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ABSTRACT

In this paper, a direct approach is developed for discovering optimal transfer trajectories of close-range
rendezvous of satellites considering disturbances in elliptical orbits. The control vector representing the inputs
is parameterized via different interpolation methods, and an Estimation of Distribution Algorithm (EDA)
that implements mixtures of probability models is presented. To satisfy the terminal conditions, which are
represented as non-linear inequality constraints, several feasibility conserving mechanisms associated with
learning and sampling methods of the EDAs are proposed, which guarantee the feasibility of the explored
solutions. They include a particular implementation of a clustering algorithm, outlier detection, and several
heuristic mapping methods. The combination of the proposed operators guides the optimization process in
achieving the optimal solution by surfing the regions of the search domain associated with feasible solutions.
Numerical simulations confirm that space transfer trajectories with minimum-fuel consumption for the chaser
spacecraft can be obtained with terminal condition satisfaction in rendezvous proximity operation.
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1. Introduction

Successful space transportation is a fundamental goal in many space 
scenarios as it has direct effects on various space missions, such as 
pacecraft guidance and tracking (Zhang et al., 2020), rendezvous, 
ocking, on-orbit refueling (Zhu et al., 2020), and orbital mainte-
ance (Ramteke and Kumar, 2022). In such type of missions, the 
verall process of relative spacecraft maneuvering lies in transferring 
he chaser spacecraft, traveling in its initial trajectory, to a distance 
ith acceptable relative velocity close to the chief spacecraft. In recent 
ears, numerous efforts have been dedicated to trajectory optimization 
f space vehicles in close-range rendezvous operations in the litera-
ure (Shirazi et al., 2018). However, designing a robust and efficient 
lgorithm to extract the optimal feasible trajectory while satisfying 
arious requirements of the space mission is still challenging due to 
he complexity of constraints.

There are two categories of constraints in real-world applications. 
epending on the priority of the constraint satisfaction and optimiz-

ng the objective functions (either minimization or maximization), 
he problem may include soft or hard constraints. According to the 
efinition by Malan et al. (2015), if constraints and objectives are 
reated with equal priorities, the constraints can be categorized as soft. 
owever, in problems with hard constraints, the first priority is to 

atisfy the constraints rather than optimizing the objective function. 
n close-range space rendezvous, reaching the target spacecraft with

∗ Corresponding author.

respect to the desired relative distance and velocity is the top priority.
In the other word, the existing constraint is the satisfaction of terminal
conditions for two state variables, including the vectors of relative posi-
tion and relative velocity of the chaser spacecraft. The main difficulty 
in satisfying the constraint in this problem is due to non-linearity of 
the constraint, and low feasibility ratio of the search domain. These
features along with the mentioned priority put the existing constraint
into hard constraint category in the current problem.

Different methods have been proposed to deal with constraints in
problems dedicated to the optimization of transfer trajectories of satel-
lites and space systems. In special cases, such as multi gravity-assisted
maneuvers (Zuo et al., 2020), converting the mathematical model of
thrust vector from continuous to impulsive enforces boundaries with
upper and lower values for decision parameters. However, in tackling 
close-range space rendezvous, additional considerations are required
since the formulation of the problem is more complex. This complexity
makes the optimization of transfer trajectory difficult and therefore, the
discovery of solutions that are feasible and have high quality will be
challenging.

As an example, besides the methodologies based on closed-loop
control techniques, similar to the approaches that rely on the Lya-
punov function (Tian and Jia, 2017), another solution is to apply
specific modifications to the variables or the problem formulation for
constraints satisfaction. Shape-based techniques and control transfor-
mation (Ayyanathan and Taheri, 2022) are in this category of methods.
E-mail address: ashirazi@bcamath.org
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Although the effectiveness of these approaches have already been
demonstrated in the literature, their dependency to the problem pre-
vents generalization (Vijayakumar and Abdelkhalik, 2022). In addition
to these methods, another option is to tackle the existing constraints
within the algorithm itself (Fossà and Bettanini, 2020). Non-linear
Programming (NLP) methods suited for constrained optimization prob-
lems are typical options to achieve feasible solutions. However, the
search process in gradient-based methods is prune to get stuck in the
local optimal region of the search space. For this reason, Evolutionary
Algorithms (EAs) (Tang et al., 2021) have shown to be more effective
to deal with constraints in space rendezvous missions (Liu et al., 2019).

hile using EAs, utilizing penalty functions is a common choice to
atisfy constraints (Ostman, 2019). These approaches can be applied
n a variety of problems, such as trajectory optimization of aeroas-
isted orbital transfer (Chai et al., 2018), design and optimization of
nterplanetary trajectories (Zotes and Peñas, 2012), and min-fuel orbit
ising (Chai et al., 2021). However, there are no guarantees that the
eveloped method discovers feasible trajectories when the constraints
re transformed into main objectives using penalty functions, as this ap-

proach is suitable in dealing with problems with soft constraints. Since
he optimization of transfer trajectory in space rendezvous mission is a
roblem with hard constraints, developing methodologies that ensure 
he constraints satisfaction is necessary.

Motivated by the discussed challenges, an Estimation of Distribu-
ion Algorithm (EDA) is developed in this paper. Problems involved
ith hard constraints are aimed in designing the proposed EA in this

esearch. Particularly, the algorithm efficiently constructs the feasi-
le model of solutions by utilizing a mixture of probabilistic models.
everal mechanisms correlated with learning and sampling methods 
re presented, which assist the algorithm to achieve only feasible
olutions within the optimization run. As for the learning mechanism
f the EDA, some techniques including feasible conserving clustering 
nd outlier detection are presented. The clustering mechanism forms 
he mixture of probabilistic models, adapted from the feasibility of
he solution domain, while the outlier detection mechanism enhances
he optimization process convergence. Also, within the sampling step,
ifferent heuristic mapping methods are developed, which help the
ptimization process continue towards exploring feasible domain. The 
resented methodology invariably yields feasible individuals and there-
ore is a potential tool for discovering transfer trajectories of high
uality in space rendezvous. In this regard, some attempts have been
roposed in developing sampling methods for probabilistic models to
enerate only feasible solutions for particular kinds of constraints (Shi-
azi, 2021). However, the methods were only suited in combinatorial
ptimization (Shirazi et al., 2022).

The proposed algorithm is analyzed and applied in the trajectory op-
imization of spacecraft in satellite close-range rendezvous with various
nitial conditions. Orbital disturbances are considered in elliptical orbits
or the space missions. The performance of the algorithm is evaluated
y comparing the numerical results with an approach based on implicit
yapunov function, as it has been frequently used in the literature. The 
btained results demonstrate the efficiency and the robustness of the
eveloped algorithm in finding feasible transfer trajectories of close-
ange space rendezvous missions. The rest of this paper is organized as
ollows. Section 2 is dedicated to the dynamics of the spacecraft in the
lose-range space rendezvous mission along with mathematical mod-
ling of the inputs, representing the control variables. The proposed
ptimization algorithm with the feasibility conserving mechanisms

is described in Section 3. Afterwards, Section 4 is devoted to the
achieved results for validating the performance of the algorithm.
Section 5 includes several conclusions of the paper.

2. Problem description and mathematical model

The initial step for dealing with the trajectory optimization of space-
craft in close-range space rendezvous missions is the mathematical
modeling of system dynamics (Shirazi et al., 2018). In this paper,
formulation of the dynamics of the chaser spacecraft has been taken
into consideration with respect to orbital perturbations in elliptical
orbits. Then, discretization scheme is utilized and the thrust vector is
parameterized in a direct approach for solving the problem.

2.1. System dynamics

The dynamics of the spacecraft in close-range space rendezvous 
mission can be described via variety of mathematical representations.
Sullivan et al. (2017) provided a complete list of relative dynamics
models seek to describe the motion of a spacecraft. The high diversity of
models is due to several factors such as the inclusion of perturbations,
and the shape of the target orbit. In this work, the general non-linear
model as in Alfriend et al. (2009) is utilized, since the aim of the
research is to develop an EA for any type of space orbit considering
perturbations. In this regard, the inertial equations of motion of the
target spacecraft are given by:

⃗̈0 = −
𝜇
𝑟03

𝑟0 + 𝑑0 (1)

where 𝑟0 is the position vector of the target spacecraft in ECI (Earth-
Centered Inertial) frame, 𝜇 denotes the constant for Earth’s gravitation,
and 𝑑0 denotes the disturbances due to orbital perturbations acted on
the target spacecraft. In a similar fashion, the inertial equations of
motion of the chaser are:

⃗̈1 = −
𝜇
𝑟13

𝑟1 + 𝑑1 + 𝑢1 (2)

with 𝑟1 as the position vector of the chaser in ECI frame, and 𝑢1
and 𝑑1 as the control vector and disturbances acted on the chaser
spacecraft respectively. It is clear that the difference between the
equation of motions of two spacecraft is the control vector, since
the target spacecraft is assumed to be non-maneuverable (𝑢0 = 0).
Consideration of uncertainties in estimation of state vectors during the
proximity operation applies a significant modification of the dynamical
equations. Such a consideration is left to future work. Following the
relative position of the chaser in Euler–Hill frame, the relative position
is defined as:

𝜌 = 𝑟1 − 𝑟0 (3)

with 𝜌 = [𝑥, 𝑦, 𝑧]𝑇 , the equations of the relative motion are:

𝑥̈ − 2𝜃̇0𝑦̇ − 𝜃̈0𝑦 − 𝜃̇20𝑥 = −
𝜇(𝑟0 + 𝑥)

[(𝑟0 + 𝑥)2 + 𝑦2 + 𝑧2]
3
2

+
𝜇
𝑟20

+ 𝑑𝑥 + 𝑢𝑥 (4)

𝑦̈ + 2𝜃̇0𝑥̇ + 𝜃̈0𝑥 − 𝜃̇20𝑦 = −
𝜇𝑦

[(𝑟0 + 𝑥)2 + 𝑦2 + 𝑧2]
3
2

+ 𝑑𝑦 + 𝑢𝑦 (5)

𝑧̈ = −
𝜇𝑧

[(𝑟0 + 𝑥)2 + 𝑦2 + 𝑧2]
3
2

+ 𝑑𝑧 + 𝑢𝑧 (6)

with time as the independent variable, 𝑢𝐻 = [𝑢𝑥, 𝑢𝑦, 𝑢𝑧] as the ac-
celeration due to control input in Euler–Hill frame, 𝜃0 denoting the
true anomaly of the target spacecraft, and 𝑑𝐻 = [𝑑𝑥, 𝑑𝑦, 𝑑𝑧] as the
disturbance acceleration in Euler–Hill frame.

Clearly, the components of disturbances in Euler–Hill frame can be
obtained from the transformation of 𝑑1 from ECI frame via 𝑑𝐻 = 𝑇𝐻

𝐸 𝑑1
with the transformation matrix as:

𝑇𝐻
𝐸 = [ ̂⃗𝑟0

̂⃗ℎ0 × 𝑟0

‖

̂⃗ℎ0 × 𝑟0‖

̂⃗ℎ0]−1 (7)

where ℎ⃗0 represents the angular momentum vector of the target space-
craft, and (.̂) represents a unit vector. Two types of orbital perturbations
are considered as disturbances in this research for both space vehicles,
including atmosphere drag and Earth-oblateness (𝐽2 zonal harmonic).
The perturbed acceleration due to atmospheric drag 𝑝𝑎𝑡𝑚 is modeled as:

𝑝 = −1𝜌𝑣 (
𝐶𝐷𝐴 )𝑣 (8)
𝑎𝑡𝑚 2 𝑟𝑒𝑙 𝑚 𝑟𝑒𝑙
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with 𝐶𝐷, 𝐴, and 𝑚 as the dimensionless drag coefficient, frontal area 
of the spacecraft, and the mass of the spacecraft. 𝑣𝑟𝑒𝑙 is the spacecraft
elocity relative to the atmosphere as 𝑣𝑟𝑒𝑙 = 𝑣 − 𝛺𝐸 × 𝑟 with 𝛺𝐸 as the

Earth’s rotational speed. The U.S. standard atmosphere model USSA76
is utilized for the variation of atmosphere density 𝜌 (Tewari, 2007). The 
perturbing gravitational acceleration 𝑝𝑔 due to 𝐽2 is calculated as:

𝑝𝑔 = 3
2
𝐽2𝜇𝑅2

𝑟4

[

𝑥
𝑟
(5 𝑧

2

𝑟2
− 1) ̂⃗𝑖 +

𝑦
𝑟
(5 𝑧

2

𝑟2
− 1) ̂⃗𝑗 + 𝑧

𝑟
(5 𝑧

2

𝑟2
− 1) ̂⃗𝑘

]

(9)

where 𝑅 is the Earth’s equatorial radius and 𝐽2 = 0.00108263. Having
the two described perturbation accelerations, the overall disturbance is
obtained as 𝑑 = 𝑝𝑎𝑡𝑚+𝑝𝑔 . It is worthy to note that since the main concern
in this research is the algorithm development rather than high precision
orbit propagation, these two orbital perturbations are considered as the
main disturbances for the rendezvous mission. However, it is possible
to consider more orbital perturbations and other types of disturbances
in the model for increasing the accuracy of the simulation.

The decreasing variation of spacecraft mass is due to the acting
thrust of the propulsion system. Considering 𝑇 = [𝑇𝑥, 𝑇𝑦, 𝑇𝑧] as the
ector representing the thrust components, the decrease in the mass
f the spacecraft can be shown according to:

̇ = −
‖𝑇 ‖
𝐼𝑠𝑝𝑔0

(10)

where 𝐼𝑠𝑝 denotes the specific impulse of the propellant, and 𝑔0 is the
tandard acceleration of gravity at sea-level (𝑔0 = 9.807 m∕s2). Also,
he control acceleration vector from the thrust profile can be presented
y 𝑢𝐻 = 𝑇 ∕𝑚. Having 𝑡𝑓 as the final time of transfer, if the thrust
ector time profile 𝑇 is known, the presented equations of motion for
he system can be integrated with respect to 0 < 𝑡 < 𝑡𝑓 as the time
nterval. Following the integration, it gives the relative position and
elocity associated with the chaser spacecraft as time histories. The
inal value of state vectors as 𝑟𝑓 = [𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 ] and 𝑣𝑓 = [𝑥̇𝑓 , 𝑦̇𝑓 , 𝑧̇𝑓 ]
an be achieved by the end of the space rendezvous.

.2. Thrust profile approximation

In direct approaches, the convergence of the optimization process
s heavily affected by thrust vector parameterization. In this paper, the
hrust magnitude, acted on the spacecraft, represented by 𝑇𝑥, 𝑇𝑦 and 𝑇𝑧
n each direction is approximated by letting 𝑁𝑝 number of nodes as
nterpolation points in the time interval of 0 < 𝑡 < 𝑡𝑓 , with respect to
imits of 𝑇min < [𝑇𝑥, 𝑇𝑦, 𝑇𝑧] < 𝑇max as the allowable thrust boundaries.
onsidering 𝑁𝑝 uniformly discretized nodes, the time domain of the
ransfer trajectory is decomposed into 𝑁𝑝 − 1 sub-intervals. Following
his, the time interval is presented by the Lagrange polynomial as:

′(𝑡) =
𝑁𝑝
∑

𝑘=1
(
∏

𝑗≠𝑘

𝑡 − 𝑡𝑗
𝑡𝑘 − 𝑡𝑗

)𝑝𝑘 (11)

where 𝑇 ′(𝑡) represents any of the components of thrust vector
(𝑇𝑥, 𝑇𝑦, 𝑇𝑧), 𝑁𝑝 denotes the number of discrete nodes, 𝑝𝑘 is the discrete
nodes within the time interval, and 𝑡𝑘 is the discretized times. Having
the number of nodes 𝑁𝑝 for each component of thrust vector, the time
profile of thrust vector can be interpolated with various techniques.
The employment of piecewise cubic Hermite interpolating polynomi-
als (Phillips, 2003) is one of the most common methods. Different
curves may be achieved, based on the selection of tangents in each
point. There are three most common types of curves of the Hermite
splines category, that are used frequently in various applications. Fig. 1
shows these splines for parameterizing the components of the thrust
vector.

Three types of splines are employed in this research, including
Shape Preserving (Huynh, 1993), Not-a-Knot (Dahlquist and Björck,
2008), and Catmull–Rom splines (Dahmen et al., 2012), hereinafter
referred to SP, NK, and CR splines respectively. Based on polynomial
Fig. 1. Parameterizing the components of thrust profile via piecewise cubic Hermite
splines.

approximation, these splines are continuous, and also have a continu-
ous first derivative. Internal nodes and end nodes of each segment have
different tangent values, which is the major difference between these 
splines. Formation of SP spline is based on having no local overshoots
t the data points. The value of slope at each interior node is considered 
o be a weighted average value, associated with the piecewise linear in-
erpolant slopes. Two end points are treated as single-side slope nodes.
olving a system of linear equations is not required for calculation of
lopes at the points in this spline. NK spline is a curve with smoother
ormation. Its second derivatives have continuous variation. Continuous
hird derivative is also obtainable with respect to some round-off
rror (Behforooz, 1992). CR spline approximation is the third type
f the Hermite interpolation method, and it benefits from a balanced 
latness. The computation of slope value for CR spline at discrete nodes
elies on the neighboring nodes. Continuous second derivative is not
ossible in this kind of spline, and shape preserving is not guaranteed. 
owever, it can be calculated rapidly using a convolution operation.
etailed discussion regarding these techniques is beyond the scope of

his article and the reader is recommended to refer to the provided Refs.
uynh (1993), Dahlquist and Björck (2008) and Dahmen et al. (2012).

. Method of solution

The initial values of state vector are obtained with respect to the
iven position and velocity of the spacecraft relative to the target space

vehicle at the initial time as 𝑟𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖] and 𝑣𝑖 = [𝑥̇ 𝑖, 𝑦̇ 𝑖, 𝑧̇ 𝑖] along with
the orbital elements of the space orbit. Having the specific impulse of 
the propulsion system along with the initial mass of the space vehicle,
the propagation of rendezvous path with respect to the given thrust
profile can be done. Therefore, formalizing a continuous optimization 
problem based on the given parameters becomes possible. The problem
ormation along with the proposed approach are illustrated in Fig. 2. In

this regard, the objective is to achieve the optimal thrust profile of the 
pacecraft, which satisfies the terminal conditions, while minimizing
he fuel consumption in a predefined mission for a close-range space
endezvous. Constraints are formed according to the relative distance 
nd velocity of the chaser spacecraft at the final time step, while the 
uel mass is treated as the main objective function to be minimized.
n the other word, close-range space rendezvous is transformed into an
ptimization problem with inequality constraints. The overall scheme
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Fig. 2. Schematic diagram of the proposed approach.

f the problem is presented as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  (𝑋) 𝑋 = (𝑋1, 𝑋2,… , 𝑋𝑛)

𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝑋) ≤ 0

𝑋min < 𝑋𝑖 < 𝑋max

(12)

here  (𝑋) and (𝑋) denote the objective function and the con-
traints function respectively, and 𝑛 is the total number of decision
ariables. Following the proposed model of the problem, the interpo-
ation nodes for thrust vector components are the decision variables
= (𝑋1, 𝑋2,… , 𝑋𝑛) as:

= 𝑝𝑖 (𝑖 = 1,… , 3𝑁𝑝) (13)

here 𝑛 = 3𝑁𝑝, while the boundaries are 𝑋min = 𝑇min and 𝑋max = 𝑇max.
oreover, the objective function is represented as:

(𝑋) = 𝑚𝑓 = ∫

𝑡𝑓

0
𝑚̇𝑑𝑡 (14)

here 𝑚𝑓 is the consumed fuel mass within the transfer process. It
s noteworthy that once the thrust profile is generated based on the
ecision variables in each objective function evaluation, infeasible
ontrol laws outside of the predefined limits of 𝑇min and 𝑇max due to
pline overshoots are corrected as:
′(𝑡) = min(𝑇 ′(𝑡), 𝑇max)
′(𝑡) = max(𝑇 ′(𝑡), 𝑇min)

(15)

Considering the terminal conditions as the constraints in optimiza-
ion, the relative distance and velocity of the spacecraft by the end of
he transfer are formulated as:

(𝑋) =
[

‖𝑟𝑓‖ − 𝜎𝑟
‖𝑣𝑓‖ − 𝜎𝑣

]

(16)

where 𝜎𝑟 and 𝜎𝑣 are the desired final values for distance and velocity of
the spacecraft relative to the chief space vehicle as the space mission re-
uirement. In order to tackle this optimization problem with constraints
n continuous domain, an EDA-based algorithm is developed.

.1. Estimation of distribution algorithms

A special class of EAs are EDAs, which operate using probabilistic
odels (Larrañaga and Lozano, 2001). Alg. 1 shows the general pseudo-

ode for EDAs. As can be appreciated, the main loop of EDAs starts
ith the selection method (Alg. 1 Line 5). Having 𝑋𝑖 as the current
opulation for 𝑖th iteration, a selection of high quality feasible solutions
s selected from the current population. The chosen population is
tilized to estimate the parameters of the probability model. To this
nd, the top 𝑁𝑠𝑒𝑙 number of individuals from the current population 

are selected. This number of selected individuals is obtained as:

𝑁𝑠𝑒𝑙 = 𝜏𝑁𝑝𝑜𝑝 (17)

where 𝜏 is the truncation factor and 𝑁𝑝𝑜𝑝 is the population size. The
objectives of the current population are sorted as:

[S
𝑖 , 𝐈] = S ↑(𝑖) (18)

here S ↑ is the sorting operator, 𝑖 is the vector of objective values
or the current population as 𝑖 =  (𝑋𝑖), S

𝑖 is the sorted vector of
bjective values, and 𝐈 is the index vector associated with the sorted
ector. The individuals of the current population are rearranged based
n the obtained sorting index as:
S
𝑖 = 𝑋𝑖[𝐈] (19)

Algorithm 1: General workflow of Estimation of Distribution
Algorithms
1 𝑋0 ← Generate 𝑁𝑝𝑜𝑝 individuals as the initial population
2 repeat
44 for 𝑖 = 1, 2, ... do

/* SELECTION METHOD */
5 𝑋𝑠𝑒𝑙

𝑖 ← Select 𝑁𝑠𝑒𝑙 < 𝑁𝑝𝑜𝑝 individuals from 𝑋𝑖 according
to the selection method
/* LEARNING METHOD */

6 𝑖(𝑋) = (𝑋|𝑋𝑆𝑒𝑙
𝑖 ) ← Estimate the probability

distribution
/* SAMPLING METHOD */

7 𝑋𝑠𝑎𝑚
𝑖 ← Sample 𝑁𝑝𝑜𝑝 individuals from 𝑖(𝑋)

/* REPLACEMENT METHOD */
8 𝑋𝑖+1 ← Form the new population from 𝑋𝑠𝑎𝑚

𝑖 and 𝑋𝑖
according to the replacement method

9 end for
10 until a stopping criterion is met ;
1212 return 𝑋𝑖
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with 𝑋S
𝑖 representing the sorted population. Then, the selected popu-

lation is extracted as:

𝑋𝑖
𝑠𝑒𝑙 = 𝑋𝑖

S [1 ∶ 𝑁𝑠𝑒𝑙] (20)

Then in the next step, a probability distribution 𝑖(𝑋) associated
ith the set of most promising individuals 𝑋𝑖

𝑠𝑒𝑙 at each generation is
earned   (Alg. 1 Line 6).   When    approaching    constrained   continuous
ptimization with EDAs, similar to most of the meta-heuristic algo-
ithms, there are no guarantees that the solutions sampled from the
robabilistic model satisfy the constraints of the problem. To deal
ith this issue, in our proposal, a mixture of Gaussian distributions is
mployed. The density function of the proposed mixture of probabilistic
odels is defined as:

𝑖(𝑋𝑠𝑒𝑙
𝑖 ) =

𝑁𝑐
∑

𝑘=1
𝜋𝑘𝑘(𝑋𝑠𝑒𝑙

𝑖 |𝜇𝑘, 𝛴𝑘) (21)

where each 𝑘(𝑋|𝜇𝑘, 𝛴𝑘) is a multivariate Gaussian distribut
∑𝑁

ion with
𝜋𝑘 > 0 as the coefficient of mixture for the 𝑘th component ( 𝑘 

𝑐
=1 𝜋𝑘 =

1), and 𝜇𝑘 and 𝛴𝑘 denoted as the mean value and the covariance
matrix of the 𝑘 model for 𝑘 = 1, … , 𝑁𝑐 , with 𝑁𝑐 as the total number
of components. In the learning step, the selected population at the
beginning of each iteration is divided into several clusters of solutions
so that the centroids of the clusters 𝜇𝑘 are in the feasible region. As
a result, when a Gaussian model is learned from each cluster, the
probability of sampling feasible solutions becomes high. This process is 
the first required mechanism for constraint satisfaction in this research.

Having all of the centroids (𝜇𝑘) inside the solution domain asso-
ciated with feasible solutions remarkably reduces the generation of
infeasible solutions within the process of sampling. However, when
the new population is sampled, some of the new individuals may 
still be formed within the infeasible solution domain. Therefore, a
mechanism that corrects the newly sampled infeasible solutions is also
required within the sampling process in each component (Alg. 1 Line
7). In this paper, several mapping mechanisms are proposed, which 
move the newly sampled solutions from the infeasible region into
the nearby feasible region. As the centroid in each component of the
Gaussian mixture model is inside the feasible region, the proposed
mapping mechanisms exploit this situation and use each centroid as
the target point for mapping any infeasible solution. One idea is to start
shifting the infeasible points towards their respective centroid in each
mixture component until they enter the feasible region. This is the other
mechanism, which is associated with the sampling process and consists
of mapping infeasible solutions into the feasible region. Although this
mechanism guarantees the feasibility of all newly sampled infeasible so-
lutions, it may produce a strong bias in the search process, which makes
the algorithm more likely to converge to low-quality solutions (Coello,
2002). As a result, the covariance matrix for each component (𝛴𝑘) may
suffer from unwanted shrinking due to the mapping mechanism. This
drawback is due to the fact that the mapping process for all infeasible
solutions in each component is towards the centroid of that component.
It may result in low-quality solutions when the best point, or the set of
points with the best objectives, is far away from the centroid in each
component.

To compensate this weakness and prevent unwanted shrinking of
𝛴𝑘, the proposed option is to increase the number of components back
in the learning process. The proposed method works as follows: for
each cluster, those solutions that could be considered as outliers are
chosen. Then, for each of these outlier solutions, we select those that
have a good enough objective function value and a new component
of the mixture is created with this solution as the mean value of the
Gaussian distribution. Having this consideration for each component,
the exploration is increased and the unwanted reduction in the values
of covariance is prevented.

By sampling data based on the probabilistic model generated in
each generation while mapping them into the feasible region, a new
population of solutions for the problem is formed as 𝑋𝑠𝑎𝑚. Finally, the
𝑖
replacement operator (Alg. 1 Line 8) combines the sampled solutions
and the previous solutions, creating a new generation as:

𝑋𝑖+1 = S ↑([𝑋𝑠𝑎𝑚
𝑖 , 𝑋𝑖]) (22)

𝑋𝑖+1 =𝑋𝑖+1[1 ∶ 𝑁𝑝𝑜𝑝] (23)

The algorithm halts the iteration process and returns the best so-
lution found across the generations when a certain stopping criterion
is met (Alg. 1 Line 10), such as a maximum number of generations,
homogeneous population, or lack of improvement in the solutions.

The employment of the aforementioned mechanisms means that the
algorithm generates only feasible solutions in every generation, while
preventing the algorithm from converging to low-quality solutions. 
Overall, the proposed algorithm include two mechanisms associated
with the learning method and one mechanism associated with the
sampling method. The mechanisms associated with the learning step
are coupled with feasible clustering and outlier detection techniques,
while the one associated with the sampling is the mapping mechanism. 
In the following sections, these mechanisms will be discussed in detail.

3.2. Feasibility conserving clustering

By disabling the feasibility conserving mechanisms and tackling
the unconstrained version of the proposed algorithm, initial solutions 
inside the feasible region of the solution domain are achieved. Within
this step, the algorithm is run while temporary treating Eq. (16) (the
constraints) as the objective function. The inner loop continues until the
required number of solutions inside the feasible region are detected. It
should be noted that if the parameters defining the close-range space 
rendezvous problem or interpolation setup are poorly chosen, it is
possible that the initial feasible population is not achieved. Choosing
very low number of interpolation points is one of the causes that will be
highlighted in comparative analysis in Section 4.2. The other cause can
be very low and unreasonable level of thrust for a desired rendezvous.
However, in general, since there are no equality constraints in the
defined problem and the constraints are treated as inequality form,
the initial population of feasible solution will likely be obtained in this
method if the setup parameters are fairly chosen.

At each main iteration, the process starts by having a population of
feasible solutions, obtained from the previous iteration. High quality
feasible solutions are selected from the current population as described
previously. In the proposed stage for learning process, two steps exist
for the establishment of the Gaussian mixture model. These steps are

Algorithm 2: Learning Mechanism
Input: 𝑋𝑠𝑒𝑙,𝑠𝑒𝑙,(𝑋), 𝛼,𝜆

1 𝑁𝑠𝑒𝑙 ← 𝑠𝑖𝑧𝑒(𝑋𝑠𝑒𝑙)
2 for  ← 1 to 𝑁𝑠𝑒𝑙 do
3 [𝜄, 𝜇] ← kmeans(𝑋𝑠𝑒𝑙,);
4 𝜇 ← EVAL(𝜇,(𝑥))
5 if max(𝜇) ≤ 0 then
6 BREAK;
7 end for
8 ESTABLISH 𝛷 FROM [𝜇,𝑋𝑠𝑒𝑙(𝜄)] ; 𝑁𝑐 ← 𝑠𝑖𝑧𝑒(𝛷)
9 for  ← 1 to 𝑁𝑐 do
10 RETRIEVE [𝑋̂, ̂ , 𝜇̂, 𝜎̂] FROM 𝛷()
11 [𝑋̂𝑠𝑒𝑙 , ̂𝑠𝑒𝑙] ← SELECTION(𝑋̂,̂ ,𝛼)
12 𝑑 ← ||𝑋̂𝑠𝑒𝑙 − 𝜇̂|| ;  ← 0
13 if 𝑑 > 𝜆 × 𝜎̂ then
14  ←  + 1
15 ESTABLISH 𝜙̂ FROM [𝜇̂, 𝑋̂𝑠𝑒𝑙] ; 𝜙(𝑗) ← 𝜙̂
16 end for
Output: 𝜙,𝛷
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Fig. 3. Feasibility conserving clustering process: (a) One cluster with single infeasible centroid (b) Two clusters, one with an infeasible centroid (c) Three clusters with all feasible
centroids.
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demonstrated in the Pseudo code representation of the learning process,
presented in Alg. 2. As for the first step, the minimum number of
mixture components is obtained in such a way that all the respected
centroids of the components are positioned inside the search domain
associated with feasible solutions (Alg. 2 Lines 2 to 8). Then, the second
step is to extract outliers in each of the components and verify their
quality. If they are high quality solutions, the mechanism takes them as
additional separate components, considering each of the points as the
centroid for a new mixture component (Alg. 2 Lines 9 to 16). The aim of
the second step, as mentioned, is to recoup with unwanted shrinking of
the covariance matrix due to the mapping mechanism, which will take
place after sampling new solutions.

The clustering process of the set of selected solutions is shown in
Fig. 3, in a 2D optimization problem. In the plots, the black region
is associated with the infeasible solution domain due to the existing
constraint of the problem. Also, the color-mapped area shows the
feasible solution domain. The selected individuals are marked and
different numbers of clusters  (𝑘) are  taken into  account.  𝑘-𝑚𝑒𝑎𝑛𝑠++  is 
utilized as the clustering method (Wu, 2012) (Alg. 2 Line 3). In this
method, assuming ‖𝑋𝑖 − 𝑋𝑗 ‖ as the Euclidean distance between 𝑋𝑖 and 
𝑋𝑗 , the goal is to choose a set 𝐶 of 𝑘 centroids to minimize 𝜙𝑌 (𝐶) as:

𝜙𝑌 (𝐶) =
∑

𝑦∈𝑌
𝑑2(𝑦, 𝐶) =

∑

𝑦∈𝑌
min

𝑖=1,…,𝑘
‖𝑦 − 𝑐𝑖‖ (24)

where 𝐶 = {𝑐1,… , 𝑐𝑘}, and centroids are calculated as:

𝑐(𝑌 ) = 1
|𝑌 |

∑

𝑦∈𝑌
𝑦 (25)

where 𝑌 is a subset of points, defined as 𝑌 ⊆ 𝑋. Regarding this
lustering method, in plot (a), only a single cluster is formed (𝑘 = 1) 

and therefore one centroid exists, representing the mean value of the
selected individuals. According to the plot, the centroid in this case
is lied on the infeasible region of the search domain. Following this
placement, the probabilistic model does not possess the requirement
for the satisfaction of constraints . Increasing the number of clusters,
in plot (b), the selected individuals are divided into two components
(𝑘 = 2). The locations of the centroids show that one resides inside
the feasible domain, while the other centroid does not. It certifies that
the current mixture model is also not appropriate for the satisfaction
of constraints. By increasing the number of clusters to three  (𝑘 = 3),
plot (c) in Fig. 3 is achieved. As can be inferred, all of the points
associated with the centroids of the mixture model are positioned inside
the feasible domain. Based on this state, the mixture of Gaussian
distributions model is learned with the current combination. Since all of
the centroids are feasible in this case, any newly sampled solutions are
likely to be inside the feasible region of the search domain. The number
of clusters obtained in this approach is the least number of components
associated with feasible individuals as their centroids (Alg. 2 Line 8). At
this point, it is possible to increase the number of clusters and achieve
ther type of mixtures for Gaussian distributions. However, there is no
ctual necessity for this increment (Alg. 2 Lines 5 and 6), as it makes
omputation time increase drastically.
Fig. 4. Outlier detection for new clusters (𝛼 = 0.01, 𝜆 = 1𝜎).

3.3. Outlier detection

In the second step, more components are included in the model.
As stated, the goal of this step is to reduce the loss of covariance,
which occurs due to the mapping mechanism, which will be utilized
in the proposed method (Coello, 2002). In this step, more components
are added to the mixture, based on evaluating the outliers in each
component after finishing the first step.

First, each component of the Gaussian mixture model 𝛷 that has
een  identified in the previous step is evaluated (Alg. 2 Line 10) to

check if it has outliers with respect to the Z-score method of outlier
detection (Hodge and Austin, 2004) considering an arbitrary distance
𝜆 from the centroids:

𝑍𝑖 =
‖𝑋𝑖 − 𝜇𝑘‖

𝜆
(𝑖 = 1,… , 𝑁𝑘) (26)

where 𝑍𝑖 is the score for solution 𝑋𝑖, 𝜇𝑘 is the centroid of the 𝑘th
cluster, 𝑁𝑘 is the number of solutions in the 𝑘th cluster, 𝑍𝑖 < 1 is the
rigger for detecting outliers, and 𝜆 is the distance in terms of variance
𝜆 = 1𝜎, 2𝜎, …). Then, the quality of the detected outliers is checked via

a threshold 0 < 𝛼 < 1 (Alg. 2 Lines 11 to 13). Based on this mechanism, if
a solution is detected as an outlier and is ranked within
the top 𝛼 percentage of the individuals with highest quality, it will be
reated as the centroid of a new component 𝜙̂ in the current mixture (Alg.

2 Line 15). Depending on the distribution of solutions in each cluster,
additional components are identified based on this approach. An
independent multivariate Gaussian distribution is considered for new
components, which are added to the mixture. In this distribution, the
variance for each dimension is computed according to the distance of
the outlier from the initial centroid of every component. An example of
this method is shown in Fig. 4.

As shown, the centroid of a component and its respective population
are illustrated. Based on this representation, the objective value of 
two individuals is lower than the threshold, thus are detected as the
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Fig. 5. New individuals from the mixture of Gaussian distribution, (a) Before mapping (b) After mapping.
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outliers in the selected population. Therefore, they are remarked as
the centroids for two newly generated components, attached to the 
mixture model. New variances are considered for each newly formed 
components, which are equal to half of the distance from the main
centroid to the respective outlier. Overall, the formed mixture model
consists of three components based on Gaussian distribution. The initial
main component is due to the first step of the learning mechanism and
two additional components are due to outliers.

The new solutions will be sampled in different ways for initial and
dditional components. For the initial components, new solutions are
ampled with respect to the covariance matrix and the mean value of
he solutions in each component. For the components that have been
reated based on the outlier detection method, the new solutions are

sampled with respect to the variance that has been described.

3.4. Mapping mechanisms

The mixture components generated by the proposed learning mech-
anism have mean values inside the search domain associated with
feasible solutions. However, there is a possibility that newly individuals 
are sampled within the infeasible region with respect to the variance 
of each component. To solve this issue, a few mechanisms for mapping
the newly generated solutions are proposed. The overall structure of
these mechanisms is provided in Al. 3, while Fig. 5 shows the developed
mapping mechanism for a constrained optimization problem.

The provided plots indicate the mapping process within the op-
timization loop in one iteration. According to the illustrations, the
proposed technique for mapping relies on the concept of moving in-
feasible solutions towards the comparative mean value in 𝑁𝛿 minor 
iterations. The process continues until the shifted point resides in the
easible region. Based on the presented learning mechanism, the cen-

troids of the components are feasible. Therefore, entering the feasible
region while shifting the solutions towards the mean value is guaran-
teed. In Fig. 5(a), a mixture model with two Gaussian distributions is
ssumed as the probabilistic model. Newly generated samples are near 
he centroid of the components. However, new population includes
nfeasible samples, which are marked separately. The centroids are
onnected to their respective newly generated samples. In Fig. 5(b)

a deterministic form is considered for mapping the solutions, with
equally-spaced motion upon their respective centroids with 𝑁𝛿 as the
number of steps. In each step, the shifting is done with respect to
he value of (‖𝑐𝑘 − 𝑋𝑠‖)∕𝑁𝛿 , where 𝑋𝑠 is the solution inside the
nfeasible region, aiming to be mapped towards the centroid 𝑐𝑘 in the
𝑘th component. Following this process, 𝑁𝛿 steps are included within the
istance between the centroid and the infeasible solution. Note that, the

last shift will be on the centroid at the final step. Therefore, regardless
of the value of 𝑁𝛿 , the feasibility of the final solution is guaranteed. As
he value of 𝑁𝛿 increases, the border between feasible and infeasible 
egions will be discovered with more details, and therefore, the map-

ping process will be more accurate. It is worth to mention that while
Algorithm 3: Mapping Mechanism
Input: 𝑋𝑟𝑒𝑝,𝛷,𝜙, (𝑥),𝑁𝛿 ,MapMode

1 RETRIEVE 𝑋𝑖𝑛𝑓 FROM 𝑋𝑟𝑒𝑝
2 RETRIEVE 𝜇 FROM [𝛷,𝜙]
3  ← 0
4 foreach 𝑋̂𝑖𝑛𝑓 = 𝑋𝑖𝑛𝑓 do
5  ←  + 1
6 for  ← 𝑁𝛿 to 1 do
7 𝑑 ← ||𝑋̂𝑖𝑛𝑓 − 𝜇||
8 if MapMode.type = ’Linear’ then
9 𝛿 ← 𝑑∕
10 if MapMode.type = ’Bisection’ then
11 𝛿 ← 𝑑∕2
12 if MapMode.method = ’Deterministic’ then
13 𝜂 ← 1
14 if MapMode.method = ’Stochastic’ then
15 𝜂 ← UNIF. DIST. [0,1]
16 𝑋̂𝑖𝑛𝑓 ← 𝑋̂𝑖𝑛𝑓 + 𝜂 × 𝛿
17 ̂ ← EVAL(𝑋̂𝑖𝑛𝑓 ,(𝑥))
18 if ̂ ≤ 0 then
19 BREAK;
20 end for
21 𝑋𝑚𝑎𝑝( ) ← 𝑋̂𝑖𝑛𝑓
22 end foreach
Output: 𝑋𝑚𝑎𝑝

shifting the solution towards their respective centroids, the process will
be stopped as the solutions becomes feasible. Following the described
process, various non-linear or stochastic approaches can be utilized for
mapping the solutions. Four approaches are proposed in the following.

3.4.1. Linear deterministic mapping
As described previously, the primary and most typical method for

mapping the solutions is the Linear Deterministic (LD) method. In this 
approach, the distance between the solution, which is to be mapped,
and the centroid of the component is distributed into segments with
equal sizes (Alg. 3 Line 9). Solutions reside inside the infeasible region
are shifted from their origin towards their respective centroid via these
steps. The feasibility of the newly shifted solution is checked in each
step (Alg. 3 Line 17). If the new solution enters the feasible region,
the movement will stop (Alg. 3 Line 18). The shifting procedure can be
epresented as:

𝑋𝑠+1 = 𝑋𝑠 + 𝛿 (27)

here 𝑋𝑠 is the infeasible solution to be mapped, 𝑋𝑠+1 is the new ob-
tained solution after the shifting step towards the component’s centroid
𝑐𝑘, and the parameter 𝛿 is the shifting step, obtained as

𝛿 =
𝑐𝑘 −𝑋𝑠0 (28)
𝑁𝛿
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Here, 𝑁𝛿 denotes the arbitrary quantity of segments for the pro-
cess, and 𝑋𝑠0 

is the initial position of the solution, resides inside the 
nfeasible region of the solution domain.

.4.2. Linear stochastic mapping
Similar to LD, another mapping approach is Linear stochastic (LS). 

he key variation is that in every step, when the new solution is
obtained, a random movement is applied on the solution (Alg. 3 Line
15) with respect to the parameter 𝜂 as:

𝑠+1 = 𝑋𝑠 + 𝜂 × 𝛿 (29)

In this definition 0 < 𝜂 < 1. This approach enforces a random search 
of the solution, during the process and may possess some preferences
based on the search domain of the optimization problem.

3.4.3. Bisection deterministic mapping
The next approach is Bisection deterministic (BD) mapping. This

approach relies on the concept of bisecting the interval frequently,
between the infeasible solution and the respective centroid. In the
shifting process, the distance is divided in two by calculating the middle
point of the distance interval (Alg. 3 Line 11) as:

=
𝑐𝑘 −𝑋𝑠

2
(30)

The midpoint solution is checked for feasibility. If it is found to
e inside the feasible region, the shifting process stops. Otherwise, 
he mapping continues by taking a new interval between the current
btained solution and the respective centroid.

.4.4. Bisection stochastic mapping
Similar to BD, bisection stochastic (BS) mapping is the other ap-

roach. In this method, newly obtained solution after each shift is
moved in a random direction with respect to a variable radius 𝛿 and
random variable 𝜂 (Alg. 3 Line 15). The value of this parameter is from
zero to 𝛿max, which is equal to the distance between two steps in
sequence.

4. Simulations

To validate the efficiency of the proposed algorithm, several ex-
eriments have been conducted. First, a close-range space rendezvous
roblem is considered with respect to four various initial conditions. 
ollowing the experiments, a comparison is made between the quality
f the obtained solutions via the presented method and a method based

on Lyapunov-function available from the literature.
Since parameter tuning is not the main purpose of this research, the

rbitrary parameters are chosen as follows for the proposed algorithm
n all of the runs. Having 𝑛 as the number of decision variables, the 
aximum number of generations 𝑁𝑔𝑒𝑛 is considered as 30×𝑛, while the

population size 𝑁𝑝𝑜𝑝 is set to 20×𝑛. The parameters for outlier detection,
including the distance and the threshold, are chosen as 𝜆 = 1𝜎 and
𝛼 = 0.1 respectively. It should be highlighted that for each problem, 
the best selection of algorithm parameters is unique. Therefore, it is
noteworthy that the results obtained in the simulations are valid for the
given selection of algorithm parameters. Parameter tuning and analysis
of the algorithm performance via altering its parameters are left to 
future work.

4.1. Robustness verification

Table 1 contains the parameters for close-range space rendezvous
mission considered in the experiments. Note that the specified initial
mass, reference area, and the drag coefficient stands for both target and
chaser within the simulation. Since the main aim of the experiments is
to analyze the robustness of the presented approach and evaluating the
practicality of the schemes for interpolation, several initial conditions
Table 1
Close-range space rendezvous mission parameters

Parameter Value Parameter Value

Semi-major axis a 12 500 km Initial mass 𝑚0 170 kg
Inclination i 10◦ Thrust limit 𝑇 ±120 N
Eccentricity e 0.4 Specific impulse 𝐼𝑠𝑝 300 s
Right ascension 𝛺 15◦ Final distance 𝜎𝑟 10 m
Arg. of perigee 𝜔 65◦ Final velocity 𝜎𝑣 0.1 m/s
True anomaly 𝜈 230◦ Drag coefficient 𝐶𝐷 2
Total Time 𝑡𝑓 5 min Reference area 𝐴 3 m2

Table 2
Initial values for state vector.

Relative distance Relative velocity

𝐶1 𝑟𝑖 =
[

+1300 +500 −1900
]

m 𝑣𝑖 =
[

−2.9 −1.2 +1.7
]

m∕s

𝐶2 𝑟𝑖 =
[

+800 −1500 +1250
]

m 𝑣𝑖 =
[

+7.3 +6.8 +1.1
]

m∕s

𝐶3 𝑟𝑖 =
[

−120 +2700 +1430
]

m 𝑣𝑖 =
[

+1.5 −12.1 −5.4
]

m∕s

𝐶4 𝑟𝑖 =
[

−560 −320 −1790
]

m 𝑣𝑖 =
[

−2.1 +4.3 −14.8
]

m∕s

based on the practicality in real-world operations of the close-range 
space rendezvous problem are assumed according to Table 2.

Based on the proposed approach, each experiment can be conducted 
with a different choice for variety of parameters and techniques. For
each initial condition, these parameters are number of polynomial 
points for thrust components, type of the mapping technique, and the 
interpolation method. The number of interpolation nodes is considered
as 5 to 24, which is 20 cases for this parameter. Results will indicate
that no solutions with higher quality can be found with number of
nodes more than 18 in the experiments. Also, with respect to three
options for interpolating the thrust profile (SP, CR and NK) and four
options for the mapping process (LD, LS, BD and BS), total number 
of 240 cases of setup regarding each initial condition is considered.
Running the optimization algorithm 10 times for each case results in
a vast database of solutions, including 2400 solutions to be analyzed.
In each run, the obtained solutions are kept with its corresponding
parameter selection. The top ten best obtained solutions are presented
in Table 3. Results are separated for each initial condition.

According to the results, the high quality solutions correspond to 18
number of nodes for interpolating the components of thrust vector. The
optimizer found solutions with almost similar quality by considering
other number of nodes close to the top solution. Solving the problem
with number of nodes higher than the top solution did not end in a
better solution. Therefore, it is implied that the optimizer achieved
the best available solution up to this point. Analysis of the employed
mapping mechanisms in high quality solutions in Table 3 shows that BS
mapping method is the most promising technique in finding the major-
ty of the high quality solutions, regardless of the initial condition for 
his close-range space rendezvous mission. The question that whether
he BS method is also the best mapping mechanism for another space
endezvous mission will be answered in the next subsection. According
o the best obtained solutions, the time-variation of relative position
nd velocity with respect to each initial conditions is shown in Fig. 6.
n this figure, the variations of relative states are presented and the
alue of terminal states are shown as the header of each plot. It shows 
hat the best achieved solutions satisfy terminal conditions.

Fig. 7 shows the variation of spacecraft mass and the magnitude of
hrust acted on the chaser spacecraft. As can be inferred, the spacecraft
ith initial condition 𝐶4 requires the highest quantity of propellant for

eaching the target space vehicle with respect to maximum level of
122.3 N for thrust. On the other hand, assuming the initial condition of
𝐶3, results the minimum required thrust level of 45.46 N. Moreover, an-
lyzing the interpolation approaches gives important insights regarding
he practicality of the employed polynomial schemes. All top solutions 
re associated with SP polynomial interpolation method. Best solutions



Table 3
High quality solutions (top ten) for fuel-optimal transfers in close-range space rendezvous.
𝐶1 𝐶2 𝐶3 𝐶4

𝑚𝑓 Map. 𝑁𝑝 𝑚𝑓 Map. 𝑁𝑝 𝑚𝑓 Map. 𝑁𝑝 𝑚𝑓 Map. 𝑁𝑝

1.81272 BS 18 2.41731 BS 18 1.59422 BS 18 2.56913 BS 18
1.82008 BS 19 2.41991 BS 21 1.59428 BS 19 2.57063 LD 18
1.82061 BS 20 2.42470 BS 21 1.59774 BD 19 2.57300 BD 17
1.82092 LS 18 2.53698 BD 18 1.59804 BS 21 2.57338 LD 18
1.82363 BS 19 2.53884 BD 21 1.60652 LS 18 2.57483 BS 21
1.83340 BS 18 2.54913 LD 18 1.61041 BS 19 2.57642 LS 18
1.83557 LD 18 2.55159 BS 20 1.61129 BS 18 2.57704 BD 18
1.83562 BS 19 2.55721 BS 19 1.61427 BS 19 2.57757 LS 19
1.83741 BS 19 2.56299 LD 21 1.62225 BS 20 2.57796 BS 18
1.83764 BS 17 2.56483 LD 20 1.63085 BS 17 2.57864 LD 21
Fig. 6. Time histories of state vector for different initial conditions.



T

t
T

Fig. 7. Time histories of thrust magnitude |𝑇 | and spacecraft overall mass 𝑚𝑓 .
Fig. 8. Components of thrust vector.
 

 

 
 

 
 

achieved via utilizing other techniques of interpolation are provided in
able 4.

Analyzing the results in Table 4 leads to the fact that SP interpola-
ion method outperforms the rest of the polynomials in this problem.
his is due to the fact that SP method benefits from less overshoot at
the interpolation points. In Fig. 8, the time histories of thrust vector
components are plotted with respect to the solutions in Table 4. In this
figure, rows represent results for each initial condition, while various
columns correspond to a specific interpolation method. Analysis shows

that since the best obtained solution by the optimizer is different for
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Table 4
Fuel mass (𝑚𝑓 ) corresponding to the best obtained solutions.

𝐶1 𝐶2 𝐶3 𝐶4

𝑚𝑓 𝑁𝑝 𝑚𝑓 𝑁𝑝 𝑚𝑓 𝑁𝑝 𝑚𝑓 𝑁𝑝

Shape preserving 1.81272 18 2.41731 18 1.59422 18 2.56913 18
Catmull-Rom 1.84521 20 2.64096 18 1.65746 19 2.69233 18
Not-a-Knot 1.92706 17 2.92966 20 1.93098 18 3.05119 19

Fig. 9. Ratio of solution domain feasibility.

each interpolation method, the choice of the polynomial types has a
ignificant impact on the solution domain. As SP interpolation benefits
rom minimum overshoot, the implementation of this approximation
or thrust profile with the proposed method gives feasible solutions

with higher quality.

4.2. Comparative results

In the second experiment, the proposed approach is compared with
a Lyapunov control method. Since the main aim is to conduct a fair
experiment, the research in Tian and Jia (2017) was selected as the
reference due to having similar mission settings, such as disturbances
and elliptical space orbit for the target spacecraft. All problem setup, 
including orbital parameters, the space mission setup, and the orbital
perturbations are implemented accordingly. The specific impulse is
not reported in Tian and Jia (2017). Therefore, for comparing the
performance of the methodologies, the total 𝛥𝑣 is considered as the
main metric in this experiment. The presented algorithm is employed
considering the four proposed mapping mechanisms, three presented
interpolation schemes, and ten nodes for thrust profile approximation
as 3 < 𝑁𝑝 < 12. The algorithm is implemented and run for 10 separate 
times for each selection of problem setup. It should be noted that by
hoosing 𝑁𝑝 to 1 or 2, the optimizer becomes unable to achieve initial 
easible solutions, while the percentage of feasibility for the solution
omain decreases when higher number of interpolation nodes are
onsidered. Fig. 9 illustrates the feasibility percentage of the solution
omain for various interpolation nodes.

According to the results, when low number of interpolation nodes
re considered for the thrust profile approximation, the feasibility
ercentage of the solution domain is high. It is a consequence of having
ower decision variables (𝑛 = 3𝑁𝑝) in optimization. However, adding

more nodes for interpolation increases the quality of the solutions
achieved by the algorithm. The objective value for these solutions are
hown in Fig. 10 for different runs of optimization algorithm. The best
olution obtained via the proposed algorithm has the number of nodes
s 𝑁𝑝 = 8, while having SP method for interpolation with LD mapping
echnique.

Based on the findings from the previous experiment, SP interpo-
ation and BS mapping technique was the best choice of setup for
ptimization. Results from this experiment agrees with the SP interpola-
ion outperforming other techniques. However, regarding the mapping
Fig. 10. Objective value of the best obtained solutions in different algorithm runs.

mechanism, the optimal technique is not the same, leading to conclude
hat choosing the proper mapping method is problem-dependent. In
ig. 11, values of relative position and velocity of the chaser spacecraft
n this experiment is provided.

The final states in the transfer trajectory are as 𝑟𝑓 = [8.6903 4.1487 −
.6112] m and 𝑣𝑓 = [0.058532 0.066082 −0.046753] m∕s. Based on the ob-
ervation on Fig. 10, it can be verified that only a small number of runs
f the algorithm leads to a solution with higher quality in comparison
o Lyapunov control method. Nevertheless, the comparison between the
uality of the best obtained solution using the presented method as
𝑣 = 42.4854 m∕s with the solution from the Lyapunov control method 
s 𝛥𝑣 = 44.9481 m∕s indicates the ability of the presented technique 

in achieving transfer trajectories with higher quality. The time profile
of thrust vector is compared regarding the two obtained solutions in
Fig. 12. Based on the results, the proposed approach ended in a solution
with larger maximum thrust value. However, the 𝛥𝑣 yielding from the 
integration of the thrust profiles is lower than the other solution.

In addition to the comparative analysis of the obtained solutions, 
the performance of the proposed algorithm is evaluated regarding
the selection of the interpolation methods and the mapping schemes.
Fig. 13 shows this evaluation.

In Fig. 13, columns are assigned for interpolation methodologies,
while rows are dedicated to the number of nodes for interpolation. 
The objective value of the best solution found between the obtained
solutions in every cases are shown in the title of each box plot. Also, 
the quality of the obtained solutions with respect to each proposed
mapping mechanism is provided in each box plot as statistical infor-
mation. Once again it can be observed that SP spline has an excellent 
privilege in discovering solutions with better objective functions and 
satisfied feasibility conditions. In this regard, CR spline overpowers NK 
spline in most of the cases. Also, it is noteworthy that adding up the
number of nodes equal to eight interpolation points enhances the qual-
ity of the final solutions. However, agreeing with the previous finding,
dedicating more nodes forces the algorithm to achieve solutions with 
same quality but with more effort. Analysis of the mapping mechanisms 
also confirms that the optimal mapping mechanism is not unique when
NK or CR splines are utilized. The reason is that these interpolation
methods are not the most promising techniques in discovering the
global optimal trajectories. However, the employment of SP splines 
leads to a significant advantage for LD mapping mechanism over the
other mapping techniques in this problem. Following this observation
along with the findings from the previous experiment, the optimal
mapping mechanism is not unique for finding the best solution globally
in every close-range space rendezvous mission. However, in a partic-
lar trajectory optimization problem, the ideal mapping mechanism
ill be unique for any number of interpolation nodes if SP spline is 

mplemented in thrust profile approximation.
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Fig. 11. Time histories of relative states (|𝑟𝑓 | = 9.7637 m, |𝑣𝑓 | = 0.099 m∕s).
Fig. 12. Thrust profile comparison with the solution obtained via the Lyapunov function (Tian and Jia, 2017).
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4.3. Optimality and performance evaluation

Following the conducted experiments, the optimality of the ob-
tained solutions is analyzed by comparing the quality of the achieved
solutions with those that have been obtained via recently developed
algorithms. It is noteworthy that there is no analytical proof for the
obtained solutions to be global optimal due to the non-linearity of
the system of equations and the high complexity of the optimization
problem. However, when multiple problems are solved with several
other algorithms in addition to the presented method, it is possible
to indicate that the best obtained solutions belong to the proposed
algorithm. Not only such an experiment verifies the relative optimality
of the solutions, but also shows the robustness of the algorithm to the
variety of other problems with different initial conditions. Also, the
execution time of the algorithms has been taken into consideration in
this comparison. Unlike the previous experiments in which the main
aim was to explore the best combination of mapping mechanism and
interpolation scheme, a fixed setup for the two aspects are considered
for the proposed algorithm in this experiment. This is due to the fact
that the main aim here is to have a fair comparison between different
algorithms, hence no variety of algorithm parameters are tried.

In the current experiment, 50 close-range space rendezvous prob-
lems are defined. The problem parameters and the initial conditions
are considered as random values with uniform distribution in the
boundaries of 6600 km ≤ 𝑎 ≤ 42000 km, 0 ≤ 𝑒 ≤ 0.6 (subject to
have perigee radius higher than 𝑅𝐸), 0◦ ≤ 𝑖 ≤ 180◦, 0◦ ≤ 𝛺 ≤ 360◦,
◦ ≤ 𝜔 ≤ 360◦, 0◦ ≤ 𝜈 ≤ 360◦, 0 𝑠 ≤ 𝑡𝑓 ≤ 600 s, 150 kg ≤ 𝑚0 ≤ 300 kg,
100 N ≤ |𝑇 | ≤ 150 N, 280 s ≤ 𝐼𝑠𝑝 ≤ 350 s, 5 m ≤ 𝜎𝑟 ≤ 20 m,
0.05 m∕s ≤ 𝜎𝑣 ≤ 0.2 m∕s, 1.8 ≤ 𝐶𝐷 ≤ 2.2, 2.5 m2 ≤ 𝐴 ≤ 3.5 m2,
−3000 m ≤ 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 ≤ +3000 m, −20 m∕s ≤ 𝑥̇𝑖, 𝑦̇𝑖, 𝑧̇𝑖,≤ +20 m∕s.
For each scenario, the proposed algorithm is utilized for solving the
problem along with several other algorithms suited for constrained
continuous optimization, including BP-eMAg-ES (Hellwig and Beyer,
020), CORCO (Wang et al., 2019), EnMODE (Sallam et al., 2020),
and COLSHADE (Gurrola-Ramos et al., 2020). Default parameters are
chosen for each algorithm as described in their respective reference.
For the proposed algorithm, linear deterministic mapping with 𝑁𝛿 =
10 is considered. Also, all problems are formed with respect to SP
interpolation method with 𝑁𝑝 = 20. In order to have a fair comparison,
same allowable budget of function evaluation is considered for all
lgorithms while tackling each unique problem as mentioned at the 
eginning of this section. Each algorithm is run 10 times to solve every
roblem, while the initial population varies in each run.

All obtained solutions are stored along with the execution time 
f each run. Having the obtained solutions, the objectives values are
caled within the interval of [0 1], with the lower bound as the best 

achieved solution and the upper bound as the worst achieved solution
between all runs either in terms of the objective value or the constraint 
violation. Having the scaled scores for all runs of each algorithm, the
performance of the algorithms in terms of optimality can be compared
as in Fig. 14.

In Fig. 14, the distribution of scaled scores for optimality of the
obtained solutions are depicted, separated for each algorithm. As can
be observed, the mean value of the scaled scores for the improved
EDA is lower than the other methods, leading to conclude that the 
obtained solutions via the presented algorithm have higher qualities 
in comparison to the rest of the algorithms. In this regard, CORCO has 
shown to be the most stable algorithm in terms of giving solutions with
same qualities. COLSHADE on the other hand has shown to provide
solutions with wide range of qualities with less probability of giving
global optimal solutions. The most competitive algorithm is BP-eMAg-
ES, which managed to find high quality solutions in several runs.
However, the mean value of the scores are slightly higher than the
improved EDA. Similar to the quality of the obtained solutions, the
execution time of the algorithms are also scaled and illustrated in
Fig. 15.

In Fig. 15, the scaled execution times versus the scaled objective
values for each run are plotted, separated for each algorithm. Results
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Fig. 13. Comparative analysis of the proposed mapping mechanisms with respect to interpolation methods.
ndicate that the improved EDA has reasonable execution time in
omparison to other algorithms considering the quality of the achieved
olutions. COLSHADE is the most reliable algorithm in terms of ex-
cution time with slight advantage over the improved EDA, since
he average execution time is less than the one associated with the
roposed algorithm. On the other hand, BP-eMAg-ES, which was the
ost competitive algorithm in terms of optimality, is shown to be
ore time consuming than the improved EDA. Results also confirm that
nMODE has the most stable execution time in comparison to other
lgorithms.

. Concluding remarks

In this paper, the problem of finding optimal transfer trajectory for
lose-range space rendezvous proximity operation is taken into account.
In a direct approach, the thrust components are approximated with
different schemes of Hermite interpolation method. The trajectory opti-
mization problem in close-range space rendezvous mission is converted
into a black box optimization problem, associated with some non-
linear constraints. Then, the problem is tackled with a newly developed
algorithm within the framework of EDAs. The algorithm benefits from
several feasibility conserving techniques, that have been utilized to
satisfy terminal conditions of the space rendezvous operation. These
techniques oblige the algorithm to return only feasible solutions while
minimizing the objective function.

Since the main aim was to develop an approach for close-range
space rendezvous between any types of trajectories with no specific
assumptions (ex. co-planar or circular orbits), general formulation of
the spacecraft dynamics for close-range rendezvous was considered.
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Fig. 14. Performance score distribution of algorithms.

Fig. 15. Execution time of the algorithms.

The employed model is a non-linear model, where any types of distur-
bances could be implemented. Two types of orbital perturbations were
considered as the disturbances including atmosphere drag and 𝐽2 effect.

epending on the varieties of space missions, various disturbances
ay be considered in other problems for the sake of increasing the

imulation accuracy of the space trajectory.
Three different interpolation schemes were implemented for thrust

rofile approximation in the experiments. Following the obtained result
ut of trying all possible combinations of interpolation methods and
he mapping mechanisms in different scenarios and initial conditions,
t has been observed that the most promising solutions are associated
ith SP spline interpolation scheme, regardless of the scenario or the

nitial condition. However, the best choice for the mapping mechanism
s found to be problem-dependent. In the other word, regardless of
he interpolation scheme, a unique technique of mapping exists, which
akes the approach performs slightly better in finding solutions with
igh quality. The best choice of the mapping mechanism varies for
ifferent space rendezvous missions.

Results also show that the presented method is effective and robust
o various initial conditions and parameters describing space mission
haracteristics. Also, the proposed method discovers solutions with
etter quality compared to the method by implicit Lyapunov function.
ollowing the empirical experiments, it has been observed that the
uality of the obtained solutions via the proposed algorithm is higher
han other state-of-the-art constrained continuous optimization algo-
ithms. In terms of the execution time, the proposed algorithm has
hown to be competitive in comparison to other constrained contin-
ous optimization algorithms. Considering the quality of the obtained
olutions, the algorithm has shown to be reliable as it has the best per-
ormance in exchange for the execution time. Satisfaction of other types
f constraints like path constraint on state variables (e.g., approach
orridor), saturation constraints on control along with enhancement
towards the performance of the proposed mechanisms, and the con-
sideration of uncertainties will be considered in future research. Also,
utilization of the proposed algorithm in tackling other challenging con-
inuous optimization problems equipped with constraints, and detailed
nalysis of the algorithm parameters on the quality of the obtained

solutions are potential subjects for further research.
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