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Abstract: Organismal aging is associated with many physiological changes including differences in 
the immune system of most animals. These differences are often considered to be a key cause of age-
associated diseases as well as decreased vaccine responses in humans. The most often cited vaccine 
failure is seasonal influenza, but while it is usually the case that the efficiency of this vaccine is lower 
in older than younger adults, this is not always true and the reasons for differential responses are 
manifold. Undoubtedly, changes in the innate and adaptive immune response with aging are asso-
ciated with failure to respond to the influenza vaccine, but the cause is unclear. Moreover, recent 
advances in vaccine formulations and adjuvants as well as in our understanding in immune changes 
with aging have contributed to the development of vaccines such as those against herpes zoster and 
SARS-CoV-2 which can protect against serious disease in older adults just as well as in younger 
people. In the present article, we discuss the reasons why it is a myth that vaccines inevitably protect 
less well in older individuals, and that vaccines represent one of the most powerful means to protect 
the health and ensure the quality of life of older adults. 
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1. Introduction 
Vaccination is one the greatest achievements of humankind and probably the single 

greatest success of modern medicine [1]. Vaccination has dramatically reduced child mor-
tality from most of the common infectious diseases. The vaccination programme for chil-
dren is extremely well organized and effective. On the other end of the spectrum of life, 
namely in older adults, the necessity for vaccination became of interest for many scientists 
[2-4]. Still there is a common thinking that immunosenescence leads to a degree of 

 



 

 

immunodeficiency which directly decreases vaccine immunogenicity as well as efficiency 
for all older subjects [5,6]. This opinion can be found in essentially every article and text-
book treating of age-related changes in the immune response and their consequences [2-
6]. Furthermore, the alteration of the immune response is seen as responsible for not only 
vaccine failure in older subjects but also for increased vulnerability to natural infections, 
an idea that gained even more support during the present COVID19 pandemic due its 
disproportionate impact on older subjects [7-10]. However, it should be stressed that un-
derlying co-factors associated with aging such as co-morbidity, genetic and environmen-
tal factors, and overwhelming inflammaging may play a more determinant role in COVID 
susceptibility than age per se [11]. 

It should be recognised that there are increasingly many vaccines proposed specifi-
cally for older subjects. However, at the beginning the most used were the influenza and 
pneumococcal vaccines, which were indeed often less effective in older subjects, but were 
not so efficient in the younger subjects either [12-14]. This decreased immunological effi-
cacy was related to the changes of the immune system with aging presently conceptual-
ized under the concept of immunosenescence and inflammaging [15-18]. It cannot be de-
nied by any means that immune changes occur with aging; however, these changes cannot 
be treated as a monolithic block because time does not have the same effect for all humans, 
due in large part to the heterogeneity of immunobiography [19,20]. This nuanced view of 
aging is increasingly accepted and widespread and should direct our appreciation of vac-
cine efficacy in older adults [21,22]. 

Nevertheless, with our increased understanding of how the immune system re-
sponds to vaccines and of how the immune system changes with aging, it became evident 
that the problem was partly related to the vaccines themselves and not to the older sub-
jects’ immune response. No interventions can be expected to be 100% effective either in 
young or in older subjects. In this article we will discuss the immune system requirements 
for an effective vaccine response, the immune changes related to this vaccine response 
during aging, the development of new vaccines and their usefulness in older adults. 

2. The Immune Response assuring an Effective Vaccine Response 
Since the introduction of the first form of vaccination in the West by Jenner there is 

an enormous effort to unravel what should be the most efficient immune response for a 
successful vaccine response [23]. The ultimate aim of vaccination is to create a surrogate 
of natural infection by inducing long-lasting immune memory through coordinated, com-
plex immunological interactions [24]. This outcome is fundamental for the protection of 
the organism when it again encounters the actual infectious agents. First, we briefly re-
view the physiological immune response to vaccines, before describing the changes un-
derlying putative vaccine failure in aging. 

The antigen under any form which is injected to the organism first encounters the 
innate immune system or is carried out directly to the lymph nodes, where coordinated 
reaction of innate and adaptive immunity occurs [25,26]. The antigen presenting cells 
(APCs), mainly dendritic cells (DC) and macrophages engulf the antigen, process it to 
short peptides and present it via the major histocompatibility complex (MHC) to T cells 
[27,28]. Adequate functioning of the innate immune system is extremely important not 
only for antigen presentation but also for the productionof various cytokines which will 
guide the activation of adaptive immunity and the differentiation of the different T cells 
[29,30].. 

In the adaptive arm in reaction to antigens the CD4+ T cell priming is the key event 
for vaccine immunogenicity, resulting in specific antibody production by B lymphocytes 
and plasma cells and generation of long-lasting immune memory T cells [31]. This prim-
ing is highly modulated by various factors such as the local pro-inflammatory environ-
ment, vaccine formulation and the nature of the vaccine [32,33Antigens stimulate the 
CD4+ T cells depending on the cytokine milieu modulated by APC-secreted IL-12 to be-
come either effectors or helpers for CD8+ cytotoxic effector T cells by the action of IL-2, 



 

 

IFNγ, TNFα or by the APC-secreted IL-10 to differentiate into Th2 and those activating B 
cells [34,35]. As a consequence, all of them begin to proliferate intensively [36-38]. The 
CD8+ T cells may also be directly stimulated by antigens in the context of MHC-I to be-
come effector T cells. The B cells become plasma cells by the coordinated action of the 
follicular dendritic and CD4+ T cells and undergo different changes for producing the 
highly specialized neutralizing antibodies against the antigen [39,40]. In the meantime, 
the clones of primed T cells that became differentiated specific effector cells will slowly 
shrink and ultimately die, leaving highly effective memory cells to combat future identical 
specific infections [36,41]. All this complex interactive priming necessitates coordination, 
functionality, a large enough number of cells, functional receptors, coordinated intracel-
lular signalling, and finally a solid immune memory. 

This optimal immune activation chain of events which occurs the most frequently in 
young individuals often decreases around age 60. However, age-related immune changes 
occurring at any level of this coordinated action and developing through decades were 
considered as detrimental and being the main reason for vaccine failure with aging. 

3. What are the Changes which are Commonly considered to Alter the Vaccine Re-
sponse with Aging? 

Aging is not a uniform process; rather, it consists of various processes on the road of 
aging [42]. This means that older subjects may age successfully with few alterations, nor-
mally with compensated changes, or pathologically with many changes in their immune 
functions [43-47]. The relatively new distinction of biological aging from chronological 
aging is also changing our understanding of aging as it became a time-scale related pro-
cess where the same passage of time does not imply the same biological changes for all 
individuals, in accordance with the immunobiography and with the adapt-immune con-
cept of aging [20,48]. This is even more evident if we consider the recent appreciation of 
frailty as a measure of the biological age [49]. Furthermore, the new approach via systems 
biology or the complex systems concept showed that the immune system cannot be con-
sidered cell by cell, cytokine by cytokine, but only as a whole complex ever-adapting sys-
tem [50-53]. A complex systems view is necessary to capture the unique aspects of the 
vaccine response of younger versus older immune systems [54]. Finally, the introduction 
of multi-omics approaches to capture the multilayer components and complexity of the 
immune response either in populations of cells or at the single cell level opened new ways 
to assess the immune response to vaccines. Very recently our comprehension of the aging 
immune response benefitted largely from these advances either for the understanding of 
what is occurring in the human immune system under natural infections or under vaccine 
administration as well as for the conceptualization of new vaccines [55]. 

What changes have been described to affect the immune response to vaccines in older 
subjects? Collectively, age-related immune changes are described as immunosenescence 
and inflammaging. Changes that could impact vaccination in the innate immune system 
are numerous [56-61]. The most important one is the generation of a low-grade inflamma-
tion, mainly by the activation of the macrophages (i.e. inflammaging) [62]. This creates an 
environment which is detrimental for the generation of an adequate immune response to 
vaccine. This increase is partially due to the constitutive stimulation of the PRRs to pro-
duce pro-inflammatory cytokines, which renders them less effective at responding to spe-
cific stimulations [63-65]. Another potentially noxious event is the alteration in the antigen 
presentation, mainly by the DCs [66]. With aging these cells are unable to efficiently pro-
cess and present the antigens to the T cells; additionally, the production of cytokines is 
not suitable to the priming of the adaptive immune response [67-69]. The changes ob-
served in the lymph nodes with aging also contribute to the altered vaccine response 
[25,70]. 

However, once the APCs are able to prime the adaptive immune response, the cells 
composing this arm may also be different in older individuals [71]. There are phenotypic 
and functional alterations. The most important phenotypic alteration is the decrease in 



 

 

naïve cell numbers, mainly in the CD8+ T cell subpopulation, thereby precluding the prim-
ing by new antigens [72]. This is most commonly related to the thymic involution [72-78]. 
Even if the relevant cognate T cells have been found in aging individuals, their T cell re-
ceptors (TCR) present a decrease in the signaling efficiency either because of the mem-
brane changes with aging in the cholesterol content or because of the alteration in signal 
transduction, resulting in less efficient transmission of the signal from the surface to the 
nucleus [79-82]. There are also alterations in the effector functions of the T cells, which are 
decreased and lead to difficulties in eliminating invading pathogens. Once the infection is 
resolved, memory should develop, but with aging instead some effector T cells will sur-
vive, becoming either senescent or exhausted [83,84]. It seems then that instead of becom-
ing true memory cells they may somehow maintain innate and effector functions, which 
may be somehow an adaptive process for a better immune response [83,85-90]. Most of 
the studies indicate that the highly differentiated T cells, mainly CD8+ T cells, become se-
nescent or even acquire senescence-associated secretory phenotype (SASP) [91,92]. How-
ever, the discussion is ongoing for years whether all these cells are senescent or exhausted. 
Many results seem to suggest that they are also functionally exhausted, which further im-
pairs the vaccine response [93,94]. We should nevertheless stress that the phenotypic and 
functional T cell subsets develop from naïve cells to memory cells through a dynamic pro-
cess with underlying distinct molecular mechanisms as well as different distributions 
throughout the body [92,95,96]. Together, the changes observed in the cellular immune 
response with aging may impact the vaccine response of the older subjects by decreasing 
clonal diversity due to the decrease in naïve T cells, contraction of the TCR repertoire and 
the difficulties to generate long-lasting immune memory [97]. However, as our under-
standing, experimental skill, and technical ingenuity are increasing, the one-way appreci-
ation of these changes is being toned down and a more nuanced picture is appearing, 
favouring the building of vaccine interventions and development on the existing adaptive 
processes of the aging immune system [48, 98-101]. 

The other partner of the adaptive immune response, the B cells, is also considered as 
altered with aging [102,103]. The number, the phenotype and the functioning of the B cells 
change with age [104]. The switch into specific neutralizing antibodies by somatic hyper-
mutation is changed decreasing the ability of these antibodies to neutralize pathogens 
with aging [105]. The development of efficient B memory cells is also deficient. These al-
terations in efficient antibody production are due to intrinsic as well as to extrinsic (e.g. T 
cell) changes with aging. All these described changes in the adaptive immune response 
adversely alter the vaccine response [106-109]. 

The molecular underlying causes of these alterations have also been somewhat elu-
cidated in recent years [110]. One of the most important changes are in the epigenome 
[111-113]. This closely modulates the transcription and the accessibility to the chromatin. 
The epigenetic changes are different in CD4+ and CD8+ T cell subpopulations, which may 
underlie the higher susceptibility of naïve CD8+ T cells compared to the naïve CD4+ T cells 
[114-116]. The successive differentiations induce telomere shortening contributing but are 
not sufficient to induce cell senescence [87, 117,118]. The overproduction of free radicals 
resulting from the changes in mitochondrial functions with age induces genomic instabil-
ity, leading also to T cell senescence [119-121]. Finally, the various changes in the surface 
receptors induce changes in signal transduction, decreasing the efficacy of T cell activation 
[122-125]. Some miRNAs alterations with aging in T cells may also influence the function-
ality as well as the differentiation of T cells [126,127]. 

The corollary or the other side of immunosenescence is inflammaging as first defined 
by C. Franceschi [17]. Because of the intrinsic and extrinsic challenges, the innate part of 
the immune system produces significantly increased pro-inflammatory mediators which 
are not compensated by anti-inflammatory mediators [128].  This concept of macro-
phage-centered inflammaging has been greatly extended in recent years, with over-acti-
vation of the adaptive immune system, senescent cells (SASP), the microbiome, and mito-
chondrial dysfunction being identified as contributing factors. Thus, inflammaging is sug-
gested to be the major underlying cause for the age-related chronic diseases such as 



 

 

cardiovascular disease, cancer, and neurodegenerative diseases [62,99,129,130]. Further-
more, it is also well established that over-inflammation in the aging organism decreases 
vaccine efficacy either locally or systematically [131,132]. Therefore, modulation of im-
munosenescence and inflammaging may be a target for increased vaccine efficacy in older 
adults [133]. 

4. New Evidence from Experimental Data on Vaccine Response in Old Age 
One of the most important breaches in the generalized consideration of age-related 

immune changes as deleterious came from recent studies showing that perhaps the de-
crease in naïve cells due to thymic involution is not as dramatic as was assumed from 
murine studies. More generally, many recent studies in humans contradict longstanding 
concepts established from rodents research. Thus, it seems that the TCR diversity due to 
the low thymus activity, may be compensated by the homeostatic proliferation and the 
stemness of some memory T cells potentially fulfilling the lifetime necessity for new TCRs 
during new infections [134-139]. However, very recent data indicate that the pool of naive 
CD8 + T cells contracts with ageing due to reduced thymic production, while the pool of 
naive CD4 + T cells is maintained to some extent through robust homeostatic proliferation 
[140]. Though this is still being debated, substantial progresses have been made to better 
asses the clonal diversity of T cells [139]. This also agrees with the observation from clini-
cal practice that older patients are doing much better than we could suppose considering 
the experimental studies. While COVID-19 is often portrayed as an example of the impacts 
of immune aging, it is actually an example of the opposite: successfully aging older adults 
recovered easily from this new infection, and high susceptibility appears to be more 
linked to comorbidities and cumulative impacts of unhealthy lifestyles than of age itself 
[140]. This is confirmed by the observation that there was almost no COVID mortality in 
any age group in the non-industrialized Tsimane horticulturalist population, despite high 
infections rates (Michael Gurven, personal communication). Of course, the co-morbid frail 
individuals suffer serious and deadly illness from the SARS-CoV2 [141,142]. 

Moreover, while the number of naïve T cells may be sufficient to sustain the vaccina-
tion effects even with a new antigen, it could be that defects in the innate immune system 
may hamper the effective immune response to the vaccine. However, recent experimental 
data supporting the notion that inflammaging may be an adaptive process in conjunction 
with what is called “trained innate immunity” highlights the possibility that the innate 
immune system could effectively prime the adaptive immune response also in older indi-
viduals [79,146,147]. These new discoveries suggest that a better cooperation among the 
innate and adaptive immune response is possible in older subjects. 

Recent discoveries suggest that new T cell subpopulations may exist in older subjects, 
namely T cells with more effector capacities, which may favor the development of better 
memory when the challenge is eliminated [76,87]. The new data coming from multi-omics 
studies concerning senescent T cells also indicate that some of them are only exhausted, 
which leaves the possibility to reactivate them via blockade of checkpoint inhibitors. Fur-
thermore, these senescent cells may retain some important effector functions, which in 
turn could be important for memory acquisition after the elimination of the pathogen 
[133]. 

What are we to make of these new findings after so many decades of research that 
seemed to show reduced immune functionality with age, consistent with ideas of reduced 
vaccine efficacy in older adults? Several concepts from complex systems theory provide 
plausible explanations. Most broadly, many complex biological systems show degener-
acy, which is the potential to arrive at a functionally equivalent result via alternative 
mechanisms [144]. The best-known (but trivial) example is the degeneracy of the genetic 
code, with multiple codons potentially specifying the same amino acid. More relevant 
here, about 30% of genes, including albumin, produce no apparent change in phenotype 
when knocked out completely. This startling finding arises because the architecture of the 
underlying regulatory networks has been selected for robustness and can thus ensure 



 

 

basic functioning of the system. It is likely that the aging immune system has numerous 
aspects of degeneracy, which allow it to arrive at similar (emergent) functional capabilities 
under a wide array of immunobiography. In fact, such degeneracy would seem absolutely 
necessary to maintain a functional immune system across the life course despite the in-
credible heterogeneity of individual immunobiography as reflected even in the cross-re-
activity of TCR [145,146]. 

Degeneracy might manifest in three specific ways during immune aging. First, there 
are many aspects of immune aging that are likely adaptive. Historically, the largest risk 
of encountering new pathogens would mostly have been at younger ages, with some de-
gree of saturation of memory. Counter-balanced with the risk of cancer and autoimmune 
disease, a reorganization of the immune system might have been actively selected for in 
later life. In this context, differences between young and old immune systems might be 
more like differences between male and female immune systems: arriving at largely sim-
ilar endpoints via different pathways, and with some specific differences related to the 
differing needs of the groups, and with some specific vulnerabilities due to the inherent 
trade-offs in the system [147]. 

Second, some immune changes with age may be pathological. Such pathological 
changes are likely to be diverse, depending on an individual’s immunobiography. Degen-
eracy may be a buffering mechanism permitting the system to persist with relatively sim-
ilar overall functionality despite deficits in certain components. Generally, in highly opti-
mized complex systems, such buffering creates a dynamic of apparently stable systems 
that show a rapid or abrupt decline when their capacity is exceeded, reflecting the trade-
offs needed to maintain function under the most common conditions, at the expense of 
continual buffering capacity when tolerance is exceeded [148,149]. 

Third, degeneracy could reflect the ability of the system to arrive at relatively similar 
functional outcomes through progressively less desirable pathways. There may be ways 
in which the younger immune system achieves its objectives slightly better than the older 
immune system, such that as the immune system ages it invokes numerous compensatory 
mechanisms for deficits that arise (either in specific individuals, or generally during ag-
ing), but these compensatory mechanisms are partial, permitting the system to continue 
but as some cost. For example, responses to certain types of pathogens might be lower, 
energetic efficiency of the system might be compromised, or secondary effects, such as 
consequences of cellular senescence, might be induced [150,151]. 

Of course, beyond degeneracy and complex systems, some aspects of the aging im-
mune system may also be functionally superior – most obviously, the accumulation of 
immunity to a greater and greater range of pathogens with age provides superior protec-
tion even if could not be the case for all of them. It is likely that all four of these processes 
(three aspects of degeneracy discussed above and the adaptive aspects of aging) coexist, 
and the changes we observe in the immune system with age are a mix which we are not 
yet able to distinguish well. This would explain why clear decrements in many individual 
immune components are observed, but without a clear decrement to overall function, with 
major differences across individuals, and with some net generalized functional gains (e.g. 
increased per-cell cancer resistance) and losses (e.g. decreased influenza vaccine response) 
[152]. It is also consistent with continued vaccine efficacy in older adults, but with, in some 
cases, the need for specific formulations that work better in aging immune systems. 

  



 

 

5. How does the Aging Immune System Respond to Various Existing Vaccines and 
how the vaccine modifications improve the response? 

There are several vaccinations which are recommended for older subjects all around 
the world [153]. These include the influenza, pneumococcal, zoster and tetanus vaccines, 
as the infections in question  are causing either serious illnesses or being even deadly in 
older subjects. The vaccine type recommendation, age, and mode of administration may 
change across countries. 

The most studied vaccine is the influenza one [152,154,155]. The myth that vaccines 
are not efficient for the elderly population come from the lack of success of this vaccina-
tion. Indeed, the immunogenicity and efficiency of the standard dose influenza vaccine is 
about 20-50% in older adults vs 60-90% in younger adults, however depending on the 
season and the population [156]. The efficiency even in young people is not 100%. The 
standard dose influenza vaccine contains three or four antigens from the previous influ-
enza season produced in chicken eggs or now in insect cell cultures. This standard vaccine 
is administered intramuscularly and contains 15µg of each antigen. It is known not to be 
able to elicit efficient memory T cell response [157-159]. The production of specific hae-
magglutinin inhibition (HI) antibodies is also decreased [160-162]. These data prompted 
the contention that older adults do not respond to vaccines in general. However, the type 
of vaccine, the route of administration and the quantity were simply not  adjusted for the 
aging-modified immune systems of elderly. Since as these characteristics have become 
known, the vaccine composition has been changed. The vaccines (Fluzone High-Dose®, 
Flublok®)contain high doses (45 or 60µg, i.e. three or four times the standar dose) of he-
magglutinin A (HA) antigen from each of the included strains of the virus [163], become 
tetravalent and in some cases are conjugated with a new adjuvant, M59 (e.g. Fluad®) [164-
167]. There is substantial improvement in the protection of older individuals with the high 
dose vaccines [163]. The adjuvanted ones were not tested directly against the high dose 
vaccines, but they are significantly more efficient than the standard dose vaccines. The 
alternate route of subcutaneous injection was also tested and subsequently abandoned 
[168]. The measure of the efficiency of the influenza vaccine is also questionable as only 
an increase in the antibody titer more of than 1:40 was considered as protective, resulting 
in at least a 50% protection rate. The cellular immunity, notably the functionality of the 
CD8+ T cells was not tested or did not show real impact on functional T cell memory [169]. 
Together the new vaccines against influenza are much more effective than the first gener-
ation of vaccines by inducing a strong humoral and memory T cell response [152,170-172]. 
Therefore, either the adjuvanted inactivated trivalent vaccine or the quadrivalent cell-cul-
tured inactivated vaccine or the high-dose tri- and tetravalent vaccines are recommended 
for older subjects as efficient. 

The next vaccine recommended for older subjects is the vaccine against Streptococcus 
pneumoniae. The most used is the 23-valent pneumococcal polysaccharide vaccine  
(PPSV23) which contains the 23 most important infectious serotypes. This vaccine is 
highly inefficient in the elderly either in terms of antibody production or in terms of the 
protection against community acquired pneumonia (CAP). It can have some efficacy 
against the invasive pneumococcal disease (IPD) [173-177]. The new conjugated vaccine, 
which is now the most frequent in older subjects, is the pneumococcal conjugate vaccine 
(PCV13) which contains only 13 serotypes, and it is very efficient in older adults [178]; 
however, it may leave a place for serotype replacement [179]. The efficiency of this conju-
gated vaccine is very high in the older population as demonstrated by many studies, e.g., 
CAPiTA [180,181]. This vaccine is able to induce protective antibody production and 
memory of adaptive immune cells [182,183]. It is able to reduce occurrence of CAP in an 
elderly population by 74%. This vaccine is already recommended in the USA and has re-
placed the PPV23 alone. In the development pipeline the PCV20 is called to replace the 
PCV13 mainly in the elderly to combat the serotype replacement threat [184,185]. The clin-
ical trials of the latter vaccine are very promising in older subjects. This will probably 
supplant all other anti-pneumococcal vaccines in older subjects to increase their protection 



 

 

against this deadly pneumonia. Vaccination of children underperformed expectations, ne-
cessitating maintenance of strong vaccination in older adults [186]. 

One of the biggest successes of vaccination in older adults and a clear demonstration 
that vaccines can be highly efficient in this population is the adjuvanted anti-herpes zoster 
vaccine. The first vaccine, the Zostavax, was an attenuated virus vaccine whose efficacy 
waned over time because of a decrease in T cell immunity [187,188]. However, the second 
generation adjuvanted anti-herpes zoster vaccine, SHINGRIX, demonstrated an excellent 
efficacy for both its immunogenicity and its clinical efficacy [189]. Even the long-term pro-
tection has been revealed remarkable as it lasts already for 9 years [190,191]. The vaccine 
is composed of 2 components, a real viral but recombinant antigen, gE, involved in viral 
replication, and the adjuvant, AS01B, acting on the innate immune response via TLR 
[192,193]. The adjuvant AS01B consists of 3-O-desacyl-4’-monophosporyl (MPL) lipid A 
and QS-21. The efficacy of this vaccine clearly demonstrated that if we know what the 
changes in the immune system are with aging, we are able to design sufficiently efficient 
vaccines to overcome the changes. This also demonstrates that a vaccine should be com-
plex-system-oriented and not targeting only one aspect of the immune response. 

The other very recent vaccination success story is the unexpected efficacy of the 
COVID-19 vaccine in older adults [194-197]. However, the data recently published seem 
to indicate that age could be an important factor to explain the decrease in SARS-CoV-2 
anti-S IgG after vaccination with two deses of BNT162b2 vaccine [202,203]; however, oth-
ers indicate that even if this was less in older subjects the level of antibodies was well 
above what is considered protective [204]. The most recent reports are demonstrating that 
older subjects are responding as efficiently to the mRNA vaccine as young subjects after 
the third dose [205,206]. This was perceived as unexpected; however, in light of success of 
SHINGRIX it should have been expected, as the mRNA apart from being the instruction 
for making the virus antigen act also as an adjuvant preparing a coordinated immune 
response even if SARS-CoV-2 spike antigens were neoantigens [198-200]. Indeed, the lipid 
emulsion protecting the mRNA from destruction as well as the mRNA itself are consid-
ered as solid adjuvants. Considering this, it seems that their use is stimulating a favoura-
ble innate immune milieu which will be able to efficiently stimulate the adaptive immune 
response. 

6. Perspective on Mathematical Modelling, Illustrating the Role of Immunobiography 
in Vaccine Efficiency 

To give a glimpse on what could be achieved by mathematically modelling of the 
immune history as a complex adaptive system for demonstrating the various paths for 
adaptation/maladaptation which may lead to an efficient response to vaccines, we  focus 
for simplicity on one feature of a complex system, namely that of multiscale property 
[217]. Specifically, we consider the multiple timescale feature and assume that the immune 
history can be described by just two immunobiographical variables (more variables could 
be considered) and that these evolve on different time scales. We show that such systems 
are sensitive to small perturbations and these perturbations trigger the entry towards an 
emergent tipping point that causes differential ageing of the immune system by either pre-
cipitating or delaying the transition to “immune exhaustion” (where the immune system 
is less efficient in its response, but with the correct clinical intervention the system can 
reactivate). To guide the reader, we substantiate these ideas with figure 1. In panel A, we 
depict two immunobiographical variables (I1 and I2) that dynamically interact and gener-
ate the time-dependent energy landscape (represented by the green surface) where the 
immune history evolves nonlinearly in time. The laws that govern this interaction can in 
principle be described by a multi-timescale differential equation (as shown), where each 
of the immunobiographical variables evolves according to its own natural characteristic 
time (here I1 evolves with slow time-scale et and I2 evolves with chronological time-scale 
t). Noteworthy, each of the immunobiographical variables can be seen as an order param-
eter, which can be thought of as a “name” that represents several components with either 



 

 

pairwise or higher-order (possibly time-varying) interactions (see panel B). In the latter 
case, such higher-order interactions form so-called simplicial complexes [218]. These im-
munobiographical variables are organised in different layers (i.e. a multi-layered network 
or simplicial complex) each characterised by a different time-scale. In panel C, we write 
down a specific example of a multiple-timescale differential equation (for immunobi-
ographical variable I1 evolving with slow-time scale and I2 evolving fast), which could de-
scribe a possible scenario of the immune history within its time-dependent energy land-
scape. To succinctly and geometrically interpret its time history, we plot its evolution in 
phase plane, that is, a space in which variables from different layers (of the network or 
simplicial complex) interact (see panel B) and where one can identify all possible emergent 
states resulting from the interaction between the immunobiographical variables (in this 
case I1 and I2). In this example, the interaction between I1 and I2 give rise to two emergent 
states, namely, a tipping point T and the end state “immune exhaustion”. Specifically, the 
competition of time-scales between I1 and I2 creates regions of phase-space geometrically 
akin to a bow-tie funnel structure with both contracting and expanding directions and in 
the centre of it there is a tipping point (see panel E). This funnel structure attracts trajec-
tories (i.e., acts as a magnet forcing the immune system history towards it); subsequently 
the tipping point induces time-delays and finally it expels the trajectories into different 
directions of the phase plane. However, the induced time-delays and subsequent ejections 
into different directions of phase plane are determined by the amount of initial small per-
turbation (e.g., pathologies, accidents, diet, life style, etc.)  to the immune system (see 
panel C and E). In effect small perturbations trigger the entry towards an emergent “mag-
net” funnel structure with a tipping point that causes differential ageing of the immune 
system. The immune system inevitably reaches an end-point, “immune exhaustion”, but 
the uncertainty lies in the time that the immune system takes to reach “immune exhaus-
tion”, which is determined by small perturbations and multiple-timescale interactions be-
tween the immunobiographical variables (see panel C, where three immune history ex-
amples triggered by different perturbations lead to three different history outcomes, that 
is with different delays t1,t2,t2). The evolution of these three immune history examples is 
also provided in Panel D1 and D2 where we depict (in chronological time) the history of 
I1 and I2 respectively (Figure 1). 



 

 

 
Figure 1. Mathematical modelling the immune history, critical transitions towards differential 
ageing. Panel A: Time varying energy landscape (green) induced by the interaction between im-
munobiographical variables with different timescales, which is given by the differential equations; 
the functions f and g describe the evolution law of the immunobiographical variables as well as their 
interactions. Finally, e is a small parameter. The immune history evolves on this landscape (see black 
trajectory segment). Panel B: The immune system as an adaptive complex multiscale system, where 
each layer (scale) is a network or simplicial complex of interacting components. Each layer can be 
summarised by an order parameter Ii. Panel C: A specific model example of a 2-dimensional mul-
tiscale immune system; the function h can for instance be a quadratic polynomial, and e and 𝛼 are 
parameters. The different immune history is shown in phase-plane, where different perturbations 
leads to different immune history (trajectories) outcome that reach “immune exhaustion” with dif-
ferent time delays (i.e. t1,t2,t3). Note that different immune history can be associated with different 
individuals or with the same individual receiving different perturbations. Panel D1 and D2, depict 



 

 

the corresponding trajectories of I1 and I2 in chronological time. Panel E: A zoom of the lower part 
of figure C. The competition of timescales between I1 and I2 create a funnel structure and a tipping 
point. Trajectories first contract onto the funnel and initially their biological age is not affected, how-
ever, past the tipping point T, different biological age is induced (i.e. t1,t2,t3) which is dependent to 
small perturbations. Panel F: Chronological time is linear while biological time is nonlinear with 
many components inducing either slow or fast timescales, depending on the individuals and the 
various perturbations that they will suffer across life indicating differential adaptations of the im-
mune system during aging underlying the differential vaccine response. 

To summarise, competition of timescales between immunobiographical variables 
leads to an immune system that is sensitive to perturbations (or initial conditions) without 
being chaotic and where several aging history scenarios compete. The dominant history 
outcome is in fact decided by a small perturbation. That is, different perturbations lead to 
differential aging (or differential immune history), where each aging scenario has a dif-
ferent delay and, consequently, reach “immune exhaustion” at different (chronological) 
times. Panel F summarises the concept by showing that chronological time is linear while 
biological time is nonlinear due to its many components with several timescales that com-
pete and the various perturbations that an individual suffers across life determines the 
immune history and age. Therefore, the efficiency of the vaccine in older subjects does not 
depend on the chronological age as always stated but ultimately from the use of appro-
priate vaccines built on the immunobiographical adaptation related to biological aging. 

 
 7. What is the Future? 
 

It is quite evident that to some extent the future is already here. By considering the 
changes in the aging immune response, we are able to create efficient vaccines in older 
adults as demonstrated by the anti-herpes-zoster and the anti-COVID vaccines. Therefore, 
more knowledge is needed to create vaccines as efficient as those against other microbes, 
such as the HSV1, RSV, etc. We are on the right track, as many new mRNA vaccines are 
in the clinical trial pipeline. The development of new adjuvants is also mandatory to over-
come in some circumstances the deleterious effect of excessive inflammaging. The reacti-
vation of the exhausted T cells, if achievable, may be also a new avenue of improvement 
of vaccine efficacy, as was shown for checkpoint inhibitors in cancer treatment. 

Again, the better way to design new, efficient vaccines is to better understand the 
aging immune response [76,87]. The new avenues to investigate in our comprehension in 
the immune changes are including the role of negative regulation by Tregs and my-eloid 
derived suppressor cells (MDSCs) [201-204]. We should not consider it only as a deleteri-
ous process, but as a dynamic process which tries to adapt the immune response to the 
new circumstances of longer life as well as towards the intensity and type of the stresses 
from inside and outside [205,206]. Thus, the immune response in aging should be consid-
ered as dynamically evolving between adaptation and maladaptation. There-fore, we 
should use what is adaptive and overcome what is maladaptive. 

The new appreciation of frailty is also fundamental to be able to reinforce the immune 
response to vaccines of this part of the aging population [207]. The fact that frailty may be 
considered as a surrogate for biological aging may help to design interventions when the 
real biomarkers of this state will be known. New composite biomarkers (e.g., immune, 
physiological, laboratory and epigenetic) will help to better target the alterations. 

More importantly, immune aging should be considered in the frame of a complex 
system [208]. A complex system is an open system that exchanges matter, energy and in-
formation with its environment (and possibly stores some of these), in such a way that it 
does useful work to be far from thermodynamic equilibrium. It is composed of multiple 
components whose interaction leads to the emergence of new behavior that each compo-
nent alone cannot generate (i.e. its behavior is more than the sum of its parts). The inter-
actions can be pairwise like in standard networks, but they can also be of higher order as 
in simplicial complexes and can change over time (i.e. plastic). Complex systems may have 



 

 

different features, such as, multi-dimensional, spatial-temporal scale, nonlinear, sponta-
neous order, adaptation, feedback loops, among others [209,210].  For example, feedback 
loops in complex networks are distributed rather than centralised and provide a mecha-
nism to stabilize or destabilise complex oscillations (or behaviour or function). Biological 
systems are endowed with several of these features and in particular with those that it 
allows to self-regulate (e.g., by making internal changes) or optimise by responding to 
changes from its environment. That is, biological systems are complex adaptive systems. 
Complex adaptive systems have the ability to synergistically combine internal and exter-
nal (environmental) information, energy and matter in a way to optimise its performance, 
to evolutionary adapt and to survive (Figure 2). The immune system is such a system. We 
need a thorough study from this angle of the immune response of the older subjects. Re-
cent studies tried to incorporate the many levels and layers from inside as well as from 
outside of the immune response. From these studies incorporating multi-omics ap-
proaches, AI tools, and other innovative approaches, a fuller picture will emerge helping 
to better understand the immune system’s functioning and leading to the creation of new 
vaccines [211-216]. 

 

 
  

Figure 2. When we go from young adults to old adults, we experience immunosenes-
cence and inflammaging, which impact on our response to vaccinations, making it subop-
timal (red track). However, if the studies of mechanisms of aging (esp. immune system 
aging) would give us the targets (described in the text) we may intervene on one hand 
into the processes of inflammaging and immunosenescence, and on the other by modify-
ing the vaccine to suit better the old subjects (green track). 

8. Conclusion and Perspective 
Contrary to the general view of the degeneration of the immune response with aging, 

new studies demonstrate that it is concomitantly adaptive and maladaptive. The outcome 
depends on the balance of these two entities. The new vaccine successes in older popula-
tions also reinforce that reserves still exist which may be exploited by new vaccines. They 
can build concomitantly to the vaccine improvement by exploiting the mechanisms of se-
nescence, exhaustion, memory development as well as trained innate immunity [219-223]. 



 

 

Future vaccines will probably build on our knowledge and will lead to immunolog-
ically and clinically efficient vaccines. Besides well-known changes in composition, add-
ing of adjuvants, or the changes in doses, more mechanistic interventions may be perhaps 
implemented, such as the use of IL-7, the modulation of transcription factors and/or 
noncoding RNAs by the CRISPR technologies, and the use of computational models to 
design better vaccine targets to build on what is functioning rather than only considering 
what is not. 
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Table 1. 
 
The past and present vaccines for older subjects considering their clinical efficiency 
 



 

 

Vaccines Younger individuals   Older individuals 
Influenza       
       Standard dose 
 
       High dose 

 
+/- 

 
+ 

 
- 
 

++ 
Herpes Zoster 
       Zostavax 
 
       Shingrix 

 
NIL 

 
NIL 

 
+ 
 

++ 
SARS-CoV-2 (after 3rd dose) + + 
Pneumococcus 
       Polysaccharide 
 
       Conjugated 

 
+/- 

 
+ 

 
- 
 

+ 

Yellow fever + + 
Hepatitis B virus + + 
Japanese encephalitis virus + + 

 
 


