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�[...] ma alla �ne è solo una cosa passeggera,
quest'ombra, anche l'oscurità deve passare,

arriverà un nuovo giorno,
e quando il sole splenderà sarà ancora più luminoso [...]�

Il Signore degli Anelli: le due torri
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Introduction

COVID-19 is a severe respiratory disease caused by the virus SARS-CoV-2,

new coronavirus able to infect humans. COVID-19 was identi�ed in Decem-

ber 2019 in China and spread rapidly around the globe.

COVID-19 cases in Italy were �rst identi�ed in the North of the country,

noti�ed in the second half of February 2020. First cases were diagnosed

in Lombardy on February 21, 2020, and by February 23, 2020, eleven mu-

nicipalities were put into quarantine to prevent the spread of disease, i.e.,

nobody could enter and leave those territories. Quickly other cases occurred

in the rest of the country, forcing the Authorities to establish quarantine

status across the country.

Due to the high contagiousness of the infection, eventually enhanced by

asymptomatic individuals, Italy became, in few weeks, the country with the

greatest number of infected people in Europe. The large number of severe

cases among infected people in Italy led to the hospitalization of thousands

of patients, with a heavy burden on the National Health Service [22].

After the quarantine period, from March 2020 to May 2020, to control the

spread of the infection, Italian Government established a ranking of the re-

gions based on di�erent colors, according to the risk degree. In addition to

the social distancing and the obligation to wear mask, in the red zones the

movements across regions were prohibited and the curfew was established.

The most a�ected regions were Lombardy and Emilia Romagna in the North

of the Country, with more than half of the total cases.

It is reasonable to assume that the large spread of the novel Coronavirus

in these regions was due to the development of the �rst outbreaks which

caused a high number of people infected before the social distancing im-

posed by Government. But it is reasonable to think that the di�erence in

the trend of the pandemic between North and South of Italy was due to the
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INTRODUCTION

di�erent weather. Therefore, it is reasonable to assume that the COVID-19

trend is seasonal.

Until now, there are 156.493 deceased individuals for SARS-CoV-2 in

Italy from the beginning of surveillance to 10 January 2022, reported by

the integrated surveillance COVID-19 Coordinated by the Higher Health

Institute (ISS). The reports from ISS shows that the average age of de-

ceased individuals is 80 years old. Moreover, it seems that the mortality

rate is increased when there are patients with pre-existing health conditions.

Therefore, it could be signi�cant analyzing the COVID-19 trend for di�erent

population classes, according to age and pre-existing health conditions [2]

[16].

Predictive mathematical models for epidemics are fundamental to un-

derstand the course of the epidemic and to plan e�ective control strategies.

One commonly used model is the SIR model for human-to-human transmis-

sion, which describes the �ow of individuals through three mutually exclusive

stages of infection: susceptible, infected and recovered. More complex mod-

els can accurately portray the dynamic spread of speci�c epidemics. For the

COVID-19 pandemic, several models have been developed [9].

In this study, we start to describing the SIS model, in which the popula-

tion is divided only into two classes (susceptible and infected) and the SIR

model. Then, we proceed to describe a more complex model, the SHAR

model in which the infected class is strati�ed into two classes: hospitalized

and asymptomatic. The latter model is more accurate for the analysis of

COVID-19 disease.

We model the countrywide spread of the COVID-19 epidemic in Italy, for

which detailed epidemiological data are continuously updated and made pub-

lic, thanks to Protezione Civile (Civil Protection) department and Istituto

Superiore di Sanità, ISS (Italian National Institute of Health).

Notice that, mainly at the beginning of the pandemic and until the end of

the lockdown, this data are only a proxy of the epidemiological conditions

because:

1. the number of infected people on records depends on the sampling

e�ort, namely the number of specimen collections (swabs) from indi-

viduals under investigation;
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2. the e�ects of systematic errors or bias in the o�cial data results mainly

in under-reporting.

In fact, under-reporting may apply even to fatality counts, yet to a lesser

extend with respect to reported infections. Hospitalizations are known, but

may underestimate the situation because cases with mild symptoms are not

hospitalized, for example due to saturation of the carrying capacity of the

sanitary structures. Moreover, people with very mild symptoms or asymp-

tomatic people was not always subjected to a COVID test [19].

This thesis describes the �rst years of COVID-19 pandemic in Italy. We

started looking at the data given by the Italian Civil Protection and accord-

ing to the trend we �nally described the epidemiological curve through a

SHAR model. In this model, the infection rate β changing according to dif-

ferent period that we identi�ed during the �rst year of pandemic. To model

β, we have taken into account the e�ect of control measures (Lockdown,

social distancing, protection devices) and seasonality.

This study is structured as follow:

� In Chapter 1, we give a summary of the situation of Italy during the

�rst year of pandemic.

� In Chapter 2, we describe the simple SIS model and its extension as

SIR model. Then, we show the equilibrium states of these models and

the biological meaning of these points in an epidemiological point of

view. These two models are basic for the formulation of the SHAR

model.

� In Chapter 3, we describe the SHAR model and how we used it for this

study. Then, we present the results that we obtained.

� In Chapter 4, we described future projects and possible applications of

our study. Firstly, we modify the SHAR model to continue the analysis

for the whole emergency period. Then, we describe the stochastic

formulation of the SHAR model and an optimization problem that can

be used to determine a balance between economic cost and health cost.

Finally, we describe the spatial formulation of the SHAR model.
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Chapter 1

Overview of COVID-19 in Italy

In order to �nd the right model to describe a phenomenon it is necessary to

understand well the phenomenon itself. For this reason we present here an

outline of the �rst year of the pandemic in Italy.

1.1 Time line

On 31 December 2019, the Health Commission of Wuhan (Hubei, China)

informed the WHO about a cluster of acute pneumonia cases with unknown

origin in its province. On 9 January 2020, the Chinese Center for Disease

Control and Prevention (CCDC) reported the identi�cation of a novel coro-

navirus, later identi�ed as the SARS-CoV-2, as the cause.

The virus was �rst con�rmed to have spread in Italy on 31 January 2020,

when two Chinese tourists in Rome tested positive. One week later an Ital-

ian man repatriated to Italy from the city of Wuhan was hospitalized and

con�rmed as the third case in Italy. Clusters of cases were later detected in

Lombardy and Veneto on 21 February, with the �rst deaths on 22 February.

By the beginning of March, the virus had spread to all regions of Italy.

On 22 February, the Italian government announced a new decree imposing

the quarantine of more than 50,000 people from 11 municipalities in North-

ern Italy. The quarantine zones are called the Red Zones and the areas

of Lombardy and Veneto outside them are called the Yellow Zones. The

decree "absolutely avoided any movement into and out of the areas" [8].

It was possible to move into and out of the areas only for emergencies or

"proven working needs" [3]. The decree also established the closure of all

1



1. Overview of COVID-19 in Italy

gyms, swimming pools, spas and wellness centres. Shopping centres had to

be closed on weekends, while other commercial activities could remain open

if a distance of one metre between customers could be guaranteed. The de-

cree imposed the closure of museums, cultural centres and ski resorts in the

lockdown areas and the closure of cinemas, theatres, pubs, dance schools,

game rooms, betting rooms and bingo halls, discos and similar places in the

entire country. Civil and religious ceremonies, including funeral ceremonies,

were suspended. All organised events were also suspended, as well as events

in public or private places, including those of a cultural, recreational, sport-

ing and religious nature, even if held in closed places. Penalties for violations

range was established and the Italian military and law enforcement agencies

were instructed to secure and implement the lockdown.

But this was not enough to stop the spread of the contagion.

In the evening of 9 March, the prime minister Giuseppe Conte announced in

a press conference that all measures previously applied only in the so-called

Red Zones were extended to the whole country.

This measure was described as the largest lockdown in the history of Europe,

as well as the most aggressive response taken in any region beyond China,

and paralysed the wealthiest parts of the country as Italy attempted to con-

strain the rapid spread of the disease.

The lockdown was hard causing psychological problems like stress and

depression in the populations that were forced to face changes in everyday

life and to stay forcedly at home in order to reduce contagion [21].

The worst episode in this period was the Army that was deployed in the city

of Bergamo, the worst hit Italian city by COVID-19, as the local authorities

could no longer process the number of dead residents. Army trucks trans-

ported bodies to crematoriums in several other cities, as cemeteries in the

city were full.

On 16 May, Conte announced the government plan for the easing of re-

strictions. Starting from 18 May most businesses could reopen, and free

movement was granted to all citizens within their region; movement across

regions was still banned for non-essential motives. From that moment on,

the contagions curve continues to decrease, thanks to the increase of the

temperature too. But starting from July 2020, many countries in Europe,

2
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including Italy, witnessed a new rise in detected COVID-19 cases. This was

probably due to the free movement and tourism that was relaunched.

In October a new lockdown phase started, less severe than the previous. For

this reason, the Italian government decided to establish again the classi�ca-

tion of the region in colors depending on the degree of risk, avoiding a new

total lockdown [4].

1.2 Why was the pandemic so severe in Italy?

As we had understood, Italy has been hit very hard by the coronavirus

pandemic, with 17,147,477 documented cases (until 18 of May, 2022). The

number of cases and deaths cannot be explained simply because of the epi-

demic starting in Italy earlier compared with other countries besides China.

Some factors pertain to demographics and background disease in the popu-

lation.

Italy has the most elderly population in Europe and the second most elderly

population in the world after Japan. COVID-19 has a strong age dependence

for the severity of the infection and the risk of death. The median age of

people infected with SARS-CoV-2 who are dying in Italy has been 80 years,

and the average age of patients requiring critical care support has been 67

years. Moreover, COVID-19 morbidity and mortality is strongly dependent

on the presence of concomitant serious diseases, and Italy has a high propor-

tion of patients with history of smoking and high rates of chronic obstructive

pulmonary disease and ischemic heart disease.

A second factor is that Italian life is famous for its socialization and fre-

quent congregations and clustering. It is possible also that in early stages,

there was not much adoption of standard hygienic measures, and instructions

to stay at home proved di�cult to accept, with many complaints registered

with the police.

A third set of factors pertains to the standard capacity of the health care

system and decisions made during hospital management of the presenting

cases. Italy has a state-run health care system, but it has only a modest

number of ICU beds and very few subintensive care beds. Overall, 5090 ICU

beds (8.4 per 100,000 individuals) are available in Italy, and 2601 beds in

3
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coronary care units (4.3 per 100,000 individuals).

Given the little experience in dealing with the new virus, it is unavoidable

that some strategic mistakes were made about which patients should be

hospitalized. Apparently, many patients with relatively modest symptoms

were admitted (because of the so-called "defensive medicine"). Hospital

overcrowding may also explain the high infection rate of medical personnel.

Nine percent of infections in Italy occurred among health care personnel.

Moreover, in Italy local authorities have decision-making powers on their

territory; thus, preparedness and containment may have been hampered.

There was a delay from the �rst case detection to the �rst containment

decree from the government that closed the relevant villages 3 days later

[25].
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Chapter 2

Basic epidemiological models

In this chapter we intoduced some basic epidemiological models from which

we get the model we used for this study. These models are the SIS model

and the SIR model and for these two models we described the equilibrium

states.

2.1 SIS Model

This model takes its name from the two classes of individuals that are taken

into consideration, the class of the susceptible individuals S(t) and the class

of the infected individuals I(t). Indeed, the SIS model is used for disease

for which individuals do not acquire immunity after the end of the infec-

tion, but they become susceptible again. Therefore, the �ow of individuals

is described with two stages: susceptible and infected. The SIS model can

describe disease like cold and seasonal in�uence, tuberculosis or gonorrhea.

It assumes that the total population N is constant and at each time t results

N = S(t) + I(t). To visualize the model, we look at the state-�ow diagram,

where boxes represent states and arrows indicate the transitions of the indi-

viduals through a sequence of disease related stages, as in

Figure 2.1.1.

We call β infection rate and, since it assumed that the disease spread is

proportional to the number of meeting between the susceptible and infected

people, it depends on the total number of susceptible and infected.

Moreover, we call γ recovery rate, that is the rate with which the infected

return in the susceptible class. The dynamics of the system is the following:
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Figure 2.1.1: State-�ow diagram for the SIS model

� in the unit of time, a constant portion β of the meeting between sus-

ceptible and infected is e�ective for the spread of the disease;

� in the unit of time, a constant portion γ of the infected heals and

returns in the susceptible class.

Therefore, the model can be described by the following ODE system:{
dS(t)
dt = − β

N S(t)I(t) + γI(t)
dI(t)
dt = β

N S(t)I(t)− γI(t)
(2.1.1)

Since we have a constant population N , we can reduce the system to a

single ODE considering:{
S(t) = N − I(t)
dI(t)
dt = β

N (N − I(t))I(t)− γI(t)
(2.1.2)

One can easily �nd the steady state of the system (2.1.1) imposing:

dI(t)

dt
= 0 ⇒ I∗1

( β
N

(N − I∗2 )− γ
)

= 0

Therefore, there exists two steady states for the system. The �rst steady

state is

(S∗1 , I
∗
1 ) = (N, 0)

where S∗1 is �nded replacing I∗1 = 0 in the �rst equation of the system

(2.1.2). This steady state is called Disease Free Equilibrium (DFE) and it

corresponds to the case in which the disease does not spread.

6
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The second steady state can be found imposing{ (
β
N (N − I∗2 )− γ

)
= 0

S∗2 = N − I∗2

Solving the system with respect to I∗2 and S∗2 , one can �nd that the

second steady state is

(S∗2 , I
∗
2 ) =

(γ
β
N,
(

1− γ

β

)
N
)

This second steady state is called Disease Endemic Equilibrium (DEE) and

it correspond to the case in which the disease spreads.

2.1.1 Stability Analysis

Now, one can study the stability of the steady states of the SIS model.

Consider a small perturbation around the equilibrium point

∆I = I(t)− I∗

One can prove that

d∆I(t)

dt
= f(I∗) +

[ β
N

(N − 2I∗)− γ
]
∆I − β

N
∆I2 (2.1.3)

where

f(I∗) =
β

N
S∗(t)I∗(t)− γI∗(t), with S∗ = N − I∗ (2.1.4)

Neglecting the terms of order higher than one and noticing that f(I∗) = 0,

we have the linearized di�erential equation

d∆I(t)

dt
=
df

dt |I=I∗
· (∆I)

that is
d∆I

dt
=
[ β
N

(N − 2I∗)− γ
]
∆I (2.1.5)

Consider the DFE point: calling ∆I = x, we have the ordinary di�erential

equation:
dx

dt
= (β − γ)x (2.1.6)

7
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that has solution

x(t) = x(t0) · e(β−γ)(t−t0) (2.1.7)

Therefore,

� for β < γ the solution tends to zero as t tends to in�nity ⇒ we have a

stable equilibrium point;

� for β > γ the solution tends to in�nity as t tends to in�nity⇒ we have

an unstable equilibrium point.

Moreover, β = γ is the condition for which the stability of the system changes

and it is called bifurcation value.

Now, consider the DEE point: calling again ∆I = x, we have the following

ordinary di�erential equation:

dx

dt
= −(β − γ)x (2.1.8)

that has solution

x(t) = x(t0) · e−(β−γ)(t−t0)

Therefore, contrary to the previous case,

� for β < γ the equilibrium is unstable;

� for β > γ the equilibrium is stable.

The Figure (2.1.2) graphically represents the results of the stability analysis.

Indeed, for β < γ the stationary solution I1 = 0 is stable and it is represented

with a solid line, meanwhile the stationary solution I2 = (1− γ
β )N is unstable.

Conversely, for β > γ the solution I1 becomes unstable and it is represented

by a dashed line, meanwhile the solution I2 is stable. Again, β = γ is the

bifurcation value for the stability of the point.

Notice that this is a local stability analysis and this solution approximately

holds in a neighborhood of the equilibrium points. The solution of the non-

linear system does not tends to in�nity but it is limited by N .

In order to verify these di�erent behaviours, it is possible to calculate the

exact time dependent solution of I(t) from the equation (2.1.2) through the

method of separation of variables. Proceeding with the calculation, one can

�nd that:

I(t) =
N(1− γ

β )

1− (1− N
I(t0)(1− γ

β ))e−(t−t0)(β−γ)
(2.1.9)
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Figure 2.1.2: Bifurcation diagram SIS model when γ = 1

Notice that, for t tends to in�nity, this solution is bounded by the population

size N , as we said.

The analytic approach of the epidemic threshold is found when I∗1 = I∗2 ,

that is when β = βc = γ, where βc is called critical value of β. For the

critical value, looking at the equation (2.1.2), we have the following ordinary

di�erential equation for I(t):

dI(t)

dt
= − β

N
I2(t)

that has solution, using again the method of separation of variables:

I(t) =
1

1
I(t0) + β

N (t− t0)

Therefore, we found that the analytic threshold for which the dynamic of

the infected class change is given by I(t) ≈ t−1, as we can see from

Figure 2.1.3.

2.2 SIR Model

The SIR epidemic model is a variant of the SIS model in which it is present

one more population class: the recovered individuals R(t). This is because

the SIR model can be applied to infectious disease where waning immunity

can happen and the recovered can become susceptible again after a proper

amount of time. One can notice that, when the waning immunity is very fast,
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Figure 2.1.3: 1) Dynamics of SIS for N = 100, β = 2.5, γ = 1; 2) Trajectories
of I(t) for β ∈ [0, 3.5]

the SIR model can be approximated essentially by a SIS model. Therefore,

the SIS model is a limit case of SIS. As before, we considering the state-�ow

diagram of the model, as we can see from Figure 2.2.1.

Figure 2.2.1: State-�ow diagram for the SIR model
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As before, β is the infection rate, γ is the recovery rate, whereas α is

called waning immunity rate and it denotes the rate at which the immunity

falls, so that the recovered become susceptible again.

The basic assumption of the model are:

� the total number of individuals in the population has constant size over

time N = I(t) + S(t) +R(t) ∀t ∈ R+ ;

� the population is homogeneously mixed among the infected and suscep-

tible, that is every infected individual can equally transmit the disease

to every susceptible individual.

� susceptible individuals get infected and infectious at rate β;

� infected individuals recovers at rate γ and develop immunity;

� recovered individuals became susceptible again at rate α.

The dynamics of the system is the following:
dS(t)
dt = − β

N I(t)S(t) + α(N − S(t)− I(t))
dI(t)
dt = β

N I(t)S(t)− γI(t)

R(t) = N − S(t)− I(t)

(2.2.1)

In this model:

�
β
N I(t)S(t) is the number of infections caused by contact between in-

fected and susceptible individuals in the population;

� γI(t) is the number of recovered individuals;

� αR(t) is the number of recovered individuals who re-enter into the

susceptible state after waning immunity from infection.

One can compute the variation of the number of susceptible, infected and

recovered individuals through the computation of Euler scheme:
S(t+ ∆t) = S(t) + ∆t(− β

N S(t)I(t) + α(N − S(t)− I(t)))

I(t+ ∆t) = I(t) + ∆t( βN S(t)I(t)− γI(t))

R(t+ ∆t) = N − S(t+ ∆t)− I(t+ ∆t)

This is useful in the computation of the numerical solution.
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The model has two possible steady states: the Disease Free Equilibrium,

where there are no infected individuals in the population, and the Disease

Endemic Equilibrium, when the number of susceptible and infected individ-

uals in this population get equilibrated at �nite values. The basic SIR model

has only �xed points as possible stationary solutions, that can be calculated

by setting the rates of change dS(t)
dt and dI(t)

dt to zero.

For the DFE state the solution is given by
S∗1 = N

I∗1 = 0

R∗1 = 0

Meanwhile, for the DEE state the solution is given by
S∗2 = N γ

β

I∗2 = N(1− γ
β ) α

(γ+α)

R∗2 = N − S∗2 − I∗2

Notice that the DEE of the SIR is similar to the DEE of the SIS with a

"correction" term, that is α
γ+α . Therefore, it depends directly on the waning

immunity.

2.2.1 Stability Analysis

In order to analyze the stability of the equilibrium states, since we work

now on a two dimensional system, we look at the Jacobian matrix and its

eigenvalues.

According to linearization via Taylor's expansion around the �xed point

(S∗, I∗), as we did for the SIS model, we have that the linearized system is

given by

d

dt

[
S(t)− S∗

I(t)− I∗

]
=

[
∂f
∂S

∂f
∂I

∂g
∂S

∂g
∂I

]
|
(S,I)=(S∗,I∗)

·

[
S(t)− S∗

I(t)− I∗

]
(2.2.2)

The Jacobian matrix is given by

A :=

[
∂f
∂S

∂f
∂I

∂g
∂S

∂g
∂I

]
|
(S,I)=(S∗,I∗)

=

[
− β
N I
∗ − α − β

N S
∗ − α

β
N I
∗ β

N S
∗ − γ

]
(2.2.3)
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One can calculated the eigenvalues of the matrix A solving A~u = λ~u and

setting

det|A− λI|= 0 (2.2.4)

For the DFE state (S∗1 , I
∗
1 , R

∗
1) = (N, 0, 0), the characteristic equation, given

by the equation (2.2.4), is

λ2 + λα
(β − γ
γ + α

+ 1
)
− α(β − γ) = 0

Therefore, the corresponding eigenvalues are{
λ1 = −α
λ2 = β − γ

In general, the �xed point is stable when the eigenvalues have negative real

part and unstable when at least one eigenvalue is positive. Therefore, the

stability of the system changes when one of the eigenvalues becomes zero:

this is a transcritical bifurcation.

Therefore, we have that

� for β < γ the DFE is stable;

� for β > γ the DFE is unstable.

In Figure 2.2.2 one can see that for β < γ the solution tends to the

DFE in a short time, whereas for β > γ the solution shows an oscillatory

behaviour.

If the eigenvalues provide information about the stability of the linearized

system, the corrisponding eigenvectors generate the stability, instability and

central subspaces of the linearized system. Gives λj = aj + ibj eigenvalues

and wj = uj + ivj the corresponding eigenvectors, than

Es =< uj , vj : aj < 0 > is called stable subspace, Eu =< uj , vj : aj > 0 >

is called unstable subspace and Ec =< uj , vj : aj = 0 > is called central

subspace of the linearized system.

To calculate the corresponding eigenvectors we use the equation

(A− λiI)~ui = 0 i = 1, 2

where ~ui is the eigenvector that we want to �nd.
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Figure 2.2.2: Numerical solution of the SIR model by Euler scheme with
γ = 1, β = 0.8 and β = 1.5

For λ1, the corresponding eigenvector is given by

~u1 =
1√

1 + (γ−β−αβ+α )2

[
1

(γ−β−αβ+α )

]

Meanwhile, for λ2 the corresponding eigenvector is given by

~u2 =

[
1

0

]

Looking at Figure 2.2.3, one can see that for β < γ the infected solution

tends to the same eigenvector direction. If β starts to increase we can see

that the solution takes longer to reach the equilibrium. When β exceeds γ

the solution of the infected change its direction and goes aways from the

14
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eigenvectors direction and the equilibrium.

For the DEE state the eigenvalues are given by{
λ1 = a+

√
b

λ2 = a−
√
b

where a := −α
2 (1 + β−γ

α+γ ) and b := [α2 (1 + β−γ
α+γ )]2 − (β − γ)α. Again, the

equilibrium point is stable if the real part of the eigenvalues is negative. In

this case we have a < 0 if

1 +
β − γ
α+ γ

> 0

that is is always true.

Therefore, the DEE state is stable. Moreovere,

� if b > 0 the eigenvalues are real numbers, giving the contraction or

expansion of the trajectories near to the considered �xed point;

� if b < 0 the eigenvalues became complex, where the real part gives

the contraction or expansion of the trajectories near to the equilibrium

whereas the immaginary part causes oscillations of the trajectories spi-

raling into the �xed point.{
λ1 = a+ i

√
|b|

λ2 = a− i
√
|b|

The correspondent eigenvectors of the DEE state can be calculated as

before. For the �rst eigenvalue λ1 the correspondent eigenvector ~u1 is given

by

~u1 =
1√

1 + (a−
√
b

γ+α )2
·

 1
1√

1+(a−
√
b

γ+α )
2


Meanwhile, for the eigenvalue λ2 the correspondent eigenvector ~u2 is given

by

~u2 =
1√

1 + (a+
√
b

γ+α )
·

[
1

a+
√
b

γ+α

]

Looking at Figure 2.2.4, we can see that until b > 0 the infected solu-

tion tends to the equilibrium point, that is the eigenvectors direction, that

approximately following a straight line. When β < 0 the solution spiral to-
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wards the equilibrium.

The epidemic dynamics as a function of the parameter β shows the spread

of the epidemic when β > γ and its extinction when β < γ. Moreover, for

α > 0 we assume that the disease gives a waning immunity and we observe

oscillations resembling new epidemic waves.

2.2.2 Basic Reproduction Number

It is de�ned Basic Reproduction number the number of secondary cases

Is(t → ∞) generated from a primary case with Ip(t0) = 1 in a completely

susceptible population S
N ≈ 1.

R0 :=
Is(t→∞)

Ip(t0)
(2.2.5)

During the COVID-19 pandemic, the Basic Reproduction Number is mon-

itored by to determine measures to be taken to control the spread of the

pandemic.

Considering the equation for dI
dt in the system (2.2.1) when S ≈ N , we call{

dIp
dt = −γIp
dIs
dt = βIp

(2.2.6)

By solving the ordinary di�erential equations we have that{
Ip(t) = Ip(t0)e−γ(t−t0)

Is(t) = β
γ Ip(t0)(1− e−γ(t−t0))

(2.2.7)

Considering the limit as t→∞ we have that

R0 =
β

γ

Ip(t0)

Ip(t0)
=
β

γ
(2.2.8)

One can notice that

� if R0 < 1, the infection will die out in the long run;

� if R0 > 1, the infection will be able to spread in a population.

In general, when the initial susceptible size S0 does not coincide with the

total population size (S0 6= N), one can consider
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the Momentary reproduction ratio r(t), de�ned as

r(t) =
β

γ

S0

N

or the Growth rate λ = β − γ.
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Figure 2.2.3: Eigenvectors for the DFE state in function of β
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Figure 2.2.4: Eigenvectors for the DEE state in function of β
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Chapter 3

The SHAR model

In this chapter, we described and analyzed the SHAR model that is used in

our analysis. Then, we used this ODE model to �nd a numerical solution

that can match the data curve of the Hospitalized people detected in the

�rst year of pandemic in Italy.

3.1 The model

To start an analysis of the COVID-19 disease, a more accurate model is

necessary than SIS and SIR models.

We considered the SHAR model, that is a modi�ed SIR model in which the

infected class is strati�ed into two subclasses: the hospitalized H(t) and the

asymptomatic A(t). Indeed, a COVID-19 infection can be more severe for

old people or people with pre-existing comorbidity leading to hospitalization,

meanwhile it can be less severe for young people which can be asymptomatic.

The dynamic of the SHAR model is the following:

dS(t)
dt = −β S(t)

N (H(t) + φA(t))

dH(t)
dt = ηβ S(t)

N (H(t) + φA(t))− γH(t)

dA(t)
dt = (1− η)β S(t)

N (H(t) + φA(t))− γA(t)

dR(t)
dt = γ(H(t) +A(t))

(3.1.1)

where β is the infection rate, γ is the removal rate, η is the portion of hospi-

talized people and φ is the scaling factor to distinguish infectivity (baseline

of severe cases). In the SHAR model, the constant φ describes the increase
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in the class of infected due to the asymptomatic people. Indeed, thanks to

φ, the infection rate become φβ for the asymptomatic class.

Notice that in the system (3.1.1) a constant β is considered.

3.1.1 Exponential growth factor

Before imposing control measures, the initial phase of the epidemic exhibits

an exponential growth, thank to the fact that the population is considered

completely susceptible S(t) ≈ N for small time t.

We want to determine the exponential growth factor of the system. To do

this, we consider at the beginning only the dynamics of H(t) and A(t).

Looking at the system (3.1.1), we can write in a compact form:

d

dt

[
H(t)

A(t)

]
=

([
η βN S(t) φη βN S(t)

(1− η) βN S(t) φ(1− η) βN S(t)

]
−

[
γ 0

0 γ

])[
H(t)

A(t)

]
(3.1.2)

Considering S(t) ≈ N , we have that

d

dt
~x = J~x (3.1.3)

where ~x = [H(t) A(t)]′, J = B −G with

B = β

[
η φη

(1− η) φ(1− η)

]

and

G =

[
γ 0

0 γ

]
The solution of the equation (3.1.3), via eigenvalue decomposition of J , is

given by

~x = TeΛ(t−t0)T−1 ~x(t0) (3.1.4)

with Λ = T−1JT and T is the matrix that have as column the eigenvectors

of J . Let us calculate the eigenvalues of the J matrix:

we consider the matrix

J − λI =

[
βη − γ − λ βφη

β(1− η) βφ(1− η)− γ − λ

]
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and then we impose det(J − λI) = 0. Then,

(βη − γ − λ)[βφ(1− η)− γ − λ)]− β2φη(1− η) = 0

By algebraical computation, from the equation above one can �nd the eigen-

values:

λ1,2 =
1

2
β(φ(1− η) + η)− γ ± 1

2
(φ(1− η) + η)

The dominating growth factor is given by the largest eigenvalue, that is

λ1 = β(φ(1− η) + η)− γ

meanwhile the second eigenvalue is given by λ2 = −γ.
Now, we want to compute the eigenvectors of J , solving JT = Tλ.

One can �nd that

T =

[
η −φ

1− η 1

]
and the inverse matrix is given by, via the computation of the cofactor ma-

trix,

T−1 =
1

η + φ(1− η)

[
1 φ

η η

]
Therefore, since from equation (3.1.4),[

H(t)

A(t)

]
= TeΛ(t−t0)T−1

[
H0

A0

]
(3.1.5)

we have that [
H(t)

A(t)

]
=

[
KH1

KA1

]
eλ1(t−t0) +

[
KH2

KA2

]
eλ2(t−t0) (3.1.6)

where the entries KH1 , KH2 , KA1 , KA2 depend on the initial values H0 and

A0 and on the parameter of the system.

Passing to the limit as t −→∞, one can �nd that[
H(t→∞)

A(t→∞)

]
=

[
KH1

KA1

]
eλ1(t−t0) (3.1.7)
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Indeed, the second part of the equation (3.1.6) tends to zero as t −→∞.

Therefore, one can see that without control measures the epidemic have an

exponential growth with exponential growth rate given by λ1.

3.1.2 SHAR model with non-constant infection rate: control

measures function

As we had explained in Chapter one, after the initial spread of the pandemic

in Italy, that coincides with an exponential growth phase of the infected

cases, severe controlled measures were adopted which ended with the impo-

sition of a quarantine. The Italian lockdown started on the 9th of March

2020 and ended on the 8th of May 2020.

To describe the e�ect of the control measures on the infection data curve

we have to modify the SHAR model that we presented in the system (3.1.1)

with a system in which the infection rate is a function of time β = β(t).

Therefore, we rede�ne the SHAR model as

dS(t)
dt = −β(t)S(t)

N (H(t) + φA(t))

dH(t)
dt = ηβ(t)S(t)

N (H(t) + φA(t))− γH(t)

dA(t)
dt = (1− η)β(t)S(t)

N (H(t) + φA(t))− γA(t)

dR(t)
dt = γ(H(t) +A(t))

(3.1.8)

We model the e�ort of the disease control measures introduced the time

dependent function

β(t) = β0σ−(x(t)) + β1σ+(x(t)) (3.1.9)

where β0 and β1 are constant parameters and the functions

σ−(x(t)) =
1

1 + ex(t)

is called downward sigmoidal function and

σ+(x(t)) =
1

1 + e−x(t)

is called upward sigmoidal function. Indeed, one can see that thanks to

the e�ort of σ−(x) the numerical solution of the system (3.1.8) is slowed
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down, meanwhile the e�ort of σ+(x) accelerates the numerical solution. This

functions are able to describe well the gradual slowing down of the epidemics

with β0 and β1 that vary.

Notice that the function x(t) is de�ned as

x(t) = a(t− tc)

where tc is a time that coincides with the start of the Lockdown and a is a

constant parameters. We �nd numerically that a = 0.38d−1.

3.1.3 SHAR model with non-constant infection rate: season-

ality function

After the relaxation of the control measures, one can consider the e�ect of

seasonality. Indeed, in respiratory diseases such as COVID-19 seasonality

can have a great impact in the slow down of the infectious cases.

To model the seasonality e�ect we substituted in the system (3.1.8) a function

for β(t) de�ned as follow:

β(t) = β0(1 + β1cos(ωt)) (3.1.10)

where β0, β1 and ω are constant parameters. The parameters β0 and β1

described respectively the non-seasonality e�ect and the seasonality e�ect,

while ω represent the frequency of oscillation. In particular,

ω =
2π

365

Notice that the seasonality function for the infection rate is a sinusoidal

function. This choice is made to describe the oscillatory nature of the data

curve of the COVID-19 infected cases.

3.1.4 Data and parameters

After the de�nition of the model, we have to determine the parameters of

the SHAR model which can describe the data curve.

In this study, we focused on the �rst year of the pandemic in Italy, before

the vaccination plan started.
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From Figure 3.1.1, one can see that the �rst year of COVID-19 pandemic in

Italy was characterized by two waves of infections: the �rst one with peak

in March 2020 which was controlled thanks to a hard lockdown, the second

one with peak in November 2020, which was controlled thanks to a partial

lockdown. The second partial lockdown was characterized by a classi�cation

of the regions according to a risk scale, which di�erentiated them by color,

as one can see in Figure 3.1.2.

Figure 3.1.1: Data of the total Hospitalized people in the �rst year of pan-
demic in Italy

We started to analyze the data dividing the �rst year of pandemic in

phases, according to the trend of the curve in each period, in order to iden-

tify the correct parameters for the SHAR model. In the simpler SHAR

model, the parameters β (infection rate), γ (removal rate), η (portion of

hospitalized people) and φ (scaling factor) are constant. This structure is

useful to describe the initial exponential phase of the spread of COVID-19,

in which no measures had been implemented to avoid contagions. But, since

COVID-19 trend change in time due to control measures that the government

implemented, we have to de�ne di�erent parameters for di�erent phases of

the pandemic.

Notice that the following analysis is made only for the Hospitalized class.
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This because in Italy one of the main aspects of the emergency was the sat-

uration of the hospitalized and the di�culty of coping with the number of

new hospitalizations.

Figure 3.1.2: Scale of risk from November 2020

3.1.5 Phase One: Exponential phase

We start describing the �rst phase on the pandemic in which there were no

control measures. For Italy this phase goes from the 24th of February (when

the �rst case was recognized) to the 9th of March (when lockdown started).

Because of the quick spread of the disease and the limitation in testing ca-

pacity, at the beginning of the pandemic in Italy the total number of infected

people corresponded more or less to the number of hospitalized people. For

this reason, for the �rst 15 days of the pandemic in Italy we plot the data and

the numerical solution for the hospitalized to �nd the correct parameters.

Implementing the model on MATLAB (see Appendix A), we tuned the pa-

rameters in order to match the epidemiological data curve as much as we

can. We started using the parameters for the exponential phase of COVID-

19 in the Basque Country [15].

The best parameters for which the curve match the data are:

� γ = 0.125

� β = 3.2γ

� η = 0.65
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� φ = 1.3

with initial condition H0 = 80 and A0 = 110.

From [15], we can see that the parameters for the Basque Country are sig-

ni�cantly di�erent. In particular, the recovery rate γ is signi�cantly smaller

(γ = 0.05d−1) and it is the same for the portion of hospitalized (η = 0.45).

Meanwhile, the scaling factor φ is slightly higher for the Basque country

(φ = 1.6) and β is the same for both of them. This re�ects the fact that the

COVID-19 crisis in Italy was more severe, in terms of number of infections

and saturation of the hospitals and the ICU facilities.

3.1.6 Phase two: Lockdown phase

For the second phase, we considered the SHAR model in which a control

measure function is implemented (look at the model (3.1.8) with the equation

(3.1.9) for β(t)).

In this case, we found that

� γ = 0.125

� η = 0.9

� φ = 1.21

� β0 = 0.2

� β1 = 0.095

Compering to the previous phase, the values of some parameters changed.

In particular, notice that we have a bigger η. This is reasonable because, as

one can see from Figure 3.1.4, in this phase we have a peak of the infectious

and consequently of the hospitalized people.

Moreover, in this phase we have a slightly smaller φ. Remember that φ

describes the increase in the infected class due to the asymptomatic people.

Therefore, in this phase it is reasonable to assume that this parameter is

smaller, because the people were forced to stay at home because of the

quarantine.

For what concern the parameters β0 and β1, they describe the contribution

of the control measures function. In particular, β0 is the contribution given

by the downward sigmoidal function and β1 is the contribution given by
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the upward sigmoidal function. In this phase assuming β0 > β1 is correct,

because we want to describe the change of trend of the epidemiological data

curve and, consequently, the presence of a peak.

From Figure 3.1.4, notice that there are two weeks of delay before the control

measures started producing e�ects. Indeed, one can observe a change of the

trend after this period. This is due to the large number of the infections in

the phase one.

3.1.7 Phase three: The end of the lockdown and release of

the control measures

For the third phase, we changed the time-dependent function for β(t). Here,

we started to assume the seasonality e�ect. For this reason, β(t) have the

form described in the equation (3.1.10).

For this phase, we found that:

� γ = 0.125

� η = 0.65

� φ = 1.3

� β0 = 0.15

� β1 = 0.095

Notice that the portion of hospitalized people η is less than the previous

phase. This re�ects the seasonality e�ect and the decrease in the hospitalized

class, because of the increase of the temperature.

Meanwhile, φ assumed the same value that it has in phase one and this

re�ect the end of the Lockdown and the new possibility of the people to

meet again.

3.1.8 Phase four: Coexistence with the virus

In this phase we continued to use the seasonality function for β(t). As

compared to the previous case, in this phase changed only the parameters

β0 and β1, that becomes:

� β0 = 0.1
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� β1 = 0.03

Therefore, the seasonality e�ect is decreases. This is in agreement with the

epidemiological curve that started to change its trend, as we can see from

Figure 3.1.4.

3.1.9 Phase �ve: New Restrictions

At the end of the summer 2021 the number of new infections in Italy started

to increase again. The Italian Government introduced some new restriction,

but their was so mild that did not stop the speed of the epidemiological

curve. For this reason we continued to use for β(t) the seasonality function.

The parameters that we found are:

� γ = 0.125

� η = 0.85

� φ = 1.3

� β0 = 0.1

� β1 = 0.003

As one can see, the parameter β1 that described the seasonality e�ort is very

low. This describes the e�ect of seasonality in this phase can not delay the

increase of the epidemiological curve. Moreover, in this period winter was

coming and the temperature became low.

Moreover, we can see that the parameter η is greater than the previous phase

and this re�ects the increment in the hospitalized class.

3.1.10 Phase six: Partial Lockdown

In November 2021 the increase of the infectious cases was so signi�cant such

that it was necessary to implement more severe control measures. For this

reason, a partial lockdown started. As we saw at the the beginning of this

chapter, this second lockdown was characterized by a classi�cation of the

regions according to a risk scale and the control measures adopted for all

regions depended on this classi�cation. Anyway, in the whole Country a

curfew was established from 10 pm to 5 am of the next day. Because of this

background, for this phase we considered again β(t) described by the control
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measures function of the second phase.

We found the following parameters for the description of this phase:

� γ = 0.127

� η = 0.65

� φ = 1.2

� β0 = 0.25

� β1 = 0.15

In this following table there is a summary of the whole parameters that

we used for each phase.

Figure 3.1.3: Parameters table
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The �gure below shows the match between the epidemiological curve of

the �rst year of pandemic in Italy and the numerical solution of the SHAR

model that we found. Despite the simplicity of the chosen model, one can

observe that we reached a good approximation.

Notice that in the �rst phase the two curves does not match well. We

supposed that this happened because at the beginning of the pandemic the

data detected are not completely reliable. Indeed, due to the large spread

of the disease, in the �rst phase of the pandemic there was a low testing

capacity of the infected people.

31



3. THE SHAR MODEL

Figure 3.1.4: Final match of data curve and numerical solution
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Chapter 4

Future projects and

applications

In this Chapter we describe future projects and possible applications of our

study. Firstly, we modify the SHAR model to continue the analysis for the

whole emergency period. Then, we describe the stochastic formulation of the

SHAR model and an optimization problem that can be used to determine

a balance between economic cost and health cost. Finally, we describe the

spatial formulation of the SHAR model.

4.1 Modi�cation of the SHAR model: the SHARD

model

Since we reached a good approximation with the SHAR model for the �rst

year of the spread of COVID-19 disease in Italy, we would continue the

description extending it to the whole emergency period.

At the beginning of 2021 we had a new scenario of the epidemic because

vaccination campaign started. Therefore, it is necessary that the solution of

the model interpretes the decrease in the infected class due to the e�ect of

vaccination. This can be easily implemented in the model considering a new

parameter α, that can describes the immunity reached by an individual that

received the vaccine. This parameter describes a waning immunity, because

we know that with the current vaccine an individual cannot reach a complete

immunity from the coronavirus.

Another useful aspect to taking into account is the import factor ρ, that can
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describe the import to the total population given by the immigration, births

and deaths. This can be implemented in the model by multiply the total

population N by ρ.

In the previous model we supposed the total population N constant in order

to simplify the model and because, during the �rst year of pandemic, the

travels between di�erent country was severely forbidden.

Moreover, in the new model it can be useful to describe the dynamics of

deaths. For this reason we could de�ne the class of the deceased individuals

D, that depends on the mortality rate µ. During the emergency period in

Italy the mortality rate reached the value of µ = 12.5. One can calculate

this number �nding the number of deaths during the specify period, then

dividing it by the population size.

The de�nition of the SHARD is the following:

dS(t)
dt = −β S(t)

N (H(t) + φA(t) + ρN(t)) + αR(t)

dH(t)
dt = ηβ S(t)

N (H(t) + φA(t) + ρN(t))− γH(t)

dA(t)
dt = (1− η)β S(t)

N (H(t) + φA(t) + ρN(t))− γA(t)

dR(t)
dt = γ(H(t) +A(t))− αR(t)

dD(t)
dt = µH(t)

(4.1.1)

In this formulation the parameters α, ρ and µ are assumed constant. More-

over, the removed class consists in this new formulation with the population

class of the healed individuals.

An interesting results could be given by analyzing how the dynamics of the

hospitalized class changes due to the vaccination. It could be taken that

the parameter η, which gives us the portion of the hospitalized class, is de-

scribes by a time-dependent function, as we did for the infection rate β, that

depends on the waning immunity α.

4.2 The stochastic formulation

Once a good model has been determined for the whole emergency period,

from February 2020 to March 2022, our idea is to move to a stochastic

formulation of the system. De�ne the stochastic model can be useful to

determine the future trend of the epidemic.

The stochastic SHAR model is modeled as a continuous-time Markov process
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to capture population noise [13]. The model could be reformulated using a

Master Equation for the dynamics of probability, that consists of a set of

di�erential equations of the �rst order that describe the temporal evolution

of the probability of a system to occupy each of the possible states at a

certain time t. The basic formulation of the Master Equation is given by:

d~P

dt
= A~P

in which ~P is the vector of all the possible states and A is the in�nitesimal

generator of the Markov process matrix [20].

The explicit formulation for the SHAR model is given by:

d

dt
p(S,H,A, t) = η

β

N
(S + 1)Ap(S + 1, H − 1, A, t)

+ (1− η)
β

N
(S + 1)(A− 1)p(S + 1, H,A− 1, t)

+ η
β

N
(S + 1)φ(H − 1)p(S + 1, H − 1, A, t)

+ (1− η)
β

N
(S + 1)φHp(S + 1, H,A− 1, t)

+ γ(A+ 1)p(S,H,A+ 1, t)

+ γ(H + 1)p(S,H,A, t)

+ α(N − (S − 1)−H −A)p(S − 1, H,A, t)

−
( β
N
S(A+ φH) + γ(A+H) + α(N − S −H −A)

)
p(S,H,A, t) (4.2.1)

From this formulation of the system one can produce simulations of the re-

alizations of a stochastic process, through the Gillespie algorithm [7]. In

this way a "toy" data set is built, useful to determine the parameters of the

stochastic model through numerical methods (as we did for the deterministic

model). Once the stochastic model has been determined, we can predict the

future trend of the epidemic and this could be useful in order to determine

the condition for the implementation of any containment measures and to

guarantee a right response from health facilities.

Understanding the dynamics of stochastic populations and how they interact

with the deterministic components of epidemiological models have maximum

bene�t on the practical predictability of the dynamical system by analyzing

the available epidemiological data via mathematical methods, since the clas-
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sical parameters estimation and its application are generally restricted to

fairly simple dynamical scenarios [14].

4.3 Optimization problem

The di�usion of COVID-19 caused a public health crisis but the measures

necessary to control the spread of the virus led to serious economic and social

crisis.

We want to present a technique to optimally control the infectious rate β(t)

so as to minimize the number of individuals that get infected from the disease,

in order to avoid the collapse of the health system. The idea is to de�ne

a control function for β(t) in order to take the Basic Reproduction number

R0(t) (3.1.10) below a given threshold. In particular, we need that R0(t) < 1

to have an extinction of the disease.

Using a mathematical structure, the optimal problem for β(t) is given by: ˙β(t) = f(β(t), g(t)) for t > 0

β(0) = β̄
(4.3.1)

where β̄ is a given constant value and g : [0,∞) −→ A is the control function,

with A ∈ R. Notice that β(t) : [0,∞) −→ R.
Our task will be to determine what is the "best" de�nition for the control

function g(t) for our system. For this we need to specify a speci�c payo�

criterion.

Let us de�ne the payo� functional as

P [g(·)] :=

∫ T

o
r(β(t), g(t)) dt+ h(β(T ))

where r : R× A −→ and h : R −→ R are given function called respectively

running payo� and terminal payo�. Moreover, T > 0 is called terminal time.

Our aim is to �nd a control ĝ(·) which maximizes the payo�. In other words,

we want that

P [ĝ(·)] ≥ P [g(·)]

for all controls g(·) ∈ A. Such a control ĝ(·) is called optimal.

Obviously, this goal presents us with various mathematical issues:
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� Does an optimal control exist?

� How can we characterize an optimal control mathematically?

� How can we construct an optimal control?

To answer to this question, we refer to [11].

4.4 The SHARUCD model

A further generalization that can be applied to the case of COVID-19 is

given by the SHARUCD model [17]. It consists in a SHAR model in which

new population classes are added: the class U of the hospitalized individuals

in intensive care unit (ICU) and the class D of the deceased individuals.

Moreover, we could considered classes that take into account the cumulative

cases: CH is the class of the cumulative hospitalized, CA is the class of the

cumulative asymptomatic, CU is the class of the cumulative ICU and CR is

the class of the cumulative removed. Considering these classes can make the

description more complete and can be useful for determining the conditions

of saturation of hospitals.

The SHARUCD model is the following:

dS
dt = −β S

N (H + φA+ ρN)

dH
dt = ηβ S

N (H + φA(t) + ρN)− (γ + µ+ ν)H

dA
dt = (1− η)β S

N (H + φA(t) + ρN)− γA
dR
dt = γ(H +A+ U)

dU
dt = νH − (γ + µ)U

dCH
dt = ηβ S

N (H + φA+ ρN)

dCA
dt = ψ(1− η)β S

N (H + φA+ ρN)

dCR
dt = γ(H + U + ψA)

dCU
dt = νH

dD
dt = µ(H + U)

(4.4.1)

In this model new parameters are considered:

� ν represents the portion of hospitalized individuals that develop a se-

rious form of illness and enter in intensive care units (ICU);

37



4. FUTURE PROJECTS AND APPLICATIONS

� µ is the mortality rate;

� ψ describes the portion of the asymptomatic individuals recorded by

the testing operation in comparison with all the cases registered.

4.5 Spatially extended SHAR model

The inclusion of a spatial component in epidemiological models is impor-

tant to understand and address many relevant ecological and public health

questions. For example, when wanting to di�erentiate transmission patterns

across geographical regions or when considering spatially heterogeneous in-

tervention measures.

In this section, we present the formulation spatial version of the stochastic

SHAR model.

Let us consider a lattice consisting of N sites, each of which is occupied by

an individual and labeled by the indicators Si, Hi, Ai ∈ {0, 1}, according to
its state. Each site i can either have a susceptible

(Si = 1, Hi = Ai = 0), hospitalized (Hi = 1, Si = Ai = 0), asymptomatic

(Ai = 1, Si = Hi = 0), or recovered (Si = Hi = Ai = 0). Notice that there is

no need to explicitly introduce the indicator Ri, since in the present settings

Ri = 1 − Si − Hi − Ai. The state vector for the system is thus given by

(S1, H1, A1, . . . , Si, Hi, Ai, . . . , SN , HN , AN ). Let J be the lattice adjacency

matrix with entriesJij = 1 if sites i and j are connected

Jij = 0 otherwise
(4.5.1)

From the matrix J and any given con�guration, the following quantities of

interest can be computed:

� the number of neighbors to site i

Qi =

N∑
j=1

Jij
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� the number of the infected neighbors to site i

N∑
j=1

Jij(Hj +Aj)

� the force of infection to site i

β
N∑
j=1

Jij(Hj + φAj)

Notice that we assume that the process involving contagion between indi-

viduals within the considered population may only occur when sites i and j

are connected.

Considering the deterministic formulation of the SHAR model given by

(4.1.1), the master equation for the stochastic spatial SHAR model is given

by:

d

dt
p(t, S1, H1, A1, . . . , Si, Hi, Ai, . . . , SN , HN , AN ) =

=

N∑
i=1

[
βη
(
ρ+

N∑
j=1

Jij(Hj + φAj)
)
Hip(t, S1, H1, A1, . . .

. . . , 1− Si, 1−Hi, Ai, . . . , SN , HN , AN ) + β(1− η)

×
(
ρ+

N∑
j=1

Jij(Hj + φAj)
)
Aip(t, S1, H1, A1, . . .

. . . , 1− Si, Hi, 1−Ai, . . . , SN , HN , AN )

+ γ(1− Si −Hi −Ai)p(t, S1, H1, A1, . . . , Si, 1−Hi, Ai, . . . , SN , HN , AN )

+ γ(1− Si −Hi −Ai)p(t, S1, H1, A1, . . . , Si, Hi, 1−Ai, . . . , SN , HN , AN )

+ αSip(t, S1, H1, A1, . . . , 1− Si, Hi, Ai, . . . , SN , HN , AN )
]

−
N∑
i=1

[
β
(
ρ+

N∑
j=1

Jij(Hj + φAj)
)
Si + γ(Hi +Ai) + α(1− Si −Hi −Ai)

]
× p(t, S1, H1, A1, . . . , Si, Hi, Ai, . . . , SN , HN , AN ) (4.5.2)

For a deeper analysis, we refer to [5].
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Appendix A

Matlab code

In this section we reported the MATLAB code that we used to �nd the

numerical solution of the SHAR model and the �tting parameters.

A.1 The main code

c l e a r a l l

c l o s e a l l

c l c

%% Data r e t r i e v a l

c s v_ f i l e_ I t a l y = 'COVID19LastData ' ; % c o l l e c t i o n o f data

I ta ly_sheet=readtab l e ( c s v_ f i l e_ I t a l y ) ;

data_raw=ce l l 2mat ( t a b l e 2 c e l l ( I ta ly_shee t ( : , 3 : 1 5 ) ) ) ;

num_days_data=length ( data_raw ) ;

fit_window=1:num_days_data=1;

H_data=data_raw ( fit_window , 1 ) ; % Hosp i t a l i z ed

M_data=data_raw ( fit_window , 4 ) ; % hoMe

V_data=data_raw ( fit_window , 2 ) ; % Vent i l a t ed in ICU

I_data=data_raw ( fit_window , 5 ) ; % In f e c t ed ( I=H+V+M)

L_data=data_raw ( fit_window , 8 ) ; % heaLed

D_data=data_raw ( fit_window , 9 ) ; % Dead

W_data=data_raw ( fit_window , 1 3 ) ; % Swab t e s t s

R_data=L_data+D_data ; %Removed

day_start_pandemic=datenum (2020 , 02 , 24 , 0 , 0 , 0 ) ;
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day_end=datenum (2021 , 01 , 01 , 0 , 0 , 0 ) ;

%% Phase 1 : exponent i a l phase

day_start1=day_start_pandemic ;

day_end1=datenum (2020 , 03 , 09 , 0 , 0 , 0 ) ;

T0=day_start1=day_start_pandemic+1;

day_vec1=day_start1 : day_end1 ;

num_days=length ( day_vec1 ) ;

N = 60*10^6; % t o t a l populat ion

% i n i t cond i t i on

H0 = H_data(T0+1)+V_data(T0+1);

A0 = M_data(T0+1);

R0 = R_data(T0+1);

S0 = N = H0 = A0 = R0 ;

% parameters

gamma = 0 . 1 2 5 ;

f i = 1 . 3 ;

eta = 0 . 6 5 ;

beta = 3.2*gamma;

T_vec=0:num_days=1;

param_SHAR_init1=[ beta f i e ta gamma ] ' ;

param_SHAR_fixed1=[H0 A0 R0 N] ' ;

% data to t rack

H_data_vec1=H_data(T0+1:T0+num_days ) ' + . . . .

. . . V_data(T0+1:T0+num_days ) ' ;

% ErrorModel used in l s qnon l i n

ErrorModel1=@(param_SHAR) . . .

. . . SHAR_ex_modelfun(T_vec ,param_SHAR, param_SHAR_fixed1 ) = . . .

. . . H_data_vec1 ;

% CostModel used in fmincon

CostModel1=@(param_SHAR)norm( ErrorModel1 (param_SHAR) ) ;

% Optimizat ion

param_SHAR_fit_fmin1=fmincon (CostModel1 , param_SHAR_init1 , . . .

. . . [ ] , [ ] , [ ] , [ ] , z e r o s ( l ength (param_SHAR_init1 ) , 1 ) , [ ] ) ;

% Run f i t t e d model

H_vec_fmin1=SHAR_ex_modelfun(T_vec , param_SHAR_fit_fmin1 , . . .
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. . . param_SHAR_fixed1 ) ;

%% Phase 2 : S ta r t Lockdown ( con t r o l measures )

day_start2=datenum (2020 , 03 , 10 , 0 , 0 , 0 ) ;

day_end2=datenum (2020 , 05 , 03 , 0 , 0 , 0 ) ;

T0=day_start2=day_start_pandemic+1; % pre=lockdown phase

day_vec2=day_start2 : day_end2 ;

num_days=length ( day_vec2 ) ;

N = 60*10^6;

% i n i t cond i t i on

H0 = H_data(T0+1)+V_data(T0+1);

A0 = M_data(T0+1);

R0 = R_data(T0+1);

S0 = N = H0 = A0 = R0 ;

% parameters

tc=T0 ;

gamma = 0 . 1 2 5 ;

f i = 1 . 3 ;

eta = 0 . 6 5 ;

beta_0 = 0 . 2 5 ;

beta_1 = 0 . 0 9 5 ;

a = 0 . 3 8 ;

T_vec=0:num_days=1;

param_SHAR_init2=[beta_0 beta_1 a tc f i e ta gamma ] ' ;

param_SHAR_fixed6=[H0 A0 R0 N] ' ;

% data to t rack

H_data_vec2=H_data(T0+1:T0+num_days ) '+ . . .

. . . V_data(T0+1:T0+num_days ) ' ;

% ErrorModel used in l s qnon l i n

ErrorModel2=@(param_SHAR ) . . .

. . . SHAR_modelfun(T_vec ,param_SHAR, param_SHAR_fixed6 ) = . . .

. . . H_data_vec2 ;

% CostModel used in fmincon

CostModel2=@(param_SHAR)norm( ErrorModel2 (param_SHAR) ) ;

% Optimizat ion

param_SHAR_fit_fmin2=fmincon (CostModel2 , param_SHAR_init2 , . . .
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. . . [ ] , [ ] , [ ] , [ ] , z e r o s ( l ength (param_SHAR_init2 ) , 1 ) , [ ] ) ;

% Run f i t t e d model

H_vec_fmin2=SHAR_modelfun(T_vec , param_SHAR_fit_fmin2 , . . .

. . . param_SHAR_fixed6 ) ;

%% Phase 3 : end lockdown ( s e a s on a l i t y )

day_start3=datenum (2020 , 05 , 04 , 0 , 0 , 0 ) ;

day_end3=datenum (2020 , 07 , 18 , 0 , 0 , 0 ) ;

T0=day_start3=day_start_pandemic+1;

day_vec3=day_start3 : day_end3 ;

num_days=length ( day_vec3 ) ;

N = 60*10^6;

% i n i t cond i t i on

H0 = H_data(T0+1)+V_data(T0+1);

A0 = M_data(T0+1);

R0 = R_data(T0+1);

S0 = N = H0 = A0 = R0 ;

% parameters

gamma = 0 . 1 2 5 ;

f i = 1 . 3 ;

eta = 0 . 6 5 ;

omega = 2* pi /365 ;

beta_0 = 0 . 1 5 ;

beta_1 = 0 . 0 9 5 ;

T_vec=0:num_days=1;

param_SHAR_init3=[beta_0 beta_1 omega f i eta gamma ] ' ;

param_SHAR_fixed3=[H0 A0 R0 N] ' ;

% data to t rack

H_data_vec3=H_data(T0+1:T0+num_days ) '+ . . .

. . . V_data(T0+1:T0+num_days ) ' ;

% ErrorModel used in l s qnon l i n

ErrorModel3=@(param_SHAR ) . . .

. . . SHAR_solfun (T_vec ,param_SHAR, param_SHAR_fixed3 ) = . . .

. . . H_data_vec3 ;

% CostModel used in fmincon

CostModel3=@(param_SHAR)norm( ErrorModel3 (param_SHAR) ) ;
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% Optimizat ion

param_SHAR_fit_fmin3=fmincon (CostModel3 , param_SHAR_init3 , . . .

. . . [ ] , [ ] , [ ] , [ ] , z e r o s ( l ength (param_SHAR_init3 ) , 1 ) , [ ] ) ;

% Run f i t t e d model

H_vec_fmin3=SHAR_solfun (T_vec , param_SHAR_fit_fmin3 , . . .

. . . param_SHAR_fixed3 ) ;

%% Phase 4 : Coexistance with v i ru s ( s e a s on a l i t y )

day_start4=datenum (2020 , 07 , 19 , 0 , 0 , 0 ) ;

day_end4=datenum (2020 , 10 , 07 , 0 , 0 , 0 ) ;

T0=day_start4=day_start_pandemic+1;

day_vec4=day_start4 : day_end4 ;

num_days=length ( day_vec4 ) ;

N = 60*10^6;

% i n i t cond i t i on

H0 = H_data(T0+1)+V_data(T0+1);

A0 = M_data(T0+1);

R0 = R_data(T0+1);

S0 = N = H0 = A0 = R0 ;

% parameters

gamma = 0 . 1 2 5 ;

f i = 1 . 3 ;

eta = 0 . 6 5 ;

omega = 2* pi /365 ;

beta_0 = 0 . 1 ;

beta_1 = 0 . 0 3 ;

T_vec=0:num_days=1;

param_SHAR_init4=[beta_0 beta_1 omega f i eta gamma ] ' ;

param_SHAR_fixed4=[H0 A0 R0 N] ' ;

% data to t rack

H_data_vec4=H_data(T0+1:T0+num_days ) '+ . . .

. . . V_data(T0+1:T0+num_days ) ' ;

% ErrorModel used in l s qnon l i n

ErrorModel4=@(param_SHAR ) . . .

. . . SHAR_solfun (T_vec ,param_SHAR, param_SHAR_fixed4 ) = . . .

. . . H_data_vec4 ;
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% CostModel used in fmincon

CostModel4=@(param_SHAR)norm( ErrorModel4 (param_SHAR) ) ;

% Optimizat ion

param_SHAR_fit_fmin4=fmincon (CostModel4 , param_SHAR_init4 , . . .

. . . [ ] , [ ] , [ ] , [ ] , z e r o s ( l ength (param_SHAR_init4 ) , 1 ) , [ ] ) ;

% Run f i t t e d model

H_vec_fmin4=SHAR_solfun (T_vec , param_SHAR_fit_fmin4 , . . .

. . . param_SHAR_fixed4 ) ;

%% Phase 5 : new r e s t r i c t i o n ( s e a s on a l i t y )

day_start5=datenum (2020 , 10 , 08 , 0 , 0 , 0 ) ;

day_end5=datenum (2020 , 11 , 06 , 0 , 0 , 0 ) ;

T0=day_start5=day_start_pandemic+1;

day_vec5=day_start5 : day_end5 ;

num_days=length ( day_vec5 ) ;

N = 60*10^6;

% i n i t cond i t i on

H0 = H_data(T0+1)+V_data(T0+1);

A0 = M_data(T0+1);

R0 = R_data(T0+1);

S0 = N = H0 = A0 = R0 ;

% parameters

gamma = 0 . 1 2 5 ;

f i = 1 . 3 ;

eta = 0 . 6 5 ;

omega = 2* pi /365 ;

beta_0 = 0 . 1 ;

beta_1 = 0 . 0 2 7 ;

T_vec=0:num_days=1;

param_SHAR_init5=[beta_0 beta_1 omega f i eta gamma ] ' ;

param_SHAR_fixed5=[H0 A0 R0 N] ' ;

% data to t rack

H_data_vec5=H_data(T0+1:T0+num_days ) '+ . . .

. . . V_data(T0+1:T0+num_days ) ' ;

% ErrorModel used in l s qnon l i n

ErrorModel5=@(param_SHAR ) . . .
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. . . SHAR_solfun (T_vec ,param_SHAR, param_SHAR_fixed5 ) = . . .

. . . H_data_vec5 ;

% CostModel used in fmincon

CostModel5=@(param_SHAR)norm( ErrorModel5 (param_SHAR) ) ;

% Optimizat ion

param_SHAR_fit_fmin5=fmincon (CostModel5 , param_SHAR_init5 , . . .

. . . [ ] , [ ] , [ ] , [ ] , z e r o s ( l ength (param_SHAR_init5 ) , 1 ) , [ ] ) ;

% Run f i t t e d model

H_vec_fmin5=SHAR_solfun (T_vec , param_SHAR_fit_fmin5 , . . .

. . . param_SHAR_fixed5 ) ;

%% Phase 6 : p a r t i a l lockdown ( con t r o l measures )

day_start6=datenum (2020 , 11 , 07 , 0 , 0 , 0 ) ;

day_end6=day_end ;

T0=day_start6=day_start_pandemic+1; % pre=lockdown phase

day_vec6=day_start6 : day_end6 ;

num_days=length ( day_vec1 ) ;

N = 60*10^6;

% i n i t cond i t i on

H0 = H_data(T0+1)+V_data(T0+1);

A0 = M_data(T0+1);

R0 = R_data(T0+1);

S0 = N = H0 = A0 = R0 ;

% parameters

tc=T0 ;

gamma = 0 . 1 2 7 ;

f i = 1 . 3 ;

eta = 0 . 6 5 ;

beta_0 = 0 . 2 5 ;

beta_1 = 0 . 0 9 5 ;

a = 0 . 2 8 ;

T_vec=0:num_days=1;

param_SHAR_init6=[beta_0 beta_1 a tc f i e ta gamma ] ' ;

param_SHAR_fixed6=[H0 A0 R0 N] ' ;

% data to t rack

H_data_vec6=H_data(T0+1:T0+num_days ) '+ . . .
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. . . V_data(T0+1:T0+num_days ) ' ;

% ErrorModel used in l s qnon l i n

ErrorModel6=@(param_SHAR ) . . .

. . . SHAR_modelfun(T_vec ,param_SHAR, param_SHAR_fixed6 ) = . . .

. . . H_data_vec6 ;

% CostModel used in fmincon

CostModel6=@(param_SHAR)norm( ErrorModel6 (param_SHAR) ) ;

% Optimizat ion

param_SHAR_fit_fmin6=fmincon (CostModel6 , param_SHAR_init6 , . . .

. . . [ ] , [ ] , [ ] , [ ] , z e r o s ( l ength (param_SHAR_init6 ) , 1 ) , [ ] ) ;

% Run f i t t e d model

H_vec_fmin6=SHAR_modelfun(T_vec , param_SHAR_fit_fmin6 , . . .

. . . param_SHAR_fixed6 ) ;

%% Plot s

day_vec=day_vec1+day_vec2+day_vec3+day_vec4 + . . .

. . . day_vec5+day_vec6 ;

H_data_vec=[H_data_vec1 H_data_vec2 H_data_vec3 . . .

. . . H_data_vec4 H_data_vec5 H_data_vec6 ] ;

H_vec_fmin=[H_vec_fmin1 H_vec_fmin2 H_vec_fmin3 . . .

. . . H_vec_fmin4 H_vec_fmin5 H_vec_fmin6 ] ;

f i g u r e

p l o t ( day_vec , l og (H_data_vec ) ' , '=* ')

hold on

p lo t ( day_vec , l og (H_vec_fmin ) , ' Linewidth ' , 1 . 2 )

g r i d on

x l ab e l ( ' days ' )

y l ab e l ( ' l og ( Ho sp i t a l i z ed ) ' )

da t e t i c k ( ' x ' , ' dd/mmm' , ' keept i cks ' )

l egend ( ' Data ' , ' F i t t ed model ( fmincon ) ' , . . .

. . . ' l o ca t i on ' , ' southeast ' )
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A.2 Matlab function for the de�nition of the SHAR

model

A.2.1 Model for the exponential phase

f unc t i on y_dot=SHAR_ex_fun( t , x , param)

% parameters

beta=param ( 1 ) ;

f i=param ( 2 ) ;

eta=param ( 3 ) ;

gamma=param ( 4 ) ;

% s t a t e v a r i a b l e s

S=x ( 1 ) ;

H=x ( 2 ) ;

A=x ( 3 ) ;

R=x ( 4 ) ;

N=S+H+A+R;

% model dynamics

S_dot==beta *S/N*(H+f i *A) ;

H_dot=eta *beta *S/N*(H+f i *A)=gamma*H;

A_dot=(1=eta )* beta *S/N*(H+f i *A)=gamma*A;

R_dot=gamma*(H+A) ;

y_dot=[S_dot H_dot A_dot R_dot ] ' ;

A.2.2 Model with control measure function β(t)

f unc t i on x_dot=SHAR_odefun( t , x , param)

% parameters

beta0=param ( 1 ) ;

beta1=param ( 2 ) ;

a=param ( 3 ) ;

tc=param ( 4 ) ;

f i=param ( 5 ) ;

eta=param ( 6 ) ;

gamma=param ( 7 ) ;

% s t a t e v a r i a b l e s
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S=x ( 1 ) ;

H=x ( 2 ) ;

A=x ( 3 ) ;

R=x ( 4 ) ;

N=S+H+A+R;

% time=varyibg i n f e c t i o n ra t e

beta_t = . . .

. . . beta0 *1/(1+exp ( a *( t=tc )))+ beta1 *1/(1+exp(=a *( t=tc ) ) ) ;

% model dynamics

S_dot==beta_t*S/N*(H+f i *A) ;

H_dot=eta *beta_t*S/N*(H+f i *A)=gamma*H;

A_dot=(1=eta )* beta_t*S/N*(H+f i *A)=gamma*A;

R_dot=gamma*(H+A) ;

x_dot=[S_dot H_dot A_dot R_dot ] ' ;

A.2.3 Model with seasonality function β(t)

f unc t i on y_dot=SHAR_seasfun ( t , x , param)

% parameters

beta0=param ( 1 ) ;

beta1=param ( 2 ) ;

omega=param ( 3 ) ;

f i=param ( 4 ) ;

eta=param ( 5 ) ;

gamma=param ( 6 ) ;

% s t a t e v a r i a b l e s

S=x ( 1 ) ;

H=x ( 2 ) ;

A=x ( 3 ) ;

R=x ( 4 ) ;

N=S+H+A+R;

% time=varyibg i n f e c t i o n ra t e

beta_t=beta0*(1+beta1 * cos ( omega* t ) ) ;

% model dynamics

S_dot==beta_t*S/N*(H+f i *A) ;

H_dot=eta *beta_t*S/N*(H+f i *A)=gamma*H;
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A_dot=(1=eta )* beta_t*S/N*(H+f i *A)=gamma*A;

R_dot=gamma*(H+A) ;

y_dot=[S_dot H_dot A_dot R_dot ] ' ;

A.3 Matlab function for the solution of the model

f unc t i on . . .

. . . Y_vec=SHAR_ex_modelfun(T_vec ,param_SHAR, param_fixed )

N=param_fixed ( 4 ) ;

S0=N=sum( param_fixed ( 1 : 3 ) ) ;

x_init=[S0 ; param_fixed ( 1 : 3 ) ] ;

[~ ,X_vec ] = . . .

. . . ode45 (@( t , x )SHAR_ex_fun( t , x ,param_SHAR) ,T_vec , x_init ) ;

Y_vec=(X_vec ( : , 2 ) ) ; % s e l e c t the output ( s ) you want to f i t

Notice that the Matlab function above solve the model for the exponential

phase. In the cases in which β(t) is given by control measure function or sea-

sonality function we have to replace "SHAR_ex_fun" with "SHAR_odefun"

or "Shar_seasfun" respectively.
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From ODE to Markov chains

via SDE

Let us introduce a methodology to connect an ordinary di�erential equation

(ODE) model to a Markov chain model via a stochastic di�erential equation

(SDE).

De�nition 1. A Stochastic process is a sequence

{X(t, ω)}, t ≥ t0

such that, for any �xed t ≥ t0, X(·, ω) is a random variable [23] and for

�xed ω, X(t, ·) is a function of time called realization of the process.

De�nition 2. A Brownian motion is a stochastic process W (t), t ∈ [t0, T ]

such that W (t) is a continuous function of t and

� W (0) = 0 with probability 1;

� for any t0 ≤ s < t ≤ T , W (t) −W (s) ∼ N(0, t − s), with N normal

random variable [23];

� for any t0 ≤ s < t < u < v ≤ T , W (t)−W (s) and W (v)−W (u) are

independent.

De�nition 3. We call Stochastic Ito integral the quantity

∫ T

t0

f(t) dW (t) ≈
N−1∑
i=0

f(ti)(Wti+1 −Wti) (B.0.1)
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where N is a discretization of the interval [t0, T ], such that

lim
∆t→0

E

[∣∣∣∣ ∫ T

t0

f(t) dW (t)−
N−1∑
i=0

f(ti)(Wti+1 −Wti)

∣∣∣∣2
]

= 0

where E denote the mean value. This limit is called mean-square limit.

Let us suppose that we have a model given by the Cauchy-Lipschitz

ordinary di�erential equation [12], satisfying some regularity assumptions

and an initial condition: d
dtx(t) = f(t, x(t)) t ∈ [t0, T ]

x(t0) = x0

(B.0.2)

with exact solution

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds t ∈ [t0, T ] (B.0.3)

Suppose that we add a noise, given by an Ito integral with respect to a

Brownian motion W (t), t ∈ [t0, T ], de�ned on a probability space (Ω, F,P)

[23], to the equation (B.0.3). In this way, we get a stochastic di�erential

equation (SDE), given by, for ω ∈ Ω,

X(t, ω) = X0(ω) +

∫ t

t0

f(s,X(s, ω)) ds+

∫ t

t0

g(t,X(t, ω)) dW (t, ω) (B.0.4)

where X0(ω) = X(t0, ω) and g(t,X(t, ω)) is the function give us the noise,

or in the di�erential form,dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t)

X(t0) = X0

(B.0.5)

Let us observe that, under su�cient hypotheses, the Ito stochastic inte-

gral part of equation (B.0.4) is a martingale with constant null mean value.

Therefore, we have

E[X(t, ω] = E[X0(ω)] +

∫ t

t0

E[f(s,X(s, ω))] ds

which, upon comparing with equation (B.0.3), allows the interpretation that
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the solution of equation (B.0.3) is the mean value with respect to the proba-

bility P (or the average) of the solution of equation (B.0.4). From this point,

we will not distinguish X(t) from x(t).

Now, suppose that we discretize equation (B.0.4) with the Euler-Maruyama

discretization [6] scheme to get:

Xn+1 = Xn + f(tn, Xn)(tn+1 − tn) + g(tn, Xn)(W (tn+1 −W (tn))

for 0 ≤ t0 < t1 < . . . < tN = T a subdivision of [t0, T ]. In the uni-

dimensional case it is known that W (tn+1)−W (tn) ∼ N(0, tn+1 − tn), with

N(0, tn+1− tn) normal standard distribution, and we have that the sequence

Un, n = 0, . . . , N − 1 de�ned by

Un := F−1
n (W (tn+1 −W (tn)

with F−1
n the inverse of the distribution function of a random variable dis-

tributed with the law N(0, tn+1 − tn), is a sequence of independent uni-

formly distributed random variables. In this way, calling , tn+1 − tn = h,

f(t, x) = f(x) and g(t, x) = g(x) such that

G(x, t) := x+ f(x)h+ g(x)y

we may write that

Xn+1 = G(Xn, Un), n = 0, . . . , N − 1

which is the functional de�nition of a Markov chain [18] [24].

To each pair of states a and b of the Markov chain is associated a transi-

tion probabilities pa,b(t). In order to determine the possible paths from a

state to another we can study the dynamics of the transition probabilities

via a di�erential equation, that we called Master equation (or Kolmogorov

di�erential equation). The general form for the Master equation is given by

dpa,b(t)

dt
=
∑
k 6=a

pa,k(t)qk,b − qa,apa,b(t) (B.0.6)

where the values of qk,b and qa,a are de�ned from the transition rates [13].
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An introduction about

optimization problems

Let us introduce the basic concepts of Mathematical Optimal Control The-

ory.

Consider an ODE having the form d
dtx(t) = f(x(t)) t > 0

x(t0) = x0

(C.0.1)

where x0 ∈ Rn is the initial condition and f : Rn → Rn. The solution of

the system x : [0,∞) → Rn corresponds to the dynamical evolution of the

system.

Suppose now that f depends also apon some "control" parameters belonging

to a set A ∈ Rm. So that f : Rn × A → Rn. Then if we select some value

a ∈ A and consider the corresponding dynamics d
dtx(t) = f(x(t), a) t > 0

x(t0) = x0

(C.0.2)

we obtain the evolution of our system when the parameter is constantly set to

the value a. Another possibility is that we change the value of the parameter

as the system evolves. For instance, suppose we de�ne the function
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α : [0,∞)→ A in this way:

α(t) =


a1 0 ≤ t ≤ t1
a2 t1 < t ≤ t2
a3 t2 < t ≤ t3 etc.

(C.0.3)

for times 0 < t1 < t2 < t3... and parameter values a1, a2, a3, ... ∈ A. Then

we solve the dynamical system d
dtx(t) = f(x(t), α(t)) t > 0

x(t0) = x0

(C.0.4)

Notice that the system may behave quite di�erently as we change the control

parameters. We call the function α : [0,∞) → A a control and the corre-

sponding ODE and its trajectory x(t) as the response of the system.

The task will be to determine what is the "best" control for our system. For

this we need to specify a speci�c payo� criterion. Let us de�ne the payo�

functional

P [α(·)] :=

∫ T

o
r(x(t), α(t)) dt+ g(x(T )) (C.0.5)

where x(·) solves the ODE for the control α(·) and r : R × A −→ and h :

R −→ R are given function called respectively running payo� and terminal

payo�. Moreover, T > 0 is called terminal time.

Our aim is to �nd a control α̂(·) which maximizes the payo�. In other words,

we want

P [α̂(·)] ≥ P [α(·)]

for all controls α(·) ∈ A. Such a control α̂(·) is called optimal.

C.1 Example: control of production and consump-

tion

Suppose we own a factory whose output we can control. Let us begin to

construct a mathematical model by setting

x(t) = amount of output produced at at time t ≥ 0
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We suppose that we consume some fraction of our output at each time and

likewise can reinvest the remaining fraction. Let us denote

α(t) = fraction of output reinvested at time t ≥ 0

This will be our control and is subject to the obvious constraint

0 ≤ α(t) ≤ 1 for each time t ≥ 0

Given such a control, the corresponding dynamics are provided by the ODE
dx(t)
dt = kα(t)x(t)

x(0) = x0

(C.1.1)

where the constant k > 0 modelling the growth rate of our reinvestment.

Let us take as a payo� functional

P [α(·)] =

∫ T

0
(1− α(t))x(t) dt

The meaning is that we want to maximize our total consumption of the

output. This model �ts into our general framework for n = m = 1 once we

put

A = [0, 1], f(x, a) = kax, r(x, a) = (1− a)x, g = 0

One can prove that an optimal control ˆα(·) is given by

ˆα(t) =

1 0 ≤ t ≤ t̂

0 t̂ < t ≤ T
(C.1.2)

for an appropriate switching time 0 ≤ t̂ ≤ T . In other words, we should

reinvest all the output (and therefore consume nothing) up until time t̂ and

afterwards, we should consume everything (and therefore reinvest nothing).

The switchover time t̂ will have to be determined. We call ˆα(·) a bang-bang

control [11].
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An introduction about network

theory

Let us give an introduction about the network theory for the spatial formu-

lation of the model.

A graph is a mathematical structure used to model pairwise relations

between objects. A graph in this context is made up of vertices (also called

nodes or points) which are connected by edges (also called links or lines).

A distinction is made between indirect graphs, where edges link two vertices

symmetrically, and directed graphs, where edges link two vertices asymmet-

rically.

De�nition 1. A graph is an ordered pair G = (V,E) where

� V is a set of vertices;

� E ⊆ {{x, y}|x, y ∈ V and x 6= y} is a set of edges which are unordered

pairs of vertices.

To avoid ambiguity, this type of object may be called precisely an indirect

simple graph. In a more general sense, we have the following de�nition.

De�nition 2. A graph is an ordered triple G = (V,E, φ) where

� V is a set of vertices;

� E is a set of edges;
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� φ : E → {{x, y}|x, y ∈ V and x 6= y} is an incidence function map-

ping every edges to an unordered pair of vertices (that is, an edges is

associated with two distinct vertices).

This type of object may be called precisely an indirect multigraph.

A loop is an edge that joins a vertex to itself. Graphs as de�ned in the two

de�nitions above cannot have loops.

V and E are usually taken to be �nite and many of the well-known results

are not true (or are rather di�erent) for in�nite graphs. Moreover, V is often

assumed to be non-empty, but E is allowed to be an empty set.

The order of a graph is |V | and it is the number of vertices. The size of

a graph is |E| and it is the number of edges. The degree of a vertex is the

number of edges that are incident to it, where a loop is counted twice.

The degree of a graph is the maximum of the degrees of its vertices.

De�nition 3. A directed graph or digraph is a graph in which edges have

orientations. We indicate it with the pair G = (V,E) where

� V is the set of vertices;

� E ⊆ {(x, y)|(x, y) ∈ V 2 and x 6= y} is the set of edges which are

ordered pairs of vertices.

To avoid ambiguity, this type of object may be called precisely a directed

simple graph [10].

Two nodes connected by an edge are called adjacent. A path on a graph G is

a sequence of distinct nodes such that every node is adjacent to the previous

or the next node. A graph G is called connected if for every pair of vertices

exist a path that connects them.

De�nition 4. Given a graph G = (V,E), V ′ ⊂ V and E′ ⊂ E, we call

G′ = (V ′, E′) subgraph of G.

De�nition 5. Given a connected graph G = (V,E) a spanning tree is a

connected subgraph of G such that it has all the vertices of V , some edges of

E and do not have loops.

De�nition 6. The adjacency matrix of a graph G is a symmetric square

matrix A(G) that gives a representation of G, i.e. represents the adjacent
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relationship between the nodes.

Ai,j =

1 if (vi, vj) ∈ E, with vi, vj ∈ V

0 otherwise
(D.0.1)

De�nition 7. We call degree matrix ∆(G) of a graph G a square diagonal

matrix such that the diagonal element i is the degree of the vertex i.

De�nition 8. We call Laplacian matrix of a unoriented graph G the ma-

trix given by L(G) := ∆(G)−A(G). L(G) is a symmetric matrix.

60



Bibliography

[1] Alessandro Borri, Pasquale Palumbo, Federico Papa, Corrado Possieri,

Optimal design of lock-down and reopening policies for early-stage epi-

demics through SIR-D models, Elsevier, Annual Reviews in Control Vol-

ume 51, 2021, Pages 511-524

[2] Caratteristiche dei pazienti deceduti positivi all'infezione da SARS CoV

2 in Italia, Istituto Superiore di Sanità (ISS) (2022)

[3] Coronavirus, il decreto del governo: tutte le misure per la zona aran-

cione e quelle per il resto d'Italia, la Repubblica, (2020)

[4] COVID-19 pandemic in Italy, Wikipedia, (2022)

[5] Damián Knopo�, Nicole Cusimano, Nico Stollenwerk, Maíra Aguiar,

Spatially Extended SHAR Epidemiological Framework of Infec-

tious Disease Transmission, Hindawi, Computational and Mathe-

matical Methods, Volume 2022, Article ID 3304532, 14 pages,

https://doi.org/10.1155/2022/3304532

[6] Euler-Maruyama mathod, Wikipedia

[7] Gillespie algorithm, Wikipedia

[8] Giovanni Legorano, Eric Sylvers, Italy Locks Down the Country's North

to Fight Coronavirus The Wall Street Journal, (2020)

[9] Giulia Giordano, Franco Blanchini, Ra�aele Bruno, Patrizio Colaneri,

Alessandro Di Filippo, Angela Di Matteo Marta Colaneri, Modelling

the COVID-19 epidemic and implementation of population-wide inter-

ventions in Italy, Nature Medicine (2020)

[10] Graph theory, Wikipedia

61



Bibliography

[11] Lawrence C. Evans, An Introduction to Mathematical Optimal Control

Theory, Department of Mathematics, University of California, Berkeley

[12] Lawrence Perko, Di�erential Equations and Dynamical Systems (3rd

Edition), Springer (2001)

[13] Linda J.S. Allen, A primer on stochastic epidemic models: Formulation,

numerical simulation, and analysis, Ke Ai publishing, Infectious Disease

Modelling, Volume 2, Issue 2, Pages 128-142 (2017)

[14] Maíra Aguiar, Advanced course on applied dynamics in systems and syn-

thetic biology, Basque Center of Applied Mathematic (BCAM), Mathe-

matical and Theoretical Biology group (2021)

[15] Maíra Aguiar, Eduardo Millán Ortuondo, Joseba Bidaurrazaga

Van-Dierdonck, Javier Mar, Nico Stollenwerk, Modelling COVID 19 in

the Basque Country from introduction to control measure response, Na-

ture research, Scienti�c Reports (2020)

[16] Maíra Aguiar, Nico Stollenwerk, Condition-speci�c mortality risk can

explain di�erences in COVID-19 case fatality ratios around the globe,

Public Health, Elsevier (2020)

[17] Maíra Aguiar, Nico Stollenwerk, SHAR and e�ective SIR models: from

dengue fever toy models to a COVID-19 fully parametrized SHARUCD

framework, COMMUN. BIOMATH. SCI., VOL. 3, NO. 1, (2020) PP. 6

[18] Manuel L. Esquível, Paula Patrício, Gracinda R. Guerreiro, From ODE

to Open Markov Chains, via SDE: an application to models for infec-

tions in individuals and populations, Comput. Math. Biophys. 2020;

8:180�197

[19] Marino Gattoa, Enrico Bertuzzob, Lorenzo Maria, Stefano Miccolid,

Luca Carraroe, Renato Casagrandia, Andrea Rinaldog, Spread and dy-

namics of the COVID-19 epidemic in Italy: E�ects of emergency con-

tainment measures, PNAS (2020)0-89

[20] Master equation, Wikipedia

[21] Nadia Rania, Ilaria Coppola, Psychological Impact of the Lockdown in

Italy Due to the COVID-19 Outbreak: Are There Gender Di�erences?,

Frontiers in Psychology, (2021)

62



Bibliography

[22] Rosario Megna, First month of the epidemic caused by COVID-19 in

Italy: current status and realtime outbreak development forecast, Global

Health Research and Policy (2020)

[23] Sheldon Ross, A �rst course in Probability (8th Edition), Pearson (2010)

[24] Sidney I. Resnick, Adventures in Stochastic processes, Boston, MA:

Birkhäuser, 1992

[25] Stefania Boccia, Walter Ricciardi, John P. A. Ionnidis, What other

Countries can learn from Italy during the COVID-19 Pandemic, JAMA

Internal Medicine (July 2020)

63


