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Abstract

Declared a pandemic by the World Health Organization (WHO), COVID-19 has spread
rapidly around the globe. With eventually substantial global underestimation of
infection, by the end of March 2022, more than 470 million cases were confirmed,
counting more than 6.1 million deaths worldwide.

COVID-19 symptoms range from mild (or no) symptoms to severe illness, with
disease severity and death occurring according to a hierarchy of risks, with age and
pre-existing health conditions enhancing risks of disease severity. In order to understand
the dynamics of disease severity during the initial phase of the pandemic, we propose a
modeling framework stratifying the studied population into two groups, older and
younger, assuming different risks for severe disease manifestation.

The deterministic and the stochastic models are parametrized using epidemiological
data for the Basque Country population referring to confirmed cases, hospitalizations
and deaths, from February to the end of March 2020. Using similar parameter values,
both models were able to describe well the existing data. A detailed sensitivity analysis
was performed to identify the key parameters influencing the transmission dynamics of
COVID-19 in the population. We observed that the population younger than 60 years
old of age would contribute more to the overall force of infection than the older
population, as opposed to the already existing age-structured models, opening new ways
to understand the effect of population age on disease severity during the COVID-19
pandemic.

With mild/asymptomatic cases significantly influencing the disease spreading and
control, our findings support the vaccination strategy prioritising the most vulnerable
individuals to reduce hospitalization and deaths, as well as the non-pharmaceutical
intervention measures to reduce disease transmission.
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Introduction 1

More than two years have passed since COVID-19, a severe respiratory syndrome 2

caused by a new coronavirus, was identified by the Chinese authorities in January 3

2020 [1]. Declared a global pandemic by the World Health Organization (WHO) in 4

March 2020 [2], COVID-19 symptoms range from asymptomatic/mild to severe illness, 5

with age and pre-existing health conditions increasing the likelihood of disease 6

severity [3]. Vaccines against COVID-19 have been developed in record time and are 7

now globally distributed [4, 5]. Although these vaccines are remarkably effective against 8

severe disease, the so called sterilizing immunity, occurring when vaccinated individuals 9

cannot transmit the virus, is still being evaluated. 10

Based on previous research experiences applied to other infectious diseases [6–14], 11

and more recently applied to COVID-19 dynamics [15–19], the role of asymptomatic 12

infections have been studied, showing that vaccine performance is driven by the ability 13

of asymptomatic or mild disease cases transmitting the virus, with an eventual increase 14

on the number of overall infections in a population [20,21]. 15

As an example of the pandemic’s impact in Europe, Spain has reported, by the end 16

of March 2022, more than 11.5 million COVID-19 cases and over 100 thousand 17

deaths [22,23], with a significantly higher mortality rate for individuals older than 65 18

years of age [24,25], in agreement with what was also observed in different European 19

countries [26]. 20

As the COVID-19 pandemic progressed, task forces have been created to assist 21

public health managers and governments during the COVID-19 crisis, and research on 22

mathematical modeling became critical to understand the epidemiological dynamics of 23

COVID-19. Modeling studies to evaluate COVID-19 dynamics worldwide have been 24

widely published. Using both, deterministic and stochastic approaches, models were 25

developed to investigate disease spreading in different epidemiological contexts as well 26

as the impact of the control measures so far implemented. Using the existing empirical 27

data, these models have given insights on disease transmission rates, the effect of 28

quarantine or use of facial masks, for example, with modeling assumptions statistically 29

tested with the available empirical data [27–30]. 30

Within the COVID-19 Basque Modeling Task Force (BMTF), a flexible stochastic 31

framework was developed to describe the epidemics in terms of disease spreading and 32

control in the Basque Country, Spain, giving projections on the national health system 33

needs over time. The SHARUCD framework was parameterized and validated with 34

epidemiological data continuously collected and provided by the Basque Health 35

Department and the Basque Health Service (Osakidetza), and has been used, up to date, 36

to monitor COVID-19 spreading and control over the course of the pandemic [15–21]. 37

Model refinements and results on the evolution of the epidemics in the Basque Country 38

are updated on a monthly basis and are publicly available as an online dashboard [5]. 39

As a continuation of the BMTF efforts, we developed an age-stratified mathematical 40

model framework to understand the epidemiological dynamics of COVID-19 41

introduction phase in the Basque Country. The models are calibrated with the available 42

data referring to confirmed cases, hospitalizations and deaths, from February to the end 43

of March 2020, in the Basque Country, prior to any intervention measure. After a 44

careful data analysis, the population was divided into two groups, namely young and 45

old. As opposed to the existing age structured models suggesting higher infection rate 46

for individuals older than 60 years of age [31–34] than for younger individuals, our 47

modeling assumption implies that while the risk for developing severe disease is higher 48

for the older population, disease transmission is significantly driven by the mobile 49

younger population. 50

A detailed sensitivity analysis was performed to identify the key parameters 51

influencing the transmission dynamics of COVID-19 in the population, opening new 52
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ways to understand the effect of age on disease severity during the pandemic. In terms 53

of policy implications, our findings support the vaccination strategy prioritising the 54

most vulnerable individuals [16], particularly to reduce hospitalization and deaths [21], 55

as well as the non-pharmaceutical intervention measures that are still advised by the 56

WHO to reduce disease transmission. 57

This paper is organized as follows. Section 1 presents the deterministic and the 58

stochastic models formulation, followed by the model analysis. Section 2 is dedicated to 59

data analysis, model calibration and parameter estimation. In Section 3 we present the 60

models simulation and results, including a detailed sensitivity analysis for the 61

parameters involved in reproduction number. We conclude this work with a discussion 62

on the results obtained by both modeling approaches. 63

1 Materials and methods 64

Using age stratified data for COVID-19 incidences for tested positive cases, 65

hospitalizations and deaths in the the Basque Country, this work is applied to the initial 66

phase of the pandemic. Using statistical tools to analyse these data, we define as severe 67

cases all hospitalized individuals, including the intensive care unit (ICU) admissions, for 68

young (H1) and old patients (H2), reported from February 15 to March 25, 2020. It is 69

important to mention that at the beginning of the pandemic, due to the testing capacity 70

limitations, only patients with severe symptoms were tested using the PCR (Polymerase 71

Chain Reaction) method. 72

1.1 The deterministic model 73

This model framework is a refinement of the model proposed by Srivastav et al. [27, 35]. 74

For both age groups, young and old, susceptible individuals become exposed and 75

infected E1(t) and E2(t), developing either mild/asymptomatic A1(t) and A2(t) or 76

severe/hospitalized H1(t) and H2(t) disease. While mild/asymptomatic infections are 77

assumed to recover, severe disease might evolve to death D. The parameter ϕ 78

differentiates the disease transmission between hospitalized (H1 +H2) and 79

mild/asymptomatic infections (A1 +A2), and the parameter ϵ is introduced to 80

differentiate the infectivity of asymptomatic young individuals (A1) with respect to the 81

baseline infectivity for the elderly individuals A2(t) in the Basque Country population 82

of N = 2.6 million individuals. 83

The seriousness of symptoms from viral infections is often correlated with the 84

amount of the virus in the body [36,37]. Justified by the differences observed in viral 85

load during the COVID-19 infection, lower for mild/asymptomatic and higher for 86

severe/hospitalized cases, we assume ϵ < 1, indicating that young individuals have 87

smaller infectivity than the elderly individuals. This assumption relies on the 88

epidemiological observation of young individuals developing mild or no symptoms during 89

the infection as opposed to the observation of severe symptoms occurring mostly in 90

older ages, shaping the disease transmissibility pattern in a population. The parameter 91

ϕ is a scaling factor used to differentiate the infectivity of mild/asymptomatic infections 92

(ϕβ) with respect to the baseline infectivity of severe/hospitalized cases (β). The value 93

of ϕ can be tuned to reflect different situations: a value of ϕ < 1 reflects the fact that 94

severe cases have larger infectivity than mild cases (e.g., due to enhanced coughing and 95

sneezing), while ϕ > 1 indicates that asymptomatic individuals and mild cases 96

contribute more to the spread of the infection (e.g., due to their higher mobility and 97

possibility of interaction) than the severe cases which are more likely to be detected and 98

isolated [15]. Here, we assume ϕ > 1, with asymptomatic individuals contributing more 99

to the force of infection than the hospitalized individuals [38,39]. 100
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The total population N is divided into ten compartments, stratified into two age 101

groups, young and old. Susceptible S1(t) and S2(t), Exposed E1(t) and E2(t), 102

mild/Asymptomatic A1(t) and A2(t) or severe/Hospitalized H1(t) and H2(t) cases. 103

Labels 1 and 2 refers to the young and to the old age populations respectively. Two 104

extra classes to accommodate individuals from both age-groups are also considered. The 105

deceased class D(t), for those who died from COVID-19, and finally the recovered class 106

R(t), counting all individuals recovered from the disease. 107

For the mathematical modelling framework development, we make the following 108

assumptions: 109

1. The total population N is constant. 110

2. The susceptible young individuals S1 become exposed to the infection E1 by 111

contacting infectious individuals A1, A2 and H1, H2 at rates ϕβ and β, respectively. 112

3. The susceptible old individuals S2 become exposed to the infection E2 by 113

contacting infectious individuals A1, A2 and H1, H2 at rates ϕβ and β, respectively. 114

4. With i = 1, 2, for young and old respectively, exposed individuals Ei will develop 115

mild/asymptomatic infection Ai with rate aηi while the remaining individuals 116

developing severe symptoms will be admitted to a hospital facility Hi with rate 117

(1− a)ηi. 118

5. While young and old asymptomatic individuals recover from COVID-19 infection 119

(R) with rate α1 and α3 respectively, hospitalized young individuals will recover with 120

rate α2 while hospitalized old individuals will recover with rate α4. Young and old 121

hospitalized individuals will eventually die (D) with rate δ1 and δ2 respectively. The 122

description of model framework parameters can be found in Table 1 123

The flow diagram for the disease related stages of our proposed model is shown in 124

Fig.1, which translates into the following ODE system describing the temporal evolution 125

of the number of individuals in each of the model compartments: 126

dS1

dt
= −βS1[ϕ{A1 + ϵA2}+ (H1 +H2)]

dE1

dt
= βS1[ϕ{A1 + ϵA2}+ (H1 +H2)]− η1E1

dA1

dt
= aη1E1 − α1A1

dH1

dt
= (1− a)η1E1 − δ1H1 − α2H1

dS2

dt
= −βS2[ϕ{A1 + ϵA2}+ (H1 +H2)] (1)

dE2

dt
= βS2[ϕ{A1 + ϵA2}+ (H1 +H2)]− η2E2

dA2

dt
= aη2E2 − α3A2

dH2

dt
= (1− a)η2E2 − δ2H2 − α4H2

dR

dt
= α1A1 + α2H1 + α3A2 + α4H2.

dD

dt
= δ1H1 + δ2H2
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Fig 1. With ρ1(t) = βS1[ϕ(A1 + ϵA2) + (H1 +H2)] and
ρ2(t) = βS2[ϕ(A1 + ϵA2) + (H1 +H2)], disease related stages are shown in orange color
for young population and in light green for the old population. Deceased and recovered
population include both age groups and are shown in black and purple, respectively.

Table 1. Description of model framework parameters

Parameter Description

β : baseline COVID-19 transmission rate
ϕ : scaling factor used to differentiate the infectivity

of severe/hospitalized cases
ϵ : scaling factor used to differentiate the infectivity

of young and elderly mild/asymptomatic cases
δ1 : disease induced death rate for hospitalized young individuals
δ2 : disease induced death rate for hospitalized old individuals
η1 : hospitalization rate for young individuals
η2 : hospitalization rate for old individuals
α1 : recovery rate of asymptomatic young individuals
α3 : recovery rate of asymptomatic old individuals
α2 : recovery rate of hospitalized young individuals
α4 : recovery rate of asymptomatic old individuals
a : Fraction of exposed population developing mild/asymptomatic disease
(1− a) : Fraction of exposed population developing severe/hospitalized disease
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1.2 Existence of equilibrium points and the basic reproduction 127

number (R0) 128

While the disease-free equilibrium of the system is given by 129

E0 = (S1
0, E1

0, A1
0, H1

0, S2
0, E2

0, A2
0, H2

0, R0, D0) = (N0
1 , 0, 0, 0, 0, N

0
2 , 0, 0, 0, 0), the 130

basic reproduction number R0 can be found by using the next generation matrix 131

method [40], and is given by: 132

R0 = βS0
1

{
(1− a)

(δ1 + α2)
+

ϕa

α1

}
+ βS0

2

{
(1− a)

(δ2 + α4)
+

ϕϵa

α3

}
The quantity R1 = βS0

1

{
(1− a)

(δ1 + α2)
+

ϕa

α1

}
is defined for the young group population 133

and the quantity R2 = βS0
2

{
(1− a)

(δ2 + α4)
+

ϕϵa

α3

}
is defined for the old group population. 134

The quantity R0 = R1 +R2 is the average number of secondary cases produced in a 135

completely susceptible population by an index case, during the infectious period. 136

The calculation of the basic reproduction number R0 is shown in the Supporting 137

Information. We can summarize our findings in the following theorems. 138

Theorem 1.1 If R0 < 1, the disease-free equilibrium E0 = (N0
1 , 0, 0, 0, N

0
2 , 0, 0, 0, 0, 0) 139

of the system (1) is locally asymptotically stable, and if R0 > 1, the disease-free 140

equilibrium E0 is unstable. 141

Next, we state globally asymptotically stability of disease-free equilibrium. 142

Theorem 1.2 If R0 < 1, the disease-free equilibrium E0 = (N0
1 , 0, 0, 0, N

0
2 , 0, 0, 0, 0, 0) 143

of the system (1) is globally asymptotically stable whenever eigenvalue of the matrix 144

F − V are having negative real parts, and if R0 > 1, the disease-free equilibrium E0 is 145

unstable [48]. 146

The proof of the global stability can be found in the Supporting Information. 147

1.3 The stochastic model 148

As all natural systems are prone to stochastic fluctuations, we extended our 149

deterministic model, see Equation System 1, to the corresponding stochastic model. 150

The derivation of the stochastic model and its analysis are important when populations 151

are small, and hence with the dynamics being severely affected by small changes in the 152

parameter values. Thus, for the initial phase of the COVID-19 outbreak, the stochastic 153

model setup is the most appropriate modeling approach to be used for a local 154

epidemiological evaluation. 155

The derivation of a stochastic differential equation (SDE) model is a diffusion 156

approximation from the underlying state discrete Markov process [17,41–45]. Let 157

X(t) = (X1(t), X2(t), X3(t), X4(t), X5(t), X6(t), X7(t), X8(t), X9(t), X10(t))
T

be a continuous random variable for

[S1(t), E1(t), A1(t), H1(t), S2(t), E2(t), A2(t), H2(t), R(t), D(t)]T ,

where T denotes transpose of the matrix. Further, let 158

∆X = X(t+∆t)−X(t) = (∆X1,∆X2,∆X3,∆X4 . . .)
T denotes the random vector for 159

the change in random variables during time interval ∆t. Here, we write the transition 160

maps which define all possible changes between disease states in the SDE model. State 161
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Table 2. Possible changes of states and their probabilities.
Possible state change Probability of state change

(∆X)1 = (−1, 1, 0, 0, 0, 0, 0, 0, 0, 0)T P1 = βX1[ϕ(X3 + ϵX7) + (X4 + X8)]∆t + O(∆t)
Change when young susceptible meet infected

individuals and move to the young exposed class

(∆X)2 = (0,−1, 1, 0, 0, 0, 0, 0, 0, 0)T P2 = aη1X2∆t + O(∆t)
Change when fraction of young exposed become infectious

and move to the young asymptomatic infected class

(∆X)3 = (0,−1, 0, 1, 0, 0, 0, 0, 0, 0)T P3 = (1 − a)η1X2∆t + O(∆t)
Change when fraction of young exposed become infectious

and move to the young hospitalized class

(∆X)4 = (0, 0,−1, 0, 0, 0, 0, 0, 1, 0)T P4 = α1X3∆t + O(∆t)
Change when young asymptomatic infected
recovers and move to the recovered class

(∆X)5 = (0, 0, 0,−1, 0, 0, 0, 0, 0, 1)T P5 = δ1X4∆t + O(∆t)
Change when young hospitalized die and move

to the deceased class

(∆X)6 = (0, 0, 0,−1, 0, 0, 0, 0, 1, 0)T P6 = α2X4∆t + O(∆t)
Change when young hospitalized individuals

recover and move the recovered class

(∆X)7 = (0, 0, 0, 0,−1, 1, 0, 0, 0, 0)T P7 = βX1[ϕ(X3 + ϵX7) + (X4 + X8)]∆t + O(∆t)
Change when old susceptible meet infected

individual and move to the old exposed class

(∆X)8 = (0, 0, 0, 0, 0,−1, 1, 0, 0, 0)T P8 = aη2X6∆t + O(∆t)
Change when fraction of old exposed become infectious

and move to the old asymptomatic infected class

(∆X)9 = (0, 0, 0, 0, 0,−1, 0, 1, 0, 0)T P9 = (1 − a)η2X6∆t + O(∆t)
Change when fraction of old exposed become infectious

and move to the old hospitalized class

(∆X)10 = (0, 0, 0, 0, 0, 0,−1, 0, 1, 0)T P10 = α3X7∆t + O(∆t)
Change when old asymptomatic infected
recovers and move to the recovered class

(∆X)11 = (0, 0, 0, 0, 0, 0, 0,−1, 0, 1)T P11 = δ2X8∆t + O(∆t)
Change when old hospitalized die and move

to the deceased class

(∆X)12 = (0, 0, 0, 0, 0, 0, 0,−1, 1, 0)T P12 = α4X8∆t + O(∆t)
Change when old hospitalized individuals
recover and move to the recovered class

(∆X)13 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T P13 = 1 −
∑12

i=1 ∆t + O(∆t)

No change

changes and their probabilities are presented in Table 2, followed by the full SDE 162

system 2. 163

dS1 = (−βS1[ϕ{A1 + ϵA2}+ (H1 +H2)])dt−
√
βS1[ϕ{A1 + ϵA2}+ (H1 +H2)]dW1,

dE1 = [βS1[ϕ{A1 + ϵA2}+ (H1 +H2)]− aη1E1 − (1− a)η1E1]dt

+
√
βS1[ϕ{A1 + ϵA2}+ (H1 +H2)dW1 −

√
aη1E1dW2 −

√
(1− a)η1E1dW3

dA1 = [aη1E1 − α1A1]dt+
√
aη1E1dW2 −

√
α1A1dW4

dH1 = [(1− a)η1E1 − δ1H1 − α2H1]dt+
√
(1− a)η1E1dW3 −

√
δ1H1dW5 −

√
α2H1dW6

dS2 = (−βS2[ϕ{A1 + ϵA2}+ (H1 +H2)])dt−
√
βS2[ϕ{A1 + ϵA2}+ (H1 +H2)]dW7,

dE2 = [βS2[ϕ{A1 + ϵA2}+ (H1 +H2)]− aη2E2 − (1− a)η2E2]dt

+
√
βS2[ϕ{A1 + ϵA2}+ (H1 +H2)dW7 −

√
aη2E2dW8 −

√
(1− a)η2E2dW9

dA2 = [aη2E2 − α3A2]dt+
√
aη2E2dW8 −

√
α3A2dW10 (2)

dH2 = [(1− a)η2E2 − δ2H2 − α4H4]dt+
√
(1− a)η2E2dW9 −

√
δ2H2dW11

−
√
α4H2dW12

dR = [α1A1 + α2H1 + α3A2 + α4H2]dt+
√
α1A1dW4 +

√
α2H1dW6 +

√
α3A2dW10

+
√

α4H2dW12

dD = [δ1H1 + δ2H2]dt+
√

δ1H1dW5 +
√
δ2H2dW11

The detailed derivation of the stochastic model can be found in the Supporting 164

Information of this manuscript. 165
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2 Data analysis and parameter estimation 166

2.1 Epidemiological data 167

Epidemiological data used in this study are provided by the Basque Health Department 168

and the Basque Health Service (Osakidetza), continually collected with specific 169

inclusion. 170

By March 4, 2022, around 600,000 cases were confirmed, with 32087 hospital 171

admissions and 8788 deaths in the Basque Country. For the proposed model, the age 172

stratification was decided after a careful data inspection and data fitting, followed by 173

the parameter estimation. 174

We use the epidemiological data referring to the cumulative incidences of confirmed 175

positive cases, hospitalizations, including ICU admissions, and deceased cases 176

distributed by age groups available for the initial phase of the COVID-19 in the Basque 177

Country, from February 15 to to March 25, 2020, as shown in Table 3. 178

Note that during this period, testing capacity was limited and therefore the positive 179

detected cases were restricted to symptomatic individuals and eventually to their close 180

contacts during the process tracing and testing strategy. 181

Table 3. Cumulative disease cases by age in the Basque Country

COVID-19 epidemiological data, from February 15 to March 25, 2020
Raw Normalized by 105 people

age
classes

positive
cases

hospital
admis-
sions

deceased
cases

positive
cases

hospital
admis-
sions

deceased
cases

0-9 19 3 0 10 2 0
10-19 34 5 0 17 3 0
20-29 188 34 1 97 18 1
30-39 388 118 2 146 45 1
40-49 600 255 4 168 71 1
50-59 796 393 6 230 118 2
60-69 714 518 20 263 191 8
70-79 638 622 44 316 308 22
80+ 680 523 146 432 332 93

2.2 Model calibration method 182

Using MATLAB software, parameter estimation was performed using nonlinear least
square method [46]. In detail, we search for the set of parameters Θ̂ = (θ̂1, θ̂2, θ̂3 . . . θ̂n)
that minimizes the sum of squared differences between the observed data
yti = (yt1 , yt2 . . . ytn) and the corresponding model solution denoted by (f(ti,Θ)

Θ̂ = argmin

n∑
i=1

(f(ti,Θ)− yti)
2.

The Root Mean Square Error (RMSE) values for the deterministic and stochastic
models are calculate using the following formula,

RMSE =

√√√√ 1

n

n∑
i=1

(f(ti,Θ)− yti)
2,
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where ti are the time points at which the time series data are observed, and n is the 183

number of data points available for parameter inference. Hence, the model solution 184

f(ti,Θ) yields the best-fit to the time series data yti . 185

2.3 Raw data and model fitting 186

These raw data distribution by age groups are shown in Fig. 2.
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Fig 2. From February 15 to March 25, 2020, raw data distribution for (a) total positive
cases, (b) Hospital admission including ICU cases and (c) deceased cases.

187

During the initial phase of the pandemic, a strong correlation of positive cases and 188

severe disease leading to hospitalizations is observed, see y-axis of Fig.2 a) and Fig.2b). 189

Increased age appears to be a strong risk factor for developing severe illness with 190

COVID-19 infections, however, by looking at the raw data referring to the hospital 191

admissions, this consideration is not very clear, with similar high hospitalization rates 192

for individuals younger than 50 years of age and individuals older than 70 years of age. 193

Nevertheless, when looking at the deceased cases, it is indeed observed that older adults 194

have higher risk of severe outcomes. With potential underlying health conditions [3], 195

most of deaths occurred in those older than 70 year of age, see Fig.2c). 196

Aiming to understand the role of population age heterogeneity on disease 197

transmission and severe outcomes in the absence of vaccines and other 198

non-pharmaceutical interventions, we consider the information obtained from the raw 199

hospitalization data for the initial phase of the pandemic. While the young group 200

includes individuals between 0-39 years of age, the old group considers the remaining 201
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individuals in the population older than 40 years of age. Models are calibrated with the 202

data and the parameters reflecting the differences in disease transmission by age group 203

are estimated. 204
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Fig 3. On the left hand side, the deterministic model curve (blue line) and on the right
hand side, the stochastic model realizations (in blue), fitting the cumulative empirical
data referring to hospital admissions (red dots). In (a) and in (b) data matching with
model simulations for the young (0-39 years of age) age group. In (c) and (d) data
matching with model simulations for the old (40 years and older) age group.

The available data referring to cumulative hospital admission cases, for the young
and the old age groups, are matched with both models, deterministic and stochastic.
Fig.3 shows the models fitting to the empirical raw data. In this data matching
scenario, the RMSE values for the deterministic and stochastic models are 0.55 and 0.47
respectively, indicating that the stochastic modeling approach explains better the
existing data. The scaling factor parameter used to differentiate the infectivity of
severe/hospitalized cases ϕ, and scaling factor parameter used to differentiate the
infectivity of young and elderly mild/asymptomatic cases ϵ, were estimated to be

ϕ = 1.2, ϵ = 0.25

for the young group, and
ϕ = 1.55, ϵ = 0.4

for the old group. The other parameter values are fixed as suggested in [17]. Referring 205

to the raw data, the used parameter values for the data fitting are listed in Table 4. 206
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2.4 Normalized data and model fitting 207

The normalized raw data relative to the population size for each age class in the Basque 208

Country is shown Table 3, with its visual age distribution shown in Fig. 4. 209

0-9
10-19

20-29
30-39

40-49
50-59

60-69
70-79

80+

Age Group

0

100

200

300

400

500

600

700

800

N
o

rm
a

li
z
e

d
 t

o
ta

l 
p

o
s
it
iv

e
 c

a
s
e

s

(a) (b)

0-9
10-19

20-29
30-39

40-49
50-59

60-69
70-79

80+

Age Group

0

100

200

300

400

500

600

700

N
o

rm
a

li
z
e

d
 h

o
s
p

it
a

l 
a

d
m

is
s
io

n
 c

a
s
e

s

(c) (d)

0-9
10-19

20-29
30-39

40-49
50-59

60-69
70-79

80+

Age Group

0

50

100

150

N
o

rm
a

li
z
e

d
 d

e
c
e

a
s
e

d
 c

a
s
e

s

(e) (f)

Fig 4. From February 15 to March 25, 2020, normalized data distribution by age group.
The data is presented as confirmed cases per 100000 people. In (a-b) total positive
cases, (c-d) hospitalized cases and (e-f) deceased cases.

Similarly to what was observed with the raw data, positive cases are increasing with 210

age. The large majority of the deceased cases have been reported for the 80 years and 211
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older population group, confirming the strong correlation of severe disease outcome and 212

age. Nevertheless, the normalization of the raw data shows clearer an increase of 213

hospitalization rates for older age classes, allowing us to modify our modeling age 214

stratification definition for young and old groups. 215

We summarize the distribution of disease cases using box plots to represent the 216

deviation in the reported cases by age, see Fig. 5, with the median being the measure of 217

central tendency of the underlying distribution of the data as shown on Table 3. 218
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Fig 5. Box plots for (a) total positive cases, (b) hospitalized cases and (c) deceased
cases. Horizontal lines denote lower quartile, median and upper quartile, with dots
showing outliers.

Fig. 5 a) shows similar median values for individuals of 30 years and older, 219

suggesting that they are more likely to develop symptoms than individuals at younger 220

ages. In respect to the hospitalizations, see Fig. 5 b), the median values are similar for 221

the individuals older than 50 years of age, suggesting that infections within these age 222

groups are likely to be more severe requiring hospitalizations than for the younger ages, 223

with individuals older than 80 years of age more likely to die from COVID-19 infection 224

than any other age class, see Fig. 5 c). For these data, the age distribution assumption 225

is now modified, considering individuals between 0-69 years of age as part of the young 226
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group and individuals older than 70 years of age as part of the old age group. 227

The cumulative empirical data for both age groups are matched with the 228

deterministic system 1 and stochastic system 2 model simulations, see Fig.6. 229
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Fig 6. On the left hand side, the deterministic model curve (blue line) and on the right
hand side, the stochastic model realizations (in blue), fitting the cumulative empirical
data (red dots). In (a-b) the hospitalizations for the young group (0-69 years), in (c-d)
the cumulative hospitalizations for the old group (70 years and older) and in (e-f)
overall deceased cases.

The estimated values for the scaling factors used to differentiate the infectivity
within the population are slightly smaller than the values obtained with the raw data.
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With
ϕ = 1.5, ϵ = 0.3

for the young population, and
ϕ = 1.3, ϵ = 0.2

for the old population, the disease induced death rate for hospitalized young and old 230

groups, δi, are also estimated. Referring to the normalized data, the model parameters 231

used for fitting the data are shown in Table 4. This parameter set will be used in the 232

further sections of this manuscript. 233

Table 4. Parameters values used for model calibration

Parameter Normalized data values (fitting) Raw data values (fitting) Ref.

β : 0.15 0.15 [17]
ϕ (young) : 1.5 [1-2] 1.2 [1-2] fitted
ϵ (young) : 0.3 [0-1] 0.25 [0-1] fitted
ϕ (old) : 1.3 [1-2] 1.55 [1-2] fitted
ϵ (old) : 0.2 [0-1] 0.4 [0-1] fitted
δ1 : 0.003 [0.001-0.004] 0.0012 [0.001-0.004] fitted
δ2 : 0.04 [0.02-0.05] 0.025 [0.02-0.05] fitted
η1 : 0.035 [0.0-0.5] 0.035 [0.0-0.5] [17]
η2 : 0.03 [0.0-0.05] 0.03 [0.0-0.05] [17]
α1 : 0.02 [0.0-0.09] 0.02 [0.0-0.09] [17]
α3 : 0.05 [0.0-0.09] 0.05 [0.0-0.09] [17]
α2 : 0.01 [0.0-0.09] 0.01 [0.0-0.09] [17]
α4 : 0.03 [0.0-0.09] 0.03 [0.0-0.09] [17]
a : 0.02 0.02 [17]

The RMSE values were calculated to be 0.35 and 0.2 for the deterministic and 234

stochastic models respectively. With lower values than the values obtained by fitting 235

the raw data, again, the stochastic model has a better fitting (with a lower RMSE value 236

than the deterministic model), confirming that the stochastic approach explains better 237

the existing normalized data. 238

3 Results 239

3.1 Sensitivity analysis 240

A detailed sensitivity analysis is performed to determine how the parameter values 241

variation will affect the reproduction number (R0) of the system. These results are of 242

use to guide public health authorities during a disease outbreak. 243

In order to detect which are the parameters with higher impact on the R0 measure, 244

with effects to increase or to decrease its value and consequently to define which 245

parameters are to be targeted by intervention measures, we use the the normalized 246

forward sensitivity method index of a variable to a parameter [47]. The normalized 247

forward sensitivity index of R0 is defined using partial derivatives, showing the variation 248

of the variable with respect to a given parameter p, as follows 249

γR0
p =

∂R0

∂p

p

R0

. 250
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While the magnitude of the R0 measure increases as the values of β, a, ϕ, and ϵ 251

parameters increase (positive indices), an inverse relation with the R0 value is observed 252

for the δ1, α1, α2, α3, α4, and δ2 parameters, with negative indices, i.e., as the 253

parameter values increase, the magnitude of R0 decreases. The sensitivity index of R0 254

for the parameter β is 1, meaning that R0 increases or decreases with the same 255

percentage as the parameter β varies, see Fig. 7. 256
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Fig 7. Normalized forward sensitivity indices of R0.

Fig 8. Spline regression method to quantify the effect of the model parameter variation
on R0 behaviour.

Complementary to the forward sensitivity method index analysis above, we use the 257

spline regression method to fit 10000 points for a range of each parameter value. The 258

quantification of the parameter variation effect on the R0 value is shown in Fig. 8, 259

confirming that the increase of the transmission rate β, the fraction of asymptomatic 260

individuals a, and the scaling factors differentiating the disease transmission withing the 261

population, ϕ and ϵ, values affects significantly the behaviour of the R0 measure. 262

July 14, 2022 15/25



3.2 Model simulations: an exploratory analysis 263

In this section, we explore different parameter combinations for the disease infectivity 264

factors ϕ and ϵ and for the disease induced mortality rate δ that are able to explain the 265

exponential phase of the COVID-19 epidemic in the Basque Country. For both, the 266

deterministic and stochastic models, the assumed biological parameters for COVID-19 267

dynamics were estimated for the normalized data, see Table 4. While for the 268

deterministic model simulations we have used the function ode45 in MATLAB, for the 269

stochastic model simulations we have obtained 100 realizations using the 270

Euler-Maruyama approach. 271
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Fig 9. COVID-19 epidemiological data in the Basque Country. In (a) the cumulative
hospital admissions and deceased cases. In (b) incidences for disease cases referring to
hospitalizations including ICU and deaths.

As an exploratory exercise to understand the impact of the key parameters on 272
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disease severity dynamics during the initial phase of the pandemics, numerical 273

simulations are performed to describe the available data in the Basque Country, from 274

February 15 to March 25, 2020, see Fig. 10a). This is a dynamic work. While the 275

present analysis focus on the introductory phase of the pathogen in the Basque Country, 276

the evaluation of the effect of the imposed control measures will be carried out later. 277

Epidemiological data used in this study are provided by the Basque Health 278

Department and the Basque Health Service (Osakidetza), continually collected with 279

specific inclusion and exclusion criteria. We use the following incidence and cumulative 280

data for RT-PCR (reverse transcriptase-polymerase chain reaction), see Fig. 9. While 281

the incidence data are shown in Fig. 9 a), the cumulative data used here refer to the 282

overall hospital admissions, including the ICU cases, are shown in orange and the 283

decease cases in black in Fig. 9 b). 284

Within the timeline of first wave of the pandemic in the Basque Country, the black 285

line shows the date of the partial lockdown implementation, followed by the full 286

lockdown, see red line. The light blue line shows the last data point used in this study, 287

March 25, 2020, ten days after the partial lockdown was implemented, when the 288

exponential growth of disease cases decelerates into a growth close to zero towards a 289

linear phase [19]. 290

To investigate the possible dynamics of hospitalizations for the young (H1) and for 291

the old (H2) groups, as well as the dynamics for the overall deceased cases when no 292

control measure would have been implemented in the Basque Country, a 100 days 293

simulation time is shown, from February 15 to May 25, 2020, covering the 294

post-lockdown period. The effects of different parameter combinations of the scaling 295

factors of disease transmission and the disease induced mortality rates are shown in Fig. 296

10. For the hospital admission cases dynamics, we evaluate the effect of the scaling 297

factors affecting the disease transmission individually. By fixing ϕ = 1.5 as estimated 298

from the normalized data, we vary the value of the ϵ parameter, see Fig. 10 a) and b), 299

while in Fig. 10 c and d) we fixed ϵ = 1.3, varying the value of the ϕ parameter. The 300

same experiment was performed for the deceased cases, see Fig. 10 e), varying the 301

combination of the disease induced mortality δ, always assuming δ1 < δ2. 302

Without any control measure, the epidemic would follow its course with a massive 303

number of hospitalizations and deaths within the first 100 days of the pandemic. While 304

a qualitatively similar dynamical behavior is observed when varying those key 305

parameters, with an increase on the number of disease cases as the parameter value 306

increases, the scaling factor ϕ, differentiating the transmission between the 307

mild/asymptomatic and the severe/hospitalized individuals, appears to affect 308

significantly the older population, eventually reaching its maximum towards stationary, 309

much faster than the dynamics in the young population. 310

This effect is also observed for the overall infection cases (A1 +H1 +A2 +H2), and 311

for overall hospitalizations ((H1 +H2)), see Fig.11. Using both modeling approaches, 312

deterministic and stochastic, our results have shown that disease cases would have 313

eventually reached stationarity after 100 days if no control measure was implemented. 314
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Fig 10. Deterministic model simulations.
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Fig 11. By varying the infectivity scaling factors ϕ and ϵ, the dynamics of the overall
disease cases (A1 +H1 +A2 +H2), and the dynamics of the overall hospitalization
(H1 +H2) are plotted for 100 and 300 days respectively, using the following parameter
set: β = 0.15, δ1 = 0.003, δ2 = 0.04, η1 = 0.035, η2 = 0.03, α1 = 0.02, α2 = 0.01, α3 =
0.05, α4 = 0.03 and a = 0.02. In (a) and (c) the deterministic model simulations and in
(b) and (d) 100 stochastic realizations.
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Discussion 315

Declared a pandemic by the World Health Organization (WHO) in March 2020 [2], the 316

collective behavior of societies has been significantly affected by the extreme measures 317

implemented to control disease transmission. As the COVID-19 pandemic progressed, 318

research on mathematical modeling became imperative and very influential to 319

understand the epidemiological dynamics of disease spreading and control under 320

different scenarios. The hypothesis of a new pathogen able to cause a very severe 321

disease with an extremely high transmission rate were gradually adjusted overtime. It is 322

now accepted that COVID-19 disease severity and death occur according to a hierarchy 323

of risks, with age and pre-existing health conditions enhancing risks of disease severity. 324

In this paper, a mathematical model framework for COVID-19 transmission is 325

proposed. Applied to the first wave of COVID-19 epidemic in Basque country, Spain, 326

we stratify the population into young and old groups, after a detailed data analysis for 327

the available epidemiological data referring to confirmed positive cases, hospitalization 328

and deceased cases. The deterministic and the stochastic models are analyzed and 329

results are compared. 330

For the deterministic approach, we calculate the disease-free equilibrium and the 331

basic reproduction number (R0). We show that disease-free equilibrium is global 332

asymptotically stable. A detailed sensitivity analysis is performed to identify the key 333

parameters influencing the basic reproduction number, and hence, regulating the 334

transmission dynamics of COVID-19. 335

Further, the deterministic model was extended to its stochastic counterpart. The 336

stochastic differential equation (SDE) model is derived from a diffusion process. 337

Simulations were obtained by the Euler-Maruyama method. Model derivation is shown 338

in the Supporting Information. 339

Both models were able to fit well the empirical data using similar parameter value 340

range, with the stochastic model always presenting a better result. A detailed sensitivity 341

analysis was performed allowing us to identify the key parameters affecting the disease 342

dynamics. 343

An exploratory analysis to understand the impact of those key parameters on disease 344

severity dynamics during the initial phase of the pandemics, from February 15 to March 345

25, 2020, was performed. Numerical simulations have demonstrated that differences in 346

infectivity from severe/hospitalized cases and mild/asymptomatic cases are the most 347

important factors influencing the disease spreading in the population and without any 348

control measure, the epidemic would have followed its course with a massive number of 349

hospitalizations and deaths within the first 100 days of the pandemic. 350

These results are of use to guide public health authorities on disease control. The 351

sensitivity analysis results shown in Fig. 7 and Fig. 8 give insights on how to control the 352

disease outbreak, suggesting possible ways of action for an effective containment of the 353

disease transmission towards its elimination by limiting the increase of parameters with 354

positive indices. On the other hand, by increasing the parameters with positive indices, 355

such as providing treatment for a fast recovery or decreasing mortality, for example. 356

The numerical simulations have shown that without the lockdown, disease cases 357

would increase continuously with severe cases eventually reaching its maximum numbers 358

towards the herd immunity scenario, i.e, when a large portion of the population become 359

immune to the disease. This behaviour was observed to affect the old group population 360

much faster than the young population. Minimizing the scaling transmission factors, ϕ 361

and ϵ, via social distancing or vaccination, for example, would significantly reduce the 362

disease burden in the population. Therefore, in terms of policy implications, our 363

findings support the vaccination strategy prioritising the most vulnerable individuals to 364

reduce hospitalization and deaths, as well as the non-pharmaceutical intervention 365

measures, e.g social distancing and use of masks, that are still advised by the public 366
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health authorities, to reduce disease transmission. 367

This is a dynamic work. While the present analysis has focused on the initial phase 368

of the COVID-19 epidemic in the Basque Country, it is important to mention that the 369

evaluation of the effect of the imposed lockdown and other control measures is ongoing. 370

As continuation of this work, the models are under refinement, using this framework as 371

baseline to describe the progression of COVID-19 epidemics in the Basque Country and 372

to understand the impact of lockdown implementation and the increased of testing 373

capacity over time. As our model is able to describe the available data, see Fig. 12, we 374

will be also able to measure the impact of mild/asymptomatic cases on disease 375

spreading and control, including non-sterilizing vaccine performance [21]. 376
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Fig 12. The following parameter set: ϕ = 1.4, ϵ = 0.25, δ1 = 0.003, δ2 = 0.04, η1 =
0.035, η2 = 0.03, α1 = 0.02, α2 = 0.01, α3 = 0.05, α4 = 0.03 and a = 0.02, the
deterministic dynamics for the overall hospitalizations (H1 +H2) is shown with and
without control. Cumulative data on overall hospitalizations are shown in blue. The
simulation plotted as red line includes a control function
(β(t) = β0σ−(x(t)) + β1σ+(x(t)), with a standard sigmoid function σ(x) = 1

1+e−x ,
see [17]) which is able to describe the empirical data, while the green line shows the
solution without any control. The black line shows the last data point used in this study,
March 25, 2020, ten days after the partial lockdown was implemented. By that date,
the exponential growth of disease cases decelerates into a growth close to zero towards a
linear phase. The full lockdown started on March 31, 2020 (black dashed line).
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Supporting information 377

Supporting information includes Computation of the basic reproduction number (R0) 378

(S1 Appendix), proof of theorem 1.2 (S2 Appendix), Stochastic Process of the SIRS 379

Model (S3 Appendix), Stochastic Process of the proposed Deterministic Model 1 (S4 380

Appendix). 381
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26. Institut national d’études démographiques (INED). The Demography of
COVID-19 Deaths: data and metadata by country. Retrieved from
https://dc-covid.site.ined.fr/en/data/

27. Srivastav AK, Ghosh M, Li X-Z, Cai L. Modeling and Optimal Control Analysis
of COVID-19: Case Studies from Italy and Spain. Math Meth Appl Sci.
2021;1–14, doi:10.1002/mma.7344

28. Chu J, A statistical analysis of the novel coronavirus (COVID-19) in Italy and
Spain,2021. PLoS ONE 16(3): e0249037. doi:10.1371/journal.pone.0249037

29. Srivastav AK, Tiwari PK, Srivastava PK, Ghosh M, Kang Y. A mathematical
model for the impacts of face mask, hospitalization and quarantine on the
dynamics of COVID-19 in India: deterministic vs. stochastic. Mathematical
Biosciences and Engineering, 2021, 18(1): 182-213. doi:10.3934/mbe.2021010

30. Olabode D, Culp J, Fisher A, Tower A, Hull-Nye D, Wang X. Deterministic and
stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China.
Mathematical Biosciences and Engineering, 2021, 18(1): 950-967.
doi:10.3934/mbe.2021050

31. Youngsuk Ko, Victoria May P. Mendoza, Yubin Seo, Jacob Lee, Yeonju Kim,
Donghyok Kwon, Eunok Jung, Quantifying the effects of non-pharmaceutical and
pharmaceutical interventions against COVID-19 epidemic in the Republic of
Korea: Mathematical model-based approach considering age groups and the
Delta variant, medRxiv,doi:10.1101/2021.11.01.21265729

32. Verrelli, C.M.; Della Rossa, F. Two-Age-Structured COVID-1 Epidemic
Model:Estimation of Virulence Parameters to Interpret Effects of National and
Regional Feedback Interventions and Vaccination. Mathematics 2021, 9,
2414.doi:10.3390/math9192414

33. Balabdaoui, F., Mohr, D. Age-stratified discrete compartment model of the
COVID-19 epidemic with application to Switzerland. Sci Rep 10, 21306 (2020).
doi:10.1038/s41598-020-77420-4

34. Bongolan VP, Minoza JMA, de Castro R, Sevilleja JE. Age-Stratified Infection
Probabilities Combined With a Quarantine-Modified Model for COVID-19 Needs
Assessments: Model Development Study. J Med Internet Res. 2021 May
31;23(5):e19544. doi: 10.2196/19544.

35. Srivastav AK, Stollenwerk, N., Aguiar, M., Deterministic and Stochastic
Dynamics of COVID-19: The Case Study of Italy and Spain, Computational and
Mathematical Methods Volume 2022, Article ID 5780719, 16 pages,
doi:10.1155/2022/5780719

36. Yang Liu,a Li-Meng Yan,f Lagen Wan et al. Viral dynamics in mild and severe
cases of COVID-19. Lancet Infect Dis. 2020 Jun; 20(6): 656–657.
doi:10.1016/S1473-3099(20)30232-2

37. Fajnzylber, J., Regan, J., Coxen, K. et al. SARS-CoV-2 viral load is associated
with increased disease severity and mortality. Nat Commun 11, 5493 (2020).
doi:10.1038/s41467-020-19057-5

July 14, 2022 24/25

https://dc-covid.site.ined.fr/en/data/spain/
https://dc-covid.site.ined.fr/en/data/


38. Daniel P. Oran, Eric J. Topol. (2020). Prevalence of Asymptomatic SARS-CoV-2
Infection, Annals of Internal Medicine, M20-3012. doi:10.7326/M20-3012

39. Johansson M, Quandelacy T, Kada S, et al. (2021). SARS-CoV-2 Trans- mission
From People Without COVID-19 Symptoms, JAMA Netw Open, 4(1):e2035057.
doi: 10.1001/jamanetworkopen.2020.35057

40. Driessche PV, Watmough J, Reproduction numbers and subthreshold endemic
equilibria for compartmental models of disease transmission, Math Biosci, 2008,
180(1):29–48. doi:10.1016/S0025-5564(02)00108-6.

41. Stollenwerk, N., Jansen, V.: Population Biology and Criticality: From Critical
Birth–Death Processes to Self-Organized Criticality in Mutation Pathogen
Systems. World Scientific, London (2011),doi:10.1142/p645

42. Allen, E.J., Allen L.J.S, Arciniega, A., Greenwood, P. Construction of equivalent
stochastic differential equation models. Stochastic Analysis and Application 26,
274-297 (2008),doi:10.1080/07362990701857129.

43. van Kampen, N. G. Stochastic Processes in Physics and Chemistry
(North-Holland, Amsterdam, 1992).

44. Gardiner, C. W. Handbook of Stochastic Methods (Springer, New York, 1985).

45. Yuan Y, Allen LJS, Stochastic models for virus and immune system dynamics,
Math. Biosci. 234(2) (2011) 84–94, doi:10.1016/j.mbs.2011.08.007

46. Li M.Y. (2018) Parameter Estimation and Nonlinear Least-Squares Methods. In:
An Introduction to Mathematical Modeling of Infectious Diseases. Mathematics
of Planet Earth, vol 2. Springer, Cham. doi:10.1007/978-3-319-72122-44

47. Ngoteya FN. Gyekye YN. Sensitivity Analysis of Parameters in a Competition
249 Model. Appl. Comput. Math. (2015) 4(5):363–368,
doi:10.11648/j.acm.20150405.15

48. Li MY, Muldowney JS (1995) Global stability for the SEIR model in
epidemiology. Math Biosci 125:155–164,doi:10.1016/0025-5564(95)92756-5

July 14, 2022 25/25


	Materials and methods
	The deterministic model
	Existence of equilibrium points and the basic reproduction number (R0)
	 The stochastic model

	Data analysis and parameter estimation
	Epidemiological data
	Model calibration method
	Raw data and model fitting
	Normalized data and model fitting

	Results
	Sensitivity analysis
	Model simulations: an exploratory analysis


