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Abstract

A novel method for trochoidal flank milling of 3D cavities bounded by free-form surfaces is proposed. Existing 3D trochoidal
milling methods use on-market milling tools whose shape is typically cylindrical or conical, and is therefore not well-suited for
meeting fine milling tolerances required for finishing of benchmark free-form surfaces like blades or blisks. In contrast, our
variational framework incorporates the shape of the tool into the optimization cycle and looks not only for the trochoidal milling
paths, but also for the shape of the tool itself. High precision quality is ensured by firstly designing flank milling paths for the
side surfaces that delimit the motion space, in which the trochoidal milling paths are further computed. Additionally, the material
removal rate is maximized with the cutter-workpiece engagement being constrained under a given tolerance. Our framework
also supports multi-layer approach that is necessary to handle deep cavities. The ability and efficacy of the proposed method
are demonstrated by several industrial benchmarks, showing that our approach meets fine machining tolerances using only a few
trochoidal paths.

Keywords: 5-axis CNC machining, trochoidal milling, custom-shaped tools, roughing operations, tangential movability, free-form
shape manufacturing

1. Introduction

Efficient manufacturing of curved objects is an essential step
for many industrial sectors, automotive or aeronautical to name
a few. Even though additive technologies like 3D printing are
becoming more and more popular [1], there are objects that
need to be, e.g. for stiffness reasons, manufactured from a
single material block using traditional subtractive approaches
and Computer Numerically Controlled (CNC) machining is the
leading subtractive technology [2–8].

Typically, a cutting tool is given and one looks for its milling
paths such that the motion of the tool approximates the given
reference geometry with high precision. Industrial benchmarks
like turbine blades, rotors, or blisks, represented by free-form
(NURBS) surfaces, however, introduce a challenge for path-
planning algorithms due to its complex, doubly-curved, geome-
tries. In particular, an important task is manufacturing of curved
3D cavities, where the tool positioning is limited due to global
collision constraints. One needs to navigate the tool to avoid
collisions, yet to meet fine manufacturing tolerances. Recently
custom-shaped tools have been shown to offer higher approx-
imation quality than classical (conical or cylindrical) tools [9–
11]. Our research belongs to this category and we look not only
for the milling paths, but also for the optimal shape of the tool.
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In conventional flank milling, the cutter is desired to be in
tangential contact with the material block. This fact induces
excessive cutting force but also accumulates heat and negatively
affects the tool wear. This problem can be effectively avoided
by trochoidal milling. A trochoidal milling path consists of two
parts, the front-half path and the back-half path. Material is
cut in the front-half path and the cutting heat is dissipated as
the tool moves in the back-half path [12]. Therefore, in high-
speed machining, trochoidal milling is increasingly used in slot
milling and is also widely used in cutting hard materials, such
as NiTi-based super alloy [13–15].

(a) (b)
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Figure 1: (a) The geometry of a blisk disc. (b) The cavity between two blades of
the blisk, delimited by two free-form surfaces. The side surface S1 (S2) corre-
sponds to the left (right) side of the cavity (rendered in green). Two positions of
the cutting tool during one trochoidal cycle are shown. The path of the tool axis
consists of two parts: the front-half path (red) and the back-half path (blue).

Suppose a cavity is delimited by two surfaces S1 and S2, see
Fig. 1(b). Our purpose is to determine trochoidal milling paths
as well as the shape of a milling tool such that high precision
milling is obtained. The cutting tools we consider are not re-
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stricted to cylindrical and/or conical, but are general surfaces of
revolution. Important machining factors such as Material Re-
moval Rate (MRR) and Cutter-Workpiece Engagement (CWE)
are both incorporated in a unified variational framework. While
high MRR is correlated with efficient milling, it is in contra-
diction with CWE, whose high values are closely related to the
tool wear, and therefore required to be small. Our optimization
framework looks for high MMR while keeping CWE under a
given threshold. We refer the reader to [16] for more details on
MRR and CWE.

A complete tool path of trochoidal milling is defined by the
motion of tool axis which is a ruled surface. This ruled surface
is composed of a sequence of cyclic path segments (TR cycles),
and each TR cycle contains a front-half and a back-half path,
see Fig. 1(b). The front-half path is also called an active part,
along which the cutting tool keeps contacting with the raw ma-
terial throughout the entire milling, while the back-half path is a
transition path from current TR cycle to the next TR cycle. Typ-
ically, the cutting tool along a back-half path does not interact
with the raw material at most of its positions.

For certain geometries, it is possible to mill the side surface
with one single sweep using a large tool. However, for deep
cavities using a single sweep, even of a custom-shaped tool,
may not be sufficient to meet the fine machining tolerances.
Therefore, one typically has to consider multi-layer milling ap-
proaches that allow the tool to move in several consecutive lay-
ers. In this work, we consider both, a single-layer milling for
path generation of a cavity bounded by two surfaces in Sec. 3,
and generalize it to multi-layer milling in Sec. 4.

In a summary, the problem to address in the TR path gen-
eration is to decide the front-half of every TR cycle such as
key constraints are satisfied: 1) the motion of the tool along the
path should be tangent to both sides S1, S2 and overcut should
be avoided; 2) the MRR should be maximized; 3) the CWE is
under a given tolerance. The last requirement comes from the
observation that CWE is closely related to the cutting force dur-
ing manufacturing, therefore, in order to reduce the tool wear,
the cutter-workpiece engagement should be constrained to be
under a given tolerance. The rest of the paper is organized as
follows. Section 2 surveys the related research, Section 3 in-
troduces the algorithm to compute single layer TR paths and
Section 4 generalizes it to the multi-layer setup. The numerical
examples are shown in Section 5 and the conclusions are drawn
in Section 6.

2. Related Work

2.1. The cutting force and stability of trochoidal milling

The tool wear in trochoidal milling is strongly correlated to
the cutting force, and there have been a lot of studies on cutting
force analysis. Otkur et al. [17] propose a comprehensive an-
alytical model to analyze the tool-workpiece engagement and
predict the cutting force. Pleta et al. [13] find that the engage-
ment angle has the highest correspondence with the component
perpendicular to the feeding direction of the cutting force. The
relationship between the cutting force and the cutting depth in

trochoidal milling is further analyzed in [18]. Wu et al. [19]
propose an improved model for analyzing the change of cutting
force based on the typical linear milling force model. Niaki
et al. [20] analyze the geometry of the in-process workpiece
in TR milling in details and give a more accurate cutting force
prediction model.

In addition to cutting force, stability is also particularly im-
portant in high-speed machining. Kardes et al. [21] analyze the
property with the varying cutter immersion condition for sup-
pressing the chatter during TR milling. Yan et al. [22] build a
TR milling process stability prediction model. They consider
the trochoidal step distance and the spindle speed for analyzing
the stability of TR milling. Wang et al. [23] present an adaptive
TR tool path generation method, in which machining stability
is improved by maintaining the steady radial cutting depth.

2.2. Trochoidal milling of free-form surface

Traditional trochoidal milling methods mainly focus on the
cutting force and milling stability of a cutting tool, and are usu-
ally used in simple slot milling. In recent years, some works
considered the use trochoidal milling for curved slots or even
3D cavities. Xu et al. [24] propose a method based on polyno-
mial curves, which realize the trochoidal machining of arbitrar-
ily curved slot with constant width. They replace the traditional
circular paths with polynomial curves as the base TR cycle to
fit into the complex curved slots. Li et al.[25] propose an exten-
sion of [24], which supports curved slots with varying width by
adjusting the polynomial curves. Even though these works can
support more complex curved slots, they do not support gen-
eral free-form cavities. Cavities bounded by free-form surfaces
(such as a blisk groove in aerospace industry) are usually man-
ufactured with traditional methods [26] which do not have the
benefit of trochoidal milling.

To the best of our knowledge, the closest research to our work
is on trochoidal milling of general free-form cavities by Li et al.
[16]. They use a tangent sphere to generate the middle surface
to design a guiding curve [27] of a TR path. In the latest work,
they [28] propose an algorithm of variable-depth multi-layer 5-
axis trochoidal milling. By introducing the concept of layered
material removal rate (LMRR), the TR milling depth of each
layer is optimized. These works apply trochoidal milling to
free-form surfaces, but they target rough or semi-finishing op-
erations and the shape of the cutting tool is a fixed input. In
contrast, our approach looks also for the optimal shape of the
tool.

2.3. High precision 5-axis flank milling

There are a lot of works devoted to high-precision 5-axis
flank milling [9, 29–35]. The shape and size of the milling tool
are mostly fixed (usually cylindrical or conical [36]). Wang
et al. propose a method to compute a composition of discrete
ruled surfaces fitting to a given shape using the dynamic pro-
gramming [37]. Elber et al. [38] approximate general free-form
surface with segmented ruled surface by using a truncated con-
ical milling tool. However, Elber et al.’s method requires a lot
of subdivisions to well approximate a general free-form shape.
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Figure 2: Ruled surface. (a) A ruled surface R(s, t) (blue) is controlled by a pair
of rail curves (yellow), represented as B-spline curves. (b) The path of the tool
is discretized by N = 60 rulings, and the tool is discretized by M = 5 spheres
(transparent), uniformly distributed along the rulings.
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Figure 3: Initial side paths. (a) Initial ruled surfaces R1 and R2 that correspond
to two motions of a single custom-shaped tool that approximates S1 and S2 are
shown. (b) Two scalar functions α1 and α2, defined on S1 and S2, and visualized
as color-maps, indicate the approximation error to S1 and S2. These functions
are used in Eq. (6) to further reduce the approximation error.

Redonnet et al. [39] use a cylindrical cutter for machining of
ruled surfaces. They propose a three-tangential arrangements
method to optimize the cutter position, which gets high preci-
sion compared with standard two-tangential arrangements.

In addition, from the general cutting tool, various methods
have been proposed. Senatore et al. [40] analyze the size of
a cylindrical cutter, which maximizes the radius while keep-
ing the predefined geometric error. Zhu et al. [41] propose a
method based on simultaneous optimization of the tool’s mo-
tion and shape. Based on this work, Lu et al. [42] consider ad-
ditional constraints such as the stiffness of a cutter. These two
methods focus on improving the stiffness to reduce the deflec-
tion and vibration of the tool. Bo et al. [43] propose an alterna-
tive formula of the optimization where the shape and motion of
tool are both the unknowns and are simultaneously optimized
to minimize the approximation error.

3. TR paths for cavities bounded by free-form surfaces

Our research focuses on 3D cavities like the one shown in
Fig. 1(b), that typically consist of a bottom surface and two side
surfaces. The bottom surface of the cavity is removed from our
considerations as one cannot access it by flank-milling due to
global collision anyway. We focus on the side surfaces which
are to-be-milled by one (or several) sweeps of a single custom-
shaped tool. In trochoidal milling, the cutting tool touches the
side surfaces only at some discrete positions, called contact
lines. The whole trochoidal path is divided by the contact lines
into a sequence of TR cycles. Each TR cycle has a front-half
part and a back-half part separated by the contact lines. The
contact lines act as extreme positions of the motion space of the
cutting tool and the positions of contact lines de facto govern
the milling precision of the side surfaces.

It is therefore essential to find accurate positions of contact
lines, with higher priority than other (intermediate) positions.
Moreover, the motion directions of the cutting tool at the con-
tact lines are also directly related to the finishing quality. How-
ever, it is non-trivial to define some contact lines in advance
without considering the whole TR paths for milling 3D cav-
ity. To achieve higher milling precision, we consider a variable
(custom-shaped) tool which is represented as a one-parameter
family of spheres centered on the axis, and whose radii are op-
timized in our framework. The position of the contact lines,
as well as the TR paths inside cavities, are determined using a
variational algorithm.

Firstly, the shape of the tool and its paths in the neighbor-
hood of the two reference surfaces are computed. The paths
are two ruled surfaces, traversed by the axis of the cutting tool,
see Fig. 3(a). These two surfaces delimit the space that is fur-
ther trochoidal-milled (Sec. 3.2). Secondly, we compute the
front-half of the TR cycles one by one (Sec. 3.3) such that path
planning will move the tool towards the two limiting surfaces
with G1 continuity, maximizing the MRR while satisfying the
CWE constraints. Finally, we generate the back-half paths as a
transition between the front-half paths to generate the entire TR
cycles (Sec. 3.4).

3.1. Envelope surface fitting
Our objective is to compute an optimal shape of a cutting tool

T and its motion paths, i.e., the side paths for flank milling the
side surfaces S1 and S2, recall Fig. 1. This goal is realized by
an envelope surface fitting method which proceeds as follows.
The motion of the axis of the cutting tool is a ruled surface R
which is defined as

R(s, t) = qT (t) · (1− s)+qB(t) · s, s, t ∈ [0,1], (1)

where qT (t) is the top boundary curve and qB(t) is the bottom
boundary curve, which are both represented by B-spline curves
in our work, see Fig. 2. In the following, we review the opti-
mization method for computing R.

It was shown that one can approximate a single free-form
surface by a motion of a custom-shaped tool [43]. In our
current setup, the situation is a more complicated as we have
two references surfaces, not just one. The cutting tool, a sur-
face of revolution, is conceptualized as a one-parameter family
of spheres centered along the tool axis. The behavior of the
spheres is described by a radial function r(s), s being the arc
length parametrization of the axis. The radial function can be
thought of a smooth function, that describes the shape of the
tool, but in our discrete optimization-based setup is represented
by a discrete set of radii, see Fig. 2(b).

The motion path is obtained by minimizing the distance be-
tween the envelope surface of the tool along its paths and the
target surfaces S. Due to the nonlinear distance function in sur-
face approximation, an iterative procedure is employed and in
each iteration a quadratic approximant function is minimized.
We have

F1
dist(q

T ,qB,r) =
1

MN

M

∑
k

N

∑
l
‖R(sk, tl)− fk,l− rk ·nk,l‖2, (2)
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Figure 4: Optimization settings. The initial ruled surface R(s, t), see Eq. (1), is
uniformly discretized along the rulings (s-direction) with M = 7 samples (green
dots). Their distances to S are computed using their footpoints on S (white
dots) and are optimized via Eq. (2). The point-footpoint distance must remain
constant in the t-direction (red lines); r1 is visualized using the transparent
spheres, but is also a variable in our framework.

where fk,l is the footpoint of R(tk,sl) on the side surface S as
shown in Fig.4, nk,l is the unit surface normal of S at fk,l point-
ing to the machining side of S, and M and N are the number of
samples in s and in t directions, respectively. The optimization
variables are the control points of the boundary curves qT and
qB and a vector of radii r=(r1, . . . ,rM). The stability of the cut-
ting tool during its motion is closely related to the acceleration
of the tool’s motion, which can be expressed by the fairness of
the motion. To control the fairness, we use a standard fairness
term defined by the integral of norm of the second derivatives
of the boundary curves, enriched by a fairness on the direction
of the ruling (bottom term in (3)). Note that two fair rail curves
do not imply a fair motion as the line between them may parse
in a non-fair fashion. Therefore, we write

F1
f air(q

T ,qB) =
∫
‖(qT )′′(t)‖2dt +

∫
‖(qB)′′(t)‖2dt

+
∫
‖(qT )′′(t)− (qB)′′(t)‖2dt.

(3)

In addition, a rigid motion of the cutting tool is required
which is guaranteed by a constraint on constant length of the
tool axis, denoted by L. This constraint has to be satisfied in
every time instant, which in our implementation is controlled at
N discrete positions, i.e., we write

F1
rigid =

N

∑
l
(‖qT (tl)−qB(tl)‖2−L2)2. (4)

The envelope fitting algorithm minimizes the following func-
tion in each iteration

Fprox(qT ,qB,r) = F1
dist +λ1F1

f air +λ2F1
rigid → min (5)

where the optimization unknowns are the control points of the
boundary curves of the ruled surfaces R and a vector of radii r.

3.2. Side path computation for trochoidal milling with con-
trolled overcut

Our distance objective term F1
dist as defined in (2) minimizes

distances to S in the least square sense, which naturally results
in errors with both positive and negative signs, and therefore

overcutting. To penalize overcutting, we introduce a virtual sur-
face of the side surface as a target, defined by

S̃(s, t) = S(s, t)+α(s, t) ·n(s, t) (6)

where n indicates the surface normal pointing to the inside of
cavity, and α(s, t) is a bivariate function that reflects the ap-
proximation error from the first optimization cycle achieved by
Eq. (2). If α(s, t) ≡ const., S̃ would be an offset surface of
S. However, as α(s, t) varies, see Fig. 3(b), the overcut com-
pensation has to reflect this variance. In our discrete setup, the
distance objective function is a sum of distance constraints over
the set of samples of R(s, t), and becomes

F2
dist(q

T ,qB,r) =
1

MN

M

∑
k

N

∑
l
‖R(sk, tl)− (fk,l + rk ·nk,l +αk,l ·nk,l)‖2, (7)

S

R(sk, tl)

αk,lfk,l

rk

nk,l

where αk,l are the fitting errors at
the sample point R(sk, tl) from the
first optimization cycle. Observe
that the optimization in Eq. (2)
returns spheres (transparent) with
radii rk that, in the least square
sense, approximate best the distances ‖R(sk, tl)− fk,l‖. This
results in defect (signed) distances αk,l which corresponds to
overcut or undercut, and is corrected by incorporating αk,l in
(7). Note that αk,l changes throughout optimization iterations,
and it is therefore updated dynamically in each iteration in our
framework.

It is also desirable that the same tool is used for both side
surfaces. Therefore, when the shape of the cutting tool is con-
sidered as a variable, both tool paths R1, and R2 are optimized
simultaneously with a single cutting tool. That is, the sphere
radii rk are the same for both R1, and R2, recall Fig. 3(a). The
final objective distance function is

Fdist(q?
n,r) =

1
MN ∑

n=1,2

M

∑
k

N

∑
l
‖Rn(sk, tl)− (fk,l,n + rk ·nk,l,n +αk,l,n ·nk,l,n))‖2,

(8)
where ? = T,B, and the subscript n = 1,2 indicates the left or
the right side surface of the cavity. Similarly, energy terms of
motion fairness and rigidity are defined respectively by

Ff air(q?
j) = ∑

j=1,2

∫
‖(qT

j )
′′(t)‖2dt +

∫
‖(qB

j )
′′(t)‖2dt

+
∫
‖(qT

j )
′′(t)− (qB

j )
′′(t)‖2dt

(9)
and

Frigid(q?
j) = ∑

j=1,2

N

∑
l
(‖qT

j (tl)−qB
j (tl)‖

2−L2)2, (10)

where again ?= T,B, and j = 1,2.
In summary, the computation of the tool shape as well as the

tool paths close to S1 and S2 is done by iteratively minimizing
the objective function

min
P,R

Fdist +λ1Ff air +λ2Frigid , (11)

where P is a set of control points of the two ruled surfaces
R1 and R2, R is the set of sphere radii uniformly distributed
along the the tool axis, and λ1 and λ2 are scalar weights set
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empirically. Unless stated differently in a concrete example, we
set λ1 = 1e−6 and λ2 = 1 in our implementation. We solve the
objective function in Eq.(11) with the Gauss-Newton method
for the control points of R1, R2, and the radii values rk. Note
that the footpoints fk,l and associated surface normals nk,l on the
target side surfaces are updated in each iteration. The solution
of Eq.(11) results in two side paths R1 and R2 milling the side
surfaces S1 and S2, respectively, and an optimal shape of the
cutting tool represented by the vector of radii r. In the following
discussions, the tool shape (vector r) is fixed.

Remark 1. When there is no risk of confusion, from this point
on, we omit the variables of the objective functions and list
them as sets in the subscript of the minimization symbol as in
Eq. (11).

3.3. Front-half paths computation
At this point, our algorithm computed two side paths R1 and

R2 and a shape of the tool represented by the vector of radii
r. Now we are going to construct trochoidal paths that join R1
with R2, and start with the front-half paths.

Similarly to the side paths, we use B-spline surfaces for their
representation. A front-half of a TR cycle, denoted by Ci, is
defined by

Ci(s, t) = cT
i (t) · (1− s)+ cB

i (t) · s, s, t ∈ [0,1], (12)

with the boundary curves of Ci defined as

c∗i (t) =
m

∑
k=0

a∗kBk,d(t), ∗ ∈ {T,B}, (13)

where a∗k are the control points and Bk,d(t) the B-spline basis
functions of degree d. See Fig. 5 for two guiding paths (R1,R2)
and two front-half paths. Since we need to interpolate boundary
rulings, we use clamped uniform knot vectors for the B-spline
surfaces. If not said differently, we use m+ 1 control points,
m = 5 in our implementation.

The computation of the front-half paths should meet two ob-
jectives: milling precision and milling efficiency. For milling
precision, the cutting tool should touch the side surfaces with
high degree of precision and the overcut to the side surface
should meet fine manufacturing tolerances (which are tens of
micrometers for objects with tens of centimeters large.) For
milling efficiency, the MRR in each TR cycle should be maxi-
mized, while keeping the CWE under a pre-defined threshold.
We emphasize that the CWE is closely related to physical enti-
ties such as cutting force, work load, or tool wear. We do not
optimize directly these entities, as this goes beyond the scope
of this paper, but we control CWE.

Remark 2. We consider several types of milling paths in our
algorithm. They are all represented by ruled surfaces (motions
of the milling axis) and parametrized by two variables: s (ruling
direction) and t (time aka motion direction). If there is no risk of
confusion, we use the same pair of parameter symbols (s, t) for
all these ruled surface, but if there are more surfaces involved,
each surface has its own parameter domain and these variables
are different.

(a)

R1

R2

T

Ci+1

Ci

(b)

S1 R2

cT
i

cB
i

Figure 5: Front-half paths of TR cycles. (a) Ci and Ci+1 represent the front-
half paths of ruled surfaces that join the side ruled surfaces, R1 and R2, in
G1 fashion. (b) This is achieved via the constraints (14) and (16), which is
expressed in the terms of the control points of Ci and R1,2.

Ci(s, t)

qT
1 (t) qT

2 (t)

cB
i (t)

cT
i (t)

R2(s, t)

aT
1

aT
0

aB
0 aB

m
aB

m−1

∂R2
∂ t

Figure 6: Free and constrained control points of TR motions. A ruled surface Ci
(transparent) is determined by the two boundary curves cT

i (t) and cB
i (t) which

satisfy the G1 constraints with the q-curves. These curves are already computed
and define the side surfaces R1 and R2. Therefore, some control points of Ci are
locked (red), while others are being optimized (green).

3.3.1. Milling precision
The side paths R1, and R2, obtained using the method de-

scribed in Sec. 3.2, provide essential guiding information for
computing Ci(s, t) which is required to touch the side surfaces
with high degree of precision with overcut control. The rulings
of the side paths define the position and orientation of the cut-
ting tool moving along the side paths. Therefore, it is desired
that the front-half path segments (and also the back-half path
segments) interpolate some specific rulings of the side ruled
surfaces. Moreover, at the contact lines, the motion direction
of points on the tool axis should be parallel to the instantaneous
motion direction of the same points on the side paths. Therefore
we speak about G1 interpolation of certain rulings of R1 and R2.
In addition to these boundary constraints, the whole front-half
path should stay inside the space enclosed by the side paths.
The considerations on milling precision lead to the following
specific constraints in the representation of B-spline surfaces.

Position constraints (G0 constraints). The end rulings of
Ci(s, t), which define the tool positions at both ends of the
half path, are required to be some specific rulings of the side
paths R1(s, t) or R2(s, t), i.e., Ci(s,0) = R1(s, ti1), s ∈ [0,1] and
Ci(s,1) = R2(s, ti2), s ∈ [0,1]. Using the clamped knot vector in
the B-spline surface Ci(s, t), this is easily met if the end control
line of Ci(s, t) connects two points lying on the top and bot-
tom boundary curves of the side path at the same parameter t,
respectively, see Fig. 6 for an illustration. In particular, we have

C 1,∗
pos ≡ a∗0−q∗1(ti1) = 0

C 2,∗
pos ≡ a∗m−q∗2(ti2) = 0 (14)
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where ∗ ∈ {T,B} with T and B indicate the top curve and the
bottom curve of Ci, respectively. Note that the parameters on R1
and R2 are in general not identical, i.e., i1 , i2. The parameters
T = {ti1, ti2} are treated as unknowns in our optimization and
their computation will be discussed later in Sec. 3.3.3.

Motion direction constraints (G1 constraints). The instanta-
neous motion vectors of points at the tool axis, which are the
contact lines, should be proportional to the motion vectors of
the same points on the side path. This G1 continuity constraint
of the motion of the tool axis is expressed as

C′i(s,0) = α1R′1(s, ti1), s = 0,1
C′i(s,1) = α2R′2(s, ti2), s = 0,1 (15)

where the prime symbol indicates the derivative w.r.t. t. Note
that R1 (and R2) is a rigid body motion of the tool axis and
therefore the instantaneous vector field that moves the points of
the ruling is linear in s. Consequently, satisfying the constraints
in Eq. (15) at the parameters s = 0 and s = 1 implies it for
all s ∈ [0,1]. Since we work with clamped B-spline curves,
Eq. (15) can be reformulated in terms of control points of a∗i as
follows

C 1,∗
tan ≡ ||(a∗1−a∗0)−α1 · (q∗1)′(ti1)||2 = 0

C 2,∗
tan ≡ ||(a∗m−1−a∗m)−α2 · (q∗2)′(ti2)||2 = 0 (16)

where α1,α2 are positive constants and positive sign corre-
sponds to the correct direction of the motion. Note that these
constants can be set arbitrarily as they correspond just to a
reparametrization of the the ruled surface Ci. Since we work
with cubic splines, we set α1 = α2 = 1

3 as this corresponds to
control point match in the case of the boundary positions of the
ruling Ri(s,0) and Ri(s,1), i = 1,2, see Fig. 6.

The constraints in Eq. (14) and Eq. (16) concerning milling
precision of the side surfaces will also be used later in our algo-
rithm of TR path computation.

3.3.2. MRR and CWE control
Except for the precision objectives discussed above, it is also

desired to maximize MRR while controlling the CWE through-
out the milling paths. This goal can be formulated as a con-
strained optimization problem. Towards this end, we now for-
mally define the MRR and the CWE quantities.

Definition of MRR. The Material Removal Rate (MRR) is de-
fined as the removed volume between two paths Ci and Ci+1
over a unit of time. Let the front patch of the envelope of the
tool motion along Ci+1 be denoted by Ei+1. The volume Vi+1
milled by the tool along Ci+1 is the space enclosed by two con-
secutive envelope surfaces Ei and Ei+1, as shown in Fig.7. The
machining time of Ci+1 is approximately proportional to the
average of the lengths of the top and bottom curves of Ci+1,
denoted by Li+1. Therefore, MRR can be approximately rep-
resented by

Mi+1 = a · Vi+1

Li+1
. (17)

(a)

S1

S2
Ei

cB
i

qT
2

qT
1

(b)

S1

S2

T

Ei
Ei+1

Figure 7: MRR and CWE. (a) Ei and Ei+1 represent the envelopes generated by
T in the i-th and (i+1)-st front-half motion, respectively. MRR is expressed as
the volume between Ei and Ei+1, milled per unit of time. (b) CWE is the contact
area (red) between the cutting tool and the material during the movement, which
is bounded by the intersection curves between the cutting tool T , Ei, and Ei+1.

(a)

EiEi+1

(b)

S1

S2

p c

EiEi+1

a
b

Figure 8: 2D simplification of the CWE. (a) A touching circle is perpendicular
to the tool axis and an engagement arc (red) is the part of the circle where it
meets the material. εkl is the angle that corresponds to the engagement arc. (b)
Touching circle movement. The touching circle is moved in the direction of the
surface normal of the envelope Ei+1, −Vkl = c− p, by distance d, where d is
decided using the engagement angle ε∗, indicated by the green arc.

where a is a constant value that corresponds to the average ve-
locity needed for milling Li+1. In the end, the units of (17) are
mm3/s (volume per time).

Definition of CWE. For real-life 3D trochoidal milling, the
CWE area continuously changes over time in a complicated
manner, as shown in Fig.7(b) and it is a common practice to
make the argument easier by considering a 2D simplification,
see e.g. [16]. Denote the CWE area by Σ(t) which is time-
dependent. For a time instant of the cutting tool corresponding
to the parameter tk, Σ(tk) is the contact area of the tool with the
raw material. This area on the tool’s surface is bounded by two
curves: i) the intersection curve of the tool surface with Ei and
ii) the characteristic curve on Ei+1. To represent this area, we
consider the circles on the tool surface which are perpendicular
to the tool axis. The axis is parametrized by s and the circle
at the parameter sl of the axis of the tool touching the mate-
rial is called a touching circle. The part of the touching circle
in the engagement area is called an engagement arc. The inte-
rior angle of the engagement arc is called an engagement angle
which generally varies along the tool axis and can be defined
by εkl = εk(sl), see Fig.8. In physical machining, εkl is required
to be restricted under a specific tolerance, i.e., εkl < ε∗, for all
the 2D cuts, i.e., for all l.

Problem formulation. Our aim is to compute a set of front-half
paths and we do this in an iterative fashion. That is, once Ci
is computed, we construct Ci+1 with MRR and CWE control,
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which is possible because both CWE and MRR depend only on
Ci and Ci+1. Assuming Ci is computed (and fixed), the compu-
tation of Ci+1 considering the control of MRR and CWE can be
formulated as a constrained optimization problem as follows

max
Pi+1,ti1,ti2

Mi+1 (18)

subject to
{

εkl < ε∗, for samples k, and l
Ci+1 meets the constraints in Eq.(14) and Eq.(16)

We recall that the parameters ti1, ti2 of the end rulings of Ci+1,
in addition to the control points of Ci+1, are also unknowns.
The solution of the problem in Eq.(18) defines a ruled surface
Ci+1 which is the path of the tool along which the CWE meets
the tolerance constraints. However, due to the complexity of
the functions involved, solving Eq.(18) with standard numeri-
cal optimization method is difficult and an optimal solution can
be hardly found efficiently and robustly. In the following, we
propose a practical algorithm to obtain a reasonably good path
that is robust and easy to implement.

3.3.3. Optimization algorithm
In order to find a reasonably good front-half path Ci+1 as

an approximate solution of Eq.(18), we have to deal with Vi+1,
Li+1 and the CWE generated by Ci+1. It is non-trivial to find an
optimal Ci+1 meeting all objectives since the quantities depend
on Ci+1 in a complicated, highly non-linear, manner. Notice
that both Vi+1 and the CWE are directly defined by Ei+1 and
therefore instead of looking for Ci+1, we focus on the corre-
sponding envelope Ei+1 first, and compute Ci+1 from it by the
surface fitting algorithm. Observe that Li+1 directly depends
on Ci+1 and can be integrated into the envelope surface fitting
algorithm with a function term penalizing the length of the path.

Path optimization. Firstly, we propose a sub-algorithm which
computes a ruled surface between two rulings on the left and
right side path, respectively. This is achieved via envelope fit-
ting with the G1 constraints defined by Eq.(14) and Eq.(16).
Notice that the machining time is proportional to the length of
the curve traversed by a particular tool point, assuming a con-
stant speed of the tool. Consequently, in order to reduce the
machining time, the length the tool path should be penalized
and this is achieved by a boundary curve’s penalization term as

Flength =
∫
‖(cT

i )
′(t)‖2dt +

∫
‖(cB

i )
′(t)‖2dt, (19)

recall Fig. 6. The algorithm of computing a ruled surface be-
tween two side paths is formally defined as follows

min
PInner

βFdist +λ1Ff air +λ2Frigid +λ3Flength (20)

subject to C 1,∗
pos = 0,C 2,∗

pos = 0,C 1,∗
tan = 0,C 2,∗

tan = 0,∗ ∈ {T,B}

where the variables PInner in the optimization are the control
points of the ruled surface excluding the end control points.
That is, the end rulings of the ruled surface are fixed in the opti-
mization. The lengths of the boundary curves can be controlled
with the energy term Flength which has the effect of shorting
the milling time. This sub-algorithm also works when there is

no reference surface by setting β = 0 in the objective function
(20). For the cases with a reference surface, β = 1 is used.

Path searching. Assuming Ci being fixed, our method to
compute Ci+1 consists of an initialization stage and an adjust-
ment stage. In the initialization stage, we look for a front-half
path that maximizes MRR, by moving a candidate path in the
forward direction, until the CWE constraint is violated. In the
adjustment stage, we move backwards the path obtained in the
initialization step to satisfy the CWE constraint globally.

• Initialization stage. We need to determine the two end rul-
ings of Ci+1 which coincide with some rulings of R1 and
R2. First, the end rulings are set to the end ruling lines of
Ci, by setting ti+1,1 = ti,1 and ti+1,2 = ti,2, where ti,1 and
ti,2 are parameters of R1 and R2, respectively. We then in-
crease ti+1,1 and ti+1,2 iteratively with identical incremen-
tal value ∆ti+1 for both sides, resulting in a pair of lines
R1(s, ti+1,1) and R2(s, ti+1,2) stepping forward.

For every time instant during this iterative process, we
construct a ruled surface C0

i+1 between R1(s, ti+1,1) and
R2(s, ti+1,2), and check the CWE constraint by measuring
εkl at some sampled points; we sample the ruled surface by
a quad mesh with 20× 100 quads, 100 in time (t) and 20
in the ruling (s) directions. C0

i+1 is computed by solving
the path optimization algorithm (see Eq. (20)) by setting
β = 0.

To maximize the MRR, the inner control points are moved
in the direction of the t-derivatives of the side surfaces,
i.e., their initial values are set as a∗i+1, j = a∗i, j + v∗, for j =
1, ...,m− 1, where v∗ = (a∗i+1,0 − a∗i,0 + a∗i+1,m − a∗i,m)/2,
∗ ∈ {T,B} and moved forward by an iterative process
which stops once the CWE constraint is violated. The
ruled surface at this moment is denoted by C1

i+1 and is the
input for the adjustment stage.

• Adjustment stage. In this stage, we aim to move back some
parts of the path C1

i+1 obtained in the initialization stage
where the CWE is violated. It is difficult to directly mod-
ify C1

i+1 to ensure its envelope E1
i+1 meeting the CWE con-

straint (due to the fact that the envelope is a one parameter
family of characteristics that change dynamically in time).
Therefore, we approach the problem in the reverse order,
i.e., we update the envelope first, such that the CWE con-
straint is met, and consequently compute C1

i+1 via envelope
fitting. Since the CWE is directly related to the envelope
surface, modifying the envelope to satisfy the CWE con-
straint is much easier than modifying the path. To mod-
ify the envelope, we measure again εkl at the samples and
update E1

i+1 where εkl < ε∗ is violated. The process itera-
tively executes two steps as follows. See Fig. 8(b).

(1) Let p be a contact point of the envelope E1
i+1 and the

tool T , and c be the center of the circle of the tool touch-
ing p. Then the vector Vkl = p−c is perpendicular to both
E1

i+1 and T which is the direction along the fastest increase
of the step-over distance. Therefore, if the engagement
angle associated with p is larger than the tolerance, we
move back the point p on E1

i+1 by −d · Vkl
‖Vkl‖

to decrease
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the CWE. To decide d, we first find the position a on the
circle whose engagement angle is equal to ε∗. Let b be
the intersection point of the line defined by a and Vkl and
the envelope in previous cycle Ei. Then d is the distance
between a and b, i.e. d = ‖a−b‖.
(2) After moving back all sample points on E1

i+1 violat-
ing the CWE constraint, a ruled surface C2

i+1 is computed
whose envelope fits to the updated envelope Ê1

i+1. This is
done by solving Eq.(20) with β = 1. Then, the envelope
of C2

i+1, E2
i+1, is generated and tested again.

The two above described steps are wrapped into a single
loop of a process to update Eq

i+1 with q being the number
of iterations. One loop of this procedure is shown in Fig. 9.
The maximum number of iterations is set qmax = 10, but
this limit has not been reached in any of our examples. The
pseudocode of path searching is given in Algorithm 1.

Algorithm 1 Path Searching
1: procedure ALGORITHM(Ci,Ci+1)
2: Initialize ti+1,1 and ti+1,2
3: repeat . Initialization
4: Increase ti+1,1 and ti+1,2 by ∆ti+1
5: Generate C0

i+1 via path optimization
6: Measure εkl at some samples
7: ∆ti+1 := ∆ti+1 · (1−max{εkl}/ε∗)
8: until εkl > ε∗ for some sample
9: C1

i+1 :=C0
i+1, q := 1

10: while max{εkl}> ε∗ and q≤ qmax do . Adjustment
11: for all sample points p do
12: if εkl associated with p is bigger than ε∗ then
13: Move back the point on Eq

i+1 by − Vkl
‖Vkl‖
·d

14: end if
15: end for
16: q := q+1
17: Generate Cq

i+1 with adjusted envelope as reference
18: end while
19: Ci+1 :=Cq

i+1
20: end procedure

First front-half path. The above procedure for computing
a sequence of front-half paths Ci depends on C0, which is the
front-half path of the first TR cycle. In our implementation,
C0 is generated by the path optimization algorithm with β = 0,
with the initial control points uniformly distributed. The bisec-
tor surface H of S1 and S2 is computed and fitted with a ruled
surface RH(s, t) as in [9] with s being the parameter in ruling di-
rection and t in motion direction. To compute the bisector sur-
face, we seek 3D points x that are equally distant from the side
surfaces, therefore we compute the signed minimal distances to
S1 and S2 and define their difference as

ε(x) = d(x,S1)−d(x,S2) (21)

which measures the deviation of x from H. We look for x which
satisfy ε(x) = 0 and use a variant of the marching cubes algo-
rithm which returns a triangular mesh that approximates H. To

define the end rulings of C0, the starting ruling line of RH is
projected to R1 and R2, and the end rulings of C0 are defined to
be the best fitting lines to the projection points on R1 and R2,
respectively.

3.4. Back-half path computation and entire path generation
Once the front-half paths of the TR cycles are computed, the

back-half paths are constructed to form the transition between
two consecutive front-half paths. The construction of the back-
half paths is easier than the computation of the front-half paths
since the cutting tool does not touch the raw material, except
for the region near the end of paths where the tool touches the
side surfaces. A back-half path Di is defined as a B-spline ruled
surface

Di(t,s) = dT
i (t) · (1− s)+dB

i (t) · s, t,s ∈ [0,1], (22)

where d∗i (t) = ∑
m
k=0 b∗kBk,d(t), ∗ ∈ {T,B} are B-spline curves.

In order to make Di the transition from the last ruling of Ci
to the start ruling of Ci+1, Di(t,s) is required to connect two
lines Ci(1,s) and Ci+1(0,s). Analogously to Eq. (14), the G0

connection constraints are defined as

C 1,∗
pos ≡ b∗0−q∗1(ti1) = 0

C 2,∗
pos ≡ b∗m−q∗2(ti2) = 0 (23)

In addition to the connection constraints, the motion of the
tool along the back-half paths should also join the side surfaces
tangentially (in G1 fashion) to maintain a high precision milling
error guaranteed by the construction of R1 and R2. These G1-
continuity constraints are formulated analogously to Eq.(16) as

C 1,∗
tan ≡ ||(b∗1−b∗0)+λ1 · (q∗1)′(ti1)||2 = 0

C 2,∗
tan ≡ ||(b∗m−1−b∗m)+λ2 · (q∗2)′(ti2)||2 = 0 (24)

where ∗ ∈ {T,B} with T and B indicate the top or the bottom
curve, and λ1, and λ2 are positive constants. Note that the ve-
locity vectors have opposite signs than their counterparts on the
ruled surfaces R1 and R2 due to the fact that Di are the back-half
paths.

4. Multi-layer paths for deep cavities

For trochoidal milling of deep cavities bounded by free-form
surfaces, it is typically not possible to finish the milling with
one single sweep because a long cutting tool is not practical,
e.g. for the chattering reasons. In such a case, a multi-layer
milling strategy is needed which divides the side surfaces into
layers and each layer is processed with one trochoidal milling
path. The milling regions of different layers may have over-
lapping patches, but the composition of milled regions should
cover the whole side surfaces. The milling procedure starts
from the top layer from where the cutting tool removes material
from the material block, and processes the other layers from the
top of the cavity to the bottom. It is also desired that the same
tool is used for all the layers for the sake of time needed for the
tool exchange and the cost of custom-shaped tools.

4.1. Side path initialization
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i+1

(c)

Êq
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i+1
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Figure 9: One iteration of the front envelope adjustment. (a) Two consecutive front envelopes Ei and Ei+1, connecting two side surfaces S1 and S2, are shown. Ei is
taken for granted and Ei+1 gets optimized; the q-th iteration Eq

i+1 is shown. (b) Eq
i+1 violates the CWE test at 268 points (white dots). (c) Êq

i+1 gets adjusted (see

Section 3.3.3) and becomes closer to Ei (red envelope) to reduce the CWE violation. (d) Êq+1
i+1 represents the optimized envelope, now the CWE is violated at only

127 points (white dots).

S1

S2
L1

i

L2
i

H

Li

For the initialization of the side
paths, we use a bisector surface
H of the two side surfaces S1 and
S2. We further define a scalar func-
tion f (x) = d(x,S1), x ∈ H. To
compute a boundary curve of a
ruled surface, an iso-line f (x) =
const. on H is extracted and pro-
jected to the side surface Si(i =
1,2). The iso-lines are approxi-
mately the iso-parametric lines at some particular parameter s
of the ruled surface RH(s, t) fitting to H. The projected curve
is then moved along the surface normal of Si(i = 1,2) in a di-
rection towards the inside of the cavity with a certain distance,
which is decided by the preferred tool size which must be less
than half of the width of the cavity. In order to create mul-
tiple paths, we uniformly select several iso-lines Li on H and
generate boundary curves L1

i and L2
i associated with S1 and S2,

respectively. The distance between iso-lines is decided assum-
ing the tool length is roughly known. This constructions forces
the tool to have the first and the last radius of the same size
(for a tool with two different limit radii, see discussion later in
Section 5.4).

After we have a sequence of lines L1
i and L2

i (i = 0, ...,k) on
S1 and S2, respectively, each pair of neighbouring lines can be
used as boundary curves to define the initial paths. In order to
avoid gaps between neighboring paths, the corresponding lines
lying on the ruled surfaces are scaled up to either direction by a
certain factor, which is set 5% in our implementation.

Special treatment of the top layer. For the top layer, it is com-
mon that a part of the tool lies outside the cavity. The sampling
points on the tool axis which is located outside the cavity needs
to be ignored during the side path calculation. These points p
can be recognized by checking their closest points on the free-
form side surface. If the closest point of p is located on the
boundary of the side surface, p is considered to be outside the
cavity and does not contribute to the side path calculation. Note
that for the part of the tool with the top layer laying outside the
cavity, its top boundary curve cannot be found using the above
discussed iso-line method. To resolve this issue, in our imple-
mentation, we modify the top ruled surface generated with our
iso-line method by moving its top boundary curve in the direc-

tion of the tool axis to the outside of the cavity. However, we
conclude that handling perfectly boundaries is a separate issue
in many CNC projects, and goes also beyond the scope of this
paper.

4.2. Side path computation
Once the side surface is divided into layers, we generate side

paths for all layers. Since it is required that all layers are pro-
cessed with the same cutting tool, we look for the motion paths
for all layers simultaneously with shape parameters of a sin-
gle cutting tool. Let Fk

dist and Fk
f air be the distance function

term and fairness term, respectively, corresponding to the layer
k. We solve the following minimization problem for side path
computation for multi-layer milling

min
P1,...,PK ,r

K

∑
k=1

Fk
dist +λ1

K

∑
k=1

Fk
f air +λ2

K

∑
k=1

Fk
rigid , (25)

where K is the number of layers, Pk is a set of control points
of the ruled surfaces in the k-th layer, and r is the vector of radii
set uniformly distributed along the tool axis. Note that only
one single tool shape is used for all layers. Fk

dist and Fk
f air are

defined similarly to Eq.(8) and Eq.(3), respectively. To avoid
problems with surface patch boundaries and to make the motion
path computation highly accurate, whole side surfaces are used
as reference instead of their layer counterparts.

4.3. Trochoidal path computation for multi-layer milling
Once the side paths are obtained for all layers and the tool

shape is determined, we can compute trochoidal path for each
layer. We start with the top layer and process the remaining
layers one by one. Each layer can be regarded as an independent
TR cycle problem and all the front-half and the back-half paths
of the single layer can be generated by the methods described
in Sec. 3.3 and Sec. 3.4.

5. Experimental results

In this section, we verify the proposed 5-axis trochoidal
milling methods described in Sec. 3 and Sec. 4 by perform-
ing experiments on three test cases. The algorithms are imple-
mented in C++ language. The experimental environment is a
desktop with CPU i7-10700K 3.80 GHz and 16G RAM.
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BB = 35×42×50

(a) (b)

concical - TR path

2.20

σkl (c)

custom-shaped - side path

(d)

custom-shaped - TR path

Figure 10: Trochoidal milling with conical vs. custom-shaped tools. (a) In the optimization of the side paths, we constraint the meridian (radial function) to be
linear for a pair of side surfaces with a bounding box BB. (b) This results in the best conical cutting tool; its envelopes are color-coded by the error σkl , see Eq. (26),
with the maximum error σmax = 0.6493. (c) The envelopes of a single (side) path using the custom-shaped tool shown in Fig. 11(b), color-coded by σkl with
σmax = 0.0869. (d) The complete trochoidal paths, with almost the same error as for the side surface.

We measure the error of the envelope surface generated by
cutting tool and the target surface in a discrete way, at samples
of the ruled surfaces. The error σkl is the larger of the distance
error between the points on envelope surface and the target side
surfaces Sn, n = 1,2, that is

σkl = max
n=1,2

|dist(R(tk,sl),φkl)− rl | (26)

where R(tk,sl) are the samples on the ruled surface, φkl are the
corresponding footpoints on the target surface, and rl are the
radii of cutting tool corresponding to the l-sample in the ruling
direction. All the color-coded examples shown in the paper re-
flect this absolute (non-signed) error. Finally, the total error is
defined as

σmax = max
k,l

σkl . (27)

5.1. Single-layer TR paths for two free-form surfaces
We start with a test case where we consider a single-layer

trochoidal milling, described in Sec. 3, for two free-form side
surfaces. The side surfaces form a synthetic (symmetric) cavity
that admits highly accurate approximation. The parameters in
Eq.(16) that control the overcut direction are all set to 0.1.

Fig. 11 shows the optimization results. The error of the initial
side path and the optimized side path are shown in Fig.11(a).
For a cavity with a bounding box BB = 35× 42× 50, the er-
ror σmax is optimized from the initial σ ini

max = 2.1950 to σ
opt
max =

0.0869, which meets the accuracy required for semi-finishing
operations. Fig. 11(c)-(d) show the final envelopes of the tro-
choidal paths computed by our method. A total of 22 trochoidal
cycle paths are generated between the two free-form surfaces.

To give comparisons with traditional tools, we firstly give a
comparison with conical tools. We employ our method with
an additional constraint enforcing the tool to be conical. Fig.10
shows the shape and error of the conical tool where the machin-
ing error of the optimized paths reaches σ

opt
max = 0.6493, which

is by order of magnitude worse than using a custom-shaped tool
shown in Fig. 11.

Another comparison is made against a fixed barrel tool. The
TR paths are optimized with our method, however, the shape of
the tool stays constant. The barrel tool is defined by the radius
function Rφ [44]

Rφ =
Rt −Re(1− cosφ)

cosφ
,φ ∈ [−arcsin(Le/2Re),arcsin(Le/2Re)],

initial

optimized

σ ini
max = 2.1950

σ
opt
max = 0.0869

S1

S2

(a) (b)

T

2.20

σkl

(c) (d)0 21

Figure 11: (a) Two free-form surfaces S1 and S2 define a cavity and their ap-
proximation by the envelopes of a custom-shaped tool T , before and after op-
timization, are shown framed. (b) The motion of T ; side paths and the tool
are optimized by Eq.(11). (c) Front-half envelopes. There are 22 front-half en-
velopes computed by the approach described in Sec. 3.3 and color-coded by the
number of the TR cycle. (d) The whole cavity filled by the TR envelopes of T .

(a) (b)

σkl
2.20

σmax = 0.5775

Figure 12: Trochoidal milling with a fixed barrel tool. (a) TR milling with a
fixed barrel tool where only the milling path is optimized. The color coding of
machining error is shown in (b). While the maximum error is better than for
the best conical tool, Fig. 10(b), it is more than six times worse than using a
custom-shaped tool, see Fig. 10(d).

where φ is the angle of a circular arc generatrix. We choose
reasonable shape parameters for the barrel tool suggested by
the side surfaces to be milled, i.e. Re = 15, Rt = 6. The length
of the tool axis is set Le = 16. Fig.12 shows the results where
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Model # vertices BB σ ini
max σ

opt
max min:sec

Fig. 11 1470 35×42×50 2.1950 0.0869 18:20
Fig. 15 1903 25×200×200 1.0434 0.0751 41:44
Fig. 17 3073 35×82×100 3.3358 0.1340 130:03

Table 1: The statistics of the TR algorithm. In turn, we report the number
of the mesh vertices (S1 ∪ S2), the size of the bounding box of S1 ∪ S2, the
approximation error before and after optimization, and the computation time.

the maximal error is σmax = 0.5775, which is more than six
times more than using a custom-shaped tool, c.f. Fig. 11(a).
and Fig. 10(d).

Fig. 13 shows the change of the average cutter-workpiece en-
gagement angle with position in the front-path movement of the
1st, 7th, and 14th trochoidal cycle. Fig. 14(a) shows the maxi-
mum value of CWE in each TR cycle, controlled by our algo-
rithm below the given tolerance ε∗kl = 60◦. Fig.14(b) shows the
material removal rate in each TR cycle and Fig.14(c) depicts the
correlation of the optimization costs and computational timings
in each iteration.

Figure 13: CWE optimization. Cutter-workpiece engagement angles for three
front-half paths. The figures show the optimization process of the 1st, 7th, and
14th rounds of the TR cycles, respectively. Each round of TR cycle is generally
generated by 3 ∼ 7 optimizations. The tolerance ε∗kl was set to 60◦.
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(c)
Figure 14: (a) The maximum CWE angle of the cutting tool with front-half
movement of each TR cycle. The CWE angle of each iteration is smaller than
the tolerance ε∗kl . (b) The MRR information of each TR cycle. (c) The polyline
shows the cost time of each round path generation. The histogram shows the
number of optimizations for each iteration, which is positively correlated with
the cost time of each iteration.

5.2. Multi-layer TR paths for the industrial blisk model

The second experiment is the cavity of the blisk model shown
in Fig 1. Due to the depth of the cavity, we adopt the multi-
layer TR milling strategy described in Section 4 and consider
three layers. We use Eq. (25) to optimize the cutter shape (rep-
resented by the vector of radii r), simultaneously for the three-
layer side paths. The weights of Ff air and Frigid in Eq. (25)
are set to 1.0× e−6 and 0.1, respectively. We chose 10 con-
trol points for the single-side motion path of each layer, and the
number of sampling points on the tool axis is set to 21. The
optimization results of the side path and tool shape are shown
in Fig.15. In this experiment, the weights of Ff air and Flength in

Eq. (20) were both set to 1.0× e−5 and the weight of Frigid was
set to 0.1. The parameters in Eq.(16) were all set to 1/3.

Fig. 15 shows the results of the multi-layer approach, com-
pared with a single layer; in both approaches the shape of the
tool is computed (≈ optimized). The multi-layer approach gen-
erates in turn (from the bottom to top of the cavity) 17, 19,
and 21 trochoidal paths. The difference is related to the fact
that the size of the cavity is smallest at the bottom. The multi-
layer approach returns finer approximation, see the color-maps
in Fig. 15(a) and (b). The optimal tool is close to a conical, yet
it is curvature-varying, see Fig. 15(d) top-framed.

single-layer(a) multi-layer

1.040

(b)

(c) (d)

0 21

T
0.06

Figure 15: Layer refinement. Single-layer (left) vs. multi-layer (right) tro-
choidal milling are compared. The side paths (framed) are color coded by the
distance error σmax. While the error in the case of a single layer σmax = 0.3837,
using three layers the error gets reduced to σmax = 0.0751. (c+d) The final TR
paths of our algorithm. The color coding here shows the number of trochoidal
cycle. (d) top-framed. The optimized T color-coded by the Gaussian curvature
and the curvature plot of the meridian curve of T .

Fig.16(a) shows the maximum value of the CWE in each
round of front-path in each layer of milling and Fig.16(b) shows
the MRR of the front-path of each round of the TR cycle.
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Figure 16: (a) CWE angle and MRR for a TR path with 3 layers, c.f. Fig. 15(b).

5.3. Multi-layer TR paths for second real blisk model

The third test example uses another industrial blisk dataset.
The optimization parameters and the number of control points
were set equally to those in Sec. 5.2. Since this cavity is
deeper, we chose five instead of three layers, each one gen-
erated 27 ∼ 31 rounds of trochoidal paths. The side paths are
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shown in Fig.17(a) and the complete TR envelopes are shown in
Fig.17(b). The successive optimization process is visualized in
Fig.17(c+d) and a comparison against a single-layer approach
is shown in Fig.17(e). Again, the errors are by the order of mag-
nitude better in favor of the multi-layer strategy. The computa-
tion times and other statistics of all three test cases are listed in
Table 1.

5.4. Discussion & limitations

Optimal tool selection. We initialized the tool such that its
side (flank) motion fits the side surfaces, however, its size, in the
terms of thickness, remained uncontrolled in our optimization
and one could also look for the thickest tool that fits the cav-
ity, as this should further reduce the machining time. We also
slightly restricted the space of tools as we unified the Li paths in
the initialization (in Section 4.1), which resulted in equal limit
radii r1 = rM . However, these radii were not constrained to be
equal in the optimization stage.

G1 connectivity between strips. In the multilayer approach,
the neighboring layers are constructed to avoid gaps between
neighboring layers, however, there might be a small overlap be-
tween neighboring layers and one could further optimize the
layers to match better, e.g., in a G1 fashion.

Global collision detection. Our algorithm tests only local
collision, i.e., the collision of the custom-shaped tool and the
side surfaces. As the tool is typically mounted on a han-
dler/shank, there could be, however, collision of that part with
the cavity. We checked the global collisions of the tools’ axis as
a post-process, but a more thorough global collision test shall
be done in the case of physical experiments.

Global optimization. Our approach looks for a tool that mini-
mizes the distance error between the motion of the tool and two
side surfaces of the cavity. The problem is formulated as an
optimization problem and we look for a minimizer. There is no
guarantee that our method finds the global minimizer (which
may not be unique), however, our results show that for cavi-
ties of industrial benchmarks, such as the blisk geometry, suffi-
ciently accurate approximation (tens of micrometers) exists.

Existence of an exact tool. An exact tool exists iff the two
side surfaces are exact envelopes of a motion of such a tool.
One can construct a (counter-)example of a cavity where a sin-
gle tool cannot give sufficiently good results; e.g. such a cavity
can be formed by one convex elliptic side surface and other one
concave elliptic.
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6. Conclusions

In this work, a method for trochoidal milling of 3D cavities
bounded by free-form surfaces has been proposed. Our method
computes not only the milling paths, but also the shape of the
cutting tool itself, both in a single- and multi-layer setup. Ma-
terial removal rate and cutter-workpiece engagement are also
incorporated inside our variational framework and easy to con-
trol. The proposed method is validated on both synthetic and in-
dustrial benchmarks, and returns highly accurate milling paths
that meet fine machining tolerances.
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