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(Communicated by Dmitriy Bilyk)

Abstract. We refer to the discussion on different characterizations of the
A∞ class of weights, initiated by Duoandikoetxea, Mart́ın-Reyes, and Ombrosi
[Math. Z. 282 (2016), pp. 955–972]. Twelve definitions of the A∞ condition are
considered. For cubes in R

d every two conditions are known to be equivalent,
while for general bases we have a trichotomy: equivalence, one-way implication,
or no dependency may occur. In most cases the relations between different
conditions have already been established. Here all the unsolved cases are
treated and, as a result, a full diagram of the said relations is presented.

1. Introduction

While dealing with the theory of weights in the Euclidean setting R
d, one can

find in the literature several statements referred to as the A∞ condition. The most
classical definition is due to Muckenhoupt [Mu74]. It is said there that a locally
integrable function w : Rd → [0,∞) is in the A∞ class if for each ε ∈ (0, 1) there
exists δ ∈ (0, 1) such that(

|E| < δ|Q|
)

=⇒
(
w(E) < εw(Q)

)
holds, whenever Q is a d-dimensional cube and E is its arbitrary measurable subset.
This nomenclature has a very natural interpretation as an endpoint for the Ap

theory. Indeed, Muckenhoupt showed that w satisfies the above condition if and
only if it belongs to the Ap class for some p ∈ (1,∞).

At about the same time, Coifman and C. Fefferman [CF74] proposed another
approach based on verifying the following inequality

w(E)

w(Q)
≤ C

(
|E|
|Q|

)δ

,

where Q,E are as before, while C, δ > 0 are universal constants depending only on
w. It was then proven that the two conditions lead to the same class of weights.

Apart from those mentioned above, there are many other definitions of the
A∞ condition, e.g., the ones using maximal operators (cf. [Fu78], [Wil87]), me-
dians (cf. [OS89]) or a substitute for the usual Ap condition obtained by letting p
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to infinity (cf. [Hr84], [GR85]). For more detailed information we refer the reader
to the survey [DO85].

Although the Euclidean theory of weights has been well understood, things got
complicated as other settings began to be explored. Indeed, it was observed that
some of the equivalences between definitions are consequences of special properties
of Rd or the geometry of cubes, so that they may no longer be true in other contexts.
A natural problem arose—which definition should be the proper one in general?—
and the authors have so far not agreed to make any particular version the leading
one (compare, for example, [St93], [Duo01], [HP13]).

Recently, Duoandikoetxea, Mart́ın-Reyes, and Ombrosi took a big step towards
making the knowledge in this field systematized. In their remarkable paper [DMO16]
twelve conditions, which are known to be equivalent in the case of cubes (or balls)
in R

d, are collected and, in the context of general bases associated with arbitrary
measure spaces, the exact relations between them are established. In some cases
equivalences or one-way implications are proven and in some others suitable coun-
terexamples are constructed.

Despite its high level of precision, the said article does not cover the problem in
full. Indeed, a few cases remained unsolved, as the authors were not able to provide
neither a proof nor a counterexample. Thus, it seems very desirable to complete
the task, by examining all the missing relations. This is actually what we aim to
do here.

Theorem 1.1. Table 1 in Section 2 describes whether an implication of the form
(PA) =⇒ (PB) holds or not for general bases, where (PA) and (PB) are any two
of the twelve A∞ conditions collected in [DMO16] (for a diagram with the obtained
relations see Figure 1 in Section 2).

The rest of the paper is organized as follows. In Section 2 we give basic def-
initions, recall which cases of our problem have already been solved, and present
the postulated complete diagram of the studied relations. In Section 3 we prove
Theorem 1.1, by treating all the unsolved cases.

2. Main result

From now on, we shall deal with a measure space (X,Σ, μ), where X is a set, Σ is
a σ-algebra of subsets of X, and μ : Σ → [0,∞] is a σ-finite measure. A basis B is a
collection of sets B ∈ Σ satisfying |B| ∈ (0,∞) (here and later on for μ-measurable
sets E ⊂ X we write simply |E| instead of μ(E)). As in [DMO16], we assume that
the elements of B cover X except for a set of μ-measure zero.

Given a weight w associated with B (that is, a μ-measurable nonnegative function
such that the integral of w over B is finite for all B ∈ B), we introduce the following
notation:

• w(B) :=
∫
B
w dμ (the integral of w over B),

• wB := w(B)/|B| (the average of w in B),
• m(w;B) := inf{t : |x ∈ B : w(x) > t| < |B|/2} (the median of w in B).

Also, we define the maximal operator associated with B by

MBf(x) := sup
x∈B∈B

1

|B|

∫
B

f dμ, x ∈ X,

where f is any μ-measurable function.
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In [DMO16] the following conditions on weights w were mentioned.

(P1) There exists p ∈ (1,∞) such that w belongs to the Muckenhoupt class Ap,B,
that is, there exists Cp,B > 0 such that(

1

|B|

∫
B

w dμ

)(
1

|B|

∫
B

w1−p′
dμ

)p−1

≤ Cp,B

holds for all sets B ∈ B, where 1
p + 1

p′ = 1.

(P1’) There exist δ, C > 0 such that

|E|
|B| ≤ C

(
w(E)

w(B)

)δ

holds for all sets B ∈ B and all μ-measurable subsets E ⊂ B.
(P2) There exists C > 0 such that

1

|B|

∫
B

w dμ ≤ C exp

(
1

|B|

∫
B

logw dμ

)
holds for all sets B ∈ B.

(P2’) There exists C > 0 such that

1

|B|

∫
B

w dμ ≤ C

(
1

|B|

∫
B

ws dμ

)1/s

holds for every s ∈ (0, 1) and for all sets B ∈ B.
(P3) There exists q ∈ (1,∞) such that w belongs to the reverse Hölder class

RHq,B, that is, there exists Cq,B > 0 such that(
1

|B|

∫
B

wq dμ

)1/q

≤ Cq,B
|B|

∫
B

w dμ

holds for all sets B ∈ B.
(P3’) There exist δ, C > 0 such that

w(E)

w(B)
≤ C

(
|E|
|B|

)δ

holds for all sets B ∈ B and all μ-measurable subsets E ⊂ B.
(P4) There exist α, β ∈ (0, 1) such that the implication(

|E| < α|B|
)

=⇒
(
w(E) ≤ βw(B)

)
holds for all sets B ∈ B and all μ-measurable subsets E ⊂ B.

(P4’) There exist α, β ∈ (0, 1) such that∣∣{x ∈ B : w(x) ≤ αwB}
∣∣ ≤ β|B|

holds for all sets B ∈ B.
(P5) There exists C > 0 such that

wB ≤ Cm(w;B)

holds for all sets B ∈ B.
(P6) There exists C > 0 such that∫

B

w log+
w

wB
dμ ≤ Cw(B)

holds for all sets B ∈ B.
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(P7) There exists C > 0 such that∫
B

MB(wχB) dμ ≤ Cw(B)

holds for all sets B ∈ B.
(P8) There exist C, β > 0 such that

w
(
{x ∈ B : w(x) ≥ λ}

)
≤ Cλ

∣∣{x ∈ B : w(x) ≥ βλ}
∣∣

holds for all sets B ∈ B and every λ > wB .

We now briefly recall the main results, concerning the relations between these
conditions, that were obtained in [DMO16].

Equivalences ([DMO16, Theorem 3.1]).

• (P1) ⇐⇒ (P1’)
• (P2) ⇐⇒ (P2’)
• (P3) ⇐⇒ (P3’)
• (P4) ⇐⇒ (P4’)

Implications ([DMO16, Theorem 4.1]).

• (P1) =⇒ (P2) =⇒ (P5) =⇒ (P4)
• (P8) =⇒ (P3) =⇒ (P6) =⇒ (P4)

Conditional Implications ([DMO16, Theorem 4.2]).

• (P1) =⇒ (P7) (provided that B is a Muckenhoupt basis, that is, the
maximal operator MB is bounded on Lp(w) for each p ∈ (1,∞) and for
every w ∈ Ap,B)

• (P3) =⇒ (P7) (provided that MB is bounded on Lp for every p > 1)
• (P6) =⇒ (P7) (provided that MB is of weak type (1, 1))
• (P2) =⇒ (P7) (provided that MB is bounded on Lp for some p > 1 and
that MB(wχB)(x) = supB⊃B′∈B wB′ holds for each x ∈ B ∈ B)

Counterexamples ([DMO16, Counterexamples 1–3 and 5–7]). All counterexam-
ples are built for B = {(0, b) : b > 0} considered as a basis in (0,∞) equipped with
Lebesgue measure. In particular, all the conditional implications mentioned above
are valid.

• (P8) 
=⇒ (P5) (thus (PA) 
=⇒ (PB) if A ∈ {3,4,6,7,8} and B ∈
{1,2,5})

• (P2) 
=⇒ (P1) (thus also (P5) 
=⇒ (P1))
• (P1) 
=⇒ (P6) (thus (PA) 
=⇒ (PB) if A ∈ {1,2,4,5,7} and B ∈
{3,6,8})

• (P6) 
=⇒ (P3) (thus also (P6) 
=⇒ (P8))
• (P3) 
=⇒ (P8)
• (P7) 
=⇒ (P4)

As mentioned before, our aim is to complete the picture, by examining all the
missing relations between the above conditions. The final result is presented in
Table 1. Of course, in view of the four equivalences listed above, we may omit the
conditions (P1’), (P2’), (P3’), and (P4’).
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Table 1. Occurrence of implications of the form (PA) =⇒ (PB)
for general bases. The conditions (PA) and (PB) appear in the
first column and row, respectively. The symbol [·] indicates that
the result was not known before.

=⇒ (P1) (P2) (P3) (P4) (P5) (P6) (P7) (P8)
(P1) = � � � � � [�] �

(P2) � = � � � � [�] �

(P3) � � = � � � [�] �

(P4) � � � = � � [�] �

(P5) � [�] � � = � [�] �

(P6) � � � � � = [�] �

(P7) � � � � � � = �

(P8) � � � � � � [�] =

In order to prove Theorem 1.1 it suffices to show the following three lemmas.

Lemma 2.1. There exist a measure space (X,Σ, μ), a basis B ⊂ Σ, and a weight
w associated with B such that w satisfies (P5) and does not satisfy (P2).

Lemma 2.2. There exist a measure space (X,Σ, μ), a basis B ⊂ Σ, and a weight
w associated with B such that w satisfies (P1) and does not satisfy (P7).

Lemma 2.3. There exist a measure space (X,Σ, μ), a basis B ⊂ Σ, and a weight
w associated with B such that w satisfies (P8) and does not satisfy (P7).

For the reader’s convenience, in Figure 1 we present the final result as a diagram
of relations between different A∞ conditions.

(P1)

(P2) (P3)

(P4)

(P5) (P6)

(P7)

(P8)(P1’)

(P2’) (P3’)

(P4’)

Figure 1. Relations between different A∞ conditions in the con-
text of general bases
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3. Proofs of Lemmas 2.1–2.3

In this section we present the proofs of Lemmas 2.1–2.3. We shall work with
countable discrete spaces X in order to provide examples which are as simple as
possible (in particular, Σ is always the family of all subsets of X). However, we
emphasize that a suitable continuous counterpart can be assigned to each of these
examples. Indeed, given (X,Σ, μ), B, and w, the discrete objects specified in one
of the proofs, one define the product space

(X,Σ, μ) :=
(
X × [0, 1),Σ× B[0,1), μ× λ[0,1)

)
(here the symbols B[0,1) and λ[0,1) stay for the σ-algebra of Borel subsets of [0, 1)
and Lebesgue measure on [0, 1), respectively), the basis

B := {B × [0, 1) : B ∈ B},
and the weight

w(x, t) := w(x), x ∈ X, t ∈ [0, 1).

Then it turns out that all the properties we want w to satisfy are also satisfied by
w.

In fact, even more can be said. Assuming X = {x1, x2, . . . } and |{xj}| = αj >
0, j ∈ N, with

∑
j∈N

αj = ∞ (this will indeed be satisfied in each of the three

examples), one can use the bijective map τ : X → [0,∞) given by

τ
(
(xj , t)

)
:=

∑
i<j

αi + tαj ,

in order to obtain the desired example with the underlying space being just the
half-line [0,∞) equipped with Lebesgue measure λ[0,∞). In this situation, the only

peculiarities are the strange looking basis B[0,∞) := {τ−1(B) : B ∈ B} and weight

w[0,∞)(s) := w(τ−1(s)). This observation reveals that the structure of the basis
plays the main role in the problem, not the specific properties of the measure space
such as the doubling condition, for instance.

In what follows we write |x| instead of |{x}| (thus, e.g., w(B) =
∑

x∈B w(x) · |x|).

Proof of Lemma 2.1. Set

X :=
{
xn,i : n ∈ N, i ∈ {0, 1}

}
and define μ by letting

|xn,i| :=
{
2 if i = 0,

1 otherwise.

Consider the basis

B := {Bn : n ∈ N},
where Bn := {xn,0, xn,1}. We shall show that w defined by

w(xn,i) :=

{
n if i = 0,

1 otherwise,

satisfies (P5) and does not satisfy (P2).
We first show that (P5) is satisfied with C = 1. Indeed, for n ∈ N we have

wBn
=

2n+ 1

2 + 1
≤ n = m(w;Bn).
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In order to show that (P2) cannot hold observe that∑
x∈Bn

w(x) · |x|
|Bn|

=
2n+ 1

3
>

2n1/3

3
exp

(
2 log n+ log 1

3

)

=
2n1/3

3
exp

(∑
x∈Bn

logw(x) · |x|
|Bn|

)
.

�

Proof of Lemma 2.2. Set

X :=
{
xn,i : n ∈ N, i ∈ {0, 1, 2, . . . , 4n}

}
and define μ by letting

|xn,i| :=
{
1 if i = 0,

2−n otherwise.

Consider the basis

B :=
{
Bn,i : n ∈ N, i ∈ {0, 1, 2, . . . , 4n}

}
,

where

Bn,i :=

{
{xn,0, xn,1, . . . , xn,4n} if i = 0,

{xn,0, xn,i} otherwise.

We shall show that w defined by

w(xn,i) :=

{
1 if i = 0,

2−n otherwise,

satisfies (P1) and does not satisfy (P7).
We first show that (P1) holds, by proving that (P1’) is satisfied with C = 4 and

δ = 1
2 . Take Bn,i ∈ B and nonempty E ⊂ Bn,i. We consider two cases, i = 0 and

i > 0. If i = 0, then |B| = 1+2n and w(B) = 2. Moreover, we have |E| = j+k2−n

and w(E) = j+k4−n for some j ∈ {0, 1} and k ∈ {0, 1, . . . , 4n} such that j+k > 0.
Thus,

|E|
|B| <

j

2n
+

k

4n
≤ w(E)

w(B)
+ 2 · w(E)

w(B)
≤ 3 ·

(
w(E)

w(B)

)1/2

.

On the other hand, if i > 0, then |B| = 1 + 2−n and w(B) = 1 + 4−n. Moreover,
we have |E| = j + k2−n and w(E) = j + k4−n for some j, k ∈ {0, 1} such that
j + k > 0. Thus,

|E|
|B| < j +

k

2n
≤ 2 · w(E)

w(B)
+ 2 ·

(
w(E)

w(B)

)1/2

≤ 4 ·
(
w(E)

w(B)

)1/2

.

Consequently, (P1) is satisfied.
In order to show the second part observe that

MB(wχBn,0
)(xn,i) ≥

w(Bn,i)

|Bn,i|
=

1 + 4−n

1 + 2−n
>

1

2
, i ∈ {1, 2, . . . , 4n}.

Thus, ∑
x∈Bn,0

MB(wχBn,0
)(x) · |x| > 4n · 1

2
· 1

2n
= 2n−2w(Bn,0)

and, consequently, (P7) cannot hold. �
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Proof of Lemma 2.3. Let m0 = 0 and mn = 4 + 42 + · · ·+ 4n for n ∈ N. Set

X :=
{
xn,i : n ∈ N, i ∈ {0, 1, 2, . . . ,mn}

}
,

and specify μ to be the counting measure. Consider the basis

B :=
{
Bn,i : n ∈ N, i ∈ {0, 1, 2, . . . ,mn}

}
,

where

Bn,i :=

{
{xn,0, xn,1, . . . , xn,mn

} if i = 0,

{xn,0, xn,i} otherwise.

We shall show that w defined by

w(xn,i) :=

{
1 if i = 0,

2−j if mj−1 < i ≤ mj for j ∈ {1, . . . , n},

satisfies (P8) and does not satisfy (P7).
We first show that (P8) is satisfied with C = 4 and β = 1. Take Bn,i ∈ B.

We consider two cases, i = 0 and i > 0. If i = 0, then wBn,i
> 2−n. Thus, if

2−k−1 < λ ≤ 2−k holds for some k ∈ {0, . . . , n− 1}, then
w
(
{x ∈ Bn,i : w(x) ≥ λ}

)
= 20 + 21 + · · ·+ 2k < 2 · 2k

and ∣∣{x ∈ Bn,i : w(x) ≥ λ}
∣∣ = 40 + 41 + · · ·+ 4k > 4k.

Combining the above, we get

w
(
{x ∈ Bn,i : w(x) ≥ λ}

)
< 2 · 2k = 4 · 2−k−1 · 4k < 4λ

∣∣{x ∈ Bn,i : w(x) ≥ λ}
∣∣.

On the other hand, if i > 0, then wBn,i
> 1

2 . Thus, for
1
2 < λ ≤ 1 we have

w
(
{x ∈ Bn,i : w(x) ≥ λ}

)
= 1 < 2λ = 2λ

∣∣{x ∈ Bn,i : w(x) ≥ λ}
∣∣.

Consequently, (P8) is satisfied.
In order to show the second part observe that

MB(wχBn,0
)(xn,i) ≥

w(Bn,i)

|Bn,i|
>

w(xn,0) · |xn,0|
2

=
1

2
, i ∈ {1, 2, . . . ,mn}.

Thus, ∑
x∈Bn,0

MB(wχBn,0
)(x) · |x| > mn

2
>

4n

2
=

2n

4
· 2 · 2n >

2n

4
w(Bn,0)

and, consequently, (P7) cannot hold. �
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