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We investigate the stochastic susceptible-infected-recovered (SIR) model of infectious disease dy-
namics in the Fock space approach. In contrast to conventional SIR models based on ordinary dif-
ferential equations for the subpopulation sizes of S, I, and R individuals, the stochastic SIR model is
driven by a master equation governing the transition probabilities among the system’s states defined
by SIR occupation numbers. In the Fock space approach the master equation is recast in the form of
a real-valued Schrödinger-type equation with a second quantization Hamiltonian-like operator de-
scribing the infection and recovery processes. We find exact analytic expressions for the Hamiltonian
eigenvalues for any population size N . We present small and large-N results for the average num-
bers of SIR individuals and basic reproduction number. For small N we also obtain the probability
distributions of SIR states, epidemic sizes and durations, which cannot be found from deterministic
SIR models. Our Fock space approach to stochastic SIR models introduces a powerful set of tools to
calculate central quantities of epidemic processes, especially for relatively small populations where
statistical fluctuations not captured by conventional deterministic SIR models play a crucial role.

I. INTRODUCTION

The dynamics of infectious diseases in a population
has been long addressed successfully through susceptible-
infected-recovered (SIR) and related models [1–10],
since the seminal work by Kermack and McKendrick
in 1927 [1]. SIR models belong to a class of compart-
mental models in which the population is generally sub-
divided into three categories of individuals: those who
are susceptible to catch the disease (S), those who are
infected and can spread the disease to susceptible individ-
uals (I), and those who have become immune (recovered)
or died (removed) and can no longer spread or catch the
disease (R).

From a historical perspective, Kermack and McK-
endrick introduced in [1] the first version of a SIR model
based on a set of coupled ordinary differential equations
that drive the dynamics of the subpopulations of suscep-
tible, infected, and recovered or dead individuals in an
epidemic. In this early model it was assumed at the in-
dividual level that at any given time each individual is in
one of the three possible states (S, I or R). In a determin-
istic mean-field-type formulation at the population level,
a system of coupled differential equations on the average
subpopulations sizes arises. In addition, the population
size is fixed (no births or deaths by causes other than
the disease itself), the infectious agent has no incubation
time, the duration of infectiousness matches the duration

of being infected, and the population is homogeneous,
with no age, spatial, or social structure. The authors
then compared [1] with relative success the model solu-
tion with data on the number of deaths with time during
the Bombay plague of 1905-1906.

Over essentially the past 100 years the original SIR
model has been substantially improved to address the
time evolution of a significant variety of epidemic pro-
cesses [2–45]. For example, rather than being governed
by a set of ordinary differential equations with each indi-
vidual in a given state at any time as in [1], the underlying
dynamics of stochastic SIR models is driven by a master
equation for the probability distribution of the system’s
states, which evolve in time according to a set of transi-
tion rates among them. In this context, stochastic SIR
models are necessary to describe the non-deterministic
variability of the epidemic size and duration, together
with the probability of disease spread, particularly in
smaller communities. Such features have become highly
relevant in current times, especially concerning the epi-
demic control and role of vaccination and prophylaxis
campaigns [42–45].

The relevant capabilities of resolving epidemic fluctu-
ation dynamics for smaller populations through stochas-
tic SIR models however requires extensive technical and
computational effort compared to the model dynamics
driven by ordinary differential equations of deterministic
SIR models. In particular, while Schutz et al.’s solu-
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tion [46] for SIR interactions on a chain with homoge-
neous initial conditions is a notable exception, typically
analytical solutions for any fluctuation-based phenomena
associated with SIR systems are absent and more com-
plex numerical approaches are required. For the coarser-
grained stochastic differential equation framework, com-
putations typically use Euler-Maruyama [35, 47], implicit
Euler [38, 42], or Milstein [47, 48] methods, while for
models capable of resolving at the level of the individual
one finds numerical techniques based on Gillespie’s algo-
rithm [49, 50] or direct Monte Carlo simulation [18, 22]
(see, also, [51]). However, these computational frame-
works necessitated by the modelling at the resolution of
the individual are not generally amenable to likelihood
maximisation or Bayesian inference. We notice that this
is particularly problematic on confronting such models
with data as parameter inference, hypothesis testing and
model selection then require computationally very de-
manding, likelihood-free methods, such as approximate
Bayesian computation [52].

Hence, our objective is to apply the so-called Fock
space approach [53, 54] to the study of individual-based
stochastic SIR models without the need of stochastic sim-
ulation or Monte Carlo algorithms that prevent the gen-
eral use of likelihood methods when comparing modelling
with data. In particular, this entails that we do not seek
to simulate or solve the associated stochastic differen-
tial or master equations, but instead to utilise the Fock
space method of quantum physics, which relies on tools
inherited from the second quantization formalism com-
bined with symbolic algebra. Within this framework, the
Fock space solution for a population of size N in time t
is obtained in terms of the eigenvalues and eigenvectors
of a Hamiltonian-like operator that drives the stochas-
tic SIR model dynamics. Here we find exact analytical
expressions for the eigenvalues for any N . The Hamilto-
nian eigenvectors are obtained for values of N that are
not excessively large using a symbolic computing soft-
ware. From the sets of eigenvalues and eigenvectors the
dynamics of all important quantities of interest is de-
termined, such as time-dependent probabilities and av-
erage values of the number of susceptible, infected, and
recovered individuals, mean size and duration of the epi-
demic, and basic reproduction number. In particular,
for small N closed-form analytical expressions for these
quantities are feasible.

The Fock space formalism was first proposed [55, 56]
by Schönberg in 1952 (see also [57]) and later rediscov-
ered [53, 54] by Doi in the context of diffusion-controlled
processes in liquid media and chemical reactions. In
this approach the master equation of a set of general
random particles is written in the form of a real-valued
Schrödinger-type equation, with the probability to find
the system in a given state at a certain time playing a
role similar to that of the wave function in quantum me-
chanics. The Hamiltonian-like operator in the Fock space

approach is written in a basis of discrete Fock states as-
sociated with the occupation numbers of the system’s
constituents (for example, the numbers of each type of
molecule in a chemical reaction or particles at each site
of a discrete lattice). The Fock space formalism was later
successfully extended to treat a variety of other stochas-
tic systems, for instance, gene expression [58], absorbing
states in nonequilibrium lattice dynamics [59], general
reaction-diffusion dynamics [60], and spins chains [61].
More recently, our group has applied the Fock space
approach to study chemical enzymes interactions [62],
fermionic diffusion [63], and the random search prob-
lem [64, 65].

A general limitation of the Fock space method con-
cerns the diagonalization via symbolic computation of
large Hamiltonian-like matrices for high numbers of con-
stituents. Nevertheless, even in this case a number of
results can still be obtained without the need of diag-
onalization of the Hamiltonian, as shown in this work.
Further, as discussed above, we also remark that the gain
in addressing the epidemic dynamics problem through
stochastic SIR models is more significant precisely with
small populations, in which statistical fluctuations of cen-
tral quantities — not captured by deterministic SIR mod-
els — play a crucial role.

We notice that recent studies [36, 37] have applied sec-
ond quantization ideas to address disease dynamics in
a population. However, while in [36] a simpler model
(SI, without recovered individuals) is investigated, with
focus on the average sizes of the susceptible and infected
subpopulations through diagrammatic expansion in small
networks, in [37] the second quantization approach is
specifically applied with the aim to find the set of ordi-
nary differential equations for the average subpopulations
in a SIR dynamics. In contrast, in our work these aver-
age values can be also obtained from the eigenvalues and
eigenvectors of the Hamiltonian-like operator combined
with the time evolution of the system’s state vector. In-
deed, here we calculate, for example, the distributions
of subpopulations sizes, epidemic sizes and durations for
populations that are not excessively large, noting these
cannot be found by simply solving the ordinary differen-
tial equations as in [37].

This article is organized as follows. In Section II we
review the general formalism of the Fock space approach.
The method is applied to the stochastic SIR model in Sec-
tion III. General expressions for some relevant quantities
are provided, including the exact Hamiltonian eigenval-
ues as functions of the model parameters (infection and
recovery rates) and population size N . Fock space re-
sults for N = 20, N = 35, and N = 104 are discussed
in Section IV. Lastly, final remarks and conclusions are
left to Section V. We also include Appendices A and B
with details on a novel derivation of the basic reproduc-
tion number for this model and an illustrative example
of the calculation of some closed-form analytical results
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for N = 3, respectively.

II. THE FOCK SPACE APPROACH

We begin by briefly reviewing the general formalism
of the Fock space approach [53, 54]. Consider a system
with N constituents (e.g., molecules undergoing a chem-
ical reaction or individuals in a population) that can be
grouped into k subsets of distinct species. We denote
by Nj(t) the number of constituents of species j at time t,

with j = 1, 2, ..., k, and
∑k
j=1Nj(t) = N .

The species are allowed to interact through one or more
processes labeled i that occur at given rates ri. For deter-
ministic continuum models, one has fractions mij of the
constituents of each species j that generate, via a law of
mass action for every process i, a new set of fractions nij ,
as generally described by

k∑
j=1

mijNj(t)
ri−−−−→

k∑
j=1

nijNj(t). (1)

In turn, these interactions give rise to dynamical systems
of ordinary differential equations, yielding the continuum
model.

In a stochastic dynamic evolution, one typically con-
siders the probability P(N, t) to find the system at the
state N(t) = (N1(t), . . . , Nk(t)) in time t. The associated
master equation reads

∂P(N, t)

∂t
=
∑
N′

[τN′→NP(N′, t)− τN→N′P(N, t)] , (2)

where in the case of a Markovian process, as assumed in
this work, the transition rates τN′→N from state N′ to N
are time independent.

To start exploring the Fock space tools, we consider
that a state of the system can be represented in a Fock
space F obtained by the direct product of the Hilbert
spaces Sj of all species j. That is, F = S1

⊗
. . .
⊗
Sk,

with Sj = {1, . . . , N}. In Dirac notation, |n〉 = |s1 . . . sk〉
represents a pure Fock state, i.e., a Fock state with well-
defined occupation numbers s1 ∈ S1 of constituents of
species j = 1, s2 ∈ S2 of species j = 2, and so on. The
label n indexes the states in some given order and the
set {|n〉} of all pure Fock states provides a basis for the
Fock space F .

By following [53, 54] and rewriting P(N, t) in the new
notation P (n, t), with n = {s1...sk}, the statistical de-
scription of the stochastic system in time t can be char-
acterized by the state vector

|Ψ(t)〉 =
∑
n

P (n, t) |n〉 , (3)

which comprises a linear superposition with each pure
Fock state weighted by the respective time-dependent
probability, so that

∑
n P (n, t) = 1 for any t.

The creation (α†j) and annihilation (αj) operators for
each species j act on the pure Fock states respectively
according to [53, 54]

α†j |n〉= |s1 . . . (sj + 1) . . . sk〉 ,

αj |n〉= sj |s1 . . . (sj − 1) . . . sk〉 ,
(4)

with α†jαj identifying the number operator of the con-
stituents of species j. If we denote the vacuum state
(absence of constituents of any species) by |0〉, then

αj |0〉 = 0 and 〈0|α†j = 0. It is thus straightforward to

verify the commutation rules [αi, α
†
j ] = δij , [αi, αj ] = 0,

and [α†i , α
†
j ] = 0, where δ stands for the Kronecker delta.

The combination of these results leads to the orthogonal-
ity property of the pure Fock states.

By considering Eq. (3), the master equation (2) can be
recast in the form of a real-valued (i~ ≡ 1) Schrödinger-
type equation,

∂ |Ψ(t)〉
∂t

= −H(α†1, α1, . . . , α
†
k, αk) |Ψ(t)〉 , (5)

with the Hamiltonian-like operator H written as a func-
tion of the set {α†j , αj} and dependent on the transition
rates to be consistent with Eq. (2). From Eq. (5) the
state vector dynamics is given by

|Ψ(t)〉 = U(t) |Ψ(0)〉 , (6)

where the time evolution operator is

U(t) = exp
(
−H(α†1, α1, . . . , α

†
k, αk) t

)
, (7)

and |Ψ(0)〉 is the system’s initial state vector, see Eq. (3).
In the stochastic SIR model (see below), we remark that
H in Eq. (5) is an infinitesimal stochastic operator of non-
Hermitian type with null column sum on the Fock space
basis, whereas U in Eq. (7) is a non-unitary stochas-
tic operator with unit column sum. For further details
concerning the use of operators in stochastic dynamics,
see [66–70] and references therein.

After writing H explicitly in terms of the creation and
annihilation operators, and expressing it in a matrix form
on the basis {|n〉} of pure Fock states, the set of tools
from quantum mechanics can be employed in the Fock
space representation to provide the time evolution and
average values of all relevant observables of the stochastic
system, as described in the following.

III. FOCK SPACE APPROACH APPLIED TO
THE STOCHASTIC SIR MODEL

We now apply the Fock space formalism to the stochas-
tic SIR model. As mentioned, the SIR model concerns
an epidemic taking place in a population of N individ-
uals that can be subdivided into k = 3 distinct groups:
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susceptible (S), infected (I), and recovered (R). In anal-
ogy to Eq. (1), the subpopulations interact through the
processes

S + I
α−−−→ 2I,

I
β−−−→ R,

(8)

where the two model parameters α > 0 and β > 0
(in units of t−1) represent, respectively, the infection rate
at which susceptible individuals become infected by the
contact with a previously infected one, and the recov-
ery rate at which infected individuals become recovered
(immune or deceased). In general, the larger β is in com-
parison to α, the shorter the epidemic lasts on average.

In the stochastic SIR model the sizes of the three
subpopulations are determined statistically from a t-
dependent probability distribution driven by a master
equation in the form of Eq. (2). Therefore, the stochastic
SIR model with infection and recovery processes as in (8)
can be properly addressed in a Fock space approach.

We depict the pure Fock states of the stochastic SIR
model in Dirac notation by |n〉 = |s i r〉, with

s, i, r ∈ {0, 1, ..., N} (9)

as the respective numbers of susceptible, infected, and
recovered individuals. A basis of the Fock space,

F = S
⊗
I
⊗
R, (10)

can be thus built by taking into account the set {|s i r〉}
of all kets constrained to the total population size,
s+ i+ r = N , generating Nh = (N+1)(N+2)/2 distinct
possibilities.

Following Eq. (3), a general state vector of the system
is written as

|Ψ(t)〉 =
∑
s,i,r

P (s, i, r, t) |s i r〉 , (11)

with the constraint s+ i+ r = N implied in the summa-
tions above, and

P (s, i, r, t) = 〈s i r|Ψ(t)〉 (12)

denoting the probability of the system occupying the
state with s susceptible, i infected, and r recovered indi-
viduals in time t, so that

∑
s,i,r P (s, i, r, t) = 1 for any t.

Further, from Eq. (4) the creation (s†) and annihilation
(s) operators associated with the number of susceptible
individuals act on the pure Fock states respectively via

s† |n〉= |(s+ 1) i r〉 ,

s |n〉= s |(s− 1) i r〉 ,
(13)

with similar expressions for the operators related to the
infected (i†, i) and recovered (r†, r) subpopulations.

The consistency between the master and Schrödinger-
type equations of the stochastic SIR model driven by
processes (8) yields the Hamiltonian-like operator

H = −α[(i†)2 − s†i†]si− β(r† − i†)i, (14)

with matrix elements on the basis {|n〉 = |s i r〉} of pure
Fock states, hmn = 〈m|H |n〉, given by

hmn = in [α sn( δim ,in δrm ,rn δsm ,sn − δrm ,rn δim ,in+1δsm ,sn−1)

+β δsm ,sn (δim ,in δrm ,rn − δim ,in−1δrm ,rn+1)]. (15)

Above the notation sn means that the state |n〉 comprises
sn susceptible individuals, and so forth. Since Nh is the
number of pure Fock states, we note that the matrix h
has dimension Nh ×Nh.

We next diagonalize the Hamiltonian-like matrix h to
obtain the sets of eigenvalues {λν} and right eigenvectors
{|λν〉} of the stochastic SIR model, with ν = 1, 2, ..., Nh.
The eigenvalues are given by the roots of the characteris-
tic polynomial p(λ) of matrix h, which can be written as

p(λ) = λN+1
N∏
r=1

pr(λ), (16)

with N auxiliary polynomials pr(λ) of degree r, thus im-
plying that p(λ) is actually degree Nh, as expected.

Some of the main results of this work regard the exact
analytical expressions for the polynomials and eigenval-
ues. Indeed, the structure of the matrix elements (15)
of the stochastic SIR model allows to explicitly write the
auxiliary polynomials as

pr=1(λ) = λ− β,
pr=2(λ) = [λ− (α+ β)](λ− 2β), (17)

pr(λ) =

r−1∏
k=0

(λ− λrk), r = 3, ..., N, k = 0, ..., r − 1,

with the eigenvalues expressed in exact form by

λr=1 = β,

λr=2,k=0 = α+ β, λr=2,k=1 = 2β, (18)

λrk = arkα+ brkβ, r = 3, ..., N, k = 0, ..., r − 1,

and the factors

ark = −k2 + (r − 2)k + r − 1,

brk = k + 1.
(19)

We therefore remark that the set of eigenvalues {λν} of
the stochastic SIR model in the Fock space approach can
be readily expressed exactly as functions of the parame-
ters α and β by Eqs. (18)-(19), for any population size N .

For practical purposes here we choose the ordering
ν = 1, 2, ..., Nh of the eigenvalues {λν} from the small-
est to the largest one (see Appendix B for an illustra-
tive example with N = 3 and Nh = 10). One impor-
tant feature from Eqs. (18) and (19) is that all eigen-
values are either null or positive. In fact, the pure Fock
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states |N − j, 0, j〉, with i = 0 infected individuals and
j = 0, 1, ..., N , are eigenvectors of h with null eigenvalue,
since the dynamics (8) ceases when the disease transmis-
sion is no longer possible due to the absence of infectious
cases. We thus write λν = 0 for ν = j+1 = 1, 2, ..., N+1,
and λν > 0 for ν = N + 2, ..., Nh. The remaining eigen-
vectors {|λν〉}, ν = N + 2, ..., Nh, can be in principle de-
termined on the basis {|s i r〉} as functions of α and β
by using a symbolic computing software (in this work we
have used Mathematica).

The epidemic is generally considered to start with
i = i0 infected, r = r0 = 0 recovered, and s = s0 = N−i0
susceptible individuals in t = 0, i.e., the initial state vec-
tor is usually |Ψ(0)〉 = |s0 i0 r0〉 = |N − i0, i0, 0〉. We can
write the initial state vector as well in the form of a linear
superposition of right eigenvectors,

|Ψ(0)〉 =
∑
ν

aν |λν〉 , (20)

with coefficients aν , and by combining Eqs. (6), (7),
and (20) the system’s state vector in time t is expressed as

|Ψ(t)〉 =
∑
ν

aνe
−λνt |λν〉 , (21)

from which all significant quantities associated with the
stochastic SIR model can be determined.

Indeed, by considering Eqs. (12) and (21) all statistical
moments of the distributions of numbers of susceptible,
infected, and recovered individuals can be obtained. For
example, by denoting as 〈S〉 the average number of sus-
ceptible individuals we find

〈S〉(t) =
∑
s,i,r

s P (s, i, r, t), (22)

with the constrained sums above and analogous expres-
sions for the average numbers of infected [〈I〉(t)] and re-
covered [〈R〉(t)] individuals, implying 〈S〉(t) + 〈I〉(t) +
〈R〉(t) = N at any time t.

Three other relevant quantities are the total size and
duration of an epidemic, and the basic reproduction num-
ber.

Let us denote by p(η) the probability that an epidemic
has total size η. One possible way to calculate p(η)
is [2] to consider the number r of recovered individuals
in the steady-state regime, so that all infected cases that
emerged throughout the epidemic have had enough time
to recover, that is, η = r and i = 0 as t → ∞. If we
opt not to count in η the i0 individuals already infected
in t = 0 then

p(η) = lim
t→∞

P (N − i0 − η, 0, i0 + η, t). (23)

By projecting the state vector |Ψ(t)〉, Eq. (21), in
the steady-state regime onto the pure Fock state with
s = N − i0 − η, i = 0, and r = i0 + η, we find from

Eq. (12) the probability distribution of an epidemic of
total size η,

p(η) =
∑
ν

aν 〈N − i0 − η, 0, i0 + η|λν〉 , (24)

with the sum only over null eigenvalues. Since in our or-
dering the null eigenvalues λν = 0 are associated with the
eigenvectors |N − ν + 1, 0, ν − 1〉, for ν = 1, 2, ..., N + 1,
then p(η) = aν=η+i0+1. From this result the epidemic’s
average size 〈η〉 is readily obtained as a function of the
parameters α and β of the stochastic SIR model.

The Fock space approach also provides a way to es-
timate the mean duration of an epidemic. Consider
the subset {|N − j, 0, j〉} of pure Fock states (also
eigenvectors) with i = 0 infected individuals, where
j = 0, 1, ..., N . The probability that none of these states
has been reached in time t = τ , so that the epidemic have
persisted up to this time, is given by

pnot(τ) = 1−
∑
j

〈N − j, 0, j|Ψ(τ)〉 . (25)

Therefore, the probability that the epidemic ceases at
some subsequent time is 1 − pnot(τ), and so the proba-
bility density that the epidemic duration equals τ reads

ρ(τ) =
∂

∂τ

∑
j

〈N − j, 0, j|Ψ(τ)〉 . (26)

Again, all statistical moments of ρ(τ) of the stochastic
SIR model can be determined from Eqs. (21) and (26).
In particular, the average duration of the epidemic is cal-
culated in the Fock space approach as

〈τ〉 =

∫ ∞
0

τρ(τ)dτ = −
∑
j,ν

aν
λν
〈N − j, 0, j|λν〉 , (27)

with the sum in ν extending over non-null eigenvalues λν .
We end this section by considering the basic reproduc-

tion number R0 of an epidemic process, generally de-
fined [2] as the expected number of infected cases caused
by a single infected individual in a completely suscepti-
ble population. So R0 gives a measure of the potential
for disease spread in a population: the larger the value
of R0, the easier the epidemic spreads and the harder its
control becomes.

Complying with usual notation [2], we denote b(a) to
be the average number of individuals that caught the
disease from a single individual (patient zero), who re-
mained infectious from t = 0 to t = a. In addition we
further define F (a) to be the probability that a newly in-
fected individual has remained infectious during this time
interval. In the asymptotic steady-state limit t→∞ one
thus has [2]

R0 =

∫ ∞
0

b(a)F (a)da. (28)
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FIG. 1. Probability P (s, i, r, t) of some selected Fock states
|n〉 = |s, i, r〉 with s susceptible, i infected, and r recovered
individuals in a population of size N = 35 as a function of
time t, for infection and recovery rates α = 0.5 and β = 1.0,
respectively. One individual was initially infected, i0 = 1, as
indicated by the maximum in P (34, 1, 0, t) in t = 0 (dashed
line with black circles). P (0, 0, 35, t) (solid line with black
circles) approaches saturation with all previously infected in-
dividuals recovered in the t → ∞ steady-state limit. The
solid and dashed lines are to guide the eye in interpreting the
overall behavior.

In the case of the stochastic SIR model with infection (α)
and recovery (β) rates defined in processes (8), we note
that [35] b(a) = α 〈S〉(a) and F (a) = e−βa, implying

R0 = α

∫ ∞
0

e−βa 〈S〉(a) da, (29)

with 〈S〉(a) given in the Fock space approach by Eq. (22).
It is also possible to convert the integral above into a Rie-
mann sum over discrete unit time intervals to speed up
the calculations with negligible difference in the steady-
state limit.

In Appendix A we present a novel derivation of
Eq. (29). We stress that this is an original contribution
for the calculation of the basic reproduction number R0

in the context of the Fock space approach to the stochas-
tic SIR model.

IV. RESULTS AND DISCUSSION

We now present results of the quantities worked in the
previous section for populations of small (N = 20 and
N = 35) and large (N = 104) sizes.

IV.A Cases N = 20 and N = 35

We start by considering the case of a population with
N = 35 susceptible individuals and a single one infected
at the beginning of the epidemic, i0 = 1 in t = 0. This
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N = 35

FIG. 2. Average numbers of susceptible (〈S〉), infected (〈I〉),
and recovered (〈R〉) individuals in a population of size N = 35
as a function of time t, for infection and recovery rates α = 0.5
and β = 1.0, respectively. The mean number of infected cases
(red) peaks at an intermediate time and then decreases to zero
as the t→∞ saturation limit approaches with all previously
infected individuals recovered. The solid lines are to guide
the eye in interpreting the overall behavior.

means that the initial state of the system is |Ψ(0)〉 =
|s0 i0 r0〉 = |34, 1, 0〉.

In Fig. 1 and Fig. 2 we have chosen the infection and re-
covery rates as α = 0.5 and β = 1.0, respectively. From
Eq. (8) this corresponds to the situation in which the
epidemic should evolve towards a regime with most indi-
viduals recovered on average at sufficiently long times.

By calculating the eigenvalues {λν} and right eigenvec-
tors {|λν〉} following the prescription of last section, the
system dynamics is driven by Eqs. (20) and (21). Fig-
ure 1 presents in circles some probability distributions
P (s, i, r, t), Eq. (12), as a function of time t (with the
solid and dashed lines to guide the eye in interpreting
the overall behavior). While the probability P (34, 1, 0, t)
of the initial state with i0 = 1 infected individual rapidly
decreases from one to zero (dashed line with black cir-
cles), we note that the probability P (0, 0, 35, t) to have
the full population recovered (r = N = 35) grows
progressively with time (solid line with black circles).
We also observe in Fig. 1 that the probability of pure
Fock states with intermediate numbers of recovered indi-
viduals (colored symbols) displays a maximum at values
of t that increase with r.

The average numbers of susceptible (〈S〉), in-
fected (〈I〉), and recovered (〈R〉) individuals are calcu-
lated from Eq. (22) and analogous equations, and plotted
in circles as a function of t in Fig. 2. We notice at any
time that 〈S〉(t) + 〈I〉(t) + 〈R〉(t) = N , as expected. We
also observe that the initial growth of 〈I〉 eventually re-
cedes, giving way to an increase in 〈R〉 towards the limit
of full recovery of previously infected cases, consistent
with Fig. 1.
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β = 8
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α = 1

FIG. 3. Probability p(η) of total epidemic size η in a popula-
tion withN = 35 individuals and i0 = 1 initially infected case,
for various recovery rates β and fixed infection rate α = 1.
For β & 25 very few individuals become infected as p(η) ≈ 0
for η & 1. In contrast, for β � 10 the entire population tends
to be infected at some point of the epidemic, since the height
of the maximum at η = N − i0 = 34 increases for lower β
in this regime. For intermediate β this maximum occurs at
0 < η < N − i0, indicating that the epidemic does not reach
all individuals but a fraction of the population. The solid
lines are to guide the eye in interpreting the overall behavior.

In Fig. 3 we investigate the variability of the total size η
of the epidemic (not counting the initially infected indi-
vidual, i0 = 1) by plotting the corresponding probability
distribution p(η), Eq. (24). We now keep α = 1 fixed and
show curves of p(η) versus η for various β. Interestingly,
we observe a dominant maximum at η = 0 for high recov-
ery rates β & 25, indicating that in this regime very few
individuals are infected, yielding p(η) ≈ 0 for η & 1. On
the other hand, for β � 10 the entire population tends to
be infected by the disease and recovered at some point of
the epidemic dynamics (up to the steady-state limit), as
shown by the increase of the height of the second max-
imum at η = N − i0 = 34 for lower β in this regime.
For intermediate β this second maximum takes place at
0 < η < N− i0, showing that in this case it is more likely
that the epidemic does not reach all individuals, but a
somewhat considerable fraction of the population.

The average duration of the epidemic 〈τ〉 and basic
reproduction number R0 as a function of α are shown,
respectively, in Fig. 4 and Fig. 5 for β = 0.5, 1.0, 2.0.
To proceed with less time consuming computation we
considered the Riemann sum form of the integrals in
Eqs. (27) and (29) with N = 20 individuals.

We observe in Fig. 4 that the mean epidemic dura-
tion increases with α for fixed β, but nearly saturates
for α & β. Likewise, the basic reproduction number also
grows with α, see Fig. 5, indicating that the trend for dis-
ease spread is higher for larger α, as expected. In both
cases we note that increasing α for fixed β in the strongly

0 0.2 0.4 0.6 0.8 1

α
0

2

4

6

8

<
τ>

β = 0.5

β = 1.0

β = 2.0

N = 20

FIG. 4. Mean epidemic duration 〈τ〉 as a function of the
infection rate α for some fixed recovery rates β, in a popula-
tion of size N = 20 with i0 = 1 individual initially infected.
〈τ〉 grows with α but rapidly saturates, indicating that a fur-
ther increase of α in the strongly infectious regime does not
impact significantly the epidemic dynamics of a small popu-
lation. The solid lines are to guide the eye in interpreting the
overall behavior.

infectious regime does not make a significant impact on
the mean duration and basic reproduction number of the
epidemic process.

IV.B Case N = 104

Finally, we turn to the study of the epidemic evolution
in a large population with N = 104 individuals. We aim
here at building the large-N correspondence between the
stochastic SIR model in the Fock space approach and
the deterministic SIR model. We also make explicit be-
low the influence of fluctuations by comparing analytical
expressions for the basic reproduction number of these
models for not so large populations.

As discussed, for large N relative fluctuations of or-
der O(1/

√
N) around the mean value of key quanti-

ties are not as relevant when compared to the previous
cases of small populations. So the gain in addressing
the epidemic dynamics problem in the large-N regime
through stochastic SIR models is not so significant if con-
trasted with the approach from deterministic SIR mod-
els. Furthermore, when applying the Fock space method
with large populations, the dimension Nh × Nh of the
Hamiltonian-like matrix h grows as Nh ≈ N2, hampering
considerably the symbolic computation of the eigenvec-
tors. Nevertheless, by combining [37] the second quanti-
zation formalism with the statistical properties [2] of the
moment generating function associated with P (s, i, r, t),
a number of results in the large-N regime can still be
obtained in the Fock space approach as follows, without
the need to diagonalize h.
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β = 0.5
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FIG. 5. Basic reproduction number R0 as a function of the
infection rate α for some fixed recovery rates β, in a popula-
tion of size N = 20 with i0 = 1 individual initially infected.
Likewise Fig. 4, R0 also increases with α, though with a some-
what lower growth rate, as epidemics are harder to control in
stronger infectious regimes. The solid lines are to guide the
eye in interpreting the overall behavior.

The generating function of the moments of the distri-
bution P (s, i, r, t) is defined [2] as

M(θs, θi, θr, t) =
∑
s,i,r

P (s, i, r, t)eθss+θii+θrr, (30)

with the constrained sums as before. From Eqs. (22)
and (30) it can be seen that

∂2M

∂θs∂t

∣∣∣∣
θs=θi=θr=0

=
d〈S〉
dt

, (31)

with analogous expressions for d〈I〉/dt and d〈R〉/dt.
Another way to obtain the above second derivative

of M is by combining Eqs. (5), (11), and (14) to find
dP (s, i, r, t)/dt. Then, multiplying dP/dt by eθss+θii+θrr,
summing over s, r, i, and comparing with Eq. (31) yields

d〈S〉
dt

= −α〈SI〉,

d〈I〉
dt

= −β〈I〉+ α〈SI〉, (32)

d〈R〉
dt

= β〈I〉.

We note that the constraint 〈S〉(t) + 〈I〉(t) + 〈R〉(t) = N
at any t is compatible with Eq. (32). Further, in the
large-N regime it is also interesting to observe that the
mean-field-type approximation 〈SI〉 ≈ 〈S〉〈I〉 turns [39]
the system (32) identical to that of the conventional SIR
model [1], consistent with the above discussion.

By solving Eq. (32) with the initial condition 〈S〉(0) =
N − 1, 〈I〉(0) = 1, 〈R〉(0) = 0 in mean field approxi-
mation through symbolic computation, we find the aver-
age subpopulations sizes and the basic reproduction num-
ber, respectively shown in circles in Figs. 6(a) and 6(b)
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4
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FIG. 6. (a) Average numbers of susceptible (〈S〉), in-
fected (〈I〉), and recovered (〈R〉) individuals in a population
of size N = 104 with i0 = 1 initially infected case as a function
of time t, for several infection rates α and fixed recovery rate
β = 1. (b) Basic reproduction number R0 as a function of α,
for fixed β values and N = 104. Despite the much larger pop-
ulation size, qualitative behaviors similar to those of Fig. 2
and Fig. 5 are noticed. In particular, when lower α values
are considered the number of infectious cases decreases and
reaches a maximum later in time (compare in (a) the solid
and dashed red lines for α = 10 and α = 2, respectively).
The solid lines in (b) are to guide the eye in interpreting the
overall behavior.

for N = 104 (solid lines are to guide the eye in interpret-
ing the overall behavior). Noticeably, these plots for large
N show behaviors qualitatively similar to those for much
smaller N , Fig. 2 and Fig. 5.

On the other hand, as discussed, the effect of fluctua-
tions is central in smaller populations, implying signifi-
cant differences between the results of the stochastic and
deterministic SIR models in this regime. Clearly, how-
ever, this effect becomes gradually less important as N
grows. For instance, in Appendix B we present the ana-
lytical expressions for R0 with N = 3, 4, 5. If we write,
e.g., the result for N = 4, Eq. (B.3), as a function of
the (not normalized) basic reproduction number of the
deterministic SIR model [2], Rdet

0 = Nα/β, then the dif-
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FIG. 7. Heatmap plot displaying the relative difference
(Rdet

0 − R0)/Rdet
0 between the basic reproduction number

of the stochastic and deterministic SIR models for N = 20.
Larger differences are noted in the important regime in which
the infection rate surpasses the recovery rate, α & β.

ference between R0 and Rdet
0 can be readily inferred from

the expression

R0 = Rdet
0

(
226

5(3Rdet
0 + 8)

+
2048

7(3Rdet
0 + 16)

− 2349

70(Rdet
0 + 3)

+
18

Rdet
0 + 4

− 567

5(Rdet
0 + 6)

+
96

5(Rdet
0 + 8)

)
. (33)

Moreover, if we consider R0 for a larger N = 20
(whose expression is too cumbersome to be displayed),
it is also possible to determine the relative difference
(Rdet

0 − R0)/Rdet
0 , as presented in the heatmap plot of

Fig. 7. Indeed, we note that this difference becomes in-
creasingly significant as the infection rate surpasses the
recovery rate, α & β. Finally, by calculating R0 via the
Fock space approach for progressively larger N , we find

R0 =

(
N − 1

N

)
fN

(
Rdet

0

N

)
Rdet

0 , (34)

where the function fN is such that fN → 1 as N →∞,
explicitly confirming the expected result that R0 → Rdet

0

as N →∞.

V. CONCLUSIONS

The importance of improving the knowledge about
the general dynamics of epidemic processes can be
hardly overstate in current days. Over nearly a century
susceptible-infected-recovered (SIR) and related models
have been applied with this aim, since the seminal article
by Kermack and McKendrick [1].

In this work we have addressed the stochastic SIR
model in the Fock space formalism, in which a master
equation governs the transition probabilities among the
system’s states defined by SIR occupation numbers. This
approach is particularly interesting for relatively small
populations in which fluctuations not accounted for by
conventional SIR models play a relevant role.

We have found for any population sizeN exact analytic
expressions for the eigenvalues of the second-quantization
Hamiltonian-like operator in Fock space that drives the
epidemic infection and recovery processes. We have
also presented small- and large-N results for the aver-
age subpopulations sizes and basic reproduction number
as functions of the SIR model parameters α and β. For
small N we have obtained the probability distributions of
SIR states, epidemic sizes and durations, which cannot
be found from conventional SIR models based on ordi-
nary differential equations for the populations sizes.

More generally, the Fock space approach enables the
derivation of higher moments and other measures of vari-
ation for stochastic systems, such as the individual-based
SIR epidemiological model explored in this work, without
the need for the stochastic simulation method or Monte
Carlo approaches (for example, [7, 49, 50]). In particular,
with such approaches the calculation of a likelihood, that
is the probability of observed data conditioned on pa-
rameter values, requires extensive computation. In turn,
this renders well-established techniques based on max-
imising the likelihood or Bayesian inference impractical,
instead necessitating the extensive simulations required
of likelihood free methods, such as approximate Bayesian
computation [52]. In contrast, Fock space methods ren-
der the calculation of the likelihood directly tractable,
enabling immediate access to well-established and rel-
atively efficient techniques for parameter inference, hy-
pothesis testing and model selection, based on likelihood
maximisation or Bayesian inference. Thus the current
study in particular provides a framework for efficiently
relating individual-based stochastic SIR models to ob-
served data. Such features are of particular relevance to
fitting, or selecting on, modelling predictions for variabil-
ity arising from small number fluctuations, which cannot
be captured by deterministic models, but are nonetheless
particularly relevant in driving an initial epidemiological
outbreak and the prospect of disease-variant emergence.

In addition, the derivation of analytical expressions
such as the mean duration of an epidemic and the espe-
cially pertinent measure of whether disease will spread,
the reproduction number, are presented for stochastic
SIR systems for the first time to the best of our knowl-
edge. Such expressions offer not only benchmarking for
numerical algorithms of larger systems [40] but also fun-
damental insight into the how important features of dis-
ease dynamics may alter with stochasticity. Furthermore,
a complete analytical characterisation of small stochastic
epidemiological systems developed here offers the ability
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to efficiently incorporate large numbers of small stochas-
tic subsystems, such as households and offices, within
much larger city and national scale epidemiological sim-
ulations.

We also remark that generalizations of the Fock space
approach to treat other epidemic models (e.g., SEIR,
SITR, and SEQIJR) are readily feasible by changing the
Hamiltonian and compartments in each case. Moreover,
by including proper spatial constraints the study of the
SIR stochastic lattice gas model could also be considered.
Given the remarkable differences between the determin-
istic and stochastic SIR models in the small population
regime, as well as the relevance of this regime at the
beginning of an epidemic, these possibilities will be con-
sidered in forthcoming works.

We finally hope that the Fock space approach discussed
here can help to improve the understanding and charac-
terization of the dynamics of epidemic processes, an issue
that has become increasingly relevant in present days.
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APPENDIX A: DERIVATION OF THE BASIC
REPRODUCTION NUMBER R0 IN THE FOCK

SPACE APPROACH

Here we present a novel derivation of Eq. (29) for the
basic reproduction number R0 in the context of the Fock
space approach to the stochastic SIR model.

We start by defining z(t) as the average number of
infected cases in time t due to a single infected individ-
ual that remained infectious since t = 0 (patient zero).
Consider, also, the three following statistical events: pa-
tient zero does not infect any susceptible individual in
the time interval [t, t+ ∆t) (E0), patient zero infects
only one individual in this interval (E1), and more than
one susceptible individual is infected by patient zero
in this time interval (En>1). Here we take the infec-
tions of any two individuals as statistically independent
events, so that the respective event probabilities must
obey P (E0) + P (E1) + P (En>1) = 1 at any time t.

For sufficiently short time intervals (i.e., for ∆t→ dt)
the probability P (En>1) is negligible. So, from the defi-
nitions of the events above we write up to order O(∆t),

z(t+ ∆t) = z(t)P (E0) + [z(t) + 1]P (E1). (A.1)

Recall from Eq. (8) that α and β are, respectively, the
infection and recovery rates of the stochastic SIR model.
So, in order to obtain P (E1) we have to multiply the av-
erage number 〈S〉(t) of susceptible individuals in time t
by the probability α∆t that one new infection occurs dur-
ing this short time interval, and by the probability Pnr(t)
that patient zero has not been removed up to time t,

P (E1) = αPnr(t) 〈S〉(t) ∆t. (A.2)

We also note from Eq. (8) that 1 − β∆t gives the prob-
ability that an infected individual is not removed during
this sufficiently short time interval. We therefore write

Pnr(t+ ∆t) = Pnr(t)(1− β∆t), (A.3)

which in the limit ∆t→ 0 becomes

dPnr
dt

= −βPnr, (A.4)

with solution for the initial condition Pnr(0) = 1 given by

Pnr(t) = e−βt. (A.5)

Now, by substituting Eq. (A.5) into Eq. (A.2) we find

P (E1) = α〈S〉(t) ∆te−βt. (A.6)

Next, by using that P (E0) + P (E1) = 1 [up to order
O(∆t)], we substitute P (E0) and P (E1) into Eq. (A.1)
and take the limit ∆t→ 0, so that

dz

dt
= αe−βt 〈S(t)〉 . (A.7)

Considering that patient zero is the only infected indi-
vidual at t = 0 then z(0) = 0, and by integration

z(t) = α

∫ t

0

e−βτ 〈S(τ)〉 dτ. (A.8)

The basic reproduction number then reads

R0 = α

∫ ∞
0

e−βτ 〈S(τ)〉 dτ, (A.9)

which corresponds to Eq. (29) of the main text. We re-
mark that this result has been previously derived [35] but
in a distinct context using a different technique.

We can also use the eigenvectors expansion of the
state vector, Eq. (21), along with Eq. (22) and |s i r〉 =∑
µ bµ |λµ〉, to obtain from Eq. (A.9),

R0 = α
∑
s,i,r

s
∑
ν,µ

aνbµ
〈λµ|λν〉
β + λν

, (A.10)

where 〈λµ| denotes the complex conjugate of the right
eigenvector |λµ〉 and the first sums are restricted to
s+ i+ r = N , as usual.
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FIG. 8. (a) Mean epidemic duration 〈τ〉 and (b) basic repro-
duction number R0 as a function of the infection rate α, for
some fixed recovery rates β and population size N = 3. Plots
are taken from Eq. (B.1) and (B.2), respectively. Behaviors
similar to those of Fig. 4 and Fig. 5 are observed.

Appendix B: Case N = 3

We illustrate in this appendix the calculation of ex-
plicit exact closed-form expressions for some important
quantities of the stochastic SIR model in the Fock space
approach. Our aim is to show that this is actually feasi-
ble for small population sizes N . However, as larger N
are considered the expressions become increasingly cum-
bersome.

In the case N = 3 the basis {|n〉 = |s i r〉} of the Fock
space has dimension Nh = (N + 1)(N + 2)/2 = 10, com-
prising the following ordered set of pure Fock states:

{|0, 0, 3〉 , |0, 1, 2〉 , |0, 2, 1〉 , |0, 3, 0〉 , |1, 0, 2〉 ,
|1, 1, 1〉 , |1, 2, 0〉 , |2, 0, 1〉 , |2, 1, 0〉 , |3, 0, 0〉}.

From Eq. (15) we express the Hamiltonian-like matrix h
on this basis as a function of the infection (α) and recov-

ery (β) rates,

h =



0 −β 0 0 0 0 0 0 0 0
0 β −2β 0 0 0 0 0 0 0
0 0 2β −3β 0 −α 0 0 0 0
0 0 0 3β 0 0 −2α 0 0 0
0 0 0 0 0 −β 0 0 0 0
0 0 0 0 0 α+ β −2β 0 0 0
0 0 0 0 0 0 2(α+ β) 0 −2α 0
0 0 0 0 0 0 0 0 −β 0
0 0 0 0 0 0 0 0 2α+ β 0
0 0 0 0 0 0 0 0 0 0


.

According to the discussion in Section III, the ma-
trix h has N + 1 = 4 null eigenvalues λν = 0, associ-
ated with the eigenvectors |λν〉 = |N − ν + 1, 0, ν − 1〉 =
|4− ν, 0, ν − 1〉, for ν = 1, ..., 4. The complete or-
dered set of exact eigenvalues is promptly obtained from
Eqs. (18) and (19),

{λν} = {0, 0, 0, 0, β, 2β, 3β, α+ β, 2(α+ β), 2α+ β},

for ν = 1, ..., 10, with corresponding right eigenvectors,

|λ1〉 =|3, 0, 0〉 , |λ2〉 = |2, 0, 1〉 , |λ3〉 = |1, 0, 2〉 ,
|λ4〉 =|0, 0, 3〉 , |λ5〉 = − |0, 0, 3〉+ |0, 1, 2〉 ,
|λ6〉 =|0, 0, 3〉 − 2 |0, 1, 2〉+ |0, 2, 1〉 ,
|λ7〉 =− |0, 0, 3〉+ 3 |0, 1, 2〉 − 3 |0, 2, 1〉+ |0, 3, 0〉 ,

|λ8〉 =
2β2

β2 − α2
|0, 0, 3〉+

2β

α− β
|0, 1, 2〉

+
α

β − α
|0, 2, 1〉 − β

α+ β
|1, 0, 2〉 ,

|λ9〉 =
β3(5α+ 2β)

(α+ β)2 (4α2 − β2)
|0, 0, 3〉

+

[
2α

(
− 1

α+ β
+

1

2α+ β
+

3

β − 2α

)
+ 4

]
|0, 1, 2〉

+
β(5α+ 2β)

(2α− β)(α+ β)
|0, 2, 1〉+

2α

β − 2α
|0, 3, 0〉

+
β2

(α+ β)2
|1, 0, 2〉 − 2β

α+ β
|1, 1, 1〉+ |1, 2, 0〉 ,

|λ10〉 =
2(5α− 2β)β2

4α3 − 4βα2 − β2α+ β3
|0, 0, 3〉

+

[
− 4α

β − 2α
+

6α

β − α
+ 4

]
|0, 1, 2〉

+2α

(
1

β − 2α
+

3

α− β

)
|0, 2, 1〉

− 2α2

(α− β)β
|0, 3, 0〉+

4β

2α+ β
|1, 0, 2〉 − 4 |1, 1, 1〉

+
2α

β
|1, 2, 0〉+ |2, 0, 1〉 − β

2α+ β
|2, 1, 0〉 .

From the above sets of eigenvalues and eigenvectors
we find, e.g., the mean duration of the epidemic and the
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basic reproduction number, respectively given in the Fock
space approach by Eqs. (27) and (A.10),

〈τ〉 =
α

(α+ β)2
+

5

6

(
1

2α+ β
− 2

α+ β

)
+

11

6β
, (B.1)

R0 = α

(
27

2α+ 3β
− 8

α+ 2β
− 3

α+ β

)
. (B.2)

Figures 8(a) and 8(b) display 〈τ〉 and R0 calculated
from Eqs. (B.1) and (B.2), respectively. We notice that
these plots are qualitatively similar to Fig. 4 and Fig. 5,
respectively, so that the associated discussion in Sec-
tion IV.A also holds in the present case.

The above procedure can be readily applied to calcu-
late significant quantities of the stochastic SIR model for
smaller population sizes N . For example, by defining the
ratio ρ ≡ α/β, we list below the results for the basic re-
production number with N = 4 and N = 5, respectively,

R0 =
2ρ

35

(
315

ρ+ 1
+

336

ρ+ 2
− 3969

2ρ+ 3
+

791

3ρ+ 2

+
5120

3ρ+ 4
− 2349

4ρ+ 3

)
, N = 4, (B.3)

R0 = ρ

(
(129886ρ+ 59213)

1800(2ρ+ 1)2
− 15

ρ+ 1
− 80

9(ρ+ 2)

+
2349

7(3 + 4ρ)
− 9228

35(2 + 3ρ)
+

11583

40(3 + 2ρ)

+
78125

84(4ρ+ 5)
− 192512

175(4 + 3ρ)

)
, N = 5. (B.4)

We mention that both expressions were obtained from
Mathematica in about one minute of running time in a
notebook with Intel Core i7 processor.
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[67] T. Tomé and M. J. de Oliveira, Stochastic Dynamics and
Irreversibility (Springer, Berlin, 2015), chapter 13.

[68] R. Dickman, J. Stat. Phys 55, 997-1026 (1989).
[69] I. Jensen and R. Dickman, J. Stat. Phys 71, 89-127

(1993).
[70] R. Dickman and R. Vidigal, Braz. J. Phys. 33, 73-93

(2003).


