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Abstract

The reasons why Deep Neural Networks are susceptible to being fooled

by adversarial examples remains an open discussion. Indeed, many di↵er-

ent strategies can be employed to e�ciently generate adversarial attacks,

some of them relying on di↵erent theoretical justifications. Among these

strategies, universal (input-agnostic) perturbations are of particular inter-

est, due to their capability to fool a network independently of the input

in which the perturbation is applied. In this work, we investigate an in-

triguing phenomenon of universal perturbations, which has been reported

previously in the literature, yet without a proven justification: universal

perturbations change the predicted classes for most inputs into one par-

ticular (dominant) class, even if this behavior is not specified during the

creation of the perturbation. In order to justify the cause of this phe-

nomenon, we propose a number of hypotheses and experimentally test

them using a speech command classification problem in the audio domain

as a testbed. Our analyses reveal interesting properties of universal per-

turbations, suggest new methods to generate such attacks and provide

an explanation of dominant classes, under both a geometric and a data-

feature perspective.

Keywords: Adversarial Examples, Universal Adversarial Perturbations,

Deep Neural Networks, Robust Speech Classification
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1 Introduction

Universal adversarial perturbations [1] are input-agnostic perturbations capable
of fooling a Deep Neural Network (DNN) while remaining imperceptible for
humans. These perturbations are generally created as untargeted attacks, so
that no preference over the (incorrect) output class is assumed [1, 2, 3, 4].
However, previous work [1, 5, 6, 7] has reported a phenomenon regarding the
e↵ect of universal perturbations in the attacked model: the preference of the
perturbation to change the class of the inputs into a particular dominant class,
without this being specified or imposed in the generation of the perturbation.
Thus, some classes (or class regions in the decision space) act as attractors under
the e↵ect of universal perturbations.

In this paper, we carry out, for the first time, an in-depth study of this phe-
nomenon with the aim of sheding light on the (still misunderstood) vulnerability
of DNNs to universal perturbations. The main contributions of our paper are
the following:

• First, we propose a number of hypotheses to explain and characterize the
existence of dominant classes linked to universal adversarial perturbations,
and revisit previous hypotheses and open questions in the related work.

• We experimentally test the proposed hypotheses using a speech command
classification task in the audio domain as a testbed. To the best of our
knowledge, this is the first work in which the analysis of dominant classes is
studied for the audio domain. Apart from providing evidence of the valid-
ity of the proposed hypotheses, our results reveal interesting properties of
the DNN sensitivity to novel types of perturbations, such as perturbations
optimized to prevent the main dominant classes.

• Overall, our study exposes the connection between the dominant classes
and the sensitivity of the model to (I) patterns in the data distribution
that the model recognizes as each class with high confidence, and (II)
to vulnerable directions in the decision space learned by the model. Our
findings also suggest novel approaches to generate universal perturbations,
opening the venue for future research on more e↵ective attacks and de-
fenses.

• Finally, we highlight a number of di↵erences between the image domain
and the audio domain regarding the analysis of adversarial examples, con-
tributing to a more general understanding of adversarial machine learning.

2 Related work

Universal adversarial perturbations for DNNs were introduced in [1] for image
classification tasks. The goal of such perturbations is to fool a DNN for “most”
natural inputs when they are applied to them, and, at the same time, to be
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imperceptible for humans. Formally, following the notation used in [8], a per-
turbation v is said to be (⇠, �)-universal if the following conditions are satisfied:

||v||2  ⇠, (1)

Px⇠µ [f(x+ v) 6= f(x)] � 1� �, (2)

being µ the distribution of natural inputs in the d-dimensional input space Rd,
and f(x) the output class assigned to an input x by a classifier f :Rd!{y1, ..., yk}.
Thus, universal perturbations generalize individual (i.e., input dependent) ad-
versarial perturbations [9, 10, 11, 12, 13], which are optimized to fool a DNN
for one particular input of interest.

In the seminal work of Moosavi-Dezfooli et al. [1], an iterative procedure is
proposed to generate the universal perturbations. This procedure accumulates
input dependent perturbations [11] generated for a set of inputs, and projects
the universal perturbation after every update in order to bound its norm. Subse-
quent works have proposed alternative approaches to generate universal adver-
sarial perturbations, such as training generative networks to learn a distribution
of universal adversarial perturbations (which, therefore, can be used to sample
universal perturbations) [14, 15, 16], or data-free approaches capable of gener-
ating universal perturbations without any access to the data used to train the
target models [2, 17, 18, 19]. Other works pursue more particular objectives,
such as generating targeted universal perturbations which change the classifica-
tion of the model to one predefined label [15, 19, 20], or perturbations that only
fool the model for inputs of one particular class [21]. Finally, although image
classification tasks have been the main focus of study, universal perturbations
have also been reported for tasks such as image segmentation [18, 22], speaker
recognition [23], speech recognition [4, 24] or text classification [7, 25].

The discovery of such attacks for state-of-the-art DNNs has led to a deeper
study of their properties. In [1], the vulnerability of DNNs to universal pertur-
bations is empirically studied in the image domain, which is attributed in part
to the geometry of the decision boundaries learned by the DNNs. In particular,
it is shown that, in the vicinity of natural inputs, perturbations normal to the
decision boundaries are correlated, in the sense that they approximately span
a low dimensional subspace (in comparison to the dimensionality of the input
space). Thus, being

vx = argmin
v

||v||2 s.t. f(x) 6= f(x+ v) (3)

the minimal perturbation capable of changing the output of an input x (hence
normal to the decision boundary at x + vx), it is possible to find a subspace
S ⇢ X, with dim(S)⌧ dim(X), so that vx 2 S for x ⇠ µ. The existence of such
a subspace implies that even random perturbations (with small norms) sampled
from S are likely to cause a misclassification for a large number of inputs [1].
This hypothesis is further developed in [8], also for the image domain, where
the vulnerability of classifiers to universal perturbations is formalized, under
the assumption of locally linear decision boundaries in the vicinity of natural
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inputs. An illustration of a linear approximation of the decision boundary is
shown in Figure 1 (left).

Figure 1: Illustration of the decision boundary approximations introduced in
[8]. The left image illustrates the locally linear (flat) decision boundary model,
and the middle figure the locally curved decision boundary model. The solid
curve corresponds to the actual boundary, and the dashed lines to the approxi-
mations. Note that in both cases the approximations are estimated at x + vx,
being x an input sample and vx a vector normal to the decision boundary (see
Equation 3). The right images compare a positively curved boundary (bottom)
with a negatively curved boundary (top) along vx. Two dashed arrows have
been included as reference in both images, to highlight that positively curved
boundaries require smaller norms to be surpassed.

However, the assumption of locally linear decision boundaries becomes in-
su�cient to comprehensively formalize the vulnerability of DNNs to universal
perturbations. Indeed, there is a crucial connection between that vulnerability
and the curvature of the decision boundaries [8]: there exist common pertur-
bation directions (i.e., span a low-dimensional subspace) in the input space
for which, starting from natural inputs, the decision boundaries are positively
curved along these directions. See Figure 1 (right) for a comparison between a
positively curved boundary and a negatively curved boundary. The positive cur-
vature of the decision boundaries implies small upper bounds for the amount of
perturbation required to surpass the decision boundaries, as depicted in Figure
1 (right). Thus, those positive curvatures increase the vulnerability of DNNs, as
smaller perturbations are required to fool the model. At the same time, the fact
that those directions are also common for multiple inputs implies the existence
of small input-agnostic adversarial perturbations.

In a further analysis developed in [26], it is shown that the directions in
the input space for which the decision boundaries are highly curved are indeed
associated by the DNN with class identities (the further we move in one of such
directions, the higher - or lower- the confidence of the model in one particular
class is). Moreover, it is shown that the class features1 associated to such direc-
tions are, indeed, the most relevant ones as far as the classification performance
of the model is concerned, what links the accuracy of DNNs with their vulner-

1In this paper, unless specified, features are assumed to be abstract representations derived
from patterns in the data distribution (e.g., how round the objects in an image are), rather
than the set of individual attributes that characterize the data (e.g., the set of pixels of an
image).
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ability to adversarial attacks. A feature-perspective is also employed in [19] to
justify the vulnerability of the models to universal perturbations, experimentally
showing that universal perturbations contain features which predominate over
the features of natural images. Thus, in the presence of universal perturbations,
natural images act like noise, despite being visually predominant.

The aforementioned theoretical frameworks focus, in particular, on the vul-
nerability to universal perturbations. In this paper, we focus instead on one
particular property of universal perturbations: the existence of dominant classes
that are significantly more frequently predicted for the perturbed (and misclas-
sified) inputs. This phenomenon was first reported in [1] for image classification
tasks. Subsequent works have also reported the existence of dominant classes
in image classification tasks [5, 6], and in text classification tasks [7]. In this
paper, we show that this happens also for other domains, such as speech com-
mand classification tasks in the audio domain. Although it is hypothesized in
[1] that a possible explanation for the dominant classes is that they occupy a
larger region in the decision space, it is left as an open research question. In
this paper, we tackle this research question and test multiple hypotheses in the
search for a deeper understanding of this phenomenon.

Outside the particular field of universal perturbations, multiple theoretical
frameworks have been proposed for the explanation of adversarial examples.
Whereas most of them focus on the properties of the DNNs [9, 10, 27, 28],
other alternative explanations have also been proposed. In this paper, special
attention is paid to the one introduced in [29], in which adversarial examples are
explained in terms of the robustness of the features in the data. In particular,
it it shown that datasets contain non-robust features which, although being
highly discriminative (i.e., that the data is well described by these features),
are uncorrelated with the ground-truth classes when they are perturbed by
small (adversarial) perturbations. Thus, when a classifier learns to rely on
such non-robust features to accurately classify the data, it becomes vulnerable
to adversarial perturbations. The small robustness of such features to small
perturbations also implies their lack of meaning for humans, which explains
the imperceptibility of the attacks. In our paper (Section 5.2), we hypothesize
that the higher sensitivity of the model to certain features might explain the
existence of dominant classes.

3 Proposed Framework

Let us consider a machine learning model f : X ! Y , with X ✓ Rd and Y =
{y1, . . . , yk}, trained to classify inputs x 2 X coming from a data distribution
x ⇠ µ among one of the k possible classes in Y . To formally describe dominant

classes, let us denote pvj the probability of misclassifying an input as the class
yj when a universal perturbation v is added to the inputs:

pvj = P x⇠µ
f(x) 6=yj

[f(x+ v) = yj ] . (4)
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Similarly, let tvi,j represent the probability that, departing from an input of
ground-truth yi, the model incorrectly predicts the class yj for the perturbed
inputs:

tvi,j = P x⇠µ
f(x)=yi

[f(x+ v) = yj ]. (5)

In practice, if the distribution µ is unknown, these probabilities can be estimated
using a finite set of input samples X .

Definition 1. ya is an attractor class for another class yi (i 6= a), under a

perturbation v, which will be denoted as yi
v�! ya, if at least the ↵ > 1

k�1
proportion of the inputs corresponding to the class yi are predicted as ya when

they are perturbed with v, that is:

tvi,a � ↵. (6)

Notice that the threshold 1
k�1 represents the proportion that would be

achieved if the inputs were evenly distributed among the k�1 possible incorrect
classes.

Definition 2. yb is a dominant class for the universal perturbation v if at least

the � > 1
k�1 proportion of the inputs are wrongly classified as yb when they are

perturbed with v, that is:
pvb � �. (7)

Alternatively, yb can be defined also in terms of the number of classes that
it attracts. Let Y v

b = {yi 2 Y | yi
v�! yb} represent the set of classes attracted

by yb with the perturbation v, and |Y v
b | the cardinality of the set Y v

b . Precisely,
yb is dominant if it is an attractor class for at least the ⇣ > 1

k�1 proportion of
the remaining classes:

|Y v
b |

k � 1
� ⇣. (8)

The choice of the parameters ↵, � and ⇣ can determine the existence of multiple
attractor and dominant classes. In this paper, we assume ↵,�, ⇣ � 1

3 since we
are interested in those classes which are incorrectly predicted for a significant
proportion of inputs, or which attract a significant proportion of other classes.

To explain the relationship between universal perturbations and dominant
classes, we use a speech command classification problem in the audio domain
as a testbed. We selected the Speech Command Dataset [30], in which the
underlying task consists of classifying audio signals, of fixed length, into one of
the following classes: silence, unknown, yes, no, up, down, left, right, on, o↵,

stop and go.
We trained a convolutional neural network as a classifier, based on the ar-

chitecture proposed in [31], which is composed of two convolutional layers with
ReLU activations, a fully connected layer and a final softmax layer. This ar-
chitecture has been used in a number of related works [30, 32, 33, 34]. The
audio waveforms (in the time-domain) from the input space R16000, which take
values in the range [�1, 1], are first converted into spectrograms by dividing
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the audios into frames of 20ms, with a stride of 10ms, and applying the real-
valued fast Fourier transform (retrieving 512 components) for each frame. As
the frequency spectrum of a real signal is Hermitian symmetric, only the first
257 components are retained. The dimension of the resulting spectrogram is
99 ⇥ 257. Finally, the Mel-Frequency Cepstrum Coe�cients (MFCCs) [35] are
extracted from the spectrogram, in the space R99⇥40, before being sent to the
network. It is worth pointing out that the adversarial perturbations that are
generated for this model are optimized in an end-to-end fashion, directly in the
audio waveform representation of the signal.

We selected the UAP-HC algorithm introduced in [4] to create the universal
perturbations. This algorithm, which is a reformulation for the audio domain
of the one proposed in [1], consists of iteratively accumulating individual untar-
geted adversarial perturbations, generated using the DeepFool algorithm [11].
The pseudocodes for both the UAP-HC and DeepFool algorithms can be found
in Algorithm 1 and Algorithm 2, respectively. These algorithms have been gen-
eralized to (optionally) prevent them from reaching certain adversarial classes.
This generalization will be further described and motivated in Section 4.

Finally, we highlight that the rationale of the DeepFool algorithm relies on
a geometric approach. In particular, a first-order approximation of the decision
boundaries is used to move the input towards the estimated closest boundary,
being, therefore, an untargeted attack. Thus, the optimization process of the
UAP-HC algorithm is not biased towards any particular class, although, in
practice, di↵erent universal perturbations lead in most of the cases to the same
dominant classes.

4 Dominant classes in speech command classifi-

cation

In this section, we generate di↵erent universal adversarial perturbation for the
speech command classification task described in Section 3, in order to investigate
whether in this domain dominant classes are also produced.

We start by generating 10 di↵erent universal perturbations using the UAP-
HC algorithm, without restricting any class (R = ?). We set ⇠ = 0.1 as
threshold for the perturbation `2 norm, and restricted the UAP-HC algorithm
to a maximum of five iterations. To generate the perturbations, we used a train-

ing set of 100 inputs per class, which makes a total of 1200 inputs. Once the
perturbations are generated, their e↵ectiveness will be measured in a test set,
containing samples that were not used during the generation of the perturba-
tions. The initial accuracy of the model in this set is 85.52%.2

According to the results, the algorithm led to universal perturbations with
left and unknown as dominant classes for almost all the experiments. This can
be seen in Figure 2 (top), which shows the frequency with which each class is

2The number of samples per class in the test set and the accuracy of the model in each
class is reported in Table A.1.
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Algorithm 1 UAP-HC [4]

Input: A classification model f , a set of input samples X , a projection operator
Pp,⇠, a fooling rate threshold �, a maximum number of iterations Imax, a
set of restricted classes R ⇢ Y

Output: A universal perturbation v
1: v  initialize with zeros
2: FR 0 . Fooling rate.
3: iter  0 . Iteration number.
4: while FR < 1� � ^ iter < Imax do

5: X  randomly shu✏e X
6: for xi 2 X do

7: . Check that xi is not already fooled by v:
8: if f(xi + v) = f(xi) then
9: 4vi  DeepFool(xi + v, f , R)

10: v0  Pp,⇠(v +4vi) . Project (v +4vi) in the `p ball of radius ⇠
and centered at 0.

11: FR0  Px2X [f(x) 6= f(x+ v0)]
12: . Update v only if adding 4vi increases the FR and if the current

class is not in R:
13: if FR < FR0 ^ f(xi + v +4vi) /2 R then

14: v  v0

15: FR FR0

16: end if

17: end if

18: end for

19: iter  iter + 1
20: end while

wrongly predicted when the perturbation is applied to the audios in the test
set. We only considered those inputs that were initially correctly classified by
the model, but misclassified when the perturbation is applied. The frequencies
are shown individually for the ten universal perturbations, with each row corre-
sponding to one perturbation. As can be seen, both left and unknown arise as
dominant classes in 9 of the 10 experiments, sometimes even at the same time.

It is important to highlight that dominant classes arise without being im-
posed in the universal perturbation crafting procedure. For this reason, an in-
teresting property to study is whether dominant classes remain dominant even
if we explicitly avoid them during the optimization process (see Algorithms 1
and 2). To shed light on this question, we start by preventing the algorithm
from considering those directions that point to the decision boundaries of the
class left. The results obtained for ten new perturbations generated with this re-
striction are shown in Figure 2 (bottom left). As can be seen, the most frequent
adversarial class is now unknown for 9 of the 10 perturbations created.

We went another step further and repeated the experiment, this time, how-
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Figure 2: Overview of the frequency with which each class was assigned to the
inputs misclassified as a consequence of universal perturbations. The frequencies
have been computed individually (row-wise) for the 10 perturbations generated
in each of the following configurations of the UAP-HC algorithm: default algo-
rithm (top), restricting the algorithm to follow the class left (bottom left) and
restricting the algorithm to follow the classes left and unknown (bottom right).
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Figure 3: Fooling rate percentage, computed individually for each class, of the
10 perturbations generated in each of the following configurations of the UAP-
HC algorithm: default algorithm (top), restricting the algorithm to follow the
class left (bottom left) and restricting the algorithm to follow the classes left

and unknown (bottom right). In the three figures, the results corresponding to
the dominant classes (for each experiment) have been highlighted using bold
text.
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Algorithm 2 DeepFool [11]

Input: An input sample x of class yi, a classifier f , a set of restricted classes
R ⇢ Y .

Output: An individual perturbation r.
1: x0  x
2: r  initialize with zeros
3: Y 0  Y � (R [ {yi})
4: while f(x0) = yi do
5: for yj 2 Y 0

do

6: f 0
j  fj(x0)� fi(x0)

7: w0
j  5fj(x0)�5fi(x0)

8: end for

9: l argminj2Y 0
|f 0

j |
||w0

j ||

10: r  r + |f 0
l |

||w0
l||22

w0
l

11: x0  x+ r
12: end while

ever, restricting the boundaries corresponding to both left and unknown classes.
The results are shown in Figure 2 (bottom right). In this case, the two restricted
classes were no longer dominant classes, but di↵erent dominant classes were ob-
tained, precisely, up, right and go. It is also worth emphasizing that, although
dominant classes were obtained in all the experiments, they were di↵erent de-
pending on which other classes were restricted. For instance, whereas the class
up rarely appeared as dominant without restrictions, it is the most frequent
dominant class when both left and unknown classes are restricted.

Regarding the e↵ectiveness of the attacks, the fooling rate of every perturba-
tion (i.e., the percentage of inputs that are misclassified when the perturbation
is applied) is shown in Figure 3, for each class independently. The fooling rates
have been computed considering the inputs that were initially correctly classi-
fied. As can be seen, the e↵ectiveness of each perturbation is higher in some
classes than in others, achieving up to ⇡69% in some cases. The fooling rates
corresponding to the dominant classes, which have been highlighted in the fig-
ure, are practically zero for most of the perturbations, which reveals that the
perturbation does not change the prediction of the model for those inputs.

For more informative results, the mean and maximum fooling rate of all
the perturbations are shown in Table 1. To avoid biases, these aggregated
fooling rates have been computed in three di↵erent ways: (I) considering all
the inputs, (II) without considering the inputs corresponding to the dominant
classes, and (III) without considering the dominant classes and the class silence.
The reason for not considering the inputs belonging to the dominant classes is
because the perturbation reinforces the confidence on those classes, and, as a
consequence, there are practically no misclassifications in those inputs. On the
contrary, the results for the class silence are clearly lower than for the rest of
the classes, which biases the results. Comparing the average e↵ectiveness of the
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Restricted
classes in
UAP-HC

Fooling Rate

Considering all
the classes

w/o considering
dominant classes

w/o considering
dominant & Silence

Mean Max. Mean Max. Mean Max.

None 37.94 46.34 41.68 50.84 44.97 54.76
{Left} 34.90 37.73 37.39 40.60 40.32 43.71
{Left, Unk.} 33.75 37.49 37.08 41.36 39.90 44.37

Table 1: E↵ectiveness of the UAP-HC algorithm in a set of test samples, not
seen during the generation of the perturbations.

universal perturbations, we can notice that the average fooling rate achieved
by the perturbations decreases when the dominant classes are restricted in the
UAP-HC algorithm. We confirmed using the Wilcoxon signed-rank test [36]
(with a significance level of 0.05) that, in comparison to the results obtained
when no class is restricted (i.e., R = ?), the decrease is significant when the
set of classes R = {Left} or R = {Left, Unknown} is restricted. According
to the same test, the di↵erences observed between the cases in which the sets
of restricted classes are R = {Left} and R = {Left, Unknown} were not
statistically significant.

Overall, these results confirm the existence of dominant classes in audio
tasks, and reveal a number of properties that, to the best of our knowledge,
have not been reported before in related works. First, we have shown that it is
possible to prevent one class from being dominant during the optimization of the
universal perturbation. However, doing so leads to di↵erent dominant classes.
Moreover, the fact that the e↵ectiveness of the universal perturbations decreases
when the most frequent dominant classes are restricted might suggest that some
classes are more dominant than others. All these findings and properties will
serve as a basis to further study the cause of this phenomenon in the following
sections.

5 Hypotheses about the existence dominant classes

In this section, we propose a number of hypotheses to explain and character-
ize the relationship between universal adversarial perturbations and dominant
classes. The proposed hypotheses are also experimentally tested using the frame-
work described in Section 3.

5.1 Dominant classes occupy a larger region in the input

space

In [1], the existence of dominant classes is attributed to a larger region of such
classes in the image space. Nevertheless, due to the high dimensionality of the
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input spaces in current machine learning problems, exploring the volume that
each decision region occupies in the whole input space is intractable in practice.

Even so, to test this hypothesis, we randomly sampled and classified 1,000,000
inputs from the input space. The values of the inputs were sampled uniformly
at random in the range [�1, 1]. We found that all the samples were classified
as the class silence, which is not a dominant class in our experiments, as shown
in Section 4 (see Figure 2). Therefore, our results suggest that there is not
necessarily a connection between the volume occupied by the decision regions
of di↵erent classes and the frequency with which inputs perturbed by universal
perturbations reach the regions corresponding to the dominant classes.

5.2 Class properties of universal perturbations

Universal perturbations are capable of changing the output class of a large num-
ber of inputs, and the majority of the misclassified inputs are moved uninten-
tionally towards a dominant class. In this section, we show that the perturbation
itself is predicted by the model as the dominant class with high confidence.

In fact, we noticed that the following three factors are positively correlated
during the generation process of a universal perturbation v: the fooling rate
(F1), the percentage of inputs misclassified as the dominant class yb (F2), and
the confidence with which the model considers that the perturbation belongs to
the dominant class (F3):3

F1(v) = Px2X [f(x) 6= f(x+ v)] , (9)

F2(v) = Px2X [f(x+ v) = yb] , (10)

F3(v) = fb(v), (11)

where X is a set of inputs and fj : X ! R represents the output confidence of
the classifier f corresponding to the class yj . An example of the evolution of
these factors during the optimization process of a universal perturbation, using
the UAP-HC algorithm, is shown in Figure 4. These results correspond to the
first experiment of Section 4, for the case in which no class was restricted. In
particular, the left figure shows the evolution of the frequency with which each
class is (wrongly) predicted for the misclassified inputs, and the right figure
shows the output confidences of the model when the universal perturbation is
classified. The fooling ratio of the perturbation has been included in both figures
as a reference, represented by a dashed line.

More generally, for the 10 di↵erent universal perturbations generated in Sec-
tion 4 (without restricting any class), the average Pearson correlation coe�cient
between F1 and F3 during the first iteration of Algorithm 1 is 0.79. Similarly,
the average correlation between F1 and F2 is 0.87, and the average correla-
tion between F2 and F3 is 0.91. These results confirm that the three factors

3For those perturbations in which there are two dominant classes at the same time, the
class f(v) has been considered as the dominant (i.e., the class assigned to the perturbation
by the model).
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Figure 4: Evolution of three di↵erent factors during the optimization process
of a universal perturbation using the UAP-HC algorithm: the frequency with
which the inputs are classified as the dominant class (left), the confidence of
the model in the dominant class when the perturbation is predicted (right),
and the evolution of the fooling ratio (FR), which is shown in both plots as a
reference. These results have been computed on the training set, and correspond
to the first experiment reported in Section 4, for the case in which no class was
restricted. For the sake of clarity, only the information of the four most relevant
classes are plotted in each plot.

are being maximized jointly during the optimization process of the universal
perturbation, even if such behavior is not specified by the model.

Motivated by this finding, we studied whether any perturbation v that is
classified by the model as one particular class with high confidence is capable
of producing the same e↵ect as a universal perturbation, that is, to force the
misclassification of a large number of inputs by pushing them to the class f(v).
For this purpose, we defined the following optimization problem, in which the
objective is to find a perturbation v, with a constrained norm, that maximizes
the confidence of the model in one particular class yt, ft(v), that is:

max
v

ft(v) s.t. ||v||2  ⇠. (12)

We launched 100 trials for each possible target class, starting from random per-
turbations.4 We used a gradient descent approach to optimize the perturbation,
restricting the search to 100 gradient descent iterations, and setting a threshold
of ⇠ = 0.1 for the perturbation norm.

The mean and maximum fooling rates obtained with the generated perturba-
tions are shown in Table 2, computed independently for each target class. The
fooling rate for each class individually is shown in Figure 5 (left). As can be seen
in Table 2, for the classes left and unknown, both the most frequent dominant
classes associated to the universal perturbations generated using the UAP-HC
algorithm (see Figure 2), a significantly higher e↵ectiveness is achieved than for

4The initial perturbations were randomly sampled from the input space R16000, where each
value was sampled uniformly at random in the range [�10�3, 10�3].
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Figure 5: Overview of the e↵ectiveness of the perturbations found by solving the
optimization problem defined in (12). In both figures, the results are reported
independently for each target class (row-wise), and are averaged for the 100 trials
generated for each target class. Left: average fooling rate obtained by the 100
perturbations found for each target class, computed for each class individually.
Right: Average frequency with which each class is wrongly assigned to the fooled
inputs by the model.

the rest of classes. We confirmed this using the Wilcoxon signed-rank statistical
test [36], under a significance level of 0.05. Apart from that, with independence
of the target class, the majority of the samples fooled by these perturbations
were classified as the target class. This is shown in Figure 5 (right), in which
the average frequency with which each class is predicted under the e↵ect of the
perturbations is computed, independently for each target class.

These results reveal that a perturbation which is optimized only to maximize
the confidence of a model into one class can behave as a universal perturbation,
and, more relevantly, that their e↵ectiveness is maximized when the target class
is a dominant class. Based on these findings, we can hypothesize that the model
is more sensitive to some class features than to others, and that, ultimately, the
sensitivity degree to each class feature is what determines the dominant classes.
In other words, a class yj will have a greater dominance the more sensitive the
model is to the patterns in the data distribution that are associated to yj (by
the model itself).5

5These results are consistent with previous explanations proposed for the vulnerability
of universal adversarial perturbations. For instance, these results could be related to the
non-robust data-feature framework introduced in [29], to the predominance of the features of
universal perturbations over the features of natural inputs [19], or to the link between the
class-identity associations of the model and the most vulnerable directions in the input space
studied in [26] (see Section 2 for more details).
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Target
class

Fooling Rate

Considering all
the classes

w/o considering
dominant classes

w/o considering
dominant & Silence

Mean Max. Mean Max. Mean Max.

Sil. 17.85 21.71 19.77 24.05 19.77 24.05
Unk. 30.31 33.88 32.40 36.21 35.00 39.14
Yes 16.91 20.40 18.67 22.52 19.59 23.89
No 23.46 25.82 25.28 27.84 26.91 29.74
Up 25.53 28.19 28.16 31.10 29.79 32.97
Down 22.56 24.68 24.45 26.75 25.95 28.28
Left 32.57 37.25 35.73 40.87 38.37 44.22
Right 23.25 27.28 25.38 29.78 27.07 31.88
On 19.50 22.43 21.25 24.45 22.40 25.94
O↵ 21.56 24.46 23.39 26.54 24.83 28.48
Stop 25.07 27.21 27.61 29.97 29.64 32.32
Go 22.99 25.66 24.84 27.72 26.03 29.24

Table 2: E↵ectiveness of the perturbations generated using Algorithm 12, aver-
aged for the 100 perturbations generated for each target class.

5.3 Singular Value Decomposition

In [1], the existence of universal perturbations for image classification DNNs is
attributed, in part, to the presence of similar patterns in the geometry of deci-
sion boundaries around di↵erent points of the decision space. In particular, as
described in Section 2, perturbations normal to the decision boundaries in the
vicinity of natural inputs approximately span a very low-dimensional subspace,
revealing that similar perturbations are capable of changing the output class
of di↵erent input samples. This was assessed experimentally for state-of-the-art
DNNs, by computing the Singular Value Decomposition (SVD) of a matrix A
collecting normalized individual untargeted perturbations generated using the
DeepFool algorithm. The SVD provides a set of singular vectors {s1, s2, . . . , sr},
which represent a basis for the subspace spanned by the adversarial perturba-
tions in A. Each si is related to a singular value �i, which indicates the im-

portance or contribution of that singular vector. As shown in [1], considering
that the singular values are arranged in decreasing order �1 � �2 � · · · � �r,
the decay of the singular values was considerably faster in comparison to the
decay obtained from the SVD of random perturbations (sampled from the unit
sphere). This implies that the subspace spanned just by the first d0 ⌧ d singu-
lar vectors (i.e., those corresponding to the highest singular values) contained
vectors normal to the decision boundaries in the vicinity of natural samples.
Indeed, random perturbations sampled from such a subspace were capable of
achieving a fooling rate of nearly 38% on unseen inputs, whereas random per-
turbations (of the same norm) in the input space only achieved a fooling rate
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of approximately 10% [1].
In this section, we take this approach as a framework to study the existence

of dominant classes. First, we will replicate the previous experiment to assess
whether, in the audio domain, it is also possible to find a low-dimensional sub-
space of the input space collecting vectors normal to the decision boundaries
of DNNs. The existence of such a subspace would allow us to test a number
of hypotheses, for example, whether the directions in such subspaces mainly
point towards the decision boundaries corresponding to the dominant classes.
This would explain why most of the inputs are (incorrectly) classified as the
dominant class when they are adversarially perturbed.

Nevertheless, due to the input transformation process required to convert
the raw audio signal into the MFCC representation (see Section 3), the results
might di↵er depending on the data representation in which the analysis is done.
For this reason, we need to assess first which audio representation is the most
informative one in our case. Thus, we computed the SVD for a set of individual
perturbations and di↵erent sets of random perturbations, under the three main
representations for audio signals: raw audio waveform, spectrogram and MFCC
coe�cients.

5.3.1 Analysis of the SVD of audio perturbations

Let us consider a set of n natural input samples X = {x1, . . . , xn}. The indi-
vidual perturbations were generated using the DeepFool algorithm, in the raw
audio waveform representation:

V = {vi | vi = DeepFool(xi), i = 1, . . . , n} . (13)

The perturbations that these raw waveforms produce in both the spectrogram
and MFCC representations are computed as v0i = g(xi + vi) � g(xi), being g
the input transform function, which maps the raw audio waveforms into either
a spectrogram or the MFCC features:

VSPEC = {vspeci | vspeci = gSPEC(xi + vi)� gSPEC(xi), i = 1, . . . , n} , (14)

VMFCC =
�
vmfcc
i | vmfcc

i = gMFCC(xi + vi)� gMFCC(xi), i = 1, . . . , n
 
. (15)

The random perturbations were sampled uniformly at random from the raw
input space:

R =
�
ri | ri is sampled u.a.r. from [�1, 1]16000, i = 1, . . . , n

 
. (16)

As in the case of adversarial perturbations, the corresponding perturbations in
the frequency-domain representation are computed as:

RSPEC = {rspeci | rspeci = gSPEC(xi + ri)� gSPEC(xi), i = 1, . . . , n} , (17)

RMFCC =
�
rmfcc
i | rmfcc

i = gMFCC(xi + ri)� gMFCC(xi), i = 1, . . . , n
 
. (18)

In this case, the random perturbations were scaled to have a fixed `2 norm of
0.1 before being applied to the inputs in Equations (17) and (18).
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Finally, for a more representative analysis, we considered two additional
sets of random perturbations, sampled uniformly at random from the space of
spectrograms and the space of MFCC coe�cients:

RSPEC =
�
ri | ri is sampled u.a.r. from [�1, 1]99⇥257, i = 1, . . . , n

 
, (19)

RMFCC =
�
ri | ri is sampled u.a.r. from [�1, 1]99⇥40, i = 1, . . . , n

 
. (20)

All the perturbations described in Equations (13)-(20) were normalized before
computing the SVD. It is worth highlighting the key di↵erence between the
random perturbations defined in (17) and (18) and those defined in (19) and
(20). The former represent the changes that randomly perturbing a raw signal
produces on the spectrogram (or MFCC) space. In contrast, the random per-
turbations in (19) and (20) are directly generated in the spectrogram space or in
the MFCC space, respectively. In other words, the perturbations considered in
(19) and (20) are analogous to those in (13), but in the spaces corresponding to
the spectrograms or to the MFCC coe�cients instead of the space of raw audio
waveforms. Considering all these types of perturbations and representations is
important to better study which of them are the most informative ones in the
audio domain, and to ensure that our subsequent analyses will be carried out
using the most appropriate representation.

Figure 6 compares the decay of the singular values (sorted in decreasing or-
der), for all the sets of perturbations considered in Equations (13)-(20). The
results corresponding to the raw waveform, spectrogram and MFCC represen-
tations are shown in the first, second and third row of the figure, respectively.
Whereas the left column shows the singular values obtained with the SVD for
each data representation, in the right column the decays are characterized by
fitting exponential curves (depicted as dashed lines) with the following form:6

y = ⇢ · e�x� + ! , ⇢,�,! 2 R. (21)

A higher value of the decay factor � represents a faster decay, as is illustrated
in Figure 7, which shows the behavior of the exponential curves for di↵erent
values of the decay factor �. As can be seen in the figure, for low values of �
(e.g., �  1) the obtained curves are close to a constant or linear decay (i.e.,
y = 1�x), whereas for � > 1 the values decay much faster (i.e., exponentially).

Regarding the results in the raw waveform representation (i.e., V and R),
the decay of the singular values is mainly linear for both individual and random
perturbations, which can be assessed by their decay factor � (see Figure 6),
since in both cases � < 1 is obtained. This means that, in both cases, there
is not a set of singular vectors that is considerably more informative than the
rest, and, as a consequence, a large set of vectors would be needed to provide
an approximate basis for the perturbations. Thus, the perturbations do not
show meaningful correlations in this representation. The same conclusion can
be drawn from the perturbations sampled uniformly at random in the space of

6Note that the singular values have been scaled in the range [0, 1] before fitting the expo-
nential curves, for a more uniform comparison.
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Figure 6: Left column: singular values obtained in the SVD of individual ad-
versarial perturbations and random perturbations, computed in three feature
representations: raw audio waveforms (top), spectrograms (center) and MFCCs
(bottom). Right column: characterization of the decay of the singular values
by fitting an exponential curve (the values in both axes have been scaled in the
range [0,1]).

19



Figure 7: Illustration of an exponential decay y = ⇢e�x�+! for di↵erent values
of the decay factor �. For a more uniform comparison, the values ⇢ = 1 and
! = 0 were used in all the cases, and the curves were normalized in the range
[0, 1].

spectrograms (RSPEC) and in the space of MFCC coe�cients (RMFCC). How-
ever, considering the perturbations in the frequency domain produced by the
raw waveform perturbations, either random or adversarial (i.e., VSPEC, RSPEC,
VMFCC and RMFCC), the singular values decay exponentially, achieving decay
factors which are at least of one order of magnitude greater than for the previous
cases. For instance, in the MFCC representation (i.e., VMFCC and RMFCC), the
values obtained are � = 1

0.131 and � = 1
0.001 , respectively.

These results indicate, first, that even if the perturbations are generated in
the raw audio waveform representation, it is necessary to go to the frequency-
domain to observe informative patterns. This might be a fundamental di↵erence
between the image domain and the audio domain, as most of the analyses done
in the former can be done directly in the raw image space. Secondly, the e↵ect
of audio perturbations in the frequency-domain can be characterized by just a
small (in comparison to the dimensionality of the corresponding spaces) number
of singular vectors. For instance, for the MFCC representation, the most rele-
vant information is captured in less than the ⇠150 first singular vectors (that
is, those corresponding to the highest singular values). The fact that this hap-
pens for both random or adversarial perturbations could imply, however, that
the captured correlations are uninformative about the geometry of the decision
boundaries around natural inputs, or, alternatively, about the vulnerability of
the network to adversarial attacks. Nevertheless, in the reminder of this section
we show that the SVD of individual adversarial perturbations not only provides
a representative basis for input-agnostic perturbations, but also that this basis
is strongly connected with the dominant classes. For the previous reasons, the
rest of the analysis will focus on the MFCC feature space.

We start evaluating the fooling rate of randomly sampled perturbations in
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the subspace spanned by the first N = {10, 50, 100, 200, 500} singular vectors,
for the cases in which the SVD is computed for individual perturbations (VMFCC)
and random perturbations (RMFCC). Given a value of N , the sampled pertur-
bations will be produced as:

v0 =

2

6664
s1 s2 . . . sN

3

7775

2

6664

x1

x2
...

xN

3

7775
, x1, . . . , xN ⇠ U(0, 1), (22)

that is, as a linear combination of the first N singular vectors s1, . . . , sN (com-
puted for either VMFCC or RMFCC). All the sampled perturbations were nor-
malized, and the fooling rate was evaluated for di↵erent scaling factors under
the `2 norm, in the range [�200, 200]. Note that, given a unit vector v, for any
scalar c 2 R, ||v · c||2 = |c|. For reference, the median `2 norm of the perturba-
tions (in the MFCC) produced by the 10 universal attacks generated in Section
4, measured in the test set, is approximately 100.

Figure 8 shows, for each value ofN , the average fooling rates obtained for 100
trials (i.e., 100 random perturbations). The fooling rates have been computed
in the test set. The results clearly show that, when the SVD is computed for
individual perturbations (VMFCC), the fooling rates are remarkably higher than
for the case of random perturbations (RMFCC), even for norms close to zero.
For instance, taking as reference the results corresponding to an `2 norm of
100, the average fooling rate is approximately 48% for the case of individual
perturbations, when N  100. For the case of random perturbations, in the
same conditions, the average fooling rate is only 17%.

However, the fooling rate corresponding to individual perturbations consid-
erably decreases when a large number of singular vectors are considered. Indeed,
for N � 200, the fooling rates get closer to those obtained for random pertur-
bations. For instance, when N = 500, the average fooling rate (with an `2 norm
of 100) is approximately 18%. This reveals that, whereas the singular vectors
corresponding to the highest singular values are capturing directions normal
to the decision boundaries around natural inputs (being, therefore, e↵ective in
fooling the model for a large number of inputs), the remaining singular vectors
do not provide additional or relevant information.

5.3.2 Connection with dominant classes

In the previous section, we have shown that, also for speech command classi-
fication models, it is possible to find a low dimensional subspace S containing
(input-agnostic) vectors normal to the decision boundaries in the vicinity of
natural inputs. Therefore, a reasonable hypothesis is that dominant classes can
be explained in terms of the geometric similarity of the decision boundaries
in regions surrounding natural inputs, information that is captured by the ba-
sis of S, that is, by the singular vectors obtained from the SVD of individual
perturbations.
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Figure 8: Fooling rate produced by random perturbations sampled from the
subspace spanned by the first N singular vectors. The results are averaged for
100 random perturbations. Each perturbation v was normalized and multiplied
by di↵erent scale factors sf (horizontal axis), so that ||v||2 = |sf |. The SVD is
computed for individual perturbations (top left) and for random perturbations
(top right), in the MFCC feature space. The bottom row shows a direct compar-
ison between the average e↵ectiveness of individual and random perturbations
for N = 100 (bottom left) and N = 500 (bottom right).
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The first hypothesis is that the first singular vectors are also normal to
decision boundaries corresponding to the dominant classes. To validate this hy-
pothesis, we first computed the fooling rate that each singular vector can achieve
individually. This is shown in Figure 9 (top left), in which the fooling rate of
the first 250 singular vectors is reported for di↵erent `2 norms. For reference,
the results corresponding to a norm of 100 are also shown independently in the
bottom-left part of the figure. The results clearly show that the first singular
vectors are capable of fooling the model for a considerable number of test in-
puts, particularly for the first 50 vectors (approximately), for which an average
fooling rate of 56.3% is achieved. These fooling rates are also remarkably higher
than the ones obtained when the SVD is computed for random perturbations,
which are also shown in Figure 9 (right column). Indeed, the average fooling
rate obtained in the latter case (considering the first 50 vectors) is 18.7%, which
represents a di↵erence of 37.6%.

To continue with the analysis, we computed the frequency with which each
class is (wrongly) predicted, considering only the inputs that were misclassified
when the singular vectors were used as perturbations. The aim of this analysis
is to assess if there exists a direct connection with the dominant classes. The
results are shown in Figure 10, considering the first 100 singular vectors, scaled
to have an Euclidean norm of 100. As can be seen, considering the singular
vectors with the highest fooling rate (those corresponding to the vectors ap-
proximately in the range [1,50]), the most frequent wrong classes are unknown

and left. Indeed, for 84% of the singular vectors in [1,50], the sum of the fre-
quency corresponding to those two classes exceeds 50%, that is, at least 50% of
the misclassified inputs are classified as left or as unknown. Moreover, for 62%
of the singular vectors, the total frequency corresponding to those two classes
exceeds 80%. Therefore, we now know that the singular vectors (with a high
fooling rate) not only point towards decision boundaries in the close vicinity of
natural inputs, but also that those decision boundaries correspond mainly to
the dominant classes.

We repeated the experiment using the singular vectors obtained when the
SVD is computed for random perturbations. The results are shown in Figure
11. In this case, it is evident that the results are more uniform along all the
singular vectors, particularly for those singular vectors with a higher fooling
rate (precisely, those in the range [1,50], as shown in Figure 9). For reference,
in this case, only for 32% of the singular vectors in the range [1,50] the total
frequency corresponding to unknown or left exceeds 50%, and only for 2% of
the singular vectors the total frequency exceeds 70%.

Overall, the SVD of individual perturbations has shown that the obtained
singular vectors are input-agnostic perturbations directions for which the model
is highly vulnerable: even when the inputs are slightly pushed in those direc-
tions, they surpass the decision boundary of the model. This reveals that the
geometry of the decision boundary has patterns that are repeated in the vicinity
of multiple natural inputs. Apart from that, we have shown that such adver-

sarial directions mainly point towards the decision boundaries corresponding to
the dominant classes. Therefore, it can be concluded that the universal pertur-
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Figure 9: Fooling rate percentage achieved when the inputs are perturbed with
the first singular vectors computed for individual perturbations (left column)
and for random perturbations (right column), in the MFCC feature space.
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bation optimization algorithms implicitly exploit the shared geometric patterns
of decision boundaries to increase the e↵ectiveness of the perturbations, leading
to the same dominant classes in the majority of the cases.

6 Conclusion

In this paper, we have proposed and experimentally validated a number of
hypotheses to justify the intriguing phenomenon of why universal adversarial
perturbations for DNNs are capable of sending the majority of inputs towards
the same wrong class (i.e., dominant classes), even if such behaviour is not
specified during the optimization of the perturbations. These hypotheses were
studied in the audio domain, using a speech command classification task as a
testbed. To the best of our knowledge, previous work has examined this e↵ect
only in the image domain, proposing open explanations that we revisit. The
results obtained from our analysis revealed multiple interesting facts regarding
the vulnerability of DNNs to adversarial perturbations. On the one hand, we
have shown that universal perturbations can be created just by optimizing a
perturbation to be recognized by the model as one particular class with high
confidence. This establishes a new perspective to create universal perturba-
tions, while explains that a class is dominant if it contains patterns in the data
distribution for which the model has a higher sensitivity. On the other hand,
we demonstrated that the geometry of the decision boundaries of audio DNNs
contains similar patterns in the vicinity of natural inputs, and that the most
vulnerable directions in the decision space point to the regions corresponding
to the dominant classes. Finally, our work highlights a number of di↵erences
between the image domain and the audio domain, which contribute to a better
and more general understanding of the field of adversarial machine learning.

7 Future research lines

Whereas the frameworks proposed in this paper have shown to be e↵ective in
revealing the connections between dominant classes and universal perturbations,
there are a number of open lines that could be further investigated in order to
achieve a deeper understanding of the behavior of universal perturbations.

First, focusing on the framework proposed in Section 5.2, an interesting
future line of research could be trying to identify the data-features that the
model recognizes as each class with high confidence, for instance, following the
methodologies proposed in recent related works [29]. Similarly, the analysis of
the geometry of the decision space carried out in Section 5.3 could be further
extended by considering the curvature of the decision boundaries, which has
proven to be highly informative for the analysis of universal perturbations [8, 26].
Moreover, it could be interesting trying to unify the data-feature perspective
used in Section 5.2 and the one used in Section 5.3, relying on the geometry of
the decision space of the DNN. Finally, a deeper understanding of the decision
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Figure 10: Frequency with which each class is assigned to the misclassified inputs
under the e↵ect of singular vectors (computed for individual perturbations,
see Equation (15)). The (unit) singular vectors have been scaled using two
di↵erent scale factors: 100 (left) and �100 (right). For the sake of clarity, the
frequencies are shown individually for the classes unknown and left, while the
total frequency corresponding to the rest of classes has been grouped (others).
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Figure 11: Frequency with which each class is assigned to the misclassified inputs
under the e↵ect of singular vectors (computed for random perturbations, see
Equation (18)). The (unit) singular vectors have been scaled using two di↵erent
scale factors: 100 (left) and �100 (right). For the sake of clarity, the frequencies
are shown individually for the classes unknown and left, while the total frequency
corresponding to the rest of classes has been grouped (others).
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spaces of DNNs is necessary to comprehensively explain why decision boundaries
contain large geometric correlations around natural inputs, as well as many other
fundamental questions regarding the learning process of DNNs.

Advances in all these research lines could bring a deeper understanding of
the vulnerability of DNNs to adversarial attacks, which can be used, for in-
stance, to create more e↵ective attacks. Indeed, as shown in Section 4, the
existence of dominant classes reduces the e↵ectiveness of universal perturba-
tions, since the fooling rate in the inputs of those classes is practically zero.
Therefore, preventing the appearance of dominant classes during the generation
of the perturbation can lead to more e↵ective attacks. At the same time, un-
derstanding the vulnerabilities of DNNs to adversarial attacks also contributes
to the generation of more e↵ective defensive strategies, and, ultimately, more
robust models.
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Appendix A Clean accuracy of the model in the

test set

Class Accuracy Samples

Silence 99.51 408
Unknown 66.42 408
Yes 94.03 419
No 74.57 405
Up 92.00 425
Down 80.79 406
Left 89.81 412
Right 88.64 396
On 87.12 396
O↵ 81.59 402
Stop 93.67 411
Go 77.36 402

Average 85.52 -

Table A.1: Initial accuracy percentage of the DNN on the test set.

32



Appendix B Detailed analysis of the e↵ective-

ness of universal perturbations (UAP-

HC)

Table B.1 shows the e↵ectiveness of each universal adversarial perturbation
generated in Section 4, using Algorithm 1.

Experiment
Restricted class

None {Left} {Left,Unk.}
1 46.34 37.73 33.88
2 35.29 31.56 34.24
3 41.25 36.35 37.49
4 38.47 37.42 34.91
5 38.35 32.86 34.31
6 30.13 30.30 29.84
7 32.52 34.55 32.88
8 33.98 34.29 30.94
9 41.08 37.14 33.86
10 41.94 36.80 35.15

Mean 37.94 34.90 33.75
Mean1 41.68 37.39 37.08
Mean2 44.97 40.32 39.90

1 Without considering dominant classes.
2 Without considering dominant classes and Si-

lence.

Table B.1: Fooling rate percentage of the universal adversarial perturbations
generated using Algorithm 1. The results are computed for a set of test samples,
which were not seen during the generation of the universal perturbations.
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