex eighth root of unity ep,q
depending only on p and q such that

φ(tp,q + h)− φ(tp,q) =
ep,q√
π

1 + i√
2

(
h1/2

q̃1/2
+ 4 i Y1(b(h)) q̃

3/2 h3/2 +O
(
q̃7/2 h5/2

))
, (74)

which is valid when |h| ≤ 1/(4π |c±|
q̃ q̃2) and where c± = c+ when h > 0 and c± = c− when h < 0.

Also,
√
−1 = −i when h < 0. The corresponding the self-similar form is

φ(tp,q + h)− φ(tp,q)

=
3

2

ep,q√
π

1 + i√
2

[
h1/2

q̃1/2
+

8π2

3
i

(
1

6
− i

2π

c±
q̃

− 2φ

( −1

16π2b(h)

))
q̃

3

2 h
3

2 +O
(
q̃

7

2 h
5

2

)] (75)
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for the same values |h| ≤ 1/(4π |c±|
q̃ q̃2) as above. Also equivalently, the above is rescaled as

φ

(
tp,q +

h

q̃2

)
− φ(tp,q)

=
3

2
√
π

1 + i√
2

ep,q

q̃3/2

[
h

1

2 +
8π2

3
i

(
1

6
− i

2π

c±
q̃

− 2φ

( −1

16π2β(h)

))
h

3

2 +O
(
h

5

2

)] (76)

for all |h| ≤ 1/(4π |c±|
q̃ ), where β(h) = b(h/q̃2).

Remark 6.2. The leading square root term is the cause of every right-angled corner in Figure 2,
since

√
−1 = ±i. Also, the self-similar patterns of φ in Figure 2 are analytically explained by the

term φ(−1/(16π2b(h))) in the expansions (75) and (76). In fact, (75) is obtained from (74) via the
identity (64) that we already used in the previous section.

Remark 6.3. Comparing (76) with (63) in Proposition 5.3, we see that φ behaves around tp,q
essentially the same way as around 0, except rescaling the variable by q̃−2 and the image by q̃3/2

and replacing h with β(h) in the self-similar term. This is the rigorous version of (57) that we
anticipated formally in Subsection 4.3.

Remark 6.4. In Proposition 6.1, we claim
√
−1 = −i whenever h < 0. The symmetry φ(−t) = φ(t)

was enough to determine this around 0, but there is no such symmetry around φ(tp,q) for q > 2.
However, we can work with the limit h→ 0 in the asymptotic expression of φ(tp,q + h)− φ(tp,q).

Let 0 < |h| ≪ 1. We start with (70), where the leading term when h→ 0 is the first one. Indeed,
limh→0 b(h) = 0, so by Proposition 5.3 we have

φ(b(h))

(q̃ − 4πc±b(h))3/2
∼

1+i√
2π
b1/2 +O(b3/2)

q̃3/2
when h→ 0,

and
∫ b

0

φ(r)

(q̃ − 4πc±r)5/2
dr ∼ 1 + i√

2π

∫ b

0

r1/2 +O(r3/2)

q̃5/2
dr =

1 + i√
2π

b3/2 +O(b5/2)

q̃5/2
when h→ 0.

Consequently,

1 = lim
h→0

φ(tp,q + h)− φ(tp,q)

ep,q q̃−3/2 φ(b(h))
. (77)

Define b−(h) by

b(−h) = − q̃2h

1 + 4πc−q̃h
= −b−(h),

so that φ(b(−h)) = φ(b−(h). Therefore, evaluate (77) in −h and conjugate it so that

1 = ep,q lim
h→0

φ(tp,q − h)− φ(tp,q)

q̃−3/2 φ(b(−h))
= ep,q lim

h→0

φ(tp,q − h)− φ(tp,q)

q̃−3/2 φ(b−(h))

= ep,q lim
h→0

φ(tp,q − h)− φ(tp,q)

q̃−3/2 φ(b(h))

φ(b(h))

φ(b−(h))
= ep,q lim

h→0

φ(tp,q − h)− φ(tp,q)

q̃−3/2 φ(b(h))

= e2p,q lim
h→0

φ(tp,q − h)− φ(tp,q)

φ(tp,q + h)− φ(tp,q)
.

We used (77) in the last equality, and

lim
h→0

φ(b(h))

φ(b−(h))
= lim

h→0

b(h)1/2

b−(h)1/2
= 1.
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in the previous one. Finally, using the asymptotic behavior in Proposition 6.1, we get

1 = e2p,q lim
h→0

ep,q(1 + i)(−h)1/2
ep,q(1 + i)h1/2

= e2p,q
ep,q
ep,q

1− i

1 + i

√
−1 = −i

√
−1,

which implies that
√
−1 = −i must hold so that Proposition 6.1 works also for h < 0.

As a corollary, we show that the asymptotic behavior in Proposition 6.1 can be truncated in its
first term independently of q, which is what we use in the proofs of Theorems 1.1 and 1.2.

Corollary 6.5. Let p, q ∈ N such that q ≡ 0, 1, 3 (mod 4) and gcd(p, q) = 1. Given M > 0, there
exists CM > 0 independent of p and q such that

|φ(tp,q + h)− φ(tp,q)| ≤ CM
|h|1/2
q1/2

, ∀|h| < M

q2
.

Proof. The Taylor expansion that was used to get (72) works because 4πc±b/q̃ < 1 for all h ∈ R.
However, limh→∞ 4πc±b(h)/q̃ = 1, so we can truncate the series uniformly only if 4πc±b(h)/q̃ < δ
for some fixed 0 < δ < 1. That is equivalent to |h| < ( δ

4π
|c|
q̃
(1−δ)

)/q̃2.

Now, given M > 0, since δ/(1 − δ) covers the whole positive real line for δ ∈ (0, 1), there

exists 0 < δM < 1 such that M = δM
16π(1−δM ) . Since |c±| < 4q̃, then |h| < M/q̃2 means that

4πc±b(h)/q̃ < δM , and thus we can truncate (72), in the sense that there exists CδM > 0 such that

|φ(tp,q + h)− φ(tp,q)| ≤ CδM

|b(h)|1/2
q̃3/2

.

Now, if 4π|c±q̃h| ≥ 1, then from the definition of b(h) we have |b(h)| ≤ q̃2|h|/2, so we get

|φ(tp,q + h)− φ(tp,q)| ≤
CδM√

2

|h|1/2
q̃1/2

.

Otherwise, if 4π|c±q̃h| < 1, then the bound is immediate from Proposition 6.1 because in particular
we have |h| < q̃−2 and then

q̃7/2|h|5/2 < q̃3/2|h|3/2 < q̃−1/2|h|1/2

can be used in (74). �

6.2. Asymptotic behavior around tp,q with q ≡ 2 (mod 4). If p/q is an irreducible fraction
such that q ≡ 2 (mod 4), we saw that there exists γ ∈ Γθ satisfying γ(p̃/q̃) = 1, where p̃/q̃ = 2p/q
is irreducible. The strategy is exactly the same as in Subsection 6.1, except that when integrating
by parts in (69) we choose

v = 4πi

[
φ

(
−γ(τ + iǫ)

4π

)
− φ

(
−γ(p̃/q̃ + iǫ)

4π

)]

instead. Then, after taking the limit ǫ→ 0 and changing variables γ(τ)/4π = r as before, we get

φ(tp,q + h)− φ(tp,q) = eγ

[
φ(t1,2 + b(h))− φ(t1,2)

(q̃ − 4πc±b(h))3/2
− 6π c±

∫ b(h)

0

φ(t1,2 + r)− φ(t1,2)

(q̃ − 4πc±r)5/2
dr

]

for all h ∈ R. Now develop φ(t1,2 + b(h)) − φ(t1,2) using Proposition 5.4 and use the Taylor
expansions (71) to get a series in terms of b = b(h),

φ(tp,q + h)− φ(tp,q) = eγ

[
−16

1− i√
2π

Z1(b)
b3/2

q̃3/2
+

1

q̃3/2
O
(
b5/2

)]
.
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Figure 4. Zoom of φ(R) around φ(t1,8). Compare to Figure 2 to appreciate the self-
similar pattern, which is analytically explained in (75) in Proposition 6.1. Compare
it also to the behavior of φ around 0 in Figure 3a. Except for a rotation by π/4
radians, they are very similar.

Finally, expanding the Taylor series for powers of b(h) as in (73), we get the asymptotic behavior
we were looking for:

Proposition 6.6. Let p, q ∈ N such that q ≡ 2 (mod 4), p < q and gcd(p, q) = 1. Define p̃ and q̃
so that p̃/q̃ = 2p/q is an irreducible fraction, and set

Z1(h) =

∞∑

k=1
k odd

eik
2/(16h)

k2
and b(h) =

{
q̃2h

1+4πc+q̃h , when h ≥ 0,
q̃2h

1+4πc−q̃h , when h < 0,

where q̃ ≤ c+, |c−| ≤ 3q̃ as in Subsection 4.3. Then, there exists a complex eighth root of unity ep,q
depending only on p and q such that

φ(tp,q + h)− φ(tp,q) = ep,q

(
−16

1− i√
2π

Z1(b(h)) q̃
3/2 h3/2 +O

(
q̃7/2h5/2

))
, |h| < 1

4π |c±|
q̃

1

q̃2
,

where c± = c+ when h > 0 and c± = c− when h < 0. Also,
√
−1 = −i when h < 0. Equivalently,

rescaling the variable,

φ

(
tp,q +

h

q̃2

)
− φ(tp,q) =

ep,q

q̃3/2

(
−16

1− i√
2π

Z1(β(h))h
3/2 +O

(
h5/2

))
, |h| < 1

4π |c±|
q̃

,

where β(h) = b(h/q̃2).

Remark 6.7. Proposition 6.6 confirms what we formally deduced in(58), this is, that φ behaves
around tp,q with q ≡ 2 (mod 4) essentially the same way as around t1,2, except the usual rescaling
and replacing h with β(h) in the argument of Z1.
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The analogous result of Corollary 6.5 is also satisfied, with an equally analogous proof.

Corollary 6.8. Let p, q ∈ N such that q ≡ 2 (mod 4) and gcd(p, q) = 1. Given M > 0, there exists
CM > 0 independent of p and q such that

|φ(tp,q + h)− φ(tp,q)| ≤ CM q3/2 h3/2, ∀|h| ≤ M

q2
.
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[29] Matsutani, S., and Ônishi, Y. Wave-particle complementarity and reciprocity of Gauss sums on Talbot effects.

Found. Phys. Lett. 16, 4 (2003), 325–341.
[30] Mattila, P. Geometry of sets and measures in Euclidean spaces: Fractals and rectifiability, vol. 44 of Cambridge

Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995.
[31] Oskolkov, K. I., and Chakhkiev, M. A. On Riemann ‘nondifferentiable’ function and Schrödinger equation.

Proc. Steklov Inst. Math. 269, 1 (2010), 186–196.
[32] Ricca, R. Rediscovery of Da Rios equations. Nature, 352 (1991), 561–562.
[33] Shen, W. Hausdorff dimension of the graphs of the classical Weierstrass functions. Math. Z. 289, 1-2 (2018),

223–266.
[34] Smith, A. The differentiability of Riemann’s functions. Proc. Amer. Math. Soc. 34 (1972), 463–468.
[35] Stein, E. M., and Shakarchi, R. Complex analysis, vol. 2 of Princeton Lectures in Analysis. Princeton

University Press, 2003.
[36] Talbot, H. F. Facts relating to optical science. No. IV. Philos. Mag. 9, 56 (1836), 401–407.
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