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Abstract COVID-19 was declared a pandemic by the World Health Organization in
March 2020 and, since then, research on mathematical modeling became imperative
and very influential to understand the epidemiological dynamics of disease spreading
and control under different scenarios. In this chapter, two different approaches to
model the spread of COVID-19 are presented. The model frameworks are described
and results are presented in connection with the current epidemiological situation
of vaccination roll-out. This chapter is structured as follows. Section 2 presents
the stochastic SHARUCD modeling framework developed withing a modeling task
force created to support public health managers during the COVID-19 crisis. As an
extension of the basic SHAR (Susceptible-Hospitalized-Asymptomatic-Recovered)
model, the SHARUCDmodels were parameterized and validated with empirical data
for the Basque Country, Spain, and have been used (up until now) tomonitor COVID-
19 spreading and control over the course of the pandemic. Section 3 introduces the
kinetic theory of active particles (KTAP) model for the spread of a disease. With
an exploratory analysis, we present a possible way to deal with heterogeneity and
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multiscale features. Section 4 concludes this work, with a discussion on both models
and further research perspectives description.

1 Introduction

More than eighteen months have passed since a severe respiratory syndrome
(COVID-19) caused by a new coronavirus (SARS-CoV-2) was identified in China
[58], and spread rapidly around the globe. COVID-19 was declared a pandemic by
the World Health Organization (WHO) in March, 2020 [59, 24]. As of the beginning
of August, 2021, around 200 million cases were confirmed with more than 4 million
deaths, a global case fatality ratio of approximately 2% [57, 60].

COVID-19 symptoms can range from asymptomatic/mild to severe illness, and
disease severity and death occurring according to a hierarchy of risks [9], with
age and pre-existing health conditions enhancing disease severity. With an unprece-
dented global health burden arising, the collective behavior of societies has been
significantly affected by the extreme measures implemented to control disease trans-
mission. Leading to serious social economic problems, the COVID-19 pandemic
is considered by the World Bank Global Economic Prospects to have caused the
deepest global recession since the second World War (WW II) [61].

Vaccines against COVID-19 have been developed in record time and are now
globally distributed. With different efficacies, COVID-19 vaccines are remarkably
effective against severe disease. However, the so-called sterilizing immunity, occur-
ring when vaccinated individuals cannot transmit the virus, is still being evaluated.
Four vaccines are now licensed for emergency use in Europe: two mRNA-type vac-
cines, Pfizer-BioNTech and Moderna, with about 95% vaccine efficacy after second
dose, and two viral vector vaccines, the ones by Oxford-AstraZeneca and Johnson
& Johnson’s Janssen, with about 70% vaccine efficacy upon full immunization, i.e.,
with two doses in the first case and one dose in the latter [14, 25, 28, 41, 45, 55]. Note
that the above-mentioned vaccine efficacies are under constant evaluation, especially
now that new SARS-CoV-2 variants have been identified.

In Spain, the new coronavirus infection was first notified on January 1st, 2020,
and by March 13, cases had been confirmed in all 50 provinces of the country.
A nationwide State of Alarm was declared on March 15, 2020 with a national
lockdown becoming effective on March 16, 2020. All residents were mandated to
remain in their normal residences except to purchase food and medicines, work or
attend emergencies. Lockdown restrictions also mandated the temporary closure
of non-essential shops and businesses, including bars, restaurants, cafes, cinemas,
commercial and retail businesses. In the Basque Country, an autonomous community
in northern Spain with 2.2 million inhabitants, the first cases of COVID-19 were
notified on March 4, 2020. Ruled by the same Spanish decrees, lockdown measures
were implemented accordingly and in time.

Research on mathematical modeling became imperative and very influential to
understand the epidemiological dynamics of COVID-19 spreading and control over
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the course of the pandemic under different scenarios. An enormous quantity of
epidemiological modeling peer reviewed articles and preprints studying COVID-19
dynamics have appeared since the pandemic started. Aiming to predict the spread
of the disease in a population, modeling task forces were created around the globe.
Using, most of the time, simple models such as the SIR (Susceptible-Infected-
Recovered) or SEIR (Susceptible-Exposed-Infected-Recovered) in mechanistic or
probabilistic frameworks, researchers were requested to provide projections about
specific disease-related variables such as hospitalizations, intensive care units ad-
missions (ICUs) and deaths.

Already in March 2020, a multidisciplinary task force (the Basque Modeling
Task Force, BMTF) was created to assist the Basque health managers and Govern-
ment during the COVID-19 responses. Within the BMTF, a stochastic SHARUCD
modeling framework was developed [1, 2, 5, 10, 47]. As an extension of the simple
SIR model, this flexible framework considers populations of susceptible individuals
(S), severe cases prone to hospitalization (H), mild, sub-clinical or asymptomatic
(A), recovered (R), and patients admitted to intensive care units (U). The recorded
cumulative positive cases, which includes all new positive cases for each class of H,
A, U, R, are counted within the C classes, including the deceased (D) cases.

Able to describe the COVID-19 epidemic in terms of disease spreading, the
SHARUCD model gives accurate projections (see Fig. 1) on hospitalizations, ICU
admissions, and deceased cases from March 2020 to December 2020, when vacci-
nation roll-out started. The modeling framework was used to monitor the COVID-19
epidemiological dynamics in the Basque Country while the lockdownmeasures were
relaxed and tightened over time, evaluating also the impact of non-pharmaceutical
interventions and social distancing.

It is worth stressing that in order to build useful models a close collaboration with
field epidemiologists, laboratory researchers in virology, immunology, and biology,
as well as with public health stakeholders is needed [3, 8, 11, 12]. Moreover, a
constant good data input is essential for model parameterization and validation
[6, 7, 34, 43].

Modeling refinements were validated by epidemiological data continuously col-
lected and provided by the BasqueHealth Department and the BasqueHealth Service
(Osakidetza). Results on the evolution of the epidemic in the Basque Country are
regularly updated and publicly available on the “SHARUCD Dashboard” [53].

The SHARUCDmodeling framework and its refinements will be presented in the
first part of this chapter. Basic concepts on vaccination towards herd immunity and
the impact of vaccination roll-out, considering heterogeneity on vaccine efficacy for
hospitalization and overall infection, will also be discussed.

Population heterogeneity is also an important feature to be considered when
evaluating the effects of control measures applied to different segments of society.
For example, pre-existing comorbidities and age are considered important factors
affecting disease severity during the COVID-19 pandemic [9, 32] and, for that, the
use of an age-structured population modeling approach would be appropriate to
quantify the role of different age groups on disease spreading and to evaluate the
impact of intervention measures for each population stratum (e.g., [4, 26, 27]).
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Fig. 1 From March 4 to December 31, 2020, on the left hand side we plot the ensemble of
stochastic realizations of the SHARUCD-model for cumulative cases. In a) cumulative hospitalized
cases �� (C) , in c) cumulative ICU admissions �* (C) and in e) cumulative deceases cases � (C) .
The mean of the stochastic realizations is plotted in light blue. Empirical data is plotted as black
dots for hospitalizations and ICU admissions, and red dots for deceased cases. On the right hand
side we plot the model results for the daily incidences. In b) daily hospitalized cases, in d) daily ICU
admissions and in f) daily deceased cases. Empirical data are plotted as a black line for all three
cases while the mean of 200 stochastic realizations is plotted in light blue. The 95% confidence
intervals are obtained empirically from the stochastic realizations and are plotted as light purple
shadow.
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Some useful contributions in this direction are provided by [37, 44], for exam-
ple, where age-structured models for SARS-CoV-2 fitted to hospital admission and
seroprevalence data were used to estimate the impact of school contacts on trans-
mission of the disease and to assess the effects of school-based measures, modeling
interactions using mixing matrices [42].

There are, however, many different ways to include heterogeneity in dynamical
models. In this chapter, we will also present an exploratory exercise using a modeling
approach based on the kinetic theory of active particles (KTAP) published in [17].
The KTAP approach is very versatile since it allows the population to be subdivided
into functional subsystems (FS) according to the problem under study. For instance,
age structure or population with comorbidities can be easily introduced to stratify
the population with a social network structure [4].

The KTAP approach also deals with the multiscale nature of the system under
study. Besides discussion on contagion at the level of a population, where the virus
is transmitted from infected to healthy individuals by short-range interactions, the
complexity of the system increases with the inclusion of multiscale information, such
as within-host features [23]. In this case, the micro-scale corresponds to virus parti-
cles and immune cells, which induce the dynamics at the higher scale of individuals
who carry an infection, at meso-scale level, also affecting the collective behavior of
individuals which are then analyzed at the macro-scale level [17], see illustration in
Fig. 2.

Within host Host Population

Fig. 2 Schematic representation of different scale dynamics. COVID-19 virus image on the left
credit: Photo by Viktor Forgacs on Unsplash.

This chapter is structured as follows. Section 2 presents the SHARUCD model
and its refinements, both in the stochastic and deterministic versions, which are being
successfully used to assist public health managers and policy makers in the Basque
Country, Spain. Section 3 introduces the KTAP model for the spread of a disease.
With an exploratory analysis, a possibleway to dealwith heterogeneity andmultiscale
features is presented. Section 4 concludes this work, with a discussion on both
models, presenting the connection of this research with the current epidemiological
situation of vaccine impact and further research perspectives.
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2 Mathematical modeling applied to infectious diseases:
COVID-19 as a case study

Epidemiological models are formal frameworks to convey ideas about the compo-
nents of a host-pathogen interaction and can be used as a tool to understand and
predict the spread of infectious diseases as well as to evaluate the impact of control
measures in different epidemiological scenarios.

Mathematical models were introduced into infectious disease epidemiology in
the early 20th century, and a series of deterministic compartmental models such
as SIS (susceptible-infected-susceptible) and SIR (susceptible-infected-recovered)
have been proposed based on the flow patterns between compartments of hosts in
a population, which is divided into different subgroups for the considered disease-
related stages.

One way to visualize these models is by using state-flow diagrams, see Fig. 3,
where circles represent the compartments for each disease-related stage and arrows
indicate the transitions for disease progression.

Disease propagation is an inherently stochastic phenomenon and there are a
number of reasons why one should use stochastic models to capture the disease
transmission process. However, the mean-field approximation, where the dynamics
of the mean quantities are approximated by neglecting correlations, is often used
as a good approximation to get a first understanding of the behavior of stochastic
systems in certain parameter regions [40, 50, 52].

2.1 The SIR and SHAR models

The (�' (susceptible-infected-recovered) model, see Fig. 3 b), is one of the simplest
compartmental models, dividing the observed population into three groups: the
class ( of susceptible individuals to the considered disease, the class of infected
individuals �, and the class ' of individuals who have recovered from the infection.
In analogy with chemical reactions, the dynamics within the typical SIR framework
with infection rate V, recovery rate W and waning immunity rate U can be illustrated
by the scheme

( + �
V
−→ � + �

�
W
−→ '

'
U−→ (

(1)

which translates into the following ODE system describing the temporal evolution
of the number of individuals in each of the three model compartments:
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0)

( �
V

U

1)

( � '
V W

U

2)

(

�

'

�

V[ W

V (1 − [) W

U

Fig. 3 State-flow diagram of simple epidemiological models. disease-related stages are susceptibles
(, Infected � , and eventually stratified as asymptomatic � or hospitalized � , and recovered '.
In a) the SIS type model, in b) the SIR type model, and in c) the SHAR type model. For a host
population of N individuals, with infection rate V, recovery rate W and waning immunity rate U. In
the SHAR type model, [ is the proportion of infected individuals prone to hospitalization, while
1 − [ will develop mild/asymptomatic infection.

3(

3C
= U' − V (

#
�,

3�

3C
= V

(

#
� − W�,

3'

3C
= W� − U',

(2)

with # denoting the population size, i.e., # = ( + � + '.
The stochastic SIR epidemic is modeled as a time-continuous Markov process

to capture population noise. The temporal dynamics for the probability ?((, �, C) of
having an integer number ( of susceptible and � of infected individuals at time C can
be given as the following master equation [54]
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3

3C
?((, �, C) = V

#
(( + 1) (� − 1) ?(( + 1, � − 1, C)

+W(� + 1)?((, � + 1, C)
+U(# − (( − 1) − �) ?(( − 1, �, C) (3)

−
(
V

#
(� + W� + U(# − ( − �)

)
?((, �, C),

while the number of recovered individuals follows from the constant population size
assumption ' = # − ((+ �). Letting x denote the state vector of densities, the master
equation for the probabilities ?(x, C) can be expressed in terms of = transitions F 9 (x)
and small deviations from state x given by Δx 9 as

3

3C
?(x, C) =

=∑
9=1

(
#F 9 (x + Δx)?(x + Δx 9 , C) − #F 9 (x)?(x, C)

)
, (4)

where Δx 9 := 1
#

r 9 for suitable shifting vectors r 9 . Specifically, for the SIR model
described above, we have x := (G1, G2)) with G1 := (/# and G2 := �/# , = = 3, and
the following transitions F 9 (x) with corresponding shifting vectors r 9 :

F1 (x) = VG1G2 , r1 = (1,−1))
F2 (x) = WG2 , r2 = (0, 1))
F3 (x) = U(1 − G1 − G2) , r3 = (−1, 0)) .

(5)

This process can be simulated by the Gillespie algorithm giving stochastic real-
izations of infected and susceptible individuals in time [30, 31].

To distinguish between mild and severely infected cases, the SIR framework can
be extended into the so-called SHAR model, see Fig. 3 c), where � stands for
individuals developing a severe form of the disease and likely being hospitalized,
while � refers to infected individuals who are asymptomatic or have a mild form
of the disease. This system includes two additional epidemiological parameters: [
and q. While the severity ratio [ gives the fraction of infected individuals who
develop severe symptoms (and hence 1 − [ gives the asymptomatic fraction of
infections), the parameter q is a scaling factor used to differentiate the infectivity
qV of mild/asymptomatic infections with respect to the baseline infectivity V of
severe/hospitalized cases. The value of q can be tuned to reflect different situations:
a value of q < 1 reflects the fact that severe cases have larger infectivity than
mild cases (e.g., due to enhanced coughing and sneezing), while q > 1 indicates
that asymptomatic individuals and mild cases contribute more to the spread of the
infection (e.g., due to their higher mobility and possibility of interaction) than the
severe cases which are more likely to be detected and isolated [10].

In the case of COVID-19, we assume q > 1, since severe cases are likely hospital-
ized and isolated while mild/asymptomatic cases are often undetected and hence able
to transmit the disease, contributing significantly more to the force of infection than
the severe cases. The model dynamics can be illustrated by the following reaction
scheme
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( + �
[V
−−→ � + �

( + �
(1−[)V
−−−−−−→ � + �

( + �
q[V
−−−−→ � + �

( + �
q (1−[)V
−−−−−−−→ � + �

(
r
−→ �, �

�
W
−→ '

�
W
−→ '

'
U−→ (

(6)

and the corresponding SHAR ODE system

3(

3C
= U' − V (

#
(� + q� + r#),

3�

3C
= [V

(

#
(� + q� + r#) − W�,

3�

3C
= (1 − [)V (

#
(� + q� + r#) − W�,

3'

3C
= W(� + �) − U',

(7)

in which we have introduced also the import factor r, which refers to the possibility
of susceptible individuals becoming infected by an undetected infection chain which
started outside the studied population [35, 36].

The stochastic version of the presented SHAR model is obtained analogously to
the basic SIR model shown above [10], and the dynamics for the probabilities ?(x, C)
can once again be given as in Eq. (4).

In particular, for the basic SHAR model with import r and eventual waning
immunity U (which matters, e.g., when new variants affect natural immunity of
the host), x is the state vector of densities G1 := (/#, G2 := �/#, G3 := �/# and
G4 := '/# , while the = = 5 transitions and corresponding shifting vectors are given
by

F1 (x) = [VG1 (G2 + qG3 + r) , r1 = (1,−1, 0, 0))
F2 (x) = (1 − [)VG1 (G2 + qG3 + r) , r2 = (1, 0,−1, 0))
F3 (x) = U(1 − G1 − G2 − G3) , r3 = (−1, 0, 0, 1))
F4 (x) = WG2 , r4 = (0, 1, 0,−1))
F5 (x) = WG3 , r5 = (0, 0, 1,−1)) ,

(8)

(see, e.g., [29, 20, 49, 10, 47] for further details).
Figure 4 shows four snapshots in time (for C = 10, 50, 60, 400) of a single re-

alization of the stochastic spatial SHAR model with import. Individuals are either
susceptible (green), hospitalized (red), mild/asymptomatic infections (yellow) or re-
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covered (blue). Assuming that the entire population (here # = 10000) is initially
susceptible at C = 0, the import term introduces the infection, producing isolated
outbreaks of different sizes. While some of these outbreaks involve only a few indi-
viduals and quickly die out, with all individuals recovering, others may involve many
more active infections (severe and/or mild and asymptomatic), spreading widely and
eventually collapsing with neighboring clusters, leading to much larger outbreaks.
An exponential growth of cases is to be expected when the community transmission
is super-critical. A detailed analysis of spatial dynamics using the SHAR framework
is ongoing and preliminary results will be briefly discussed in the last section of
this chapter. More details on the role of import in epidemic models can be found in
[1, 47].

t = 10 t = 50

t = 60 t = 400

Fig. 4 Spatial configuration of a two-dimensional SHAR system with import at four different
time points. The population of # = 10000 is divided into susceptible (green), hospitalized (red),
asymptomatic (yellow), recovered (blue). Parameter values are: U = 0, W = 1, [ = 0.4, V = 0.85,
q = 1.2, and r = 10−9. Periodic boundary conditions are implemented.
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2.2 The SHARUCD modeling framework

To describe the COVID-19 dynamics in the Basque Country, the basic SHARmodel
was extended by introducing the classes of Intensive Care Unit (ICU) admissions U
and of deceased individuals D. Further, for comparison with the available cumulative
empirical data, also the cumulative classes for hospitalized �� , mild/asymptomatic
infected ��, ICU admitted �* , and recovered �' were included, counting all in-
coming cases in the dynamical compartments and neglecting the outflows. A de-
tection ratio b for mild/asymptomatic cases was also considered, since a proportion
of mild/asymptomatic cases are detected by contact tracing/screening testing, and
hence the number of positive tested infections is larger than the notified hospitalized
cases.

In this model, disease severity is decided upon infection with a proportion
[ developing severe infection prone to hospitalization (and 1 − [ developing
mild/asymptomatic infection). Undetected asymptomatic cases are assumed to trans-
mit the disease more efficiently (q > 1) than severe cases. Hospitalized individuals
can recover, with a recovery rate W, die, with a mortality rate ` or go to an ICU fa-
cility, with an admission rate a. Here, ICU admission is assumed to be a progression
of disease severity after hospitalization.

The stochastic version of the basic SHARUCD model can be formulated through
the master equation in the generic form of Eq. (4) with variables G1 := (/# , G2 :=
�/# , G3 := �/# , G4 := '/# , G5 := */# , G6 := �� /# , G7 := ��/# , G8 :=
�*/# and G9 := �/# and G10 := �'/# . The state vector x := (G1, ..., G10)) gives
the dynamics for the probabilities ?(x, C), with = = 10 different transitions. The
transitions F 9 (x) and the corresponding shifting vectors r 9 are given by

F1 (x) = [VG1 (G2 + qG3 + r) , r1 = (1,−1, 0, 0, 0,−1, 0, 0, 0, 0))
F2 (x) = b (1 − [)VG1 (G2 + qG3 + r) , r2 = (1, 0,−1, 0, 0, 0,−1, 0, 0, 0))
F3 (x) = (1 − b) (1 − [)VG1 (G2 + qG3 + r) , r3 = (1, 0,−1, 0, 0, 0, 0, 0, 0, 0))
F4 (x) = WG2 , r4 = (0, 1, 0,−1, 0, 0, 0, 0, 0,−1))
F5 (x) = (1 − b)WG3 , r5 = (0, 0, 1,−1, 0, 0, 0, 0, 0, 0))
F6 (x) = WG5 , r6 = (0, 0, 0,−1, 1, 0, 0, 0, 0,−1))
F7 (x) = aG2 , r7 = (0, 1, 0, 0,−1, 0, 0,−1, 0, 0))
F8 (x) = `G2 , r8 = (0, 1, 0, 0, 0, 0, 0, 0,−1, 0))
F9 (x) = `G5 , r9 = (0, 0, 0, 0, 1, 0, 0, 0,−1, 0))
F10 (x) = bWG3 , r10 = (0, 0, 1,−1, 0, 0, 0, 0, 0, 0,−1)) .

(9)
The mean-field ODE system corresponding to the above F 9 (x) and r 9 is given

in [5, 53] and was used to evaluate the model performance, its accuracy, and to guide
the modeling analysis.

The model was parameterized with empirical data provided by the Basque Health
Department and the Basque Health Service (Osakidetza) for each disease-related
variable. Parameters were estimated and fixed as the model was able to describe the
disease incidence during the exponential phase of the outbreak, see Fig. 5.
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Fig. 5 From March 4 to April 4, 2020, ensemble of stochastic realizations of the baseline
SHARUCD-model. The mean-field solution is shown in light blue. In a) cumulative detected
positive cases �2D< (C) , in b) cumulative hospitalized cases �� (C) , in c) cumulative ICU admis-
sions �* (C) , in d) cumulative deceased cases � (C) and in e) cumulative recovered �' (C) (data
on alive hospital discharges were used as a proxy for recovered individuals).
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The stochastic realizations of the model are calculated via the Gillespie algorithm
[30, 31]. To investigate the parameter uncertainties, we calculate numerically the
likelihood functions for each parameter conditioned on the others and the data, eval-
uating distances between simulations and data from all five variables, � (C), �2D< (C),
�� (C), �* (C) and �' (C), for the exponential phase of the epidemic. The detailed
analysis for the parameter estimation and uncertainties via likelihood functions can
be found in [5, 10, 53].

Partial lockdownwas implemented in theBasqueCountry onMarch 16, 2020with
effects observed onMarch 27 (see Fig. 5) well before the full lockdown of March 31,
2020 [5]. With the initial parameters estimated and fixed on the exponential phase of
the epidemic, the next step was to model the effect of the disease control measures
to describe the gradual slowing down of the epidemic.

2.3 Modeling the implementation of control measures

The effect of the disease control measures was implemented by introducing for the
infectivity parameter a smooth sigmoidal variation which was able to describe well
the gradual slowing down of the epidemic, reaching negative growth rate at the end
of March, 2020. Specifically, the infection rate V became a time dependent function
V(C) given by

V(C) = V0f− (G(C)) + V1f+ (G(C)) , (10)

where f− (G) = 1/(1 + 4G) and f+ (G) = 1/(1 + 4−G) are downward and upward
sigmoidal functions, respectively. The time dependent function G(C) is defined by
G(C) = 0(C − C2) and gives the timing and speed of the implementation of control
measures. Further refinements with respect to Eq. (10), considering other smooth
sigmoidal variations, have been implemented over the course of the pandemic, as
control measures were introduced or relaxed (e.g., from March 4 to July 10, 2020,
the profile of V(C) is given in Fig. 6 with a smooth reduction of the transmission rate
for the lockdown implementation and a later smooth increase corresponding to the
gradual lockdown lifting). Low seasonality was also assumed to play a role, helping
to keep transmission at low levels. For more details, please visit our SHARUCD
Dashboard page [53].

Figure 7 shows an ensemble of stochastic realizations considering the effective
control measures given by Eq. (10), up to mid April, 2020. A good agreement was
obtained for hospitalization, deceased cases and recovered, with data lying in the
median range of the 200 stochastic realizations. Notice that the deviation observed
for the detected positive class �2D< is expected, due to the increased testing capacity
started in March 22. The system was not adjusted to include the non-hospitalized
cases. Moreover, the erratic behavior of the ICU admission cases remained to be
investigated.

Using the data at hand, the momentary growth rates were calculated, see Figures
8 a) and b), and compared with the momentary reproduction ratio, see Fig. 8 c),
confirming a negative growth of infection at the end of March, 2020 [12]. Two types
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Fig. 6 Smooth variations in the infection rate V = V (C) reproducing the effect of control measures,
considering small seasonality. Parameters values are shown in Table 1. For the lockdown effect,
0 = 0.38 3−1 and C2 = 25 days after the initial time C0 (corresponding here to March 4, 2020). For
the lockdown lifting, 02 = 0.16 3−1 and C22 = 112 days after C0.

of behavior were observed: positive cases, hospitalization and, surprisingly, also the
ICU admissions with the same sigmoidal decrease, shown in Fig. 8 a), whereas the
deceased and recovered were delayed for 8 and 10 days, respectively, shown in Fig. 8
b).

This finding lead us to refine the baseline SHARUCD framework by changing the
ICU admission rate a into a ratio, with COVID-19 infection causing from asymp-
tomatic up to very severe cases prone to hospitalization and to ICU admission.

2.4 The refined SHARUCD model

If previously it was assumed that hospitalized patients could either recover with
recovery rate W, be admitted to an ICU facility with rate a, or die with disease-induced
death rate `, in light of the analysis of the momentary growth rates presented above,
the baseline SHARUCD model was refined by considering ICU admissions to be a
consequence of infection leading to severe disease, with a patient being immediately
admitted to an ICU facility upon infection with ratio a, analogously to the ratio [
for hospitalizations. Note that although most of the hospitalizations were recovering
or dying, some of those cases would eventually evolve into ICU cases and that was
accounted for in the model as well.

The refined model is given by changes in the transition rates of the stochastic
version, see [12], such that now the transition to ICU admission is synchronized with
the transition to hospitalization and to the cumulative positive cases. Specifically,
the transitions
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Fig. 7 From March 4 to April 21, 2020, ensemble of stochastic realizations of the baseline
SHARUCD-model. The mean-field solution without control is shown in light blue. In a) cumulative
detected positive cases �2D< (C) , in b) cumulative hospitalized cases �� (C) , in c) cumulative ICU
admissions �* (C) , in d) cumulative deceases cases � (C) and in e) cumulative recovered �' (C)
(hospital discharges alive data were used as a proxy for recovered individuals).



16 Maíra Aguiar, Vizda Anam, Nicole Cusimano, Damián Knopoff and Nico Stollenwerk

0)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

2
0

2
0

-0
3

-0
4

2
0

2
0

-0
3

-0
8

2
0

2
0

-0
3

-1
2

2
0

2
0

-0
3

-1
6

2
0

2
0

-0
3

-2
0

2
0

2
0

-0
3

-2
4

2
0

2
0

-0
3

-2
8

2
0

2
0

-0
4

-0
1

2
0

2
0

-0
4

-0
5

2
0

2
0

-0
4

-0
9

2
0

2
0

-0
4

-1
3

2
0

2
0

-0
4

-1
7

2
0

2
0

-0
4

-2
1

G
ro

w
th

 r
a

te
s
 (

λ
(t

))

 o
f 

v
a

ri
o

u
s
 v

a
ri
a

b
le

s
 

positive cases
hospitalized admission 

ICUs admission 

1)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

2
0

2
0

-0
3

-0
4

2
0

2
0

-0
3

-0
8

2
0

2
0

-0
3

-1
2

2
0

2
0

-0
3

-1
6

2
0

2
0

-0
3

-2
0

2
0

2
0

-0
3

-2
4

2
0

2
0

-0
3

-2
8

2
0

2
0

-0
4

-0
1

2
0

2
0

-0
4

-0
5

2
0

2
0

-0
4

-0
9

2
0

2
0

-0
4

-1
3

2
0

2
0

-0
4

-1
7

2
0

2
0

-0
4

-2
1

G
ro

w
th

 r
a

te
s
 (

λ
(t

))

 o
f 

v
a

ri
o

u
s
 v

a
ri
a

b
le

s
 

deceased cases 
recovered cases 

2)

 0

 1

 2

 3

 4

 5

 6

 7
2

0
2

0
-0

3
-0

4

2
0

2
0

-0
3

-0
8

2
0

2
0

-0
3

-1
2

2
0

2
0

-0
3

-1
6

2
0

2
0

-0
3

-2
0

2
0

2
0

-0
3

-2
4

2
0

2
0

-0
3

-2
8

2
0

2
0

-0
4

-0
1

2
0

2
0

-0
4

-0
5

2
0

2
0

-0
4

-0
9

2
0

2
0

-0
4

-1
3

2
0

2
0

-0
4

-1
7

2
0

2
0

-0
4

-2
1

R
e

p
ro

d
u

c
ti
o

n
 r

a
ti
o

 

 (
R

(t
))

Fig. 8 From March 4 to April 21, 2020, the momentary growth rates for various variables shows
two types of behavior. In a) detected positive cases in yellow, hospitalized cases in red, and ICU
admissions in purple, cross the threshold on April 1, 2020. In b) recovered cases in green and
deceased cases in black, cross the threshold with a delay of 8 and 10 days, respectively. The
momentary reproduction ratio is shown in c).

F1 (x) = [VG1 (G2 + qG3 + r) , r1 = (1,−1, 0, 0, 0,−1, 0, 0, 0, 0))
F7 (x) = aG2 , r7 = (0, 1, 0, 0,−1, 0, 0,−1, 0, 0))

(11)

are changed into

F1 (x) = [(1 − a)VG1 (G2 + qG3 + r) , r1 = (1,−1, 0, 0, 0,−1, 0, 0, 0, 0))
F7 (x) = [aVG1 (G2 + qG3 + r) , r7 = (1, 0, 0, 0,−1,−1, 0,−1, 0, 0)) ,

(12)

with the parameter a being adjusted from the ICU admission rate in units of 3−1 into
an ICU admission ratio a ∈ [0, 1]. The deterministic version of the model is hence
given by



Understanding COVID-19 epidemics: a multi-scale modeling approach 17

3

3C
( = −V (

#
(� + q� + r#)

3

3C
� = [(1 − a)V (

#
(� + q� + r#) − (W + `)�

3

3C
� = (1 − [)V (

#
(� + q� + r#) − W�

3

3C
' = W(� +* + �) (13)

3

3C
* = a[V

(

#
(� + q� + r#) − (W + `)*

3

3C
�� = [V

(

#
(� + q� + r#)

3

3C
�� = b · (1 − [)V

(

#
(� + q� + r#)

3

3C
�' = W(� +* + b�)

3

3C
�* = a[V

(

#
(� + q� + r#)

3

3C
� = `(� +*)

which is now able to describe the dynamics of the ICU admissions as well as the
ones for hospitalized and deceased cases [5], see Fig. 9.

Notice that the mean-field approximation of the stochastic system is given by the
deterministic version in Eq. (13) (see [50]). For a complete analysis of the model,
the reader is referred to [10]. Simulations of the stochastic SHARUCD model can
be performed via the Gillespie algorithm [30, 31]. Figure 9 shows an ensemble
of stochastic realizations for the COVID-19 epidemic in the Basque Country, from
March 4, to June 16, 2020. The basic parameter values used for simulation of the
model are shown in Table 1.

2.4.1 Further refinements: detection rate and import

At the onset of the pandemic, data on COVID-19 infections were reflecting only
severe cases requiring hospitalization, while the knowledge of asymptomatic and
mild positive cases became available at a later stage, when testing capacity increased.
This information heavily relies on local testing capacity and strategy, and is therefore
highly variable in both time and space. To adjust to the observed deviation on the
detected positive class �2D<, see Fig. 9 a), due to the increased testing capacity over
time, see Fig 10 a), the refined model considers a time dependent detection ratio b
assumed to be small in the introductory phase of the epidemic but later increased to
a much higher level.

As testing capacity increased, the system was not able to describe quantitatively
well the data for the recovered class ', since the hospital discharges data used as
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Fig. 9 From March 4 to June 16, 2020, ensemble of stochastic realizations of the refined
SHARUCD-model. The mean-field solution is shown in light blue. In a) cumulative detected pos-
itive cases �2D< (C) ,in b) cumulative hospitalized cases �� (C) , in c) cumulative ICU admissions
�* (C) , and in d) cumulative deceased cases � (C) .

proxy for recovered individuals did not include the recovered individuals which were
eventually tested positive but did not need hospitalization.

The model was also refined to describe isolated outbreaks after lockdown lift-
ing, describing well the dynamics for positive detected cases, hospitalizations, ICU
admission and deceased cases fromMarch 4 to December 31, 2020, shown in Fig. 1.

We assume that an imported case is most likely a mobile asymptomatic infected
individual, either a foreigner visiting the region or a local returning to the country
without being detected by the current testing strategy, similarly to what one expects
when country lockdowns are completely lifted and mobility is possible again. The
so-called imported cases would be needed to describe the introductory phase of the
epidemic, but we did not have any information on that at the start of exponential
growth of the COVID-19 epidemic. The import factor becomes important again,
after the full lockdown is lifted, allowing human mobility and asymptomatic disease
transmission [1, 47]. For the present study, we assume r to be much smaller than
the other additive terms of the force of infection, given the strong observational
insecurities on the data collected at the beginning of the outbreak.
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Fig. 10 From March 4 to June 24, 2021, in a) COVID-19 tests performed in the Basque Country
(light blue), positive PCR cases (yellow) and positivity rate (red line). In b) COVID-19 detected
cases in the Basque Country: Positive PCR cases are shown in yellow, hospitalizations in red, ICU
admissions in purple, and deceased cases in black.

Table 1 summarizes the starting parameter set used to describe the COVID-19
epidemic in the Basque Country fromMarch 4, 2020. As it was previouslymentioned
in this chapter, model refinements were implemented during the course of the pan-
demic, with V, b and r becoming time dependent parameters as non-pharmaceutical
intervention actions were introduced and lockdown measures were implemented and
relaxed over time. Therefore, it is important to mention that small adjustments on
the presented parameter set were needed and with these small modifications we were
able to match well data until December 31, 2020, as shown in Fig. 1. For further
details, readers are referred to the SHARUCD Dashboard and references therein.

As a continuation of the BMTF efforts, the vaccination trial data for the vaccines
which have been licensed for emergency use in Europe is evaluated. Results are
implemented into the simple SHARmodeling framework and its extensions to get the
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Table 1 SHARUCD model parameters

Model basic parameter Description Reference value

V infection rate 3.25 · W
W recovery rate 0.053−1
[ proportion of hospitalization 0.075
a ICU admission ratio 0.09
q ratio of mild/asymptomatic

infections contributing to force of infection 1.65
b detection rate [0.01 − 0.95]
` disease-induced death rate 0.023−1
d import 0.0006

qualitative overview of the impact of COVID-19 vaccination strategy in the Basque
Country [51]. These results will be briefly described in the discussion section of this
chapter and, for more details, readers are referred to [51].

3 KTAP modeling framework

The model presented in the previous section considers disease transmission at the
population level. However, describing disease progression at the microscopic scale is
also important and informative for the evaluation of pharmaceutical interventions for
example, such as antiviral/antibiotics administration and vaccination. For instance,
to investigate the infection process in a population of target cells, considering the
immunological response of the host, the so-called within-host modeling framework
is needed. Some recommended readings on this topic are [38, 39], and references
therein, which introduce essential concepts on cell biology and immunology.

For respiratory diseases that cause damage to the lungs, like COVID-19, mod-
els should describe the dynamics of the viral load which might lead to different
asymptotic trends between full recovery and death by overload and even material
corruption of the lung. A description of the dynamics of the lung in order to de-
tect those areas which are more susceptible to stretch overload in the pulmonary
parenchyma is provided in [22]. Some useful recent contributions in this line are
[33], which presents an interactive COVID-19 tissue simulator of viral dynamics of
SARS-CoV-2 in a layer of epithelium, and [56] where a community-driven tissue
simulator is developed.

Modeling ought to be developed within a multiscale approach. On the one hand,
the dynamics of contagion must be treated at the macro-scale level of individuals
and populations, while on the other, the evaluation of the state of each individual
(healthy, infectious, etc.) depending on the infection dynamics of the body cells as
a result of the immunological response against the pathogen, should be analyzed at
the micro-scale level.
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Both scales constantly interact and that is probably one of themost valuable virtues
of the model presented in [17] and further refined in [4, 19], since the contagion at
the macro-scale depends on the viral load of each individual, which in turn depends
on the dynamics at the micro-scale. The model is based on the kinetic theory of
active particles [18], and hereinafter will be referred to as the KTAP model.

The general framework supporting the KTAP modeling approach is defined by a
selection of key features discussed in detail in the technical report [23]:

1. Individuals are viewed as active particles (a-particles) which are carriers of an
internal state, called activity. In particular, the micro-state of every individual is
described by a variable F corresponding to the level of activation of the immune
defence. In addition, infected individuals are also characterized by a variable
D representing the level of progression of the infection (ranging from mild to
severe).

2. Contagion depends on the level of the infection as well as on an infection rate. The
latter, as in the SHARUCD model, may be a time dependent parameter that takes
into account the implementation of specific health policies, like social distancing,
lockdowns, etc.

3. The progression of the infection within each individual depends on the interaction
between the pathogen replication and the immune response.

3.1 Modeling contagion, progression, and recovery

Let us consider a population of # individuals homogeneously distributed in space.
Each individual can belong, at time C, to one of the following compartments or
functional subsystems (FS): susceptible (S-FS), infected (I-FS), recovered (R-FS)
or deceased (D-FS). The S-FS is assumed to have only an outflow (into the I-FS),
while R-FS and D-FS only have an inflow (from I-FS), i.e., we assume that recovered
individuals get a long-lasting immunity and remain in that compartment.

The microscopic state of each individual entity is characterized by a variable
F ∈ [0, 1] describing the level of activation of the immune defence. It is worth
stressing that in the original formulation of the model the value of F for a given
individual does not change over time. In order to simplify the identification of
subgroups (or clusters of a-particles as in [21]) according to the individuals’ immune
response level (e.g., reflecting age or presence of comorbidities), the variable F is
typically discretized and assumed to take values in the set

�F = {F1 = 0, . . . , F: =
: − 1
= − 1 , . . . , F= = 1}.

Within the I-FS class, individuals are also described by a variable D ∈ [0, 1],
which corresponds to the within-host progression of the pathogen invasion. Consid-
ering discrete values also for D in the set
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�D = {D1 = 0, . . . , D 9 =
9 − 1
< − 1 , . . . , D< = 1},

we have that D1 = 0 describes the absence of the infection, while D 9 > 0 indicates
the presence of the disease with a variation of infection level. Increasing values of D
towards 1 describe more aggressive states that may end up in the death of the host
when reaching D< = 1.

The number of immune levels = can be chosen by considering possible ways to
disaggregate the population into age classes or morbidity groups, depending on the
case under study (see e.g., [13, 9]). On the other hand, < shall take into account the
number of stages of a given disease after the initial entry of the pathogen into the
host. In order to have all three compartments �, �, and ' in the modeling framework,
it is assumed that < ≥ 3.

The dynamics is such that susceptible individuals, characterized by their micro-
stateF: , may become infected after an interaction with an infected a-particle.Within
the I-FS, an a-particle is characterized by the pair (D 9 , F: ), with 2 ≤ 9 ≤ < − 1.
A competitive interaction between the pathogen and the immune system then starts
and the transition into R-FS or D-FS depends on the result of this dynamics: namely,
if the state D1 (resp. D<) is reached, the individual undergoes a transition into the
recovered (resp. deceased) compartment. This is illustrated in Fig. 11.

D1 D2

S

R
D 9−1 D 9 D 9+1 D<−1 D<

D

˜̀W̃ I

Fig. 11 Illustration of the transitions: susceptible individuals can get infected with an infection rate
Ṽ, entering to the infected compartment (wide box in the middle) with state D2. Then, competitive
interactions between the pathogen that replicates with rate ˜̀ towards more aggressive infection
states and the immune system, which acts with rate W̃, with resulting transition into the R or D
compartment.

The representation of the system is given by the following distribution functions:

- 5 :
(
(C) is the probability to find, at time C, a susceptible individual with micro-state

F: . The susceptible population at time C, 5( (C), is simply computed as the sum∑=
:=1 5

:
(
(C).

- 5
9 ,:

�
(C) is the probability to find, at time C, an infected individual with micro-

state (D 9 , F: ). The prevalence of infection, at time C, is given by 5� (C) =∑=
:=1

∑<−1
9=2 5

9 ,:

�
.

- 5 :
'
(C) is the probability to find, at time C, a recovered individual with micro-state

F: . The cumulative recovered population 5' (C) is simply computed as the sum∑=
:=1 5

:
'
(C).
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- 5 :
�
(C) is the probability to find, at time C, a deceased individual with micro-state

F: . As for the recovered, the cumulative deceased population 5� (C) is given by∑=
:=1 5

:
�
(C).

Notice that 5( (C) + 5� (C) + 5' (C) + 5� (C) = 1 for all C and that the actual number
of individuals belonging to each FS can be computed multiplying the distribution
function by the total population # .

The dynamics of the system is described by using tools of the mathematical
structures of the kinetic theory of active particles, see e.g., Chapter 5 in [16]. The
system of equations representing the evolution of the distribution functions, whose
derivation can be followed in details in [17], is given by:



3

3C
5 :( (C) = −Ṽ

=∑
B=1

<−1∑
9=2

D 9 5
:
( (C) 5

9 ,B

�
(C),

3

3C
5
9 ,:

�
(C) = Ṽ X2 9

©«
=∑
B=1

<−1∑
?=2

D? 5
:
( (C) 5

?,B

�
(C)ª®¬ + ˜̀ D 9−1 5 9−1,:�

(C)

+ W̃ F: 5 9+1,:�
(C) − ˜̀ D 9 5 9 ,:� (C) − W̃ F: 5

9 ,:

�
(C),

3

3C
5 :' (C) = W̃

=∑
:=1

F: 5
2,:
�
(C),

3

3C
5 :� (C) = ˜̀ D<−1

=∑
:=1

5
<−1,:
�

(C),

(14)

where for the first equation we have : = 1, . . . , =, while for the second one 9 =
2, . . . , < − 1 and : = 1, . . . , =. The first equation in (14) describes the infection of
susceptible individuals due to interactions with infected ones. The second equation in
(14) describes the dynamics within the infected population. The factor X2 9 denotes a
Kronecker delta, meaning that the entry state upon infection is D2. From that point, a
competitive interaction between the pathogen and the immune system starts. Finally,
the third and fourth equations give the inflows into recovered and deceased classes,
respectively, as a result of the aforementioned competitive interactions. Regarding
model parameters, Ṽ is the infection rate, ˜̀ is the pathogen progression rate and W̃ is
the immune action rate towards recovery.

An extension of the system in Eq. (14) to networks can be found in [4].

3.2 Application of the KTAP model to selected case studies

The KTAP model introduced above has been applied to a variety of exploratory
experiments aiming to understand the role of population heterogeneity in the propa-
gation of the disease with an insight in non-pharmaceutical interventions (NPI) [17]
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and vaccination [19]. In this section, we present some selected case studies focus-
ing on the intensity and timing of NPI and on the heterogeneity of the population,
represented by the micro-states F: .

In the following, let us consider a population of # = 2.2 million individuals
(a-particles in this context). At time C = 0 almost all of them belong to the S-FS,
with 100 a-particles in the I-FS, while R-FS and D-FS are empty. We consider = = 5
classes, in agreement with a possible choice among demographers and epidemiolo-
gists to disaggregate a population into age groups, but other possibilities can also be
considered [13]. Although = and < need not be the same, here we also set < = 5.

Effect of lockdown measures and restrictions lifting

Let us first study the effect of lockdown measures, in order to understand how the
amplitude and timing of the action influences the overall dynamics. The lockdown
implementation is modeled by a reduction of the infection rate Ṽ during a given time
interval.

Figure 12 shows the dynamics of cumulative infected cases up to a given )<0G
for three different scenarios. In all three cases, the pathogen replication rate and
the immune action rate are kept constant and equal to ˜̀ = 0.008 and W̃ = 0.03,
respectively.

In Fig. 12 a) the infection rate Ṽ is initially equal to 0.6. At locking time ); = 25,
the effect of a lockdown is modeled by reducing the transmission rate Ṽ to 0.06 until
a reopening time )> = 50 at which Ṽ is increased to V>. The curves corresponding
to three different values of V> are shown in the plot, up to )<0G = 100.

Fig. 12 b) shows a similar situation in which a lockdown is implemented, reducing
the transmission rate Ṽ from 0.6 to 0.06 at different locking times ); = 25, 30, 40,
giving an insight on the the importance of intervention measures timing.

In Fig. 12 c) we consider three different opening times )> = 50, 70, 90 at which
the infection rate Ṽ is increased back from 0.06 to 0.6. Notice that the three curves
increase towards large values approaching # , showing that a late reopening without
control leads to a delayed explosion of infections. Here,)<0G = 200 for visualization
purposes.

Effect of heterogeneity

Let us now study the effect of heterogeneity in the population by considering dif-
ferent distributions of immunity, which is a proxy for age and presence of other
comorbidities.

The left panels of Fig. 13 show three possible immunity distributions: a centered
symmetric distribution, describing a population with an average immunity level, a
distribution which is skewed to the right, describing a population having a stronger
immune system (e.g., a younger population), and one that is skewed to the left, de-
scribing a population having a weaker immune system (e.g., a vulnerable population
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Fig. 12 Influence of lockdown measures and restrictions lifting. In a) the transmission rate Ṽ is
reduced from 0.6 to 0.06 at locking time); = 25 and then increased again, at opening time)> = 50,
to different values V>. In b) the lockdown is implemented at three different locking times, with
reduction of Ṽ from 0.6 to 0.06. In c) Ṽ is increased back to 0.6 at three different opening times )>.
The other parameter values are = = < = 5, W̃ = 0.03 and ˜̀ = 0.008.

composed by elderly individuals). In [4] these distributions are used to describe,
respectively, populations in households, schools and nursing homes.

On the right panel of Figure 13 we can see the dynamics for cumulative infected
(left axis), recovered and deceased cases (right axis) for the initial exponential phase
for the three distributions of F: shown on the left. The set of parameters is the
same as above (with Ṽ = 0.6 unchanged during the considered time span), while
the initial conditions reflect the distribution of F: for each case. Notice that the
immunity distribution actually influences the number of infected, recovered and
deceased cases, since larger (resp. lower) values of F: lead, eventually, to a faster
recovery (resp. decease).

Finally, we perform an exercise to study the correlation between population het-
erogeneity and infection. Let us define the mean immune level by

∑=
:=1 F: 5

: ,
where 5 : is the probability to find an a-particle with state F: . In our case,
5 : = 5 :

(
+ ∑<

9=1 5
9 ,:

�
+ 5 :

'
+ 5 :

�
does not change with time due to the assump-

tion that particles keep their micro-state F: .
The scatter plot in Fig. 14 shows a strong positive (resp. negative) correlation be-

tween the mean immune level and the recovered (resp. deceased) for 500 realizations
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Fig. 13 The left panel shows the frequency distribution of immunity levels F: in three cases: a)
centered, c) skewed right, e) skewed left. On the right panel we show the cumulative infected (left
axis), recovered and deceased cases (right axis) for the corresponding distributions on the left. No
interventions are assumed in this case and the infection rate is fixed at Ṽ = 0.6.

of the following experiment: the distribution of F: is randomly chosen to define the
initial conditions and the mean immune level is computed, then the KTAP model is
run with the parameters Ṽ = 0.6, W̃ = 0.03, ˜̀ = 0.008 up to )<0G = 100. A marker
represents the recovered and deceased cases at)<0G for that particular immune level.
This result emphasizes the role of heterogeneity and will be further discussed in the
next section in the context of vaccination strategies.
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Fig. 14 Recovered and deceased cases at final time for different mean immune levels. The immunity
distribution is chosen randomly for each of the 500 realizations of the experiment.

4 Discussion

In the previous sections we have presented two different approaches to model the
spread of an epidemic. The SHARUCDmodeling framework introduced in Section 2
was developed within the Basque Modeling Task Force. As an extension of the
basic SIR-type epidemiological models, the SHARUCD model stratifies the class
of infected individuals into severe/hospitalized cases � and mild/asymptomatic �,
and includes further classes for intensive care unit admissions * and deceased �.
The stochastic SHARUCD model can be regarded as a predictive model which
successfully describes the COVID-19 epidemic in the Basque Country in terms of
disease spreading and control, as shown in Fig. 1. The model is currently used
to monitor COVID-19 transmission in the Basque Country (the complete model
is described in details in [5, 53]) and was able to provide accurate projections on
the regional health system’s necessities during the first wave of the pandemic and
beyond. As explained in Section 2, the SHARUCD model was refined to analyze
isolated outbreaks [1, 47], including now import to asymptomatic infection, after
lifting of lockdowns, and increased detection of asymptomatic due to increasing
testing capacity.

Investigation on critical fluctuations around the epidemiological threshold has
shown that the lockdown measures implemented in the autumn 2020 were able
to drive the growth of COVID-19 cases to the so called sub-critical regime of
community transmission, leading to a low notification of severe cases, up to the end
of October 2020, and kept in stationarity even when the overall transmission rate
increased by an enhanced mobility. The same behavior was also observed in different
European regions [1, 47].

This study is a baseline for the understanding of the impact of the current vacci-
nation programs around the globe giving insights on the role of community trans-
mission and mobility regarding the reduction of severe disease. The system can
be also evaluated under different vaccine efficacies and coverage, while population
immunity is acquired by natural infection and vaccination, until finally reaching the
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so-called herd immunity threshold. The SHARUCD framework is under refinement
to include the uneven vaccination roll-out strategy currently in place worldwide with
preliminary results described in [51].

We use the epidemiological SHAR model framework to evaluate the effects of
vaccination in different epidemiological scenarios of coverage and efficacy. Two
vaccination models (one protecting against severe disease and the other protecting
against infection as well as severe disease) are compared to evaluate the reduction of
overall infections and hospitalizations. Differences in vaccine efficacy and coverage
must be also considered for a more accurate evaluation of vaccine performance.
Our results show that in an intermediate scenario of low to medium vaccination
coverage and limited vaccine efficacy, vaccine performance will be influenced by the
transmission level of mild and asymptomatic cases [51]. These results and concepts
are of use to study also the epidemiological situation of vaccine waning immunity
and immune escape by new variants.

On the other hand, the KTAP approach presented in Section 3 has so far been
applied with exploratory purposes to model an infectious disease where a pathogenic
agent spreads among a population of target cells, trying to evade the immune re-
sponse. In this sense, the model is quite simple not even considering the nature
of target cells (e.g., mainly gut and lung cells in the case of SARS-CoV-2 infec-
tion [15, 46]). However, this modeling approach can be adapted to explore different
scenarios considering multi-scale features and heterogeneity of the population by
stratifying it, e.g., according to age or comorbidities. For example, in [4] the popu-
lation is distributed over a network where each node has a different social structure
type: school, household, working place, and nursing home. Interactions can be mod-
eled according to this stratification using, for example, mixing matrices [21, 37].

It is worth stressing that, if no heterogeneity is considered in the KTAP model
(meaning = = 1) and only three levels of infection severity are considered (i.e.,
< = 3), we get, as a particular case, the SIR-type model configuration shown in
Fig. 15. In this case, we can relate the dependent variables from both models as:
5( (C) ≈ G1 (C), 5� (C) ≈ G2 (C) + G3 (C) + G5 (C), 5' (C) ≈ G4 (C) and 5� (C) ≈ G9 (C) (see
Eq. (9)).

D1
R

D2 I

S

D3
D

˜̀W̃

Fig. 15 Schematic representation of the simplified KTAP model with = = 1 and < = 3.

A subsequent step is to relate the viral replication in the KTAP approach with
the different compartments in the SHARUCD model, schematized in Fig. 16, and
to properly model transitions not only between adjacent states but also to distant
ones (for instance, a patient who has been immediately admitted to ICU facility
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upon infection). This perspective gives also an insight into a possible further strat-
ification in the SHARUCD model, considering, e.g., age groups or accounting for
subpopulations with comorbodities.

D1 D2 ≈ � D3 ≈ � D4 ≈* D<

Fig. 16 Different severity levels of the disease.

Finally, as vaccination against COVID-19 proceeds, both models introduced in
this present chapter are under refinement to investigate the impact of population
immunity by vaccination.

The KTAP approach has also been applied to conduct an exploratory analysis on
the impact of vaccination targeting a given population. In [4] the effect of vaccination
was modeled by “moving” some individuals with low F values to the highest level
F=.When the number of vaccinated particles increases, a strong reduction in terms of
infected and deceased cases is observed, with a large negative correlation between the
variables. This result confirms the relationship shown in Fig. 14 and the importance
of immunization. In order to take into account the dynamics of the roll-out of
vaccines, ongoing research assumes the micro-states F: to be time dependent.

Adding a spatial component to the models considered above is another way
to introduce an additional scale into the modeling framework. Spatial dynamics
is required in certain settings, e.g., when wanting to study differences in disease
transmission dynamics depending on geographical location or when looking at the
combined impact on transmission of different local/regional public health policies.

In Section 2 of this chapter, we have illustrated the effect of an import term
in the stochastic and spatially-dependent SHAR model. While in the non-spatial
context determining the critical threshold of community transmission can be done
analytically, in the spatially-dependent case this is no longer possible and one has
to measure such threshold numerically instead. In general, a deviation from the
corresponding mean-field approximation is to be expected since spatial correlations
alter the results.

This type of analysis for the models presented in this chapter is ongoing and will
be discussed in detail in our forthcoming publications.
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