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A B S T R A C T

Modeling insights for epidemiological scenarios characterized by chaotic dynamics have been largely unex-
plored. A rigorous analysis of such systems are essential for a real predictive power and a more accurate
disease control decision making. Motivated by dengue fever epidemiology, we study a basic SIR–SIR type
model for the host population, capturing differences between primary and secondary infections. This model is
the minimalistic version to previously suggested multi-strain models for dengue fever in which deterministic
chaos was found in wider parameter regions. Without strain structure of pathogens, we consider temporary
immunity after a primary infection and disease enhancement in a subsequent infection to identify to which
extent these biological mechanisms can generate complex behavior in simple epidemiological models.

Stability analysis of the system is performed using the classical linearization theory, and the qualitative
behavior of the model is investigated with a detailed bifurcation analysis. Rich dynamical structures are
identified, including the Bogdanov–Takens, cusp and Bautin bifurcations which has never been described in
dengue fever epidemiology. Besides the conventional transcritical bifurcation, a backward bifurcation occurs
for higher disease enhancement in secondary infections, exhibiting bi-stability when biological temporary
immunity period is assumed. The backward bifurcation is formalized using the center manifold theory. While
the Hopf and the global homoclinic bifurcation curves were computed numerically, analytical expressions for
the transcritical and tangent bifurcations are obtained. The combination of temporary immunity and disease
enhancement play a significant role in the complexity of the system dynamics, with chaotic behavior observed
after including seasonal forcing.
1. Introduction

Mathematical modeling has a long history in epidemiological re-
search. Used as a tool to understand and predict disease transmission
and control under different conditions, models incorporate different
aspects of hosts, pathogen and environmental factors, which can imply
rich dynamic behavior in the most basic dynamical models.

In a standard SIR model formulation, the system is divided into
three classes: Susceptible (S), Infected (I) and Recovered (R). Applied
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to infectious diseases where waning immunity can happen, and as-
suming that the transmission of the disease occurs from person to
person, susceptible individuals become infected and infectious, and
recover after a waning immunity period. These simple epidemiological
models developed to describe, for example, childhood diseases with
extremely high infection rates and moderate seasonal forcing, generate
Feigenbaum sequences of period-doubling bifurcations transitioning
into chaos [1]. Nevertheless, different extensions of the classical SIR
model applied to infectious diseases with much lower forces of infec-
tion, such as dengue fever, have also shown complex dynamics such as
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critical fluctuations with power-law distributions of disease cases [2],
and deterministic chaos even without considering external forces such
as seasonality [3,4].

Dengue fever is a viral mosquito-borne disease, a major interna-
tional public health concern. The disease is transmitted by the female
domestic Aedes mosquitoes, which are also vectors for yellow fever,
Chikungunya and Zika viruses. With more than 3.5 billion people at
risk of acquiring the infection, it is estimated that around 400 million
dengue infections occur every year, of which approximately 100 million
manifest symptoms with any level of disease severity [5]. Caused by
four antigenic related but distinct serotypes (DENV-1 to DENV-4), in-
fection by one serotype confers life-long immunity to that serotype, and
a period of temporary cross-immunity (TCI) to other serotypes. Dengue
infection shows a wide spectrum of clinical presentations, from asymp-
tomatic to severe cases. While primary infections are often benign, with
most patients experiencing a self-limiting non-severe clinical course of
infection, the secondary infection with a non-identical serotype will
eventually progress to severe disease characterized by hemorrhagic
symptoms, via the so-called Antibody-Dependent Enhancement (ADE)
process [6–9].

Mathematical models describing dengue fever epidemiological dy-
namics are found back from 1970 [10]. A careful review of dengue
modeling framework was recently published [11], where three struc-
tural approaches were studied, the within-host, the vector–host, and the
host-to-host transmission models. While the within-host framework is
built to describe viral replication and immunological responses affect-
ing differently disease outcomes in primary and secondary infections,
see e.g. [12,13], the other two approaches aim to describe disease
transmission at population level. The vector–host approach considers
the explicit dynamics for the mosquito population affecting the disease
transmission dynamics, whereas the host-to-host approach includes the
effect of seasonality to mimic the mosquito dynamics, see e.g. [14,15],
essential to explain the yearly dengue outbreaks.

Several mathematical models describing the transmission of dengue
viruses have been proposed to explain the irregular behavior of disease
epidemics. Extended SIR type models including biological features
related to dengue epidemiology, such as TCI and ADE, have shown
chaotic behavior in wider parameter regions [3,4,14–18], opening new
ways to analyze the available incidence data. Although the complexity
of these models is dependent on the number of components included
in the framework, the extent of biological mechanisms generating
complex behavior in simple epidemiological models is still unexplored.

In this paper, we study a basic SIR–SIR type model, a simpli-
fied version to previously proposed multi-strain models for dengue
fever in which deterministic chaos was found in an unexpected and
more biological parameter regions [3,14]. Without considering strain
structure of pathogens, the model captures differences between pri-
mary and secondary infections, and includes two important biological
features, the temporary immunity after a primary infection, analo-
gous to the well-known temporary cross-immunity period described
in dengue epidemiology, and disease enhancement in subsequent in-
fections, analogous to the ADE effect occurring in secondary dengue
infections.

Aiming to identify to which extent these biological mechanisms can
generate complex behavior in simple epidemiological models, three
scenarios of temporary immunity occurring after primary infection
are investigated. We consider short, medium and long immunity peri-
ods, combined with different values of disease enhancement factor on
secondary infections, smaller than 1, i.e. with secondary infection con-
tributing to the overall force of infection less than the primary infection,
2

or larger than 1, otherwise. Stability analysis of the system is performed
Fig. 1. Flowchart for the two infection SIR compartmental model. With demographic
rate 𝜇, infection rate 𝛽, and recovery rate 𝛾, the Force of Infection (FoI) is given by
𝛽(𝐼𝑃 + 𝜙𝐼𝑆 )∕𝑁 .

using the classical linearization theory, and the qualitative behavior of
the model is investigated with a detailed bifurcation analysis. Results
presented here are of use to understand the role of biological features of
infectious diseases epidemiology characterized by complex dynamics.

The paper is structured as follows. The mathematical model is
formulated and described in Section 2. The qualitative analysis of the
model is investigated is Sections 3 and 4. A detailed numerical bifur-
cation analysis, followed by numerical experiments showing complex
dynamics is carried out in Section 5, and in Section 6, seasonality is con-
sidered. Finally, the discussion and conclusion remarks are presented in
Section 7.

2. The two-infection model without pathogen structure

Motivated by dengue fever epidemiology, the proposed model is a
simplified version of the multi-strain dengue model proposed in [3,14].
Without strain structure of the pathogens, the two infection SIR–SIR
model divides the population into 6 classes: susceptible without a
previous infection (seronegative 𝑆), infected for the first time (𝐼𝑃 ),
recovered from the first infection (𝑅𝑃 ), susceptible with a previous
infection (seropositive 𝑆𝑃 ), infected for the second time (𝐼𝑆 ) and re-
covered from the second infection (𝑅). The model captures differences
between primary and secondary infections, and includes two important
features described in dengue fever epidemiology, the temporary immu-
nity after a primary infection and disease enhancement in a subsequent
infection, see Fig. 1.

The temporary immunity refers to the progressive loss of pre-
existing protective antibodies, i.e. waning immunity period parametrized
by 𝛼, analogous to the well known temporary cross-immunity (TCI)
period in dengue fever epidemiology. Moreover, with epidemiolog-
ical studies supporting the association of severe disease with sec-
ondary dengue infection, due to the antibody-dependent enhancement
(ADE) process, we assume that experiencing a first infection plays a
role on disease severity. Therefore, a disease enhancement feature,
parametrized by 𝜙, is considered. The parameter 𝜙 is a scaling factor
used to differentiate the baseline infectivity 𝛽 of primary infection with
respect to the infectivity 𝜙𝛽 of secondary infections. The value of 𝜙 can
e tuned to reflect different situations. A value of 𝜙 > 1 acts increasing

the infectivity of secondary infection, due to the level immunity created
by the primary infection, leading to asymptomatic/mild disease man-
ifestation, and hence higher mobility and possibility of interactions.
However, a value of 𝜙 < 1 indicates that individuals experiencing a
secondary severe infection will contribute less to the spread of the
infection. The last assumption is based on the ADE process, where
the pre-existing antibodies to a previous infection do not neutralize
but rather enhance the growth rate of the new viral strain, generating
severe symptoms, and hence leading to hospitalization, decreasing the
mobility and possibility of interactions. If 𝜙 = 1, there is no protection
nor enhancement, thus the secondary infected individuals transmit the

disease as much as individuals in its first infection.
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The flowchart of the minimalistic two infection dengue model is
shown in Fig. 1, and the complete system of ordinary differential
equations is given by
𝑑𝑆
𝑑𝑡

= −
𝛽
𝑁

𝑆(𝐼𝑃 + 𝜙𝐼𝑆 ) + 𝜇(𝑁 − 𝑆) (1a)
𝑑𝐼𝑃
𝑑𝑡

=
𝛽
𝑁

𝑆(𝐼𝑃 + 𝜙𝐼𝑆 ) − (𝛾 + 𝜇)𝐼𝑃 (1b)
𝑑𝑅𝑃
𝑑𝑡

= 𝛾𝐼𝑃 − (𝛼 + 𝜇)𝑅𝑃 (1c)
𝑑𝑆𝑃
𝑑𝑡

= −
𝛽
𝑁

𝑆𝑃 (𝐼𝑃 + 𝜙𝐼𝑆 ) + 𝛼𝑅𝑃 − 𝜇𝑆𝑃 (1d)
𝑑𝐼𝑆
𝑑𝑡

=
𝛽
𝑁

𝑆𝑃 (𝐼𝑃 + 𝜙𝐼𝑆 ) − (𝛾 + 𝜇)𝐼𝑆 (1e)
𝑑𝑅
𝑑𝑡

= 𝛾𝐼𝑆 − 𝜇𝑅 . (1f)

The dynamic of the model is described as follows. Susceptible (𝑆)
individuals become infected for the first time (𝐼𝑃 ) and transmit the
disease with infection rate 𝛽. They recover from the first infection (𝑅𝑃 ),
and after a period of temporary cross-immunity 𝛼, become susceptible
again (𝑆𝑃 ). Having experienced a previous dengue infection, individ-
uals can be infected for the second time (𝐼𝑆 ), transmitting the disease
with infection rate 𝜙𝛽. Susceptible individuals can acquire the infection
either from individuals in a primary or secondary infection, and hence,
the force of infection is given explicitly by 𝛽𝐼𝑃 + 𝜙𝛽𝐼𝑆 . Individuals in
a secondary infection recovers (𝑅) with recovery rate 𝛾.

For the sake of simplicity, we assume natural mortality and birth
rates to be equal for all individuals, independent of the disease state,
with the following dynamics for the total population 𝑑𝑁

𝑑𝑡 = 0 satisfied.
ith a constant population size 𝑁 = 𝑆 + 𝑆𝑃 + 𝑅𝑃 + 𝐼𝑃 + 𝐼𝑆 + 𝑅, the

dynamic for the recovered individuals is simple

𝑅 = 𝑁 − (𝑆 + 𝑆𝑃 + 𝑅𝑃 + 𝐼𝑃 + 𝐼𝑆 ),

and the Equation System (1) can be reduced to an equivalent five
dimensional system shown in Equation System (2)
𝑑𝑆
𝑑𝑡

= −
𝛽
𝑁

𝑆(𝐼𝑃 + 𝜙𝐼𝑆 ) + 𝜇(𝑁 − 𝑆) (2a)
𝑑𝐼𝑃
𝑑𝑡

=
𝛽
𝑁

𝑆(𝐼𝑃 + 𝜙𝐼𝑆 ) − (𝛾 + 𝜇)𝐼𝑃 (2b)
𝑑𝑅𝑃
𝑑𝑡

= 𝛾𝐼𝑃 − (𝛼 + 𝜇)𝑅𝑃 (2c)
𝑑𝑆𝑃
𝑑𝑡

= −
𝛽
𝑁

𝑆𝑃 (𝐼𝑃 + 𝜙𝐼𝑆 ) + 𝛼𝑅𝑃 − 𝜇𝑆𝑃 (2d)
𝑑𝐼𝑆
𝑑𝑡

=
𝛽
𝑁

𝑆𝑃 (𝐼𝑃 + 𝜙𝐼𝑆 ) − (𝛾 + 𝜇)𝐼𝑆 . (2e)

3. Equilibria and stability analysis of the system

The equilibria of the system are the solutions of the following
equations

0 = −
𝛽
𝑁

𝑆(𝐼𝑃 + 𝜙𝐼𝑆 ) + 𝜇(𝑁 − 𝑆) (3a)

= 𝜇(𝑁 − 𝑆) − (𝛾 + 𝜇)𝐼𝑃 (3b)

= 𝛾𝐼𝑃 − (𝛼 + 𝜇)𝑅𝑃 (3c)

0 = −
𝛽
𝑁

𝑆𝑃 (𝐼𝑃 + 𝜙𝐼𝑆 ) + 𝛼𝑅𝑃 − 𝜇𝑆𝑃 (3d)

= 𝛼𝑅𝑃 − 𝜇𝑆𝑃 − (𝛾 + 𝜇)𝐼𝑆 . (3e)

rom Eq. (3c), we have

𝑃 =
𝛾

𝛼 + 𝜇
𝐼𝑃 . (4)

rom Eq. (3b), we have

= 𝑁 −
(𝛾 + 𝜇)

𝐼𝑃 . (5)
3

𝜇

rom Eq. (3e), we have

𝑃 = 𝛼
𝜇
𝑅𝑃 −

(𝛾 + 𝜇)
𝜇

𝐼𝑆 (6)

=
𝛼𝛾

𝜇(𝛼 + 𝜇)
𝐼𝑃 −

(𝛾 + 𝜇)
𝜇

𝐼𝑆 . (7)

Furthermore, from Eqs. (3a) and (3d), results that
𝜇(𝑁 − 𝑆)

𝑆
=

𝛼𝑅𝑃 − 𝜇𝑆𝑃
𝑆𝑃

, (8)

and

𝑆𝑃 =
𝛼𝑅𝑃𝑆
𝜇𝑁

. (9)

For the equality 𝐼𝑆𝑆 = 𝐼𝑃𝑆𝑃 , the following result holds

𝐼𝑆 =
𝐼𝑃𝑆𝑃
𝑆

= 𝐼𝑃
𝛼𝑅𝑃
𝜇𝑁

= 𝐼2𝑃
𝛼
𝜇𝑁

𝛾
𝛼 + 𝜇

. (10)

Substituting the equality described in Eq. (10) in Eq. (3a), a cubic
polynomial in the variable 𝐼𝑃 is obtained. The roots are 𝐼𝑃 = 0, giving
the trivial Disease Free Equilibrium (DFE) solution 𝐸0 = (𝑁, 0, 0, 0, 0)𝑇 ,
nd, 𝐼𝑃 ≠ 0 are the roots of the following quadratic polynomial

(𝐼𝑃 ) =
𝜙𝛼𝛾
𝛼 + 𝜇

(𝛾+𝜇)𝐼2𝑃 +
(

𝛾 + 𝜇 −
𝜙𝛼𝛾
𝛼 + 𝜇

)

𝜇𝑁𝐼𝑃 −(𝜇𝑁)2
(

1 −
𝛾 + 𝜇
𝛽

)

.

(11)

By defining

𝜙̃ = 𝜙𝛾 𝛼
𝛼 + 𝜇

, 𝛾̃ = 𝛾 + 𝜇 ,

the solutions of the polynomial can be written as

𝐼𝑝(1,2) = (𝑝 ±
√

𝑞)𝜇𝑁 ,

where

𝑝 =
𝜙̃ − 𝛾̃
2𝜙̃𝛾̃

, 𝑞 = 𝑝2 + 1
𝜙̃𝛾̃

(

1 −
𝛾̃
𝛽

)

.

The endemic equilibrium is defined by

𝐸1

=
(

𝑁 −
(𝛾 + 𝜇)

𝜇
𝐼𝑃 , 𝐼𝑃 ,

𝛾
𝛼 + 𝜇

𝐼𝑃 ,
𝛼𝛾

𝜇(𝛼 + 𝜇)
𝐼𝑃 −

(𝛾 + 𝜇)
𝜇

𝐼𝑆 ,
𝛼
𝜇𝑁

𝛾
𝛼 + 𝜇

𝐼2
𝑃

)

,

(12)

where 𝐼𝑃1 and 𝐼𝑃2 are the solutions of the quadratic polynomial shown
in Eq. (11).

3.1. Basic reproduction number and epidemiological thresholds

The threshold of an epidemic is commonly referred in terms of the
basic reproduction number,

0,

defined as the average number of secondary cases generated from
a primary index case, during its infectiveness before recovering in
a completely susceptible population [19–23]. The basic reproduction
number 0 measures the transmission potential of a disease. If 0 > 1,
he number of disease cases will increase exponentially, such as at the
tart of an epidemic, and for 0 < 1, disease cases will decline towards
xtinction. While 0 = 1, the so called epidemic threshold, refers to
he disease endemic scenario, mathematically, 0 = 1 is the value
here the transcritical bifurcation occurs, i.e. the threshold value for

he stability and existence of the epidemiological endemic equilibrium.
The basic reproduction number of the Equation System (1) is de-

ived from the model parameters, giving by 0 = 𝛽
𝛾+𝜇 . Therefore, the

roots of the quadratic polynomial can be rewritten as

𝐼 = (𝑝 ±
√

𝑞)𝜇𝑁 , (13)
𝑝(1,2)
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where

𝑝 =
𝜙̃ − 𝛾̃
2𝜙̃𝛾̃

, 𝑞 = 𝑝2 + 1
𝜙̃𝛾̃

(

1 − 1
0

)

. (14)

The existence of equilibria of the model can be formalized as
follows.

Theorem 1. The system has always a disease free equilibrium, namely
𝐷0 = (𝑁, 0, 0, 0, 0, 0).

Theorem 2. If 0 > 1 the system has only one endemic equilibrium.

Proof. In fact, if 0 > 1, then 𝑞 > 0 and thus, 𝑝 <
√

𝑞. Therefore, it
follows that the unique positive root of the polynomial 𝑃 (𝐼𝑝) has only
one positive real root, that is

𝐼𝑃 = (𝑝 +
√

𝑞)𝜇𝑁 . (15)

From this, we prove that, if 0 > 1, only one endemic equilibrium
exists, and it is given by Eq. (12). □

Theorem 3. If 0 = 1, then a non-trivial endemic equilibrium exists if,
and only if, 𝜙 > 𝜙𝑐 =

𝛼+𝜇
𝛼

𝛾+𝜇
𝛾 .

roof. In fact, if 0 = 1, then 𝑞 > 0 and thus, 𝑝 =
√

𝑞. Therefore, it
follows that

𝐼𝑝1 = 0 and 𝐼𝑝2 = 2𝑝 =
𝜙̃ − 𝛾̃
𝜙𝛾̃

. (16)

This second root, 𝐼𝑝2 , is positive only if

𝜙𝛾𝛼
𝛼 + 𝜇

> 𝛾 + 𝜇, (17)

hat is, for

>
𝛼 + 𝜇
𝛼

𝛾 + 𝜇
𝛾

> 1 . □ (18)

heorem 4. If 𝑏 < 0 < 1, then the system has two non-trivial endemic
quilibria if, and only if, 𝜙 > 𝜙𝑐 > 1.

roof. In fact, if 0 < 1, then 𝑝 >
√

𝑞. Moreover, if 𝜙 < 𝜙𝑐 , 𝜙̃ − 𝛾̃ < 0.
hus, both roots of the polynomial will be negative.

On the other hand, if 𝜙 > 𝜙𝑐 , 𝜙̃− 𝛾̃ > 0. Thus, both roots will be real
nd positive if, and only if, 𝑞 > 0, that is, if

𝜙̃ − 𝛾̃)2 > 4𝜙̃𝛾̃(−1 + 1
0

) , (19)

nd thus, only if

0 > 4𝜙̃𝛾̃ − (𝜙̃ − 𝛾̃)2 =∶ 𝑏 . (20)

Therefore, the system will have two non-trivial endemic equilibria
hen 𝑏 < 0 < 1. □

The appearance of endemic equilibria at the transcritical bifurcation
0 = 1) characterizes the so called backward bifurcation. The mathe-
atical formalization of the backward bifurcation, sometimes referred

s subcritical bifurcation [21], will be formalized in the next section,
sing the center manifold theory.

emark 1. If 0 = 𝑏 = 4𝜙̃𝛾̃ − (𝜙̃ − 𝛾̃)2, that is, when

= 𝛽𝑐 =
𝛾̃

4𝜙̃𝛾̃ − (𝜙̃ − 𝛾̃)2
, (21)

he two positive equilibria collide. At this value occurs the so called
addle–node (tangent) bifurcation.

heorem 5. If 0 < 𝑏, then the system only has the disease free-
quilibrium.
4

roof. In fact, if 0 < 𝑏, then 𝑞 < 0. Therefore, it follows that the
solutions of the quadratic polynomial are conjugated complex roots. In
addition, only 𝐼𝑃 = 0 is a positive real solution for the cubic polynomial
and, therefore, for the system. □

The results proved in the theorems above are shown in Fig. 2.
Fig. 2(a) shows the case of 0 > 1 (with 𝛽 = 2𝛾), where the system
exhibits a unique positive endemic equilibrium for any value of 𝜙, as
described in Theorem 2. For the case of 𝑏 < 0 < 1 (with 𝛽 ≈
0.96𝛾), the system shows two positive endemic equilibria for 𝜙 > 𝜙𝑐 ,
as described in Theorem 4, see Fig. 2(b).

3.2. Characterization of the backward bifurcation

We consider the results established in Ref. [24], related to the
nature of the fixed point of the model, 𝑥 = 𝑥0, near to the transcritical
bifurcation point, when the reproduction number 0 = 1, i.e. when the
igenvalue of the Jacobian matrix, evaluated at the fixed point, is zero.

For convenience, we define 𝑆 = 𝑥1, 𝐼𝑃 = 𝑥2, 𝑅𝑃 = 𝑥3, 𝑆𝑃 = 𝑥4 and
𝐼𝑆 = 𝑥5, and let the vector 𝑥 be 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)𝑇 . The system (1)
is rewritten as

𝑥′1 = −
𝛽
𝑁

𝑥1(𝑥2 + 𝜙𝑥5) + 𝜇(𝑁 − 𝑥1) (22)

′
2 =

𝛽
𝑁

𝑥1(𝑥2 + 𝜙𝑥5) − (𝛾 + 𝜇)𝑥2 (23)

𝑥′3 = 𝛾𝑥2 − (𝛼 + 𝜇)𝑥3 (24)
′
4 = −

𝛽
𝑁

𝑥4(𝑥2 + 𝜙𝑥5) + 𝛼𝑥3 − 𝜇𝑥4 (25)

′
5 =

𝛽
𝑁

𝑥4(𝑥2 + 𝜙𝑥5) − (𝛾 + 𝜇)𝑥5 (26)

that is,
𝑑𝑥
𝑑𝑡

= (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5)𝑇 .

The theory in Ref. [24] considers a general ODE system
𝑑𝑥
𝑑𝑡

= 𝑓 (𝑥, 𝜆),

epending on the parameter 𝜆, such that 0 < 1 for 𝜆 < 0, and 0 > 1
for 𝜆 > 0. And

∶ R𝑛 × R → R𝑛, 𝑓 ∈ C2(R𝑛 × R),

here 𝑥0 is an equilibrium of the system (𝑓 (𝑥0, 𝜆) = 0, ∀𝜆). Moreover,

1. 𝐴 = 𝐷𝑥𝑓 (𝑥0, 0) =
(

𝜕𝑓𝑖
𝜕𝑥𝑗

(𝑥0, 0)
)

is the linearized matrix of the

system at the equilibrium 𝑥0, with 𝑓 evaluated at 𝜆 = 0.
2. Zero is a simple eigenvalue of 𝐴, while the other eigenvalues of

𝐴 have negative real parts.
3. Matrix 𝐴 has a right 𝑤 and a left 𝑣 eigenvectors corresponding

to the zero eigenvalues.

Considering the assumptions above, the nature of the endemic
quilibria near to the bifurcation point is determined by the sign of

=
𝑛
∑

𝑘,𝑖,𝑗=1
𝜈𝑘𝑤𝑖𝑤𝑗

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑥0, 0) , (27)

nd

=
𝑛
∑

𝑘,𝑖=1
𝜈𝑘𝑤𝑖

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝜆

(𝑥0, 0) , (28)

with 𝑓𝑘 being the 𝑘th component of 𝑓 , see Ref. [24].
We apply the results described above to the Equation System (3),

in which the Jacobian matrix at the disease-free equilibrium 𝑥 = 𝑥0 =
(𝑁, 0, 0, 0, 0) has a zero eigenvalue at 0 = 1, this is, when 𝛽 = 𝛾 + 𝜇 =
𝛽∗. The transmission rate 𝛽 is the chosen bifurcation parameter for this
analysis (since the value of  depends on this parameter).
0
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Fig. 2. Graphical presentation of the system’s equilibria (primary infected population 𝐼𝑃 ). For fixed parameter values shown in Table 1, the disease enhancement factor 𝜙 is
arying. In (a) 𝛽 = 2𝛾, i.e. 0 > 1. Note that the negative values in (a) are not considered as a solution of the system, since it does not a have biological meaning. In (b) 𝛽 ≈ 0.96𝛾,
.e., 0 < 1.
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The Jacobian matrix at 𝑥 = 𝑥0, with 𝛽 = 𝛽∗, is given by

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝜇 −𝛽∗ 0 0 −𝛽∗𝜙
0 0 0 0 𝛽∗𝜙
0 𝛾 −𝛼 − 𝜇 0 0
0 0 𝛼 −𝜇 0
0 0 0 0 −𝛽∗

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (29)

The matrix 𝐴 has a right eigenvector (corresponding to the zero
igenvalue), given by 𝑤 = (𝑤1 𝑤2 𝑤3 𝑤4 𝑤5)𝑇 , where

=
(

−𝛽
𝜇 𝑤2,

𝛼+𝜇
𝛾 𝑤3, 𝑤3,

𝛼
𝜇𝑤3, 0

)𝑇

=
(

−𝛽
𝜇 ( 𝛼+𝜇𝛾 ), 𝛼+𝜇

𝛾 , 1, 𝛼
𝜇 , 0

)𝑇
.

The matrix 𝐴 has a left eigenvector (corresponding to the zero
igenvalue), given by 𝑣 = (𝑣1 𝑣2 𝑣3 𝑣4 𝑣5), where

𝑣 =
(

0, 𝛾+𝜇
𝛽𝜙 , 0, 0, 1

)

.

Therefore, in this case,

𝑎 =𝑣2
𝑛
∑

𝑖,𝑗=1
𝑤𝑖𝑤𝑗

𝜕2𝑓2
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑥0, 𝛽∗) + 𝑣5
𝑛
∑

𝑖,𝑗=1
𝑤𝑖𝑤𝑗

𝜕2𝑓5
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑥0, 𝛽∗)

=𝑣2

(

𝑤1𝑤2
𝛽
𝑁

+𝑤2𝑤1
𝛽
𝑁

)

+ 𝑣5

(

𝑤2𝑤4
𝛽
𝑁

+𝑤4𝑤2
𝛽
𝑁

)

=2
𝛽
𝑁

𝑤2(𝑤1𝑣2 +𝑤4𝑣5) ,

nd thus,

= 2
𝛽
𝑁

𝛼 + 𝜇
𝛾

(

−𝛽
𝜇

(𝛼 + 𝜇)
𝛾

(𝛾 + 𝜇)
𝛽𝜙

+ 𝛼
𝜇

)

. (30)

For the computation of 𝑏, we have

𝑏 =𝑣2
𝑛
∑

𝑖=1
𝑤𝑖

𝜕2𝑓2
𝜕𝑥𝑖𝜕𝛽

(𝑥0, 𝛽∗) + 𝑣5
𝑛
∑

𝑖=1
𝑤𝑖

𝜕2𝑓5
𝜕𝑥𝑖𝜕𝛽

(𝑥0, 𝛽∗)

=𝑣2𝑤2 .

Since, 𝑣2 and 𝑤2 are positive, 𝑏 is always positive. Moreover, the
ign of 𝑎 follow these inequalities:

< 0 if and only if 𝜙 <
(𝛼 + 𝜇)(𝛾 + 𝜇)

𝛾𝛼
(31)

> 0 if and only if 𝜙 >
(𝛼 + 𝜇)(𝛾 + 𝜇)

𝛾𝛼
, (32)

establishing the result described in Ref. [24], and formalized below in
Theorem 6.

Theorem 6. The system exhibits a backward bifurcation at 0 = 1 if, and
only if, 𝜙 > 𝜙𝑐 =

(𝛼+𝜇)(𝛾+𝜇)
𝛾𝛼 .

Results of Theorem 6 are shown in Fig. 3. While for 𝜙 < 𝜙𝑐 , the
transcritical bifurcation occurs at 0 = 1, see Fig. 3(a), the backward
bifurcation occurs for 𝜙 > 𝜙 , see Fig. 3(b).
5

𝑐

4. Stability of the epidemiological equilibria

The stability of equilibria of the Ordinary Differential Equation
(ODE) System (1) will be analyzed via the classical linearization theory.
The Jacobian matrix, at a point 𝐸 = (𝑆, 𝐼𝑃 , 𝑅𝑃 , 𝑆𝑃 , 𝐼𝑆 ), is given by

J(E)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− 𝛽(𝐼𝑆𝜙+𝐼𝑃 )
𝑁

− 𝜇 − 𝛽𝑆
𝑁

0 0 − 𝛽𝑆𝜙
𝑁

𝛽(𝐼𝑆𝜙+𝐼𝑃 )
𝑁

𝛽𝑆
𝑁

− (𝛾 + 𝜇) 0 0 𝛽𝑆𝜙
𝑁

0 𝛾 −𝛼 − 𝜇 0 0
0 − 𝛽𝑆𝑃

𝑁
𝛼 − 𝛽(𝐼𝑆𝜙+𝐼𝑃 )

𝑁
− 𝜇 − 𝛽𝑆𝑃 𝜙

𝑁
0 𝛽𝑆𝑃

𝑁
0 𝛽(𝐼𝑆𝜙+𝐼𝑃 )

𝑁
𝛽𝑆𝑃 𝜙
𝑁

− (𝛾 + 𝜇)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(33)

.1. Stability of Disease Free Equilibrium (DFE)

heorem 7. If 0 < 1, then the disease free is asymptotically stable. And
t is unstable when 0 > 1.

roof. The stability of the disease-free equilibrium 𝐸0 = (𝑁, 0, 0, 0, 0)
ill be given by the eigenvalues of Jacobian matrix evaluated at 𝐸0:

(E0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝜇 −𝛽 0 0 −𝛽𝜙
0 𝛽 − (𝛾 + 𝜇) 0 0 𝛽𝜙
0 𝛾 −𝛼 − 𝜇 0 0
0 0 𝛼 −𝜇 0
0 0 0 0 −(𝛾 + 𝜇)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (34)

The eigenvalues of the Jacobian matrix 𝐽 (𝐸0) given in Eq. (34) are
iven by

1 = −𝜇

2 = −(𝛾 + 𝜇)(1 −0)

3 = −(𝛼 + 𝜇)

4 = −𝜇

5 = −(𝛾 + 𝜇),

ith all the eigenvalues being negative, except for 𝜆2. However, if
0 < 1, then 𝛽 − (𝛾 + 𝜇) < 0, and all the eigenvalues are negative. □

.2. Stability of Disease Endemic Equilibrium (DEE)

The stability of the DEE will be given by the eigenvalues of Jacobian
atrix evaluated at 𝐸1.

heorem 8. The endemic equilibrium

1 =
(

𝑁 −
(𝛾 + 𝜇)

𝜇
𝐼𝑃 , 𝐼𝑃 ,

𝛾
𝛼 + 𝜇

𝐼𝑃 ,
𝛼𝛾

𝜇(𝛼 + 𝜇)
𝐼𝑃

−
(𝛾 + 𝜇)

(

𝛼 𝛾
)

𝐼2 , 𝛼 𝛾
𝐼2

)

𝜇 𝜇𝑁 𝛼 + 𝜇 𝑃 𝜇𝑁 𝛼 + 𝜇 𝑃
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Fig. 3. Graphical presentation for the system’s equilibria (infected population 𝐼𝑃 ) when 0 is varying. For fixed parameter values shown in Table 1, the infection rate parameter 𝛽
s varying. In (a) 𝜙 = 0.6 < 𝜙𝑐 , and in (b) 𝜙 = 1.5 > 𝜙𝑐 . The black line represents the disease free equilibrium and the blue and orange lines represent the endemic equilibrium. Note

that in (b) while the blue line represents the upper branch of the endemic equilibrium, the orange line represents the lower branch of the endemic equilibrium. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
is locally asymptotically stable if the coefficients of the characteristic poly-
nomial satisfies the Routh–Hurwitz criteria (see Appendix A), otherwise it
is unstable.

Proof. The Jacobian matrix evaluated at 𝐸1 is given by

J(E1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝑎11 −𝑎12 0 0 −𝑎15
𝑎21 𝑎22 0 0 𝑎25
0 𝛾 −𝛼 − 𝜇 0 0
0 −𝑎42 𝛼 −𝑎44 −𝑎45
0 𝑎52 0 𝑎54 𝑎55

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (35)

where

𝑎11 =
𝛽(𝐼𝑠𝜙 + 𝐼𝑃 )

𝑁
− 𝜇, 𝑎12 =

𝛽𝑆
𝑁

, 𝑎15 =
𝛽𝑆𝜙
𝑁

𝑎21 =
𝛽(𝐼𝑆𝜙 + 𝐼𝑃 )

𝑁
, 𝑎22 =

𝛽𝑆
𝑁

− 𝛾 − 𝜇, 𝑎25 =
𝛽𝑆𝜙
𝑁

,

𝑎42 =
𝛽𝑆𝑃
𝑁

, 𝑎44 =
𝛽(𝐼𝑆𝜙 + 𝐼𝑃 )

𝑁
− 𝜇

45 =
𝛽𝑆𝑃𝜙
𝑁

, 𝑎52 =
𝛽𝑆𝑃
𝑁

, 𝑎54 =
𝛽(𝐼𝑆𝜙 + 𝐼𝑃 )

𝑁
, 𝑎55 =

𝛽𝑆𝑃𝜙
𝑁

− 𝛾 − 𝜇.

Therefore, the characteristic polynomial is given by

(𝜆) = 𝜆5 + 𝐺1𝜆
4 + 𝐺2𝜆

3 + 𝐺3𝜆
2 + 𝐺4𝜆 + 𝐺5, (36)

where the coefficients are

𝐺1 = 𝑎22 − 𝑎11 + 𝑎55 − 𝑎44 − 𝛼 − 𝜇

𝐺2 = 𝑎55(𝑎44 + 𝛼 + 𝜇) − 𝑎44(𝛼 + 𝜇) − 𝑎54𝑎45
− (𝑎22 − 𝑎11)(𝑎55 − 𝑎44 − 𝛼 − 𝜇)

+ 𝑎11𝑎22 − 𝑎21𝑎12
𝐺3 = (𝛼 + 𝜇)(𝑎55𝑎44 − 𝑎45𝑎54) − (𝑎55 − 𝑎44 − 𝛼 − 𝜇)𝑎11𝑎22 + 𝑎25𝑎55(𝛾 − 𝑎42)

− [𝑎55(𝑎44 + 𝛼 + 𝜇) − 𝑎44(𝛼 + 𝜇) − 𝑎54𝑎45](𝑎22 − 𝑎11)

+ (𝑎55 − 𝑎44 − 𝛼 − 𝜇)𝑎21𝑎12
𝐺4 = [𝑎55(𝑎44 + 𝛼 + 𝜇) − 𝑎44(𝛼 + 𝜇) − 𝑎54𝑎45](𝑎22𝑎11 + 𝑎21𝑎12)

+ (𝛼 + 𝜇)(𝑎55𝑎44 − 𝑎45𝑎54)(𝑎22 − 𝑎11)

+ 𝑎54𝑎25[𝛾𝛼 + 𝛾𝑎44 − 𝑎42(𝛼 + 𝜇)] + 𝑎54𝑎25[𝑎54(𝛾 − 𝑎42)𝑎11]

− 𝑎54(𝛾 − 𝑎42)𝑎21𝑎15
𝐺5 = (𝛼 + 𝜇)(𝑎55𝑎44 − 𝑎45𝑎54)(𝑎22𝑎11 + 𝑎12𝑎21)

+ 𝑎54[𝛾𝛼 + 𝛾𝑎44 − 𝑎42(𝛼 + 𝜇)](𝑎11𝑎25 − 𝑎21𝑎15) .

Using the Routh–Hurwitz criteria, 𝑄(𝜆) will either have negative
roots or roots with a negative real part if, and only if, 𝑑𝑒𝑡𝐻𝑖 > 0,
with 𝑖 = 1, 2, 3, 4, 5. The Routh–Hurwitz criteria are reduced into the
6

Table 1
Baseline parameter values used for simulations. The parameter values were obtained
from Refs. [3,4,14]. Note that in the following, parameters values are giving without
stating explicitly the biological units, e.g, 𝛼 = 2 =∶ 𝛼 = 2𝑦−1. That holds for the following
parameters: 𝜇, 𝛾, 𝛼 and 𝛽.

Parameter Description Values Unity

𝑁 Population size 100
𝜇 Birth and death rates 1∕65 y−1

𝛾 Recovery rate 52 y−1

𝛼 Temporary immunity period 2 y−1

𝛽 = 𝛽0 Infection rate 104 y−1

𝜙 Ratio of secondary infections contribution 2.6
to the overall force of infection

following conditions

𝐺𝑖 > 0, 𝑖 = 1, 2, 3, 4, 5 (37)

𝐺1𝐺2𝐺3 > 𝐺2
3 + 𝐺2

1𝐺4 (38)

(𝐺1𝐺4 − 𝐺5)(𝐺1𝐺2𝐺3 − 𝐺2
3 − 𝐺2

1𝐺4) > 𝐺5(𝐺1𝐺2 − 𝐺3)2 + 𝐺1𝐺
2
5 , (39)

and if these three conditions are satisfied, then 𝐸1 is stable. The
Routh–Hurwitz criteria and the definition of matrix 𝐻𝑖 can be found
in Appendix A of this manuscript. □

The conditions described in Theorem 8 are complex analytical
expressions of the model parameters. Hopf bifurcation could be found,
however to give the analytical conditions are even more difficult. In-
stead, we use numerical methods to identify more complex bifurcations
structures as presented in the next section.

5. Numerical experiments

Using the baseline parameter values shown in Table 1, numerical
simulations are performed with the software AUTO [25,26], MAT-
CONT [27], Matlab [28], and Wolfram Mathematica [29].

5.1. Numerical bifurcation analysis

A detailed numerical bifurcation analysis is performed using the
software AUTO and MATCONT. Fig. 4 shows the 2-Dimensional (2D)
bifurcation diagrams for different values of temporary immunity 𝛼. Two
important biological parameters, the infection rate 𝛽 and the disease
enhancement factor 𝜙 are varied.

The 2D bifurcation diagram for 𝛼 = 52 is shown in Fig. 4(a). In this
scenario, the temporary immunity period is very short, lasting only 7
days. The assumption of having the immunity period to last as long as
the recovery period means, biologically, that infected individuals are

able to acquire a second infection soon after they recover from the
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Fig. 4. 2D bifurcation diagram. Two biological parameters are varied, the infection rate parameter 𝛽, and the disease enhancement parameter 𝜙. In (a) 𝛼 = 52, in (b) 𝛼 = 2
and in (c) 𝛼 = 0.5. The other parameters values are fixed as shown in Table 1. Tangent 𝑇 , Transcritical 𝑇𝐶, and Hopf 𝐻 bifurcation curves are shown in blue, red and purple,
respectively. 𝐸0 and 𝐸1 represents the stable DFE and DEE, respectively, and 𝐿1 the stable limit cycle. 𝐶𝑃 , 𝐵𝑇 and 𝐵 refers to the cusp, Bogdanov–Takens and Bautin bifurcation
points, respectively. For bifurcation definitions, see Table 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
primary infection. In that case, the transcritical bifurcation occurs at
0 = 1, for 𝜙 < 1. If disease enhancement is not considered, a backward
bifurcation does not occur, and therefore, only the DFE is observed for
0 < 1.

A backward bifurcation occurs if, and only if, 𝜙 > 𝜙𝑐 > 1. The Hopf
bifurcation occurs after the transcritical bifurcation, with the endemic
equilibria becoming unstable after the 𝐻 point. In this case of short
immunity scenario, periodic solutions (limit cycles) are observed for
higher force of infection and higher disease enhancement factor, i.e.,
when the contribution of secondary infection to the overall force of
infection is much higher than the contribution of primary infections.

The 2D bifurcation diagram for 𝛼 = 2 is shown in Fig. 4(b). In
this scenario, the temporary immunity period is longer, lasting for 6
months, as proposed in Refs. [3,14]. Here, after recovering from a
primary infection, individuals are protected against a new infection
for at least 6 months. Note that, biologically, it would be unlikely
to observe secondary dengue infections occurring at a spacing of less
than a year, since, besides the temporary immunity period, the disease
transmission is highly seasonal. Similarly as described for the case
of 𝛼 = 52, backward bifurcation occurs if, and only if, 𝜙 > 𝜙𝑐 >
1. However, although the Hopf bifurcation curve also appears after
the transcritical bifurcation, in this scenario the endemic equilibria
becomes stable (instead of being unstable as observed for the scenario
of 𝛼 = 52) after 𝐻 point.

Finally, we present the results for an even longer temporary immu-
nity period, which is biologically closely related to dengue epidemiol-
ogy, 𝛼 = 0.5. In this scenario, after recovering from a primary infection,
individuals are protected against a new infection for at least 2 years.
The Hopf bifurcation curve appears before the transcritical bifurcation,
7

see Fig. 4(c). Bi-stability is observed when the backward bifurcation
occurs, with a stable upper branch after the 𝐻 bifurcation curve. The
endemic equilibrium is stable for a small set of parameters, delimited
by the Hopf (purple line) and transcritical (red line) bifurcation curves,
and hence, both the DFE and the endemic equilibrium are stable before
the epidemiological threshold of 0 = 1. That means that disease will
persist even in the subcritical regime of disease transmission, when
0 < 1.

As a complementary analysis, we calculate numerically the eigen-
values of each endemic equilibrium, plotting the real part of the eigen-
value in function of the infection rate 𝛽. The real part of eigenvalues
for each endemic equilibrium, using the same color code as presented
in Fig. 3(b), are shown in Fig. 5.

For the scenario of 𝛼 = 52, see Fig. 5(a), the positive endemic
equilibria is always unstable after the Hopf 𝐻 bifurcation (blue line),
which is the opposite dynamics as the dynamics observed for the other
two scenarios of longer temporary immunity, 𝛼 = 0.5 and 𝛼 = 2. In
addition, a Bautin 𝐵 bifurcation point occurs at 𝛽 ≈ 78, i.e. 0 = 1.5,
see Fig. 4(a), with a supercritical Hopf bifurcation 𝐻+ identified before
the 𝐵 critical point. In agreement with the results shown in Fig. 5(a),
a stable limit cycle is identified near to the unstable equilibrium.

For the scenario of 𝛼 = 2, see Fig. 5(b), the Hopf bifurcation 𝐻
occurs after the transcritical 𝑇𝐶 bifurcation, with a unique endemic
equilibrium (upper branch) changing stability, from unstable to stable
(see blue line).

Bi-stability occurs only for the scenario of 𝛼 = 0.5, see Fig. 5(c).
Here, the backward bifurcation occurs with two positive endemic
branches. While the lower branch is always unstable (see orange line),
the upper branch changes stability at 𝛽 ≈ 49, from unstable to stable
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Fig. 5. The real part of the eigenvalues for the upper (blue line) and lower (orange line) branches of the endemic equilibria are shown for different temporary immunity (𝛼)
period. In (a) 𝛼 = 52, in (b) 𝛼 = 2, and in (c) 𝛼 = 0.5. The disease enhancement parameter is fixed to 𝜙 = 2.6 and the infection rate 𝛽 and, consequently, the 0 are varied. Note
that close to the critical point, for 𝛽 = 52, i.e. 0 > 1, only the upper branch of the endemic equilibrium is positive, and hence, only the eigenvalues shown in the blue line are
taken into account to discuss the stability of the equilibrium. The eigenvalues were obtained using the software Wolfram Mathematica. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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after undergoing through the Hopf 𝐻 bifurcation that occurs before
transcritical bifurcation (see blue line).

5.2. Long time behavior of the solutions close to the transcritical bifurcation

To show the asymptotic behavior of the solutions of the system close
to the transcritical bifurcation, and in agreement with the numerical
results presented in Section 5.1, time series simulations are shown in
Figs. 6–8. For time series simulations close to the bifurcation points see
Appendix B. The three scenarios of temporary immunity are evaluated
for varying values of 𝛽 close to the transcritical bifurcation point
(occurring at 𝛽 = 52.015, i.e., for 0 = 1). The numerical simula-
tions were perform with the Runge–Kutta method in Matlab software,
considering a very small time step (𝛥𝑡 = 0.001). Using the parameter
values shown in Table 1, the following initial conditions were used:
𝐼𝑡𝑜 = [𝑆0, 𝐼𝑃0 , 𝑅𝑃0 , 𝑆𝑃0 , 𝐼𝑆0

, 𝑅0] = [45.7, 1.63, 0.01, 24.07, 0.08, 28.51].2
Fig. 6 shows the dynamical behavior obtained when temporary

immunity is very short, 𝛼 = 52. In agreement with Figs. 4(a) and 5(a),
the following dynamics are observed. For 𝛽 = 𝛾 = 52, i.e. just before
the transcritical 𝑇𝐶 bifurcation point, the solution converges to the
disease free equilibrium, see Fig. 6(a). For 𝛽 = 53, the solution oscillates
with very long period length, agreeing well with the observation of the
global homoclinic bifurcation, see Fig. 6(b). Finally, for 𝛽 = 54, i.e. after
the Hopf 𝐻 bifurcation point, the endemic equilibrium is unstable, and
periodic solutions are observed, see Fig. 6(c). In this case, one can
conclude that the Hopf bifurcation is supercritical (𝐻+), and the limit
cycle is stable, before Bautin bifurcation.

2 Numerical simulations can be also obtained with the ODE45 method from
atlab, however, the positiveness constraint is necessary to be included in

rder to generate results agreeing with the analytical calculations. The system
s positive invariant in the first quadrant, and the solutions need to be positive
or biological meaning.
8

Fig. 7 shows the dynamical behavior obtained when temporary
mmunity is intermediate, 𝛼 = 2. In agreement with Figs. 4(b) and

5(b), the following dynamics are observed. For 𝛽 = 𝛾 = 52, i.e. just
before 𝑇𝐶 point, the solution converges to the disease free equilibrium,
see Fig. 7(a). For 𝛽 = 53, i.e., close to the 𝐻 and after the 𝑇𝐶
bifurcation curves, the solution oscillates and converges to a limit cycle,
see Fig. 7(b). Finally, for 𝛽 = 54, after the 𝐻 bifurcation curve, the
endemic equilibrium is stable, see Fig. 7(c). In this case, similarly to
the case of 𝛼 = 52, the Hopf bifurcation is supercritical and the limit
ycle is stable, since the solution is periodic for values which are very
lose to 𝐻 , see Fig. 7(b).

Fig. 8 shows the dynamical behavior obtained for a longer immunity
eriod, 𝛼 = 0.5. In agreement with Fig. 4(c) and Fig. 5(c), the following
ynamics are observed. For 𝛽 = 𝛾 = 48, i.e. before the 𝐻 curve, the
olution oscillates and rapidly decreases, converging to the disease free
quilibrium, see Fig. 8(a). For 𝛽 = 51, i.e., immediately after 𝐻 point,
nd still before 𝑇𝐶, the solution converges to the endemic equilibrium,
hich is stable, see Fig. 8(b). Here, for the case of 𝑅0 < 1, the endemic
quilibrium is stable together with the disease-free equilibrium, and
hus, bi-stability occurs, see Figs. 8(b) and 5(c). Finally, for 𝛽 =
53, i.e., after the 𝑇𝐶, we observe a stable endemic equilibrium, see
Fig. 8(c). In this case, one can conclude that the Hopf bifurcation
is subcritical (𝐻−), and the limit cycle is unstable, with oscillations
occurring but not kept for longer, converging to the stable DFE, see
Fig. 8(a).

6. Deterministic chaos in the simple epidemiological model

Despite incorporation of TCI in rather complicated models, the
ADE effect would often been assumed to increase the transmissibility
or susceptibility of individuals experiencing secondary infections [16,
17,30–33]. Conversely, the modeling framework proposed by Aguiar
et al. see e.g., Refs. [14,15,34], has assumed the ADE effect to rather
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Fig. 6. Times series for fixed 𝛼 = 52, 𝜙 = 2.6, and different 𝛽 values close to the transcritical bifurcation point 𝑇𝐶, i.e., for 0 ≈ 1. In (a) 𝛽 = 52, in (b) 𝛽 = 53 and in (c) 𝛽 = 54.
Fig. 7. Times series for fixed 𝛼 = 2, 𝜙 = 2.6, and different 𝛽 values close to 𝑇𝐶 point. In (a) 𝛽 = 52, in (b) 𝛽 = 53 and in (c) 𝛽 = 54.
Fig. 8. Times series for fixed 𝛼 = 0.5, 𝜙 = 2.6, and different 𝛽 values close to the 𝑇𝐶 point. In (a) 𝛽 = 48, in (b) 𝛽 = 51 and in (c) 𝛽 = 53.
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reduce the transmissibility of individuals experiencing secondary in-
fection, due to hospitalization of severe cases. With the constraint of
secondary infection only possible to occur with a different serotype to
the one causing the primary infection, the TCI was introduced through
additional compartments for individuals recovering from a primary
infection, becoming susceptible again after a short cross-immunity
period. The combination of TCI period and ADE has shown, for the
first time, a new chaotic window in an unexpected and much wider
parameter regions [3]. This finding indicates that deterministic chaos
is much more important in epidemiological models than previously
thought. The addition of seasonality into this basic two-strain model,
a cosine function included in the force of infection to mimic the
fluctuations in mosquito population, led to a successful description of
the empirical outbreak data [14], able to evaluate the impact of newly
licensed dengue vaccine administration [35].

In this work, we study the dynamical behavior of simple two-
infection SIR–SIR type model, a minimalistic version of the model
proposed in Ref. [3], showing that, without seasonality, the combina-
tion of temporary immunity and disease enhancement generates a rich
dynamical behavior, with several bifurcation structures being identi-
fied. In addition, the transcritical 𝑇𝐶 and the Hopf 𝐻 bifurcations,
tangent (saddle–node) 𝑇 , global homoclinic 𝐺, Bogdanov–Takens 𝐵𝑇 ,
cusp 𝐶𝑃 , and Bautin 𝐵 bifurcations were found, see Table 2.

Chaotic behavior is observed when seasonal forcing is included into
the System (1), simply by adding a cosine function into the transmission
9

rate 𝛽 parameter, 𝛽 = 𝛽(𝑡) = 𝛽0(1 + 𝜂𝑐𝑜𝑠(𝜔𝑡)), as proposed in Ref. [14]
o mimic the fluctuations in mosquito population.

Times series and phase space plots for the non seasonal and the
easonal SIR–SIR model are shown in Figs. 9 and 10, respectively. With
ixed disease enhancement 𝜙 = 2.6, the dynamics for different values
f temporary immunity 𝛼 is compared.

For the non seasonal model, i.e., for 𝛽 = 104 = 2𝛾 (0 ≈ 2,
as suggested in Ref. [3,14]), limit cycle are only observed for short
immunity period, 𝛼 = 52, when high disease enhancement is assumed
(𝜙 = 2.6), see Fig. 9(a), while for an intermediate and a long immunity
periods, 𝛼 = 2 and 𝛼 = 0.5, respectively, fixed point is the final solution,
see Figs. 9 (b), (c) and (d). The addition of seasonality into the model,
i.e., for 𝛽 = 𝛽0 = 104 = 2𝛾, shows irregular oscillations reassembling
chaotic dynamics for higher disease enhancement, 𝜙 ≫ 1. Note that
chaotic behavior is observed for a short immunity period (𝛼 = 52), as
well as for the long immunity period (𝛼 = 0.5) and high enhancement
factor 𝜙 = 5, see Figs. 10 (a) and (d). For an intermediate immunity
period (𝛼 = 2) only periodic oscillations are observed, see Figs. 10 (b)
and (c).

In addition, bifurcation diagrams for the non seasonal and the
seasonal models are compared, see Figs. 11, 12, and 13, for the three
scenarios of temporary immunity period. By fixing 0 = 2 (i.e. 𝛽 = 104),
the disease enhancement factor 𝜙 is the bifurcation parameter. Chaotic
behavior is confirmed by the Lyapunov exponents calculation, and only
identified to occur when seasonality is incorporated into the system.
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Table 2
List of bifurcation structures identified in the two-infection SIR dengue model shown in Equation System (1).

Representation Bifurcation Codima Description

TC Transcritical 1 One zero eigenvalue,
exchange of stability between two equilibria (DFE and DEE)

T Tangent 1 One zero eigenvalue, collision of two equilibria (DEE)
H Hopf 1 Pair of conjugated complex eigenvalues with zero real part,

equilibrium (DEE) becomes unstable, origin of limit cycle
G Global homoclinic 1 Disappearance of limit cycle, collision with equilibrium
BT Bogdanov–Takens 2 Equilibrium has two zero eigenvalues
CP Cusp 2 Equilibrium (DFE) one simple zero eigenvalue

transcritical bifurcation changes criticality
B Bautin 2 Hopf bifurcation changes criticality (from supercritical

to subcritical), origin of tangent to limit cycle

aThe co-dimension (codim) of a bifurcation refers to the number of parameters which must be varied for the bifurcation to occur.
c
t

w
H

For the non seasonal system, a Hopf bifurcation occurs when short
mmunity period and high disease enhancement is assumed, while for
he intermediate and long immunity periods, fixed point is observed,
ee Fig. 11. Note that, the addition of the seasonal term transform
he autonomous ODE (AODE) system into a non-autonomous system
NODE), with both, the trajectory and the stability concepts been time
ependent [37].

Regarding the calculation of the spectrum of Lyapunov exponents,
hile the AODE system has a zero Lyapunov exponent, for the NODE

ystem, the zero Lyapunov exponent of the limit cycle does not gener-
lly occur, since it is in the seasonal forcing. The classical interpretation
f dynamical attractors from Lyapunov spectra for forced as for un-
orced systems is equal when using the Hopf-oscillator-subsystem for
he forcing, with the benefit that we have an autonomous system with
he limit cycle showing the zero Lyapunov exponent. In the current
on-autonomous system, the classification of the dynamical attractors
re given as follows: limit cycles having negative dominant nontrivial
yapunov exponent, torus having zero dominant non-trivial Lyapunov
xponent and chaotic attractors having positive dominant non-trivial
yapunov exponent [3,36].

For the seasonal model, i.e., non-autonomous system, chaotic be-
avior is found for both, short immunity period (𝛼 = 52), see Fig. 12(a)
nd (c), and long immunity period (𝛼 = 0.5), see Fig. 13, but always
estricted to a high disease enhancement factor of 𝜙 > 1. For an
ntermediate immunity period (𝛼 = 2), only the limit cycle from the
easonal forcing is appearing in the relevant parameter region, see see
ig. 12(b) and (d).

. Discussion and conclusions

The development of mathematical tolls to guide public health au-
horities for disease prevention and control in different epidemiological
cenarios is a major challenge. Consideration of the intrinsic dynamical
ehavior and the limitations of the so far existing modeling frame-
orks are crucial for the successful interpretation of the results. How-
ver, modeling insights for epidemiological scenarios characterized by
omplex dynamics are still to be described.

In this paper, we study a two infection SIR–SIR model, motivated
y dengue epidemiology, the minimalistic version of the model pro-
osed by Aguiar et al. in Refs. [3,14], in which deterministic chaos
as found in wider parameter regions. Without considering strain

tructure of pathogens, our model captures differences between pri-
ary and secondary infections, and includes two important biological

eatures, the temporary immunity after a primary infection, analo-
ous to the well-known temporary cross-immunity period described
n dengue epidemiology, and disease enhancement in subsequent in-
ections, analogous to the ADE effect occurring in secondary dengue
nfections.

Although the complexity of these models is dependent on the num-
er of components and the temporal resolution, the mechanisms de-
cribed by Aguiar et al. [3,4,14,18] are likely to be present in other
10
diseases caused by multiple strains where complex dynamics can even-
tually be observed in a more simple framework. The extent of biological
mechanisms generating complex behavior in simple epidemiological
models is still unexplored.

Aiming to investigate to what extent the well known biological
features of dengue epidemiology, TCI and ADE, are needed to generate
complex dynamics in simple epidemiological models, without the addi-
tion of external forces such as seasonality. Three scenarios of temporary
immunity occurring after primary infection are investigated, consider-
ing short, medium and long immunity periods, combined with different
values of the disease enhancement factor on secondary infections.

Differently from the simple SIR model that only exhibits a super-
critical transcritical bifurcation (in epidemiology the so called forward
bifurcation), the simple SIR–SIR type model proposed here exhibits a
rich dynamical behavior, with different bifurcations structures leading
to solutions that converges to DFE, or to the unique positive en-
demic equilibria, or to the stable limit cycles due to the occurrence
of Hopf bifurcation and Global homoclinic bifurcation. Also, backward
bifurcation was showed, displaying a bi-stability in a small parameter
region. In addition, several bifurcation structures are identified, in-
cluding Bogdanov–Takens, cusp and Bautin bifurcations described for
the first time in simple models that incorporated intrinsic features of
dengue epidemiology.

In detail, for a short immunity period (𝛼 = 52), the Hopf bifurcation
occurs after transcritical bifurcation, changing stability of the endemic
equilibria, from stable to unstable. Higher values of enhancement factor
lead to unstable endemic equilibria, with solutions converging to a
stable limit cycle generated by Hopf bifurcation. Backward bifurcation
occurs if, and only if, 𝜙 > 𝜙𝑐 > 1.

For an intermediate temporary immunity period (𝛼 = 2), backward
bifurcation occurs if, and only if, 𝜙 > 𝜙𝑐 > 1. The Hopf bifurcation
urve appears after transcritical bifurcation, however, in this scenario,
he endemic equilibrium becomes stable after 𝐻 point.

For a longer temporary immunity period, bi-stability is observed,
ith the Hopf bifurcation occurring before transcritical bifurcation.
ere, the endemic equilibria that exists also for smaller values of 0

change from unstable to stable in a small set of parameters values
where the reproduction number is below 1. Here, long temporary
immunity period challenges the control of disease transmission, since
even for a subcritical regime of 0 < 1, the disease would persist.
Real life epidemiological scenario related to the mathematical feature
of backward bifurcation has been recently described for tuberculosis
reinfection dynamics, see e.g. Refs. [38–40].

Tangent (saddle–node), Hopf, and global homoclinic bifurcations
were identified, and its occurrence are dependent on the force of in-
fection and immunity period. Tangent bifurcation curves are observed
for enhancement factors greater than 𝜙𝑐 > 1. Hopf bifurcation occurs
before or after 0 = 1, depending exclusively on the temporary
immunity period. However, by fixing the immunity period, the critical
bifurcation point will depend on the enhancement factor value. The

global homoclinic bifurcation is always found close to the transcritical
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Fig. 9. Times series and phase space plots for the non seasonal SIR–SIR model. With fixed 𝛽 = 104 = 2𝛾, the dynamics for different values of temporary immunity 𝛼 are shown.
In (a) and (e), short immunity period (𝛼 = 52), in (b) and (f), intermediate immunity period (𝛼 = 2), and in (c), (d), (g) and (h), long immune period (𝛼 = 0.5). 2000 years of
transient are discarded, and the initial conditions are 𝐼𝑡𝑜 = [𝑆0 , 𝐼𝑃0

, 𝑅𝑃0
, 𝑆𝑃0

, 𝐼𝑆0
, 𝑅0] = [45.7, 1.63, 0.01, 24.07, 0.08, 28.51].
curve, for small values of force of infection, having periodic solutions
with very long period lengths and eventually leading to extinction of
the disease.

In this minimalist system, chaotic dynamics is only identified after
the inclusion of seasonal forcing. However, the combination of tempo-
rary immunity and disease enhancement factor play an important role
on the model dynamics. We note that without external forcing (non-
seasonal), chaotic dynamics can only be found when model formulation
considers strain structure of pathogens [3], even though the detailed
11
number of strains, two, three or four, are not the main driving of
the system complexity in a multi-strain framework, see Refs. [34,35],
which are necessary to describe dengue epidemiological dynamics [14,
15]. Nevertheless, results presented here can be used as additional
information for a more extended modeling development, given insights
on epidemiological scenarios characterized by chaotic dynamics, in
synergy with public health authorities for disease control measures.
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Fig. 10. Times series and phase space plots for the seasonal (non-autonomous) SIR–SIR model. With fixed 𝛽 = 𝛽0 = 104 = 2𝛾, the dynamics for different values of temporary
immunity 𝛼 are shown. In (a) and (e), short immunity period (𝛼 = 52), in (b) and (f), intermediate immunity period (𝛼 = 2), and in (c), (d), (g) and (h), long immune period
(𝛼 = 0.5). 2000 years of transient are discarded, and the initial conditions are 𝐼𝑡𝑜 = [𝑆0 , 𝐼𝑃0

, 𝑅𝑃0
, 𝑆𝑃0

, 𝐼𝑆0
, 𝑅0] = [45.7, 1.63, 0.01, 24.07, 0.08, 28.51].
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Fig. 11. For the non seasonal (autonomous) model, bifurcation diagrams, considering the disease enhancement 𝜙 as a bifurcation parameter, and Lyapunov exponents are shown.
For fixed 𝜙 = 2.6, and 𝛽 = 𝛽0 = 104 = 2𝛾, the results for different immunity period 𝛼 are shown. In (a) and (d) small immunity period (𝛼 = 52), in (b) and (e) intermediate immunity
period (𝛼 = 2), and in (c) and (f) long immunity period (𝛼 = 0.5). Note that for non-seasonal scenario, no complex dynamics are observed, and hence, only the Lyapunov exponent
for a single parameter value of interest is shown, checking the convergence, which is time dependent, see Refs. [3,36].

Fig. 12. For the seasonal (non-autonomous) system with short temporary immunity period 𝛼 = 52𝑦−1: in (a) bifurcation diagram, in (b) Lyapunov spectra varying the disease
enhancement factor 𝜙, and in (c) Lyapunov exponent for 𝜙 = 2.6. For the seasonal (non-autonomous) system with an intermediate temporary immunity period 𝛼 = 2𝑦−1: in (a)
bifurcation diagram, in (b) Lyapunov spectra varying the disease enhancement factor 𝜙, and in (c) Lyapunov exponent for 𝜙 = 2.6. the Infection rate is fixed to 𝛽 = 𝛽0 = 104 = 2𝛾.
The other baseline parameter values are shown in Table 1.
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Fig. 13. For the seasonal (non-autonomous) system, in (a) the bifurcation diagram, considering the disease enhancement 𝜙 as a bifurcation parameter, for long immunity period 𝛼,
nd in (b), the Lyapunov spectra. Dominant Lyapunov exponents are shown for different enhancement factor values. In (c) 𝜙 = 2.6 and in (d) 𝜙 = 5. Note that coexisting attractors
ecome visible, e.g., for 𝜙 values between 2 and 3 (see bifurcation diagram in (a)), hence, depending on the initial conditions, one or another attractor is visited.
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ppendix A. Routh–Hurwitz criteria

heorem 9. Let 𝑃 (𝜆) be the polynomial

(𝜆) = 𝜆𝑛 + 𝑎1𝜆
𝑛−1 +⋯ + 𝑎𝑛−1𝜆 + 𝑎𝑛,

here the coefficients 𝑎𝑖 are real, 𝑖 = 1,… , 𝑛, define the n Hurwitz Matrix
s

1 =
(

𝑎1
)

,𝐻2 =
(

𝑎1 1
𝑎3 𝑎2

)

,𝐻2 =
⎛

⎜

⎜

𝑎1 1 0
𝑎3 𝑎2 𝑎1

⎞

⎟

⎟
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⎝𝑎5 𝑎4 𝑎3⎠
and

𝐻𝑛 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑎1 1 0 0 ⋯ 0
𝑎3 𝑎2 𝑎1 1 ⋯ 0
𝑎5 𝑎4 𝑎3 𝑎2 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 0 ⋯ 𝑎𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎠

where 𝑎𝑗 = 0 if 𝑗 > 𝑛. Thus, all the roots of the polynomial 𝑃 (𝜆) are negative
or have negative real part if and only if the determinants of all matrices are
positive, that is,

det 𝐻𝑗 > 0, 𝑗 = 1, 2,… , 𝑛.

Appendix B. Long time behavior of solutions for biological set of
parameter

For the following time series simulation, the temporary immunity
is fixed being 6 months, i.e., 𝛼 = 2𝑦−1, 𝛽 is varying for values very
close to the transcritical bifurcation, that is, 𝛽 is varying in the way that
0 ≈ 1 and 𝜙 = 1.5. Therefore, the time series and phase space plots
are explored in order to show the asymptotic behavior of the solutions
for parameters values when the backward bifurcation is identified.
The initial conditions are different for each plot, and it were chosen
using the following method: for each set of parameters, the endemic
equilibria was calculated and then perturbing it, by adding 𝜖 = 0.001
to the value of primary infection and subtracting the same value in the
susceptible sub-population (see Figs. 14–19).
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Fig. 14. Time series plots for initial values close to the upper branch state of the backward bifurcation. (a) Solutions approach the fixed point for 𝛽 = 1.02 ∗ 𝛾. (b) Increasing
oscillations for 𝛽 = 1.01 ∗ 𝛾.

Fig. 15. Time series plots perturbing the upper branch state of the backward bifurcation. (a) Periodic solution for 𝛽 = 1.010 ∗ 𝛾 (for longer period) showing convergence to a limit
cycle. (b) Oscillations decreasing into the fixed point for 𝛽 = 1.012 ∗ 𝛾.

Fig. 16. Time series plots perturbing the upper branch state of the backward bifurcation. (a) Increasing oscillations for 𝛽 = 1.0105 ∗ 𝛾. (b) Increasing oscillation for 𝛽 = 1.0110 ∗ 𝛾
(for longer period). (c) Decreasing oscillation into the fixed point for 𝛽 = 1.0115 ∗ 𝛾. (d) Periodic solutions for 𝛽 = 1.0112 ∗ 𝛾.
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Fig. 17. Phase space plot (a) to the fixed point for 𝛽 = 1.02 ∗ 𝛾 (b) to the limit cycle 𝛽 = 1.01 ∗ 𝛾.
Fig. 18. Phase space Plot (a) to the fixed point for 𝛽 = 1.1012 ∗ 𝛾 (b) to a fixed point 𝛽 = 1.10105 ∗ 𝛾.
Fig. 19. Phase space Plot (a) to the limit cycle 𝛽 = 1.0110 ∗ 𝛾 (b) to the limit cycle 𝛽 = 1.0115 ∗ 𝛾.
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