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Introduzione

Il presente elaborato è frutto del lavoro di ricerca svolto in collaborazione con

il team di Statistical Physics del Basque Center for Applied Mathematics di Bil-

bao, superviosionato dal Dott. Gianni Pagnini.

Principale oggetto di studio è PROPAGATOR, algoritmo per la simulazione di

incendi basato su un modello ad automi cellulari (CA).

La scelta di tale approccio modellistico non è casuale, gli automi cellulari, infatti,

grazie alla loro natura modulare, sono in grado di semplificare i processi fisici che

influenzano la propagazione di fuochi, pur conservando la possibilità di raggiun-

gere qual si voglia livello di complessità e precisione. Inoltre essi costituiscono

uno dei più conosciuti esempi di modelli stocastici a reticolo.

Il modello di PROPAGATOR, infatti, è basato su implementazione raster, che

discretizza lo spazio in una griglia composta da celle rettangolari di lunghezza

arbitraria, e la propagazione è modellizzata come un processo di contaminazione

tra celle adiacenti del dominio considerato.

L’obiettivo è quello di individuare come si distribuisce l’area bruciata in un

intervallo di osservazione limitato.

A tal fine, si considera un caso di propagazione di incendi semplificato. Non sono,

infatti, oggetto di studio i combustibili e il possibile intervento di elicotteri antin-

cendio, che possono condizionarne la dimensione, l’intensità e la durata.

Inoltre è escluso il fenomeno del fire-spotting: propagazione di incendi al di fuori

del perimetro del fuoco principale causata da particelle ardenti che, sollevate in
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INTRODUZIONE 2

aria dalle correnti convettive e sospinte dal vento, generano fuochi secondari con

distanze dell’ordine di decine di metri.

Si focalizza dunque l’attenzione sui seguenti parametri: intervallo di osservazione;

perimetro di propagazione; tipologia di vegetazione; intensità e direzione del

vento; inclinazione del territorio.

Nel presente lavoro di tesi, in particolare, si riportano i risultati ottenuti stu-

diando il fenomeno di propagazione al variare della pendenza del territorio e fis-

sando i restanti parametri. Per ottenere tali risultati è stata apportata una modifica

all’algoritmo di PROPAGATOR, in quanto quest’ultimo è programmato in modo

da restituire in output, per ogni istante di tempo, la media aritmetica sul numero di

realizzazioni dei valori di area bruciata, mentre per l’analisi si necessitava di tali

valori per ogni realizzazione, in quanto interessati, non solo alla media, ma anche

alla varianza, la skewness, la kurtosis e più in generale, appunto, alla distribuzione

degli stessi. Questa accuratezza è costata in termini di sforzo computazionale. Per

un elevato numero di realizzazioni, infatti, si è dovuto ricorrere all’utilizzo del

server Hypatia.

L’elaborato è organizzato come segue:

• Nel primo capitolo, dopo una prima introduzione alle funzioni speciali e

alla loro storia, con riferimenti a quelle maggiormente note e utilizzate, sono

definite, a partire dalla funzione Beta e la funzione Gamma, la Distribuzione

Beta e la Distribuzione Logistica Generalizzata.

Per approfondimenti: [7], [14], [20], [19] e [13];

• Nel secondo capitolo si introduce il modello di PROPAGATOR, la storia

dello sviluppo dell’algoritmo, per poi arrivare al ruolo dell’inclinazione del

territorio nella propagazione di incendi.

Per approfondimenti sul fenomeno: [4], [5], [23], [22], [21], [9] e [10].

Per approfondimenti sul modello: [18], [2] e [1];

• Nel terzo capitolo è descritta dettagliatamente l’analisi dati svolta e sono ri-
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portati i risultati grafici per ogni caso di studio: slope10◦, slope15◦, slope20◦,

slope30◦, slope40◦ e slope45◦;

• Nell’appendice A alcuni lavori preliminari sulla simulazione di processi sto-

castici noti, per sviluppare una sorta di senso critico nei confronti dei risul-

tati, cosı̀ da prepararsi all’uso di PROPAGATOR.

Per approfondimenti: [6], [12] e [17];

• Nell’appendice B sono riportati i codici elaborati per svolgere l’analisi;

• Nell’appendice C sono elencati i software, le app e le routine utilizzate.

Infine si rende noto che l’algoritmo di PROPAGATOR è attualmente in uso

dal Dipartimento della Protezione Civile Nazionale e che la versione utilizzata nel

seguito è quella del 2020, se pur già disponibile un suo aggiornamento al 2022.



Introduction

This paper is the result of research work carried out in collaboration with the

Statistical Physics team of the Basque Center for Applied Mathematics in Bilbao,

supervised by Dr. Gianni Pagnini.

Main subject is PROPAGATOR, an algorithm for fires simulation based on a

cellular automata model (CA).

The choice of such a modelling approach is not random, the cellular automata, in

fact, thanks to their modular nature, are able to simplify the physical processes

that influence the propagation of fires, while retaining the ability to achieve what-

ever you want level of complexity and accuracy. They are also one of the most

widely known examples of stochastic lattice models.

The PROPAGATOR model, in fact, is based on raster implementation, which dis-

cretizes the space in a grid composed of rectangular cells of arbitrary length, and

the propagation is modeled as a contamination process between adjacent cells of

the considered domain.

The aim is to identify how the burned area is distributed in a limited observa-

tion interval.

For this purpose, a simplified case of fire propagation is considered. In fact, fuels

and possible intervention of fire-fighting helicopters, which can affect fire size,

intensity and duration, are not being studied.

In addition, the fire-spotting phenomenon is excluded. It consists in the propaga-

tion of fires outside the perimeter of the main fire caused by burning particles that,

4



INTRODUCTION 5

raised in the air by convective currents and driven by the wind, generate secondary

fires with distances of the order of tens meters.

The focus is therefore on the following parameters: observation interval; propa-

gation perimeter; vegetation type; wind intensity and direction; inclination of the

territory.

In this thesis, in particular, we report the results obtained by studying the

phenomenon of propagation as the slope of the territory changes and fixing the

remaining parameters. To obtain these results, a modification to the PROPAGA-

TOR algorithm was made, in that the latter is programmed to return in output, for

each instant of time, the arithmetic mean over the number of realizations of the

burned area values, whereas for the analysis these values were needed for each

realization, since they were interested, not only in the mean, but also in the vari-

ance, skewness, kurtosis and more generally in their distribution. This accuracy

has cost in terms of computational effort. For a large number of realizations, in

fact, it was necessary to use the Hypatia server.

The work is organized as follow:

• In the first chapter, after a first introduction to the special functions and their

history, with references to those most known and used, are defined, starting

from the Beta function and the Gamma function, the Beta Distribution and

the General Logistics Distribution.

For further information: [7], [14], [20], [19] and [13];

• The second chapter introduces the PROPAGATOR model, the story of the

algorithm development, and then arrive at the role of the territory inclination

in the fires propagation.

For further information on the phenomenon: [4], [5], [23], [22], [21], [9]

and [10]. For further information on the model: [18], [2] and [1];

• The third chapter describes in detail the data analysis carried out and gives

the graphic results for each case studied: slope10◦, slope15◦, slope20◦,
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slope30◦, slope40◦ e slope45◦;

• In Appendix A some preliminary work on the simulation of known stochas-

tic processes, to develop a kind of critical sense for the results, in order to

get prepared for the use of PROPAGATOR;

For further information: [6], [12] and [17];

• Appendix B shows the codes developed for the analysis;

• Appendix C lists the software, apps and routines used.

Finally, we inform that the PROPAGATOR algorithm is currently in use by the

Department of National Civil Protection and that the version used in the following

is of 2020, even if an update to 2022 is already available.



Chapter 1

On some special function

1.1 Historical overview

A special function is a real or complex valued function of one or more real or

complex variables which is specified so completely that its numerical values could

in principle be tabulated. Although this definition includes elementary functions

such as xn, ex, logx and sinx [7].

The study of special function grew up with the calculus and is consequently one

of the oldest branches of analysis. It flourished in the nineteenth century as part

of the theory of complex variables, but lost much of its prestige in the first half

of the twentieth when the study of general classes of function superseded that of

individual functions. In the second half of the twentieth century it has received a

new impetus from a connection with Lie groups, and a connection with averages

of elementary functions.

A branch of mathematics which has many applications in other fields is likely

to survive, and the subject of special functions owes much of its durability and

growth to its usefulness in physical science. The history of special functions

is closely tied to the problems of terrestrial and celestial mechanics that were

solved in the eighteenth and early nineteenth centuries, the boundary-value prob-

lems of electromagnetism and heat in the nineteenth, and the eigenvalue problems

of quantum mechanics in the twentieth.

7
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In these cases the problem is to solve an ordinary or partial differential equa-

tion, but many special functions have been studied in order to evaluate various

integrals not primarily connected with differential equations (for example, in the

seventeenth and eighteenth centuries, integrals needed to find the arc length of an

ellipse or hyperbola).

Special functions provide a valuable testing ground for analytical methods, for

instance in the theory of complex variables or asymptotic expansions.

Finally, the great variety of special functions that have been studied and the enor-

mous number of their known properties, expansions and interrelations raise in-

triguing and difficult questions: What relations are most fundamental for con-

nections with other parts of mathematics? Can one find an underlying structure?

How can the known results best be codified for practical use or numerical compu-

tation? These questions were not much considered before the twentieth century,

and as yet there is no general agreement about how or in what sense they can be

answered.

The subsequent sections list briefly some of the most important developments

1.1.1 The seventeenth century

England was the birthplace of special functions. John Wallis at Oxford took

two first steps toward the theory of the gamma function long before Euler reached

it. One was his formula for π , published in 1656. The other step, more important

because it later led Euler to a representation of the gamma function, was the idea

of interpolating between numbers a1, a2, a3, . . . by an integral which depends

continuously on a parameter ν and has the value an if ν = n.

A more sophisticated calculus, which made possible the real flowering of special

functions, was developed by Newton at Cambridge and by Leibnitz in Germany.

1.1.2 The eighteenth century

In 1703 James Bernoulli solved a differential equation by an infinite series

which would now be called the series representation of a Bessel function. Al-
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though Bessel functions were met by Euler and others in various mechanics prob-

lems and the principal achievements in the eighteenth century were the gamma

function and the theory of elliptic integrals. In 1772 Euler evaluated the beta

function integral in terms of the gamma function. Only the duplication and multi-

plication theorems remained to be discovered by Legendre and Gauss in the next

century.

1.1.3 The nineteenth century

The golden age of special functions, which was centered in the nineteenth cen-

tury Germany and France, was the result of developments in both mathematics and

physics: the theory of analytic functions of a complex variable on one hand, and

on the other hand, the field theories of physics (e.g. heat and electromagnetism)

which required solutions of partial differential equations containing the Laplacian

operator. The discovery of the elliptic functions (the inverses of the elliptic in-

tegrals) and their property of double periodicity was published by Abel in 1827.

Elliptic functions grew up in symbiosis with the general theory of analytic func-

tions and flourished throughout the nineteenth century, especially in the hands of

Jacobi and Weierstrass.

Another major development was the theory of hypergeometric series, near the end

of the century Appell introduced hypergeometric functions of two variables and

Lauricella generalized them to several variables in 1893.

The gamma function was put in a new light in 1876 by Weierstrass’ theory of

entire functions, and then zeta function became celebrated because of Riemann’s

hypothesis and its connection with the prime number theorem.

At the end of the century special functions were familiar to every analyst and were

part of the mathematics curriculum in the universities.

1.1.4 The twentieth century

During the first half of the century the growth of functional analysis drew the

interest of pure mathematicians away from special functions. They were consid-
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ered to be part of applied mathematics in 1950.

In physical science special functions gained added importance as solutions of the

Schrödinger equation of quantum mechanics, but there were important develop-

ments of a purely mathematical nature also.

In 1907 Barnes used the gamma function to develop a new theory of Gauss’ hy-

pergeometric function. In 1922 the gamma function was approached from the new

viewpoint of logarithmic convexity.

An important recent development has connected special functions and the matrix

representations of Lie groups. It is too early to say whether any serious rap-

prochement between special functions and pure mathematics will result from this

algebraic approach.

1.2 The Gamma function

1.2.1 Introduction

In 1729 Euler undertook the problem of interpolating n! between the positive

integral values of n in order to give a meaning to x! when x is any positive number.

Euler’s solution, one of an infinite number of possibilities, consists in showing that∫
∞

0
txe−t dt

is well defined for all positive x and has the value n! if x is a positive integer

n. This integral (now called the gamma function) even gives a meaning to x! for

many complex values of x.

Certain properties of Appell’s symbol such as the reflection and duplication for-

mulas correspond to analogous formulas for the gamma function. Conversely,

Appell’s symbol can be written as a ratio of gamma functions and its properties

deduced from the ratio.

In the study of special function the gamma function is fundamental, practically be-

cause it is encountered in nearly all parts of the subject and theoretically because

many special functions can be expressed in terms of gamma functions either di-

rectly or by contour integration. Although either property can be made into a
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definition, the significance of the gamma function for applied mathematics comes

chiefly from the practical importance of Euler’s integral, and accordingly this in-

tegral will be the starting point of our discussion.

1.2.2 Definition

If n is a positive integer, let

f (n) =
∫

∞

0
tne−t dt

integration by part shows that

f (n) = [−tne−t ]∞0 +n
∫

∞

0
tn−1e−t dt

and so f (n) = n f (n−1) if n = 2,3, . . .

Since f (1) = 1, it follows that f (n) = n(n− 1) · · ·3 · 2 · 1 = n!. Thus n! has the

integral representation

n! =
∫

∞

0
tne−t dt, n = 1,2,3, . . . (1.1)

However, the integral converges also for non integral values of n and even for

complex values provided Ren > −1. This suggests that we define the factorial

function by

z! =
∫

∞

0
tze−t dt, Re z >−1 (1.2)

note that 0! = 1. The notation

Γ(z) = (z−1)! (1.3)

was introduced in 1809 by Legendre, who named the right-hand side of (1.2) the

Eulerian integral of the second kind.

Definition 1.1. Let C> = {z ∈ C : Re z > 0}. We define

Γ(z) =
∫

∞

0
tz−1e−t dt, z ∈ C> (1.4)

where tz−1 means exp [(z−1) log t] and log t has its real value.
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1.2.3 Analyticity

A function is analytic on an open set in C if it has a derivative at every point

of the set. When we wish to emphasize that a function is single-valued as well as

analytic, we shall call it a holomorphic function.

Theorem 1.1. The function Γ(z) is holomorphic on U = C−{0,−1,−2, . . .}. If

n ∈ N, it has a simple pole at z =−n with residue

Res(Γ,−n) =
(−1)n

n!

A function which is holomorphic on C except for poles is called meromorphic,

and therefore the gamma function is meromorphic according to the theorem just

proved.

A function f is said to have a singularity at infinity if the function g = f (1/w)

has a singularity at w= 0. Now Γ(1/w) has simple poles at w=−1,−1/2,−1/3, . . .

and hence w = 0 is an accumulation point of poles. A singularity of this kind also

is called essential, and therefore the gamma function is said to have an essential

singularity at infinity.

1.2.4 Properties

The gamma function can be obtained from Appell’s symbol by a limiting pro-

cess. The connection with Appell’s symbol leads to several of the most important

properties of the gamma function.

• Let R> = {x ∈ R : x > 0}. If x ∈ R> and α + x, β + x ∈U , then

lim
z→∞

Γ(α + x)
Γ(β + x)

xβ−α = 1

• Euler’s limit formula. Let z ∈ U, n− 1 ∈ N, and (z,n) = z(z+ 1) · · ·(z+
n−1). Then

Γ(z) = lim
n→∞

(1,n)
(z,n)

nz−1 (1.5)
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• Euler’s infinite product. If z ∈U , then

Γ(z) =
1
z

∞

∏
n=1

(1+(1/n))z

1+(z/n)
(1.6)

• Logarithmic convexity. The gamma function is strictly log-convex on R>.

The property of log-convexity allows the gamma function to be character-

ized uniquely by its functional properties without the help of an explicit

representation.

• Duplication theorem. If 2z ∈U , then

Γ(2z) = π
−1/222z−1

Γ(z)Γ(z+1/2)

• Stirling’s formula. Given any ε such that 0 < ε ≤ π , let z tend to infinity

in the sector |ph z| ≤ π − ε . Then

lim
z→∞

Γ(z)z1/2−zez = (2π)1/2

Stirling’s formula provides one method of calculating numerical values of

the gamma function.

• Reflection formula. For every complex z,

sinπz =
π

Γ(z)Γ(1− z)

By means of the reflection formula, any circular, hyperbolic, or exponential

function can be expressed in terms of gamma functions.

• Inequalities:

(1) Γ(x)> Γ(x0) x ̸= x0

(2) Γ(x)> Γ(y) i f x < y ≤ x0

(3) Γ(x)< Γ(y) i f x0 ≤ x < y

(4)

∣∣∣∣∣Γ(x+ iy)
Γ(x)

∣∣∣∣∣<
(

x2

x2 + y2

) 1
2

< 1 i f x,y ∈ R and y ̸= 0

(5) |Γ(x+ iy)| ≥ Γ(x)(sech πy)
1
2 > Γ(x)e−π|y|/2 i f x,y ∈ R, x ≥ 1

2
, y ̸= 0

the first inequality being strict if x > 1/2.
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1.2.5 Euler measures

If z is real and positive, the integrand of Euler’s integral is known in statistics as

the frequency function of the gamma distribution. Division by Γ(z) normalizes the

distribution to unit total probability. Even in the complex case the same procedure

yields a complex measure on the positive real line which is normalized to unit

total measure.

Definition 1.2. Let α ∈ C>. The complex measure λα defined on R+ by

dλα(t) =
1

Γ(α)
tα−1e−t dt (1.7)

will be called an Euler measure.

Note that

λ (R+) =
∫

∞

0
dλα(t) = 1

The moments of λα are given by

tm
λα(t) = (α,m) dλα+m(t) m ∈ N∫
∞

0
tm dλα(t) = (α,m)

1.3 The Beta function

1.3.1 Introduction

A particular combination of gamma functions is given a name because it has a

simple and useful integral representation. The beta function, or Eulerian integral

of the first kind, is

B(x,y) =
∫ 1

0
ux−1(1−u)y−1 du (1.8)

where x and y have positive real parts [7].

With various changes of integration variable it is seen frequently in applied math-

ematics, for example in the theory of high-energy particle physics.

If x and y are real and positive, the integrand (1.8) occurs in statistics as the fre-

quency function of the beta distribution. To normalize the distribution to unit total
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probability, we divide by B(x,y).

Complex values of x and y hold little interest for statistics, but the integrand still

defines a complex measure on the unit interval which can be normalized as done

previously:

dµ(u) =
ux−1(1−u)y−1

B(x,y)
du

∫ 1

0
dµ(u) = 1 x,y ∈ C>

The beta distribution for more than one random variable can likewise be ex-

tended to complex values of the parameters. For exemple we may define the

complex measure

dµ(u,v) =
ux−1vy−1(1−u− v)z−1

B(x,y,z)
du dv∫

dµ(u,v) = 1 x, y, z ∈ C>

(1.9)

where the triangular region of the integration is {(u,v) : u ≥ 0, v ≥ 0, u+ v ≤ 1}.

Equations (1.9) determine B(x,y,z), which we shall call the beta function of three

variables.

Because Dirichlet (1839) evaluated an integral of this type in several variables,

we shall call the complex measure, or its analog in any number of variables, a

Dirichlet measure. Dirichlet measures will be fundamental in defining special

functions.

1.3.2 The beta function of two variables

To avoid restricting the real parts of the variables, we define the beta function

in terms of gamma functions

Definition 1.3. Let x,y ∈U . Then beta function is defined by

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

(1.10)
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Representation 1.1. If x, y ∈ C>, then

B(x,y) =
∫ 1

0
ux−1(1−u)y−1du,

B(x,y) = 2
∫

π/2

0
(cosΘ)2x−1(sinΘ)2y−1dΘ,

B(x,y) =
∫

∞

0

tx−1

(t +1)x+y dt.

The symmetry property

B(x,y) = B(y,x)

is obvious from (1.10). For the integral representation it means that there is no es-

sential distinction between the two ends of the interval of integration. Symmetries

of similar kind will be important in subsequent sections.

1.3.3 The beta function of several variables

The definition and integral representation of the beta function will now be

extended to three or more variables.

Definition 1.4. Let β = (β1, . . . ,βk) ∈Uk, k ≥ 2. The beta function of k variables

is defined by

B(β ) = B(β1, . . . ,βk) =
Γ(β1) · · ·Γ(βk)

Γ(β1 + · · ·+βk)
(1.11)

For k = 2 the ordinary beta function is represented by an integral (1.8) over

the unit interval 0 ≤ u ≤ 1.

If k = 3, we integrate over a triangular region in the (u,v) plane with vertices

(0,0), (1,0) and (0,1). This is the set {(u,v) : u ≥ 0,v ≥ 0,u+v ≤ 1} and will be

called the standard simplex in R2. The points (u,v) of the simplex are in one-to-

one correspondence with the triples (u,v,1-u-v) of non negative weights with unit

sum.

In general we denote the standard simplex in Rn, n ≥ 1, by

E = En = {(u1, . . . ,un) : u1 ≥ 0, . . . ,un ≥ 0,u1 + · · ·+un ≤ 1}

The points (u1, . . . ,un) of the simplex are in one-to-one correspondence with the
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Figure 1.1: The standard simplex En [7].

(n+1)-tuples (u1, . . . ,un,1−u1−·· ·−un) of non negative weights with unit sum.

The interior of E is denoted by

int(E) = {(u1, . . . ,un) : u1 > 0, . . . ,un > 0,u1 + · · ·+un < 1}

According to (1.11), B(β1, . . . ,βk) is symmetric by β1, . . . ,βk.

1.3.4 Incomplete beta function

Definition 1.5. The incomplete beta function, a generalization of the beta func-

tion, is defined as

B(x;α,β ) =
∫ x

0
uα−1(1−u)β−1 du (1.12)

for x = 1 the incomplete beta function coincides with the complete one.

The regularized incomplete beta function is defined in terms of the incomplete

beta function and the complete one:

Ix(α,β ) =
B(x;α,β )

B(α,β )
(1.13)
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The regularized incomplete beta function is the cumulative distribution function

of the beta distribution, and is related to the cumulative distribution function

F(k;n, p) of a random variable X following a binomial distribution with proba-

bility of single success p and number of Bernoulli trials n:

F(k;n, p) = P(X ≤ k) = I1−p(n− k,k+1) = 1− Ip(k+1,n− k) (1.14)

1.4 Beta distribution

The beta distribution is a family of continuous probability distributions defined

on the interval [0,1] parameterized by two positive shape parameters, denoted by

α and β , that appear as exponents of the random variable and control the shape of

the distribution. The generalization to multiple variables is called a Dirichlet dis-

tribution. The formulation of the beta distribution discussed below is also known

as the beta distribution of the first kind, whereas beta distribution of the second

kind is an alternative name for the beta prime distribution.

Beta distributions are very versatile and a variety of uncertainties can be use-

fully modeled by them. Many of the finite range distributions encountered in

practice can be easily transformed into the standard distributions.

The probability density function (pdf) of the standard beta distribution is given

by:

f (x;α,β ) =
1

B(α,β )
xα−1(1− x)β−1 (1.15)

for 0 ≤ x ≤ 1, where α > 0, β > 0, B(α,β ) denotes the beta function and x is

a realization of a random process X [16].

This definition includes both ends x = 0 and x = 1, which is consistent with

definitions for other continuous distributions supported on a bounded interval

which are special cases of the beta distribution, for example the arcsine distri-

bution. However, the inclusion of x = 0 and x = 1 does not work for α, β < 1;

accordingly, several authors, choose to exclude the ends x = 0 and x = 1, (so that
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the two ends are not actually part of the domain of the density function) and con-

sider instead 0 < x < 1.

Several authors use the symbols p and q, instead of α and β , for the shape param-

eters of the beta distribution, reminiscent of the symbols traditionally used for the

parameters of the Bernoulli distribution, because the beta distribution approaches

the Bernoulli distribution in the limit when both shape parameters approach the

value of zero.

The parameters α and β are symmetrically related by

f (x;α,β ) = f (1− x;β ,α)

this implies that if X has the beta distribution with parameters α and β then 1−X

has the beta distribution with parameters β and α .

The pdf (1.15) corresponds to type I distribution in the system of Pearson curves.

The special case of (1.15) for α = β = 1 is the uniform distribution, when β = 1

the beta distribution is known as the power function distribution.

The cumulative distribution function (cdf) of (1.15) is:

F(x;α,β ) =
B(x;α,β

B(α,β )
= Ix(α,β ) (1.16)

where B(x;α,β ) is the incomplete beta function and Ix(α,β ) is the regularized

incomplete beta function.

The nth moment about zero associated with (1.15) is [3]

E(Xn) =
B(α +n,β )

B(α,β )
(1.17)

• α > 1 and β > 1: the pdf (1.15) has a single mode at x = (α −1)/(α +β −
2);

• α < 1 and β < 1: there is an anti-mode at this same value of x, and this

corresponds to a U-shaped beta distribution;

• (α −1)(β −1)≤ 0: the pdf does not have a mode or anti-mode.
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The aim is to discuss the properties of order statistics and record values associ-

ated with (1.15), to provide a review of the known variations of (1.15), to discuss

the relationship of (1.15) to other well-known distributions and to illustrate real

life applications

1.4.1 Mean

The expected value (mean) µ of a Beta distribution random variable X with

two parameters α and β is a function of only the ratio β/α of these parameters:

µ = E[X ] =
∫ 1

0
x f (x;α,β ) dx =

=
∫ 1

0
x

xα−1(1− x)β−1

B(α,β )
dx

=
α

α +β
=

1
1+(β/α)

(1.18)

Letting α = β in the above expression one obtains µ = 1/2, showing that for

α = β the mean is at the center of the distribution: it is symmetric.

Also, the following limits can be obtained from the above expression:

lim
β

α
→0

µ = 1

lim
β

α
→∞

µ = 0

Therefore, for β/α → 0 or for α/β → ∞, the mean is located at the right end

x = 1. For these limit ratios, the beta distribution becomes a one-point degenerate

distribution with a Dirac delta function spike at the right end, x = 1, with probabil-

ity 1, and zero probability everywhere else. There is 100% probability (absolute

certainty) concentrated at the right end, x = 1.

Similarly, for β/α → ∞ or for α/β → 0, the mean is located at the left end x = 0.

The beta distribution becomes a one-point Degenerate distribution with a Dirac

delta function spike at the left end, x = 0, with probability 1, and zero probability

everywhere else. There is 100% probability (absolute certainty) concentrated at

the left end, x = 0.
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1.4.2 Variance

The variance, second moment centered on the mean, of a Beta distribution

random variable X with parameters a and b is

var(X) = E[(X −µ)2] =
αβ

(α +β )2(α +β +1)
(1.19)

letting α = β in the above expression one obtains

var(X) =
1

4(2β +1)

showing that for α = β the variance decreases monotonically as α = β

increase. Setting α = β = 0 in this expression, one finds the maximum variance

var(X) = 1/4 which only occurs approaching the limit, at α = β = 0.

The beta distribution may also be parametrized in terms of its mean 0 < µ < 1

and sample size v = α +β > 0:

α = µv , β = (1−µ)v

using this parametrization, one can express the variance in terms of the mean µ

and the sample size v as follows:

var(X) =
µ(1−µ)

1+ v

it follows that var(X)< µ(1−µ).

For a symmetric distribution, the mean is at the middle of the distribution, µ =

1/2, and therefore:

var(X) =
1

4(1+ v)
i f µ =

1
2

1.4.3 Skewness

The skewness, third moment centered on the mean, normalized by the 3/2

power of the variance, of (1.15) is

γ1 =
E[(X −µ)3]

(var(X))3/2 =
2(β −α)

α +β +2

√
α +β +1

αβ
(1.20)
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If α = β then γ1 = 0, showing once again that the distribution is symmetric.

If β > α then γ1 > 0 and the pdf becomes skewed to the right. Similarly, β < α

gives a left skewed pdf.

In term of mean µ and the sample size v = (α +β )> 0, using the parametrization

α = µv β = (1−µ)v

one can express the skewness

γ1 =
E[(X −µ)3]

(var(X))3/2 =
2(1−2µ)

2+ v

√
1+ v

µ(1−µ)
(1.21)

The skewness can also be expressed just in terms of the variance var and the mean

µ as follows

γ1 =
E[(X −µ)3]

(var(X))3/2 =
2(1−2µ)

√
var

µ(1−µ)+ var
(1.22)

if var < µ(1−µ).

The accompanying plot of skewness as a function of variance and mean shows

that maximum variance (1/4) is coupled with zero skewness and the symmetry

condition (µ = 1/2), and that maximum skewness (positive or negative infinity)

occurs when the mean is located at one end or the other, so that the ”mass” of the

probability distribution is concentrated at the ends (minimum variance).

1.4.4 Kurtosis

The kurtotis, fourth moment centered on the mean normalized by the square

of the variance, of (1.15) is

γ2 =
E[(X −µ)4]

(var(X))2 =

=
3(α +β +1)

αβ (α +β +2)(α +β +3)
[2(α +β )2 +αβ (α +β −6)]

(1.23)

The description of kurtosis as a measure of the ”extreme values” of the prob-

ability distribution, is correct for all distributions including the beta distribution.
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When rare, extreme values can occur in the beta distribution, the higher its kurto-

sis; otherwise, the kurtosis is lower.

Minimum kurtosis takes place when the mass density is concentrated equally at

each end (and therefore the mean is at the center), and there is no probability mass

density in between the ends.

Note that both the skewness and the kurtosis are symmetrical functions of a

and b are symmetrical functions of a and b; so, interchanging the parameters in

the pdf yields its mirror image.

1.5 Generalized logistic distribution

The aim of this chapter is to compare the beta distribution with the genlogistic

ditribution. For this purpose we introduce it theoretically.

Because of their flexibility, recently, much attention has been given to the

study of generalized distributions [13].

Verhulst used the logistic function for economic demographic purposes. Gum-

bel found that the logistic distribution arises in a purely statistical manner as the

limiting distribution (as n → ∞) of the standardized midrange (average of largest

and smallest values) of random samples of size n from a symmetric distribution

of exponential type. Gumbel and Keeney showed that a logistic distribution is

obtained as the limiting distribution of an appropriate multiple of the ”extremal

quotient”, that is, (largest value)/(smallest value). Talacko proved that the logis-

tic distribution is the limiting distribution (as r → ∞) of the standardized variable

corresponding to ∑
r
j=1 j−1X j, where X j are independent random variables each

having a type I extreme value distribution.

A number of authors discussed important applications of the logistic distribu-

tion in many fields including survival analysis, growth model and public health.

Several different forms of generalizations of the logistic distribution have been
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proposed in the literature, i.e. types I, II, III and IV.

The type I generalized logistic distribution has the following pdf

f (x;α) =
αe−x

(1+ e−x)α+1 , α > 0 (1.24)

this type has also been called the skew-logistic distribution.

If X has type I generalized logistic distribution in (1.24), then X has a type II gen-

eralized logistic distribution.

The type III generalized logistic distribution has the pdf

f (x;α) =
1

B(α,α)

e−αx

(1+ e−x)2α
, α > 0, −∞ < x <+∞ (1.25)

Last but not least, the type IV beta generalized logistic distribution is given by

the pdf

f (x;α,β ) =
1

B(α,β )

e−βx

(1+ e−x)α+β
, α,β > 0 (1.26)

where B(α,β ) is the complete beta function.

Type IV is the most general form of the distribution: the Type III distribution

can be obtained from Type IV by fixing β = α; the Type II distribution can be

obtained from Type IV by fixing α = 1 (and renaming β to α ); the Type I distri-

bution can be obtained from Type IV by fixing β = 1.

It is well known, in general, that a generalized model is more flexible than

the ordinary model and it is preferred by many data analysts in analyzing statis-

tical data. Here, we will be concerned mostly with the beta generalized logistic

distribution type I, i.e. the skew-logistic distribution.



Chapter 2

PROPAGATOR
A cellular-automata based wildfire simulator

2.1 Introduction

Wildfire emergencies, especially in the southern EU Countries, are related

with extreme weather conditions, characterized by persistent dry strong winds

over flammable land cover species. In this case, the ignition probability increases

and, in case it happens, the fire propagation is rapid and difficult to cope with: in

most of the recent wildfire emergencies, casualties happened in few hours after

the fire ignition. For this reason, it is extremely urgent to support first responders

and Civil Protection Authorities (CPAs) with operational tools in emergency re-

sponse, based on reliable wildfire risk maps and efficient emergency plans. This

behavior requires CPAs to improve their ability of anticipation, discrimination,

and selection of the best strategies and the most appropriate decisions in the first

phase of the event, in order to ensure security to exposed people.

New technologies and computer modeling represent a great opportunity, support-

ing wildfire emergency managers sharing information useful in the coordination

of civil protection and fire fighting activities. The recent dramatic events occurred

in Greece and Portugal made evident the need of tools able to anticipate the be-

havior of fire in order to implement prevention and communication activities in

25
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time to save lives. This can be achieved using ad hoc mathematical and numerical

models.

2.2 Mathematical modeling

Physical processes influencing wildfire propagation are complex, meaning that

the effects of slopes, wind conditions and fuel moisture interconnect and combine

together, determining the evolution of the fire event. Such factors make wildfires

multi-scale, multi-physics and nonlinear phenomena. This makes the formulation

of efficient and reliable mathematical models particularly hard, as well as their

computational implementation.

Nevertheless, in literature, there are many different approaches and models ded-

icated to this specific task. Such modeling efforts are usually divided into three

main approaches [1]:

1. empirical and semi-empirical models, which rely on statistically derived

laws of fire propagation;

2. macroscopic-deterministic models, where the fire spread is modeled in a

continuum;

3. stochastic lattice or grid-based models, where the evolving quantities are

usually described adopting a discretization in space and time [1],[11].

In any case, it should be remembered that the distinction between such categories

may not be strict as expected, since, in many works, different approaches are

mixed together.

2.2.1 Cellular Automatas models

Cellular Automatas (CA) [8] constitute one of the most well known exam-

ples of the latter category of models. CA models for wildfire simulation model
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discretize spatial interactions by adopting a square or hexagonal grid. The macro-

scopic fire spread dynamics is simulated by the means of an ensemble of different

realization of a stochastic process. In every realization, the spreading of the fire

front from burning cells to neighboring ones is modeled by the means of prob-

abilistic rules. Although CA models may simplify the underlying physical pro-

cesses, their modular nature allows them to reach the desired level of complexity

and accuracy.

2.3 History of the development

The implementation of PROPAGATOR has spanned across more than a decade,

and it is recapitulated in the following [22]

• The first implementation of PROPAGATOR started from a request of the

Italian Civil Protection Department, to support the organization of the G8

summit 2009, originally planned in La Maddalena, Sardinia, a region fre-

quently affected by severe forest fires in summer season in order to evaluate

the best prevention measures and support the fire fighting activities in case

of a forest fire event.

Since its first release, it was able to reproduce burned areas up to 10,000 ha

in a few minutes of computational time. Given an ignition point, it high-

lighted the zones more likely to be affected by fire propagation.

• In 2011, the second release of PROPAGATOR was operational. In this re-

lease, the model has been implemented in a 3D environment named NAZCA.

While in the previous version algorithm and server code were mixed, at this

stage, the algorithm was running as a standalone MATLAB ® script, much

easier to maintain and to develop.

Timing algorithms were added at this stage, taking into account wind and

orography. Probability maps were at last time dependent and isochrones are

added as visual output. At this stage, PROPAGATOR did not include a real

parametrization of the propagation speed.
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• In 2014, the third release was completed. The web interface was redesigned

and it was integrated into the multi purpose MyDewetra platform, a tool

for the forecasting, monitoring and real-time surveillance of all the environ-

mental risks (http://www.mydewetra.org).

• In 2017, the fourth release saw a total rewriting of the code in the Python

programming language, with a new server. Some of the algorithms for the

treatment of slope and wind data have been rewritten from scratch, and it

has been made possible to change wind conditions over time. An open

API had been released to several developers during the ANYWHERE (En-

hANcing emergencY management and response to extreme WeatHER and

climate Events) European Project and the fuel—DEM dataset had been ex-

tended from the sole Italian territory to Finland, Portugal, Spain (Catalonia,

Cantabria, Asturias) France (Corsica and Cote D’Azur) and Switzerland.

• In 2020, the fifth release of PROPAGATOR saw the implementation of a

Rate of Spread (RoS) model in order to give the isochrones a more real-

istic time parametrization, and the introduction of the fuel moisture into

the computational core. The 2020 version also saw the introduction of fire

fighting actions (lines and polygons where some kind of fire fighting pro-

cedure is going to be put in charge) that may be prescribed by the user in a

time-dependent way.

2.4 PROPAGATOR model

The PROPAGATOR model is a quasi-empirical stochastic CA model based

on a raster implementation, which discretizes the space into a grid composed of

square cells of arbitrary length ∆x = ∆y = L. The cell size reflects the resolution

in space of the analysis and the final results. In this work, L has been fixed to

20Km, allowing PROPAGATOR to give high resolution output [22].

For each time step, each cell of the domain can assume one out of three different
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possible states:

• State 1: corresponds to cells that are burning during the current simulation

step;

• State 0: corresponds to cells that are already burned in previous steps of

the simulation;

• State -1: corresponds to cells that are unburned, but that can burn in the

following steps of the simulation.

The fire propagation is modeled as a contamination process between adjacent cells

of the considered domain; the probability of fire spreading from a cell to one of

its neighborhood, pi j, is calculated starting from the nominal fire spread probabil-

ity (named pn), which is then modified considering several factors. Such factors

account for the topography, wind vector, and the fuel moisture content.

For each cell of the simulation, corresponding to a point xP = (x,y) of the spatial

domain, the model calculates the probability u(xP, t) of being burnt at time t and

space x evaluating the fire frequency for each cell, based on a significant number

of stochastic simulations and each simulation is performed for the same ignitions

and wind conditions. This procedure is resumed in Figure (2.1)

Figure 2.1: Averaging procedure of single realization adopted in PROPAGATOR.
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The fire spreading is stochastically calculated considering the directions be-

tween the center of the i-cell and the ones of the neighboring cells, the slopes

between the cells and the possible different moisture conditions. Each cell is

characterized by a vegetation type.

Fuel models are adopted by widespread fire propagation models to classify the

physical characteristics such as fuel load, heat content, and height of live and dead

biomass that contribute to the size, intensity, and duration of a fire.

PROPAGATOR adopts a manageable simplified custom fuel model with seven

available fuel types corresponding to seven different types of vegetation.

The considered fuel types are the following:

• broad-leaves;

• shrubs;

• grasslands;

• fire-prone conifers;

• agro-forestry areas;

• non-fire prone forest;

• non-vegetated areas.

The class called ”non-vegetated areas” includes man-made buildings and infras-

tructures (e.g., streets, villages and towns) and the non-vegetated terrains, such as

natural bare soil. Fire propagation cannot take place in this class. Rivers, lakes,

and seas are considered by default as non-burnable areas as well.

The fire propagates from a cell i to the neighbor cell j with a probability pi j,

called Fire Spread Probability, which depends heavily on the involved vegeta-

tion types. The pi j is also influenced by the slope between the two cells, the wind

effect (direction and velocity), and the fuel moisture content of the j-cell.

The probability of the fire propagation pi j from an ignited i-cell at the time tk to a

j-cell is calculated applying the cumulative binomial probability formula

pi j = (1− (1− pn)
αwh) · em (2.1)
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where: pn is the Nominal Fire Spread Probability, which represents the possibility

for the i-cell, characterized by a certain vegetation cover, to ignite an adjacent j-

cell, characterized by the same, or another, vegetation cover; αwh is the factor that

combines the topographic and wind influence on the probability; em is the factor

that simulates the effect of the fine fuel moisture content.

The model takes into account the vegetation of the cell that is burning and the

cells where the fire can propagate and it analyzes how a certain type of vegetation

can ignite other types of vegetation, or also the same vegetation type.

These probability values are given in input through a fire spread probability table,

Table (2.2), which considers all the possible combinations between the different

vegetation and land-cover types.

Figure 2.2: In the first six rows, the values of the nominal fire spread probability pn between all the species are given. In

the last row, nominal fire spread velocity vn is reported.

Not fire-prone forest class represents the low-flammable forests: its probability

of being ignited is quite low, except if the burning cell is a Fire-prone conifers cell.

Medium flammable tall vegetation is considered in the Broadleaves class, while

Fire-prone conifers class included the highly flammable tall vegetation. There are

also three classes which represent the medium to low vegetation: Agro-forestry ar-

eas represent areas with a low vegetable density characterized by low probability

of propagation; the Shrubs class includes the medium-flammable low vegetation;

Grassland class represent the high-flammable very low vegetation.
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2.5 The role of the slope in wildfire propagation

The slope and the wind speed and direction can modify the initial value of pn,

increasing or decreasing the nominal value depending on the direction of propa-

gation [10].

The influence of the topography is taken into account through the slope be-

tween the two cells. The slope increases the propagation probability pn when the

slope increases in the direction of propagation (uphill case) and it decreases pn if

slope decreases in the direction of propagation (downhill case).

In Figure (2.3), it is possible to notice how αwh impacts the Fire Spread Prob-

ability, p: when αwh is equal to 1, the nominal transitional probability is obtained;

when this factor is not unitary, it is possible to evaluate the effect of the possible

combinations of slope, wind speed, and direction.

Figure 2.3: Influence of the combined slope-wind factor on the Fire Spread Probability. The plot portrays the dependence

of pi j of Formula (2.1) on the slope-wind factor αwh, given a fixed em = 1 and several values for pn.
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When a cell is ignited, the transition time of the fire is modeled by combining

the Rate of Spread vprop and the fuel moisture factor fm, with the distance d from

the center of the i-cell which propagated the fire to the center of the newly ignited

j-cell. In particular, the transition time ∆t is calculated as:

∆t =
d

vprop · fm
(2.2)

It is acknowledged that the flammability of the vegetal fuel and, consequently, the

rate of the spread of a fire depends exponentially on the fuel moisture content, fm

is calculated using the formulation proposed by Marino:

fm = ec·Mn (2.3)

where c is a constant that has been set at − 0.014 and Mn is the fuel moisture

(ranging from 0 to 1).

The Rate of Spread vprop is calculated starting from the nominal vn, which stands

for the Fire Spread Velocity for each vegetation type without slope and wind ef-

fects, and then modifying it by considering the slope and the wind effects (values

in Table (2.2)).

Slope and wind effects have been evaluated through the formulations proposed by

Sun, which are calculated as follow:

• the wind speed factor Kw is evaluated as

Kw = exp(0.1783 V ) (2.4)

where V is the wind velocity in the direction of propagation, in [m/s]

• the slope factor Kφ is evaluated as

Kφ = exp(3.533(tanφ)1.2) (2.5)

where φ is the terrain slope angle in the direction of propagation.

The Rate of Spread vprop is then evaluated multiplying the nominal Fire Spread

Velocity vn by the two factors, Kw and Kφ .
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In the second part of this section, we focus on the role of the mesoscopic char-

acteristics of wildfires. We refer, in particular, to flame geometry, which strongly

affects dire spreading, and to terrain slope. Additionally, an accurate estimation

of geometrical properties allows a determination of how wildfires can be con-

trolled: indeed, flame length is used to determine the size of fire control lines,

while flame height is used to predict the heat flux exposure. Moreover, flame ge-

ometry is a descriptor of the surrounding vegetation; therefore, it is considered in

fire-fighting strategies.

Therefore, motivated by the lack of this important foundation, we theoretically

establish a formula for estimating the flame height and length in wildfires from the

fireline intensity. The derivation is based on the energy conservation principle and

on the concept of the energy flow rate in the convection column above a fireline,

the latter was originally introduced by Byram in 1959.

Evidently, flame geometry is strongly affected by wind and terrain slope. In our

formulation, we assume that, in the no-wind no-slope condition, flame geometry

is fully characterised by the process’s energy, Figure (2.4), while the wind and

slope rule the flame tilting angle and they cause a stretching of the flame, Figure

(2.5).

Figure 2.4: Flame geometry of real wildland fire in flat terrain.
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In this study, we adopt, for our convenience, definitions that allow for stressing

the separation between flame angle and terrain slope angle.

We define flame geometry as follows:

Definition 2.1 (Flame height). The flame height, h(m), is measured along the axis

perpendicular to the terrain that can be sloped.

Definition 2.2 (Flame length). The flame length L f (m) is defined as the distance

between the flame height tip and the midpoint of the flame depth.

Definition 2.3 (Flame tilt). The flame tilt is defined as the sum of the terrain slope

angle ω and the tilting angle Θ.

These flame geometry characteristics are related by the formula (see Fig.2.5)

h = L f cos(Θ+ω) (2.6)

Figure 2.5: Flame geometry in cases of up-slope wind.
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The tilting angle Θ accounts for the concurrent effects of wind and slope that

are not joined in a simple additive formula, i.e.

Θ = Θ(U,ω) = Θ(cUU + cωω)

where U is the mean wind while the parameters cU and cω represent the cor-

responding dimensional scales; and it reduces to the corresponding angle in the

limiting cases:

Θ = Θ(U,ω) =


Θ(U,0) = Θw(U), with wind but no− slope,

Θ(U,ω), with slope and wind,

Θ(0,ω) = Θs(ω), with slope but no−wind.

(2.7)

Several experimental measurements display a power-law relationship between

the flame length L f and the Fireline Intensity I f .

The fireline intensity I f [kWm-1], was established by Byram from measure-

ments of fire spread and fuel consumption. Notwithstanding, fireline intensity is

of paramount importance in quantifying wildfire behaviour, both in applied and in

theoretical studies.

It is also related to flame geometry. A widely used approximated empirical

relation is given by

L f = β0 I f
β1 (2.8)

where β0 and β1 are two positive parameters. Unfortunately, the values of β0 and

β1 tend to be mostly scattered, while the sole constraint that emerges is that the

power-law exponent is 0 < β1 < 1.

To conclude, fireline intensity is related to the propagation of a front and drives

fire-spotting, which accelerates the spreading of a fire; therefore, fire-spotting is

crucial for simulating the evolution of a burning area, but this is not a topic of this

treatment. For further information [15], [9].



Chapter 3

Results

3.1 Introduction

In this chapter will be analysed the results obtained from the study of fires

propagation by areas of uniform vegetation and variable slope.

The aim will be to demonstrate, as already anticipated above, that, despite two

types of distribution approach well the process pdf, the evolution of data is better

described by the beta distribution.

3.1.1 Modelling

Before starting the analysis, let’s describe the initial state of the process and

the results provided by PROPAGATOR.

Initial conditions

• ignitions: point;

• wind speed: 0 [km/h];

• moisture: 2;

• vegetation: uniform;

• slope: floating;

• number of threads (n): 1000;

• space limit: 20 [km];

• time limit: 100 [min];

• time resolution: 10 [min];

• discretization step (dt): 10.

37



3.1 Introduction 38

Note that the process is being analyzed excluding the phenomenon of firespot-

ting and possible external interventions to stop the fire.

Results

• matrix X [(n+ 1)(dt + 1)× 2]: containing in the first column the values of

burned area for each realization and in the second the corresponding time

instants. Output that PROPAGATOR provides thanks to a modification we

made;

• matrix A[(dt +1)×2]: containing in the first column the values of average

area burned every 1000 realizations and in the second the corresponding

instants of time; it is equivalent to a report of the situation every 10 minutes.

Output that PROPAGATOR provides by default.

3.1.2 Analysis

For greater clarity we divide the statistical analysis into several sections:

• Data cleansing: given the X matrix of output, we remove the burned area

values that do not vary with time. Therefore, from a phenomenological

point of view, cells that do not contribute to the extension of fire are being

removed;

• Histogram representation: for each realization the corresponding his-

togram is constructed, from which a first purely empirical pdf is obtained.

Then these histograms are plotted all on the same graph to appreciate the

trend over time.

• Study of the following variables trend: mean area (considering matrix A);

variance; correlation; maximum of the pdf.

• Data scaling: the data of the X matrix are scaled and we indicate them with

Y . In order to use beta.fit it is necessary a data scaling in interval [0,1].
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• Parameters calculation: are calculated, from the data, therefore empiri-

cally, the parameters required for beta and generalized logistic distributions.

• Data fitting: thanks to the calculated parameters a fit of the data is per-

formed, using both the beta pdf and generalized logistic pdf, to compare

them.

• Analysis of moments of various order: considering the four moments

(mean, variance, skewness and kurtosis), these are calculated both for the

initial normalized data and for the two distributions used later. The objective

is to compare the results and determine which of the two distributions best

describes the phenomenon in analysis.

The analysis carried out was illustrated in broad terms, now we deepen the

individual cases studied. In particular, the following: slope10, slope15, slope20,

slope30, slope40 and slope45.

3.2 Slope10

3.2.1 Data cleansing

After “cleaning” the data, we get the following results at every instant of

observation:

Starting Data

X0[1000] t = 0 X6[939] t = 60

X1[928] t = 10 X7[941] t = 70

X2[946] t = 20 X8[941] t = 80

X3[945] t = 30 X9[941] t = 90

X4[943] t = 40 X10[941] t = 100

X5[940] t = 50

Table 3.1: The X matrix is divided into column vectors representing the number of threads for each time t.
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3.2.2 Histogram representation

For each vector we consider the corresponding histogram and its empirical

distribution:

Figure 3.1: X1[928], t = 10. Figure 3.2: X2[946], t = 20.

Figure 3.3: X3[945], t = 30. Figure 3.4: X4[943], t = 40.

Figure 3.5: X5[940], t = 50. Figure 3.6: X6[939], t = 60.
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Figure 3.7: X7[941], t = 70. Figure 3.8: X8[941], t = 80.

Figure 3.9: X9[941], t = 90. Figure 3.10: X10[941], t = 100.

Then the histograms and the empirical distributions obtained for each individ-

ual vector are plotted on the same graph to study its trend over time

Figure 3.11: Trend over the time. Legend: blue=0m; orange=10m; green=20m; red=30m; violet=40m; brown=50m;

pink=60m; grey=70m; light green=80m; light blue=90m; blue=100m.
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3.2.3 Other variables trend

Considering the outputs in matrix A, we study the trend of mean area. Instead,

with the data of the X matrix we study the trends of variance, maximum of the

distribution and correlation. Note that maximum of the distribution means the ele-

ment belonging to the dataset to which the highest peak of the curve corresponds.

Figure 3.12: Mean Area. Figure 3.13: Variance.

Figure 3.14: Correlation. Figure 3.15: Pdf maximum.

3.2.4 Data scaling

Let now consider the variable

Y =
X −A√

var(X −A)
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as well as the X matrix, the Y matrix is divided into column vectors corresponding

to the instants of observation.

Moreover, on the vectors of the matrix Y has been operated the same anal-

ysis that is not reported, in order to focus the attention on the successive more

important results.

3.2.5 Parameters calculation and data fitting

After normalizing the data, considering the variable Y of scaled data into the

range [0,1]. The parameters, α and β , for the beta and generalized logistic distri-

butions are then calculated. Using these parameters a fit of the data is performed

obtaining the following graphs

Figure 3.16: Linear beta fit. Figure 3.17: Logarithmic beta fit.

Figure 3.18: Linear genlog fit. Figure 3.19: Logarithmic genlog fit.
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Therefore graphically both distributions are presented as good candidates for

the description of the phenomenon. Now, to determine which of the two retains

the properties of the case studied, we analyze the moments and compare them

with the initial data.

3.2.6 Analysis of moments of various order

Considering the four moments (mean, variance, skewness and kurtosis), they

are calculated on the scaled Y vectors and their distribution. The results are shown

in the following graphs:

Figure 3.20: Mean. On the left the comparison between the mean calculated on the data (green) and the mean calculated

on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.

Figure 3.21: Variance. On the left the comparison between the variance calculated on the data (green) and the variance

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.
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Figure 3.22: Skewness. On the left the comparison between the skewness calculated on the data (green) and the skewness

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.

Figure 3.23: Kurtosis. On the left the comparison between the variance calculated on the data (green) and the variance

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.
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3.3 Slope15

3.3.1 Data cleansing

After “cleaning” the data, we get the following results at every instant of ob-

servation. Note that in this case the vector X1 does not appear, this indicates that

after the first 10 minutes no cell still burns.

Starting Data

X0[1000] t = 0 X6[939] t = 60

X2[908] t = 20 X7[941] t = 70

X3[864] t = 30 X8[944] t = 80

X4[941] t = 40 X9[943] t = 90

X5[936] t = 50 X10[943] t = 100

Table 3.2: The X matrix is divided into column vectors representing the number of threads for each time t.

3.3.2 Histogram representation

For each vector we consider the corresponding histogram and its empirical

distribution:

Figure 3.24: X2[908], t = 20. Figure 3.25: X3[864], t = 30.

Figure 3.26: X4[941], t = 40. Figure 3.27: X5[936], t = 50.
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Figure 3.28: X6[939], t = 60. Figure 3.29: X7[941], t = 70.

Figure 3.30: X8[944], t = 80. Figure 3.31: X9[943], t = 90.

Figure 3.32: X10[943], t = 100.

Then the histograms and the empirical distributions obtained for each individ-

ual vector are plotted on the same graph to study its trend over time

Figure 3.33: Trend over the time. Legend: blue=20m; orange=30m; green=40m; red=50m; violet=60m; brown=70m;

pink=80m; grey=90m; light green=100m.
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3.3.3 Other variables trend

Considering the outputs in matrix A, we study the trend of mean area. Instead,

with the data of the X matrix we study the trend of variance, maximum of the

distribution and correlation. Note that maximum of the distribution means the ele-

ment belonging to the dataset to which the highest peak of the curve corresponds.

Figure 3.34: Mean Area. Figure 3.35: Variance.

Figure 3.36: Correlation. Figure 3.37: Pdf maximum.

3.3.4 Data scaling

Let now consider the variable

Y =
X −A√

var(X −A)
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as well as the X matrix, the Y matrix is divided into column vectors corresponding

to the instants of observation.

Moreover, on the vectors of the matrix Y has been operated the same anal-

ysis that is not reported, in order to focus the attention on the successive more

important results.

3.3.5 Parameters calculation and data fitting

After normalizing the data, considering the variable Y of scaled data into the

range [0,1]. The parameters, α and β , for the beta and generalized logistic distri-

butions are then calculated. Using these parameters a fit of the data is performed

obtaining the following graphs

Figure 3.38: Linear beta fit. Figure 3.39: Logarithmic beta fit.

Figure 3.40: Linear genlog fit. Figure 3.41: Logarithmic genlog fit.
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Therefore graphically both distributions are presented as good candidates for

the description of the phenomenon. Now, to determine which of the two retains

the properties of the case studied, we analyze the moments and compare them

with the initial data.

3.3.6 Analysis of moments of various order

Considering the four moments (mean, variance, skewness and kurtosis), they

are calculated on the sceled Y vectors and their distribution. The results are shown

in the following graphs:

Figure 3.42: Mean. On the left the comparison between the mean calculated on the data (green) and the mean calculated

on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.

Figure 3.43: Variance. On the left the comparison between the variance calculated on the data (green) and the variance

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.
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Figure 3.44: Skewness. On the left the comparison between the skewness calculated on the data (green) and the skewness

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.

Figure 3.45: Kurtosis. On the left the comparison between the kurtosis calculated on the data (green) and the kurtosis

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.
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3.4 Slope20

3.4.1 Data cleansing

After “cleaning” the data, we get the following results at every instant of

observation:

Starting Data

X0[1000] t = 0 X6[954] t = 60

X1[912] t = 10 X7[949] t = 70

X2[900] t = 20 X8[954] t = 80

X3[892] t = 30 X9[954] t = 90

X4[948] t = 40 X10[953] t = 100

X5[950] t = 50

Table 3.3: The X matrix is divided into column vectors representing the number of threads for each time t.

3.4.2 Histogram representation

For each vector we consider the corresponding histogram and its empirical

distribution:

Figure 3.46: X1[912], t = 10. Figure 3.47: X2[900], t = 20.

Figure 3.48: X3[892], t = 30. Figure 3.49: X4[948], t = 40.
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Figure 3.50: X5[950], t = 50. Figure 3.51: X6[954], t = 60.

Figure 3.52: X7[949], t = 70. Figure 3.53: X8[954], t = 80.

Figure 3.54: X9[954], t = 90. Figure 3.55: X10[953], t = 100.

Then the histograms and the empirical distributions obtained for each individ-

ual vector are plotted on the same graph to study its trend over time

Figure 3.56: Trend over the time. Legend: blue=10m; orange=20m; green=30m; red=40m; violet=50m; brown=60m;

pink=70m; grey=80m; light green=90m; light blue=100m.
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3.4.3 Other variables trend

Considering the outputs in matrix A, we study the trend of mean area. Instead,

with the data of the X matrix we study the trend of variance, maximum of the

distribution and correlation. Note that maximum of the distribution means the ele-

ment belonging to the dataset to which the highest peak of the curve corresponds.

Figure 3.57: Mean Area. Figure 3.58: Variance.

Figure 3.59: Correlation. Figure 3.60: Pdf maximum.

3.4.4 Data scaling

Let now consider the variable

Y =
X −A√

var(X −A)
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as well as the X matrix, the Y matrix is divided into column vectors corresponding

to the instants of observation.

Moreover, on the vectors of the matrix Y has been operated the same anal-

ysis that is not reported, in order to focus the attention on the successive more

important results.

3.4.5 Parameters calculation and data fitting

After normalizing the data, considering the variable Y of scaled data into the

range [0,1]. The parameters, α and β , for the beta and generalized logistic distri-

butions are then calculated. Using these parameters a fit of the data is performed

obtaining the following graphs

Figure 3.61: Linear beta fit. Figure 3.62: Logarithmic beta fit.

Figure 3.63: Linear genlog fit. Figure 3.64: Logarithmic genlog fit.
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Therefore graphically both distributions are presented as good candidates for

the description of the phenomenon. Now, to determine which of the two retains

the properties of the case studied, we analyze the moments and compare them

with the initial data.

3.4.6 Analysis of moments of various order

Considering the four moments (mean, variance, skewness and kurtosis), they

are calculated on the scaled Y vectors and their distribution. The results are shown

in the following graphs:

Figure 3.65: Mean. On the left the comparison between the mean calculated on the data (green) and the mean calculated

on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.

Figure 3.66: Variance. On the left the comparison between the variance calculated on the data (green) and the variance

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.
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Figure 3.67: Skewness. On the left the comparison between the skewness calculated on the data (green) and the skewness

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.

Figure 3.68: Kurtosis. On the left the comparison between the kurtosis calculated on the data (green) and the kurtosis

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.
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3.5 Slope30

3.5.1 Data cleansing

After “cleaning” the data, we get the following results at every instant of

observation:

Starting Data

X0[1000] t = 0 X6[906] t = 60

X1[920] t = 10 X7[902] t = 70

X2[885] t = 20 X8[901] t = 80

X3[875] t = 30 X9[903] t = 90

X4[878] t = 40 X10[904] t = 100

X5[906] t = 50

Table 3.4: The X matrix is divided into column vectors representing the number of threads for each time t.

3.5.2 Histogram representation

For each vector we consider the corresponding histogram and its empirical

distribution:

Figure 3.69: X1[920], t = 10. Figure 3.70: X2[885], t = 20.

Figure 3.71: X3[875], t = 30. Figure 3.72: X4[878], t = 40.
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Figure 3.73: X5[906], t = 50. Figure 3.74: X6[906], t = 60.

Figure 3.75: X7[902], t = 70. Figure 3.76: X8[901], t = 80.

Figure 3.77: X9[903], t = 90. Figure 3.78: X10[904], t = 100.

Then the histograms and the empirical distributions obtained for each individ-

ual vector are plotted on the same graph to study its trend over time

Figure 3.79: Trend over the time. Legend: blue=10m; orange=20m; green=30m; red=40m; violet=50m; brown=60m;

pink=70m; grey=80m; light green=90m; light blue=100m.
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3.5.3 Other variables trend

Considering the outputs in matrix A, we study the trend of mean area. Instead,

with the data of the X matrix we study the trend of variance, maximum of the

distribution and correlation. Note that maximum of the distribution means the ele-

ment belonging to the dataset to which the highest peak of the curve corresponds.

Figure 3.80: Mean Area. Figure 3.81: Variance.

Figure 3.82: Correlation. Figure 3.83: Pdf maximum.

3.5.4 Data scaling

Let now consider the variable

Y =
X −A√

var(X −A)
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as well as the X matrix, the Y matrix is divided into column vectors corresponding

to the instants of observation.

Moreover, on the vectors of the matrix Y has been operated the same anal-

ysis that is not reported, in order to focus the attention on the successive more

important results.

3.5.5 Parameters calculation and data fitting

After normalizing the data, considering the variable Y of scaled data into the

range [0,1]. The parameters, α and β , for the beta and generalized logistic distri-

butions are then calculated. Using these parameters a fit of the data is performed

obtaining the following graphs

Figure 3.84: Linear beta fit. Figure 3.85: Logarithmic beta fit.

Figure 3.86: Linear genlog fit. Figure 3.87: Logarithmic genlog fit.



3.5 Slope30 62

Therefore graphically both distributions are presented as good candidates for

the description of the phenomenon. Now, to determine which of the two retains

the properties of the case studied, we analyze the moments and compare them

with the initial data.

3.5.6 Analysis of moments of various order

Considering the four moments (mean, variance, skewness and kurtosis), they

are calculated on the scaled Y vectors and their distribution. The results are shown

in the following graphs:

Figure 3.88: Mean. On the left the comparison between the mean calculated on the data (green) and the mean calculated

on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.

Figure 3.89: Variance. On the left the comparison between the variance calculated on the data (green) and the variance

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.
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Figure 3.90: Skewness. On the left the comparison between the skewness calculated on the data (green) and the skewness

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.

Figure 3.91: Kurtosis. On the left the comparison between the kurtosis calculated on the data (green) and the kurtosis

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.
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3.6 Slope40

3.6.1 Data cleansing

After “cleaning” the data, we get the following results at every instant of

observation:

Starting Data

X0[1000] t = 0 X6[894] t = 60

X1[932] t = 10 X7[894] t = 70

X2[898] t = 20 X8[894] t = 80

X3[894] t = 30 X9[894] t = 90

X4[894] t = 40 X10[894] t = 100

X5[894] t = 50

Table 3.5: The X matrix is divided into column vectors representing the number of threads for each time t.

3.6.2 Histogram representation

For each vector we consider the corresponding histogram and its empirical

distribution:

Figure 3.92: X1[932], t = 10. Figure 3.93: X2[898], t = 20.

Figure 3.94: X3[894], t = 30. Figure 3.95: X4[894], t = 40.
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Figure 3.96: X5[894], t = 50. Figure 3.97: X6[894], t = 60.

Figure 3.98: X7[894], t = 70. Figure 3.99: X8[894], t = 80.

Figure 3.100: X9[894], t = 90. Figure 3.101: X10[894], t = 100.

Then the histograms and the empirical distributions obtained for each individ-

ual vector are plotted on the same graph to study its trend over time

Figure 3.102: Trend over the time. Legend: blue=10m; orange=20m; green=30m; red=40m; violet=50m; brown=60m;

pink=70m; grey=80m; light green=90m; light blue=100m.
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3.6.3 Other variables trend

Considering the outputs in matrix A, we study the trend of mean area. Instead,

with the data of the X matrix we study the trend of variance, maximum of the

distribution and correlation. Note that maximum of the distribution means the ele-

ment belonging to the dataset to which the highest peak of the curve corresponds.

Figure 3.103: Mean Area. Figure 3.104: Variance.

Figure 3.105: Correlation. Figure 3.106: Pdf maximum.

3.6.4 Data scaling

Let now consider the variable

Y =
X −A√

var(X −A)
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as well as the X matrix, the Y matrix is divided into column vectors corresponding

to the instants of observation.

Moreover, on the vectors of the matrix Y has been operated the same anal-

ysis that is not reported, in order to focus the attention on the successive more

important results.

3.6.5 Parameters calculation and data fitting

After normalizing the data, considering the variable Y of scaled data into the

range [0,1]. The parameters, α and β , for the beta and generalized logistic distri-

butions are then calculated. Using these parameters a fit of the data is performed

obtaining the following graphs

Figure 3.107: Linear beta fit. Figure 3.108: Logarithmic beta fit.

Figure 3.109: Linear genlog fit. Figure 3.110: Logarithmic genlog fit.
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Therefore graphically both distributions are presented as good candidates for

the description of the phenomenon. Now, to determine which of the two retains

the properties of the case studied, we analyze the moments and compare them

with the initial data.

3.6.6 Analysis of moments of various order

Considering the four moments (mean, variance, skewness and kurtosis), they

are calculated on the scaled Y vectors and their distribution. The results are shown

in the following graphs:

Figure 3.111: Mean. On the left the comparison between the mean calculated on the data (green) and the mean calculated

on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.

Figure 3.112: Variance. On the left the comparison between the variance calculated on the data (green) and the variance

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.
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Figure 3.113: Skewness. On the left the comparison between the skewness calculated on the data (green) and the skewness

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.

Figure 3.114: Kurtosis. On the left the comparison between the kurtosis calculated on the data (green) and the kurtosis

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.
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3.7 Slope45

3.7.1 Data cleansing

After “cleaning” the data, we get the following results at every instant of

observation:

Starting Data

X0[1000] t = 0 X6[883] t = 60

X1[937] t = 10 X7[883] t = 70

X2[889] t = 20 X8[883] t = 80

X3[884] t = 30 X9[883] t = 90

X4[884] t = 40 X10[883] t = 100

X5[883] t = 50

Table 3.6: The X matrix is divided into column vectors representing the number of threads for each time t.

3.7.2 Histogram representation

For each vector we consider the corresponding histogram and its empirical

distribution:

Figure 3.115: X1[937], t = 10. Figure 3.116: X2[889], t = 20.

Figure 3.117: X3[884], t = 30. Figure 3.118: X4[884], t = 40.
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Figure 3.119: X5[883], t = 50. Figure 3.120: X6[883], t = 60.

Figure 3.121: X7[883], t = 70. Figure 3.122: X8[883], t = 80.

Figure 3.123: X9[883], t = 90. Figure 3.124: X10[883], t = 100.

Then the histograms and the empirical distributions obtained for each individ-

ual vector are plotted on the same graph to study its trend over time

Figure 3.125: Trend over the time. Legend: blue=10m; orange=20m; green=30m; red=40m; violet=50m; brown=60m;

pink=70m; grey=80m; light green=90m; light blue=100m.
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3.7.3 Other variables trend

Considering the outputs in matrix A, we study the trend of mean area. Instead,

with the data of the X matrix we study the trend of variance, maximum of the

distribution and correlation. Note that maximum of the distribution means the ele-

ment belonging to the dataset to which the highest peak of the curve corresponds.

Figure 3.126: Mean Area. Figure 3.127: Variance.

Figure 3.128: Correlation. Figure 3.129: Pdf maximum.

3.7.4 Data scaling

Let now consider the variable

Y =
X −A√

var(X −A)
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as well as the X matrix, the Y matrix is divided into column vectors corresponding

to the instants of observation.

Moreover, on the vectors of the matrix Y has been operated the same anal-

ysis that is not reported, in order to focus the attention on the successive more

important results.

3.7.5 Parameters calculation and data fitting

After normalizing the data, considering the variable Y of scaled data into the

range [0,1]. The parameters, α and β , for the beta and generalized logistic distri-

butions are then calculated. Using these parameters a fit of the data is performed

obtaining the following graphs

Figure 3.130: Linear beta fit. Figure 3.131: Logarithmic beta fit.

Figure 3.132: Linear genlog fit. Figure 3.133: Logarithmic genlog fit.
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Therefore graphically both distributions are presented as good candidates for

the description of the phenomenon. Now, to determine which of the two retains

the properties of the case studied, we analyze the moments and compare them

with the initial data.

3.7.6 Analysis of moments of various order

Considering the four moments (mean, variance, skewness and kurtosis), they

are calculated on the scaled Y vectors and their distribution. The results are shown

in the following graphs:

Figure 3.134: Mean. On the left the comparison between the mean calculated on the data (green) and the mean calculated

on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.

Figure 3.135: Variance. On the left the comparison between the variance calculated on the data (green) and the variance

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.
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Figure 3.136: Skewness. On the left the comparison between the skewness calculated on the data (green) and the skewness

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.

Figure 3.137: Kurtosis. On the left the comparison between the kurtosis calculated on the data (green) and the kurtosis

calculated on their distribution obtained with betafit (red). On the right the same comparison but considering genlogisticfit.



Conclusions

At the end of the analysis it is clear that the area burned, in a limited range of

observation, by varying the slope of the territory, is distributed as a Beta. How-

ever, note that this result is not equally valid for very long observation times.

In order to justify the conclusion reached, the type of analytical approach

adopted must be specified. There was no use of hand-implemented statistical

tests or software for statistical analysis, as there was no interest in deepening this

aspect. To identify the distribution in question, that is a limited domain distribu-

tion, compatible with the phenomenology of the case study, we have observed the

graphs obtained from the data analysis and, by trial and error, the latter were com-

pared with different types of known distributions having the properties involved.

After identifying the most faithful, the moments of various order were analyzed,

to have a mathematical response of what was supposed.

We consider therefore the two distributions identified: the beta and the gen-

eralized logistics. It can be seen that, regardless of the slope value considered, if

a betafit1 and a genlogisticfit2 are performed on the data, once calculated mean,

variance, skewness and kurtosis for both the fit, the trend of these last ones, rela-

tively to the genlogisticfit, is more different from the trend of the same calculated

1“to perform a betafit” means to fit the data using Python’s function beta.pdf(x, a, b, loc, scale) whose inputs were

calculated during the analysis from the data itself (B.5.1).
2similarly “to perform a genlogisticfit” means to fit the data using Python’s function genlogistic.pdf(x, a, loc, scale)

whose inputs were calculated during the analysis from the data itself (B.5.2).
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on the initial data. This has therefore led to a focus on beta distribution as a pos-

sible solution to the problem.

After identifying the beta as optimal distribution, it remains to be clarified

that the data analysis carried out has repeatedly required a change in the output

provided by the code, such as cleaning, scaling, this has led to an accumulation

of the error on the results that caused, in the final charts, the increase in the gap

between skewness and kurtosis for betafit data and those calculated on initial data.

In this paper, therefore, in line with the phenomenology of the case studies, a

new application of the beta distribution has been identified. The newness of this

application is evident not only in the type of field, that of the propagation of fires,

but also in the type of model, that of cellular automata. Previously, in fact, the

beta distribution had found application in various fields, such as financial or de-

mographic, very different from the one in question.

Finally, with this thesis work we want to bring to the attention, in addition to

the interesting results obtained, the breadth of skills developed, such as: deep-

ening many aspects of statistical analysis and stochastic simulation, develop a

greater critical sense of the results, deepen the knowledge of routine for the use

of Python, compare with statistical testing software such as Minitab and many

others. All this has been possible thanks to the constant collaboration with the

research team of Statistical Physics, with the Dott. Gianni Pagnini and to the con-

tinuous stimuli provided by the scientific research environment.

Working in an international research center like the BCAM has certainly al-

lowed to implement the preparation considerably, both from a scientific and per-

sonal point of view, if with some initial difficulties due to language and adaptation

in a much larger environment than the academic one.



Conclusioni

A conclusione del lavoro si evince che l’area bruciata, in un intervallo di os-

servazione limitato, al variare della pendenza del territorio, si distribuisce come

una Beta. Si noti, però, che tale risultato non è altrettanto valido per tempi di

osservazione molto lunghi.

Per giustificare come si è arrivati a tale conclusione, bisogna specificare il tipo

di approccio analitico adottato. Non si è fatto uso di test statistici implementati

a mano o di software per l’analisi statistica, in quanto non si aveva interesse ad

approfondire questo aspetto. Per individuare la distribuzione in oggetto, ovvero

una distribuzione a dominio limitato, compatibilmente con la fenomenologia del

caso di studio, si sono osservati i grafici ottenuti dall’analisi dati e, per tenta-

tivi, si sono confrontati questi ultimi con diversi tipi di distribuzioni note aventi

le proprietà interessate. Dopo aver individuato le maggiormente fedeli, si sono

analizzati i momenti di vario ordine, per avere un riscontro matematico di quanto

supposto.

Si considerino dunque le due distribuzioni individuate: la beta e la logistica

generalizzata. È possibile notare che, indipendentemente dal valore di slope con-

siderato, se si eseguono un betafit3 e un genlogisticfit4 sui dati, una volta calcolate

media, varianza, skewness e kurtosis per entrambi i fit, l’andamento di queste

3per “eseguire un betafit” si intende fittare i dati utilizzando la function beta.pdf(x, a, b, loc, scale) di Python i cui input

sono stati calcolati durante l’analisi a partire dai dati stessi (B.5.1).
4analogamente per “eseguire un genlogisticfit” si intende fittare i dati utilizzando la function genlogistic.pdf(x, a, loc,

scale) di Python i cui input sono stati calcolati durante l’analisi a partire dai dati stessi (B.5.2).
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ultime, relativamente al genlogisticfit, si discosta maggiormente rispetto all’andamento

delle stesse calcolate sui dati iniziali. Questo ha dunque portato a focalizzare

l’attenzione sulla distribuzione beta, in quanto possibile soluzione al problema.

Dopo aver individuato la beta come distribuzione ottimale, resta da chiarire

che l’analisi dati effettuata ha richiesto più volte una modifica degli output for-

niti dal codice, come la pulizia, la scalatura, questo ha portato ad un accumulo

dell’errore sui risultati che ha causato, nei grafici finali, l’aumento del gap tra

skewness e kurtosis relative ai dati con betafit e quelle calcolate sui dati iniziali.

Nel presente elaborato dunque, in linea con la fenomenologia dei casi stu-

diati, si è individuata una nuova applicazione della distribuzione beta. La novità

di tale applicazione si evince non solo nel tipo di ambito, ovvero quello della

propagazione di incendi, ma anche nel tipo di modello, quello degli automi cellu-

lari. Precedentemente, infatti, la distribuzione beta aveva trovato applicazione in

svariati campi, come quello finanziario o demografico, molto diversi da quello in

oggetto.

Infine, con questo lavoro di tesi si intende portare all’attenzione, oltre agli

interessanti risultati ottenuti, la vastità di competenze sviluppate, quali: appro-

fondire numerosi aspetti dell’analisi statistica e della simulazione stocastica, svilup-

pare un maggiore senso critico nei confronti dei risultati, approfondire la conoscenza

di routine per l’utilizzo di Python, confrontarsi con software per test statistici

come Minitab e molte altre. Tutto questo è stato possibile grazie alla costante

collaborazione con il team di ricerca di Statistical Physics, con il Dott. Gianni

Pagnini e ai continui stimoli forniti dall’ambiente di ricerca scientifica.

Lavorare in un centro di ricerca internazionale come il BCAM ha sicuramente

permesso di implementare notevolmente la preparazione, sia da un punto di vista

scientifico che personale, se pur con qualche difficoltà iniziale dovuta alla lingua

e all’adattamento in un ambiente molto più grande rispetto a quello accademico.



Appendix A

Basic on simulation

In this appendix are some preliminary works on the simulation of known

stochastic processes carried out with the aim of developing a certain criticism

with respect to the results obtained by a generic stochastic simulation, so as to

prepare for fire simulation and PROPAGATOR use.

A.1 Wiener Process

A.1.1 General facts

A stochastic process is a mathematical object that is intended to model the

evolution in time of a random phenomenon. As will become clear in the sequel

the appropriate setting is the following:

A stochastic process is an object of the form

X = (Ω,F ,(Ft)t∈T ,(Xt)t∈T ,P)

where

• (Ω,F ,P) is a probability space;

• T is a ordered subset of R+;
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• (Ft)t∈T is filtration, i.e. an increasing family of sub-σ -algebras of F :

Fs ⊂ Ft whenever s ≤ t;

• (Xt)t∈T is a family of r.v.’s on (Ω,F ) taking values in a measurable space

(E,E ) such that, for every t, Xt is Ft-measurable. This fact is also expressed

by saying that (Xt)t is adapted to the filtration (Ft)t

A process is said to be continuous (resp. a.s. continuous) if for every ω (resp.

for almost every ω) the map t 7→ Xt(ω) is continuous. The definitions of a right-

continuous process, an a.s. right-continuous process, etc., are quite similar.

A process is said to be standard if

a) the filtration (Ft)t is right-continuous;

b) for every t, Ft contains the negligible events of F .

A Wiener process is a real-valued process W = (Ω,F ,(Ft)t≥0,(Wt)t≥0,P)

such that

i) W0 = 0 a.s. ;

ii) for every 0 ≤ s ≤ t the r.v. Wt −Ws is independent of Fs;

iii) for every 0 ≤ s ≤ t, Wt −Ws is N(0, t − s)-distributed.

moreover a Wiener process always has a Hölder continuous modification.

Example (Gaussian processes)

An Rm-valued process (Xt)t is said to be Gaussian if it is a Gaussian family i.e. if

its finite-dimensional distributions are Gaussian. If we define

bt = E(Xt), its mean function

Ki, j
s,t =Cov(Xi(s),X j(t)), 1 ≤ i, j ≤ m, its covariance function
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then the finite-dimensional distributions of (Xt)t are completely determined by

these two quantities.

Remarks

• A Wiener process is a Gaussian process, i.e. the joint distributions of

Wt1 , . . . ,Wtm are Gaussian.

• Sometimes it will be important to specify with respect to which filtration

a Wiener process is considered. We shall speak of natural Wiener process

when (Ft)t is the natural filtration.

Figure A.1: A typical image of a path of a two-dimensional Wiener process for 0 ≤ t ≤ 1 (a black small circle denotes the

origin and the position at time 1).

For computational purposes it is useful to consider discretized Wiener pro-
cess, where W (t) is specified at discrete t values. We thus set dt = T/N for some

positive integer N and let Wj denote W (t j) with t j = j dt.
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By definition:

− according with (i) W0 = 0 with probability 1;

− according with (ii) and (iii)

Wj =Wj−1 +dW j , j = 1,2, . . . ,N

where each dWj is an independent random variable of the form
√

dtN(0,1).

Simulation

In this section we see the first aspects of the problem of simulating a stochastic

process starting from the case of Wiener process.

The first idea (others are possible) for the simulation of a Wiener process is very

simple: its increments being independent Gaussian r.v.’s, the problem is solved as

soon as we are able to simulate a sequence of independent Gaussian r.v.’s.

If Z1,Z2, . . . are independent m-dimensional and N(0,1)-distributed r.v.’s on

some probability space (Ω,F ,P), let us choose a grid of times 0 < dt < 2dt < .. .

where dt > 0 is a positive number (typically to be taken small).

Then the r.v.
√

dtZ1 is N(0,dt I)-distributed, i.e. has the same distribution as the

increment of a Wiener process over a time interval of size dt. Hence the r.v.’s

W̄t(dt) =
√

dtZ1

W̄t(2 dt) =
√

dt(Z1 +Z2)

W̄t(k dt) =
√

dt(Z1 + · · ·+Zk)

. . .

have the same joint distributions as the positions at times dt,2 dt, . . . ,k dt, . . . of a

Wiener process.

If, for k dt ≤ t ≤ (k+1) dt, we define W̄t(t) as a linear interpolation of the posi-

tions W̄t(k dt) and W̄t((k+1) dt), this is obviously an approximation of a Wiener

process.
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More precisely the following result holds

Theorem
Let T > 0, N > 0 and dt = T/N. Let us denote by P̄t the law of the process W̄t

(P̄t is therefore a probability on the canonical space C = C ([0,T ],Rm)). Then P̄t

converges weakly to the Wiener measure PW .

The Theorem ensures that if φ : C →R is a bounded continuous function, then

lim
t→0

E[φ(W̄t)] = E[φ(W )]

Of course it would be very important to know how close to the true value

E[φ(W )] the approximation E[φ(W̄t)] is. In other words, it would be very impor-

tant to determine the speed of convergence, as t → 0, of the estimator obtained by

the simulated process.

A.1.2 Application

In this section we will use what was previously described in order to simulate

a discretized Wiener process. In particular, the simulation will be divided into

several steps:

• calculate and show the trajectory of a generalized Wiener process W (t);

• fixed an instant of time t, show the trajectories of motion as the number of

particles involved varies;

• construct a histogram showing the distribution trend for a fixed time t at the

arrival points x;

• varying the number of particles in different instants of time, verify that the

distribution obtained from the arrival histogram is Gaussian;

• calculate the variance σ2 and show that it has a proportional trend with

respect to time t, with the proportionality coefficient given by the diffusion

coefficient D;
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• using the scale law obtained from the variance calculation verify that, as

time varies, all distributions tend to the same Gaussian curve.

Trajectory of a Wiener process

To simulate the process was built a function that, starting from known starting

point, first stratifies the terminal value of a Wiener process, and then samples the

process from beginning to end by drawing Gaussian samples.

The stratification process assumes that each path is associated with a single

stratified terminal value such that the number of paths is equal to the number of

strata. This technique is called proportional sampling.

In particular the function requires knowledge of the entire sequence of sample

times.

The function implements proportional sampling by partitioning the unit inter-

val into bins of equal probability. The inverse cumulative distribution function of

a standard N(0,1) Gaussian distribution then transforms these stratified uniform

draws.

Finally, the resulting stratified Gaussian draws are scaled by
√

2 ·D
√

dt to stratify

the terminal value of the Wiener process.

1 %The f u n c t i o n ’wp’ c r e a t e s and d i s p l a y s a Weiner

P r o c e s s . In p a r t i c u l a r t h e f u n c t i o n f i r s t

s t r a t i f i e s t h e t e r m i n a l v a l u e o f t h e p r o c e s s , and

t h e n samples t h e p r o c e s s from b e g i n n i n g t o end by

drawing G a u s s i a n samples .

2

3 %INPUT : W0= s t a r t i n g p o i n t ;

4 % n=number o f p a r t i c l e s ;
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5 % T= p e r i o d of o b s e r v a t i o n ;

6 % N= d i s c r e t i z a t i o n s t e p ;

7 % mu=mean ;

8 % sigma= s t a n d a r d d e v i a t i o n ;

9 % D= d i f f u s i o n c o e f f i c i e n t .

10

11 %OUTPUT: W= s t a n d a r d Wiener p r o c e s s ;

12 % t = v e c t o r o f o b s e r v a t i o n i n s t a n t s .

13

14 f u n c t i o n [W, t ]=wp (W0, n , T , N, mu , sigma ,D)

15 d t =T /N; %D i s c r e t i z a t i o n

16 t = ( 0 : d t : T ) ; %Ve c t o r o f sample t i m e s a s s o c i a t e d wi th

a l l s i m u l a t e d p a t h s

17 k= s q r t (2*D) ;

18 %C o n s t r u c t i o n o f t h e Weiner P r o c e s s :

19 f o r i =1 : n

20 W( i , 1 ) =W0;

21 f o r j =1 :N

22 W( i , j +1) = W( i , j ) +k* s q r t ( d t ) * normrnd (mu , s igma )

;

23 %The Mat lab f u n c t i o n ’ normrnd ’ g e n e r a t e s a

random number from t h e normal d i s t r i b u t i o n

wi th mean p a r a m e t e r mu and s t a n d a r d

d e v i a t i o n p a r a m e t e r s igma .

24 end
25 end
26

27 %V e r i f y t h e s t r a t i f i c a t i o n : r e c r e a t e t h e un i fo rm draws

wi th p r o p o r t i o n a l s a m p l i n g

28 U = ( ( 1 : n ) ’ − 1 + rand ( n , 1 ) ) / n ;

29



87

30 %Trans fo rm them t o o b t a i n t h e t e r m i n a l v a l u e s o f t h e

p r o c e s s :

31 % ’ norminv ’ i s t h e normal i n v e r s e c u m u l a t i v e

d i s t r i b u t i o n f u n c t i o n by Mat lab

32 WT = norminv (U) * k* s q r t ( d t ) ; %S t r a t i f i e d Wiener

P r o c e s s

33

34 %P l o t t h e o u t p u t p a t h s :

35 p l o t ( t ,W) ;

36 hold ( ’ on ’ ) ;

37 x l a b e l ( ’ Time ’ ) , y l a b e l ( ’ P r o c e s s S t a t e ’ ) ;

38 t i t l e ( ’ T e r m i n a l S t r a t i f i c a t i o n : Wiener P r o c e s s ’ ) ;

39

40 %P l o t t h e t e r m i n a l v a l u e s on t h e same f i g u r e :

41 p l o t ( T , WT, ’ . b l a c k ’ , T , WT, ’ o b l a c k ’ ) ;

42 hold ( ’ o f f ’ ) ;

43 end
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Figure A.2: Trajectories for W0 = 0, n = 5, T = 1, N = 500, mu = 0, sigma = 1, D = 1.

Figure A.3: Trajectories for W0 = 0, n = 1000, T = 1, N = 500, mu = 0, sigma = 1, D = 1
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Distribution Trend

In this section we will study the distribution of the process considered.

In particular we use a function that constructs an histogram for a fixed instant of

time t at the arrival point x.

1 %The f u n c t i o n ’ d i s h i s t ’ e x p l o r e s t h e d i s t r i b u t i o n o f

p o i n t s and v e r i f i e s t h a t i t behaves l i k e a G a u s s i a n

.

2

3 %INPUT : W0= s t a r t i n g p o i n t ;

4 % n=number o f p a r t i c l e s ;

5 % T= p e r i o d of o b s e r v a t i o n ;

6 % N= d i s c r e t i z a t i o n s t e p ;

7 % mu=mean ;

8 % sigma= s t a n d a r d d e v i a t i o n ;

9 % D= d i f f u s i o n c o e f f i c i e n t ;

10 % h=number o f h i s t o g r a m columns .

11

12 %OUTPUT: x= a r r i v a l p o i n t s v e c t o r .

13

14 f u n c t i o n [ x ] = d i s h i s t (W0, n , T , N, mu , sigma , D, h )

15

16 f i g u r e ( 1 ) ;

17 [W, t ]=wp (W0, n , T , N, mu , sigma ,D) ;

18 %[ coun t s , c e n t e r s ]= h i s t ( x , h )

19 %c o u n t s = c o u n t s o f t h e number o f e l e m e n t s i n each

column , r e t u r n e d as a row v e c t o r .

20 %c e n t e r s =columns c e n t e r s , r e t u r n e d as a numer ic row

v e c t o r .

21 [m, x ] = h i s t (W( : , end ) , h ) ; %E m p i r i c a l h i s t o g r a m
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f u n c t i o n

22 m norm = (m . / l e n g t h (W( : , end ) ) ) . / ( x ( 2 ) −x ( 1 ) ) ; %

Normal i ze h i s t o g r a m f u n c t i o n

23 bar ( x , m norm ) ; %The Mat lab f u n c t i o n ’ bar ’ c r e a t e s an

24 %h i s t o g r a m p l o t

25 hold ( ’ on ’ ) ;

26

27 %P l o t t h e shape o f e m p i r i c a l d i s t r i b u t i o n on t h e

h i s t o g r a m :

28 p l o t ( x , m norm , ’ r ’ ) ;

29 x l a b e l ( ’ x ’ ) , y l a b e l ( ’ D i s t r i b u t i o n ’ ) ;

30 t i t l e ( ’ E m p i r i c a l D i s t r i b u t i o n ’ ) ;

31

32 f i g u r e ( 2 ) ;

33 pd = f i t d i s t (W( : , end ) , ’ Normal ’ ) ; %The Mat lab f u n c t i o n

’ f i t d i s t ’ c r e a t e s a p r o b a b i l i t y d i s t r i b u t i o n o b j e c t

by f i t t i n g t h e d i s t r i b u t i o n s p e c i f i e d t o t h e d a t a

i n column v e c t o r .

34

35 y = pdf ( pd , x ) ; %The Mat lab f u n c t i o n ’ pdf ’ r e t u r n s t h e

p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n o f t h e pd ,

e v a l u a t e d a t t h e v a l u e s i n x .

36

37 %P l o t t h e shape o f t h e e m p i r i c a l d i s t r i b u t i o n on t h e

38 %G a u s s i a n one :

39 semi logy ( x , y , ’ b ’ ) ;

40 hold ( ’ on ’ ) ;

41 p l o t ( x , m norm , ’ r ’ ) ;

42 t i t l e ( ’ Comparison wi th G a u s s i a n ’ ) ;

43

44 end
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Figure A.4: Histogram plot of W (t) with shape of the empirical distribution. W0 = 0, n = 10000, T = 10, N = 500,

mu = 0, sigma = 1, D = 1, h = 100.

Figure A.5: The distribution obtained from the arrival histogram is Gaussian. W0 = 0, n = 10000, T = 10, N = 500,

mu = 0, sigma = 1, D = 1, h = 100.
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After verifying the result for the vector of arrival points, varying the number

of particles n and the time T , we show how the empirical distribution step by step

becomes more and more similar to the Gaussian distribution.

For this purpose we use the following function which creates a single plot in

which both the histogram, the empirical distribution and the Gaussian one appear

at each execution.

1 %The f u n c t i o n ’ t o t h i s t ’ c r e a t e s a s i n g l e p l o t i n %

which bo th t h e h i s t o g r a m , t h e e m p i r i c a l

d i s t r i b u t i o n and t h e G a u s s i a n one a p p e a r .

2

3 %INPUT : W0= s t a r t i n g p o i n t ;

4 % n=number o f p a r t i c l e s ;

5 % T= p e r i o d of o b s e r v a t i o n ;

6 % N= d i s c r e t i z a t i o n s t e p ;

7 % mu=mean ;

8 % sigma= s t a n d a r d d e v i a t i o n ;

9 % D= d i f f u s i o n c o e f f i c i e n t ;

10 % h=number o f h i s t o g r a m columns .

11

12 %OUTPUT: pd= d i s t r i b u t i o n .

13

14 f u n c t i o n [ pd ] = t o t h i s t (W0, n , T , N, mu , sigma , D, h )

15

16 [W, t ]=wp (W0, n , T , N, mu , sigma ,D) ;

17 %[ coun t s , c e n t e r s ]= h i s t ( x , h )

18 %c o u n t s = c o u n t s o f t h e number o f e l e m e n t s i n each

column , r e t u r n e d as a row v e c t o r .

19 %c e n t e r s =columns c e n t e r s , r e t u r n e d as a numer ic row

v e c t o r .
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20 [m, x ] = h i s t (W( : , end ) , h ) ; %E m p i r i c a l h i s t o g r a m

f u n c t i o n

21 m norm = (m . / l e n g t h (W( : , end ) ) ) . / ( x ( 2 ) −x ( 1 ) ) ; %

Normal i ze h i s t o g r a m f u n c t i o n

22 bar ( x , m norm ) ; %The Mat lab f u n c t i o n ’ bar ’ c r e a t e s an

23 %h i s t o g r a m p l o t

24 hold ( ’ on ’ ) ;

25

26 %P l o t t h e shape o f e m p i r i c a l d i s t r i b u t i o n on t h e

h i s t o g r a m :

27 p l o t ( x , m norm , ’ r ’ , ’ L i n e w i d t h ’ , 1 ) ;

28 hold ( ’ on ’ ) ;

29 pd = f i t d i s t (W( : , end ) , ’ Normal ’ ) ; %The Mat lab f u n c t i o n

’ f i t d i s t ’ c r e a t e s a p r o b a b i l i t y d i s t r i b u t i o n o b j e c t

by f i t t i n g t h e d i s t r i b u t i o n s p e c i f i e d t o t h e d a t a

i n column v e c t o r .

30

31 y = pdf ( pd , x ) ; %The Mat lab f u n c t i o n ’ pdf ’ r e t u r n s t h e

p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n o f t h e pd ,

e v a l u a t e d a t t h e v a l u e s i n x .

32

33 %P l o t t h e shape o f t h e G a u s s i a n d i s t r i b u t i o n on t h e

h i s t o g r a m :

34 semi logy ( x , y , ’ L i n e w i d t h ’ , 1 . 5 )

35 x l a b e l ( ’ x ’ ) , y l a b e l ( ’ D i s t r i b u t i o n ’ )

36 t i t l e ( ’ D i s t r i b u t i o n s Trend ’ ) ;

37

38 end



94

Figure A.6: STEP 1:W0 = 0, n = 100, T = 100, N = 500, mu = 0, sigma = 1, D = 1, h = 100

Figure A.7: STEP 2:W0 = 0, n = 150, T = 150, N = 500, mu = 0, sigma = 1, D = 1, h = 100
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Figure A.8: STEP 3:W0 = 0, n = 300, T = 300, N = 500, mu = 0, sigma = 1, D = 1, h = 100

Figure A.9: STEP 4:W0 = 0, n = 600, T = 600, N = 500, mu = 0, sigma = 1, D = 1, h = 100
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Figure A.10: STEP 5:W0 = 0, n = 1000, T = 1000, N = 500, mu = 0, sigma = 1, D = 1, h = 100

Figure A.11: STEP 6:W0 = 0, n = 10000, T = 1000, N = 500, mu = 0, sigma = 1, D = 1, h = 100
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Variance Scale Law

In this section we intend to study the scale law of variance, for this purpose

we calculate the variance and build its graph to verify the trend.

In particular we use the function ’var trend’ that first calculates the variance

both numerically and analytically, the numerical error that derives from these dif-

ferent approaches and then graphically shows the trend.

1 %The f u n c t i o n ’ v a r t r e n d ’ c a l c u l a t e s t h e v a r i a n c e bo th

u s i n g t h e Mat lab f u n c t i o n ’ var ’ and a p p l y i n g t h e

m a t h e m a t i c a l f o r m u l a e x p l i c i t l y . Then t h e f u n c t i o n

makes t h e p l o t o f t h e n u m e r i c a l v a r i a n c e t r e n d .

2

3 %INPUT : W0= s t a r t i n g p o i n t ;

4 % n=number o f p a r t i c l e s ;

5 % T= p e r i o d of o b s e r v a t i o n ;

6 % N= d i s c r e t i z a t i o n s t e p ;

7 % mu=mean ;

8 % sigma= s t a n d a r d d e v i a t i o n ;

9 % D= d i f f u s i o n c o e f f i c i e n t .

10

11 %OUTPUT: V= v a r i a n c e ;

12 % e r r = n u m e r i c a l e r r o r .

13

14 f u n c t i o n [V, e r r ] = v a r t r e n d (W0, n , T , N, mu , sigma ,D)

15

16 [W, t ]=wp (W0, n , T , N, mu , sigma ,D) ;

17

18 V= v a r (W( : , N) , 1 ) ; %The Mat lab f u n c t i o n ’ var ’ r e t u r n s

t h e v a r i a n c e o f t h e e l e m e n t s o f W
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19

20 M=mean (W( : , N) ) ; %Mean v a l u e o f a l l o b s e r v a t i o n s

21 V1 = ( 1 /N) *sum ( abs (W( : , N) −M) . ˆ 2 ) ; %V a r i a n c e c a l c u l a t e d

e x p l i c i t l y

22 e r r =norm (V−V1 ) ; %Numer ica l e r r o r

23

24 %P l o t o f t h e v a r i a n c e s c a l e law :

25 V t o t = v a r (W( : , : ) , 1 ) ;

26 p l o t ( t , V to t , ’ L i n e w i d t h ’ , 1 )

27 x l a b e l ( ’ Time ( t ) ’ ) , y l a b e l ( ’ V a r i a n c e (V) ’ ) ;

28 t i t l e ( ’ V a r i a n c e S c a l e Law ’ ) ;

29 hold ( ’ on ’ )

30 V num=2*D* t ;

31 p l o t ( t , V num , ’ L i n e w i d t h ’ , 1 )

32

33 end

By varying the number of particles it is also possible to notice how the rumors

decrease:

Figure A.12: Variance trend with W0 = 0, n = 2000, T = 1, N = 500, mu = 0, sigma = 1, D = 1 and Err = 2.996e−04.
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Figure A.13: Variance trend with W0 = 0, n = 4000, T = 1, N = 500, mu = 0, sigma = 1, D = 1 and Err = 2.611e−04.

Figure A.14: Variance trend with W0 = 0, n = 6000, T = 1, N = 500, mu = 0, sigma = 1, D = 1 and Err = 4.681e−04.
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Figure A.15: Variance trend with W0 = 0, n = 8000, T = 1, N = 500, mu = 0, sigma = 1, D = 1 and Err = 3.157e−04.

Figure A.16: Variance trend with W0 = 0, n = 10000, T = 1, N = 500, mu = 0, sigma = 1, D = 1 and Err = 2.518e−04.
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Using the function ’var trend’ and modifying the diffusion coefficient D it is

possible to obtain the following graph showing the trend of the variance:

Figure A.17: Variance trend with W0 = 0, n = 8000, T = 10, N = 500, mu = 0, sigma = 1 and D1 = 0, D2 = 0.2, D3 =

0.4, D4 = 0.6, D5 = 0.8, D6 = 1.

Gaussian respect to the Variance

In this section, using the law of scale obtained from the calculation of vari-

ance, we intend to verify that, as time varies, all distributions tend to the same

Gaussian curve.

In particular, for this purpose we used the function ’gauss var’ that studies the

behavior of the Gaussian curve with respect to σ2.

1 % The f u n c t i o n ’ g a u s s v a r ’ s t u d i e s t h e t r e n d of t h e

G a u s s i a n wi th r e s p e c t t o t h e c a l c u l a t e d v a r i a n c e .

2

3 %INPUT : W0= s t a r t i n g p o i n t ;
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4 % n=number o f p a r t i c l e s ;

5 % T= p e r i o d of o b s e r v a t i o n ;

6 % N= d i s c r e t i z a t i o n s t e p ;

7 % mu=mean ;

8 % sigma= s t a n d a r d d e v i a t i o n ;

9 % D= d i f f u s i o n c o e f f i c i e n t ;

10 % h= number o f h i s t o g r a m columns .

11

12 %OUTPUT: sigma num= e m p i r i c a l s t a n d a r d d e v i a t i o n ;

13 % X=Weiner p r o c e s s r e s p e c t t o t h e e m p i r i c a l

14 % s t a n d a r d d e v i a t i o n .

15

16 f u n c t i o n [ sigma num ,X]= g a u s s v a r 1 (W0, n , T , N, mu , sigma , D,

h )

17

18 [W, ˜ ] = wp (W0, n , T , N, mu , sigma ,D) ;

19 sigma num= s q r t ( v a r (W( : , : ) , 1 ) ) ; %S t a n d a r d d e v i a t i o n

20 X=W/ sigma num ; %Weiner p r o c e s s r e s p e c t t o t h e s t a n d a r d

d e v i a t i o n

21 [m, x ] = h i s t (X, h ) ; %E m p i r i c a l h i s t o g r a m f u n c t i o n

22 m norm = (m . / l e n g t h (X ( : , end ) ) ) . / ( x ( 2 ) −x ( 1 ) ) ; %

n o r m a l i z e h i s t o g r a m f u n c t i o n

23

24 pd = f i t d i s t (X, ’ Normal ’ ) ;%The Mat lab f u n c t i o n ’ f i t d i s t

’ c r e a t e s a p r o b a b i l i t y d i s t r i b u t i o n o b j e c t by

f i t t i n g t h e d i s t r i b u t i o n s p e c i f i e d t o t h e d a t a i n

column v e c t o r .

25

26 y = pdf ( pd , x ) ; %t h e Mat lab f u n c t i o n ’ pdf ’ r e t u r n s t h e

p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n o f t h e pd ,

e v a l u a t e d a t t h e v a l u e s i n x .
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27

28 %P l o t t h e shape o f t h e G a u s s i a n d i s t r i b u t i o n wi th

r e s p e c t t o

29 %t h e v a r i a n c e , a s t ime v a r i e s :

30 p l o t ( x , y , ’ L i n e w i d t h ’ , 1 )

31 x l a b e l ( ’W( t ) / s igma ( t ) ’ ) , y l a b e l ( ’ s igma ( t ) *G’ )

32 t i t l e ( ’ G a u s s i a n r e s p e c t t o t h e V a r i a n c e ’ ) ;

33 hold ( ’ on ’ ) ;

34

35 %P l o t t h e shape o f t h e e m p i r i c a l d i s t r i b u t i o n

36 p l o t ( x , m norm ) ;

37

38 end

Figure A.18: Gaussian distribution with respect to the variance, as time varies. W0 = 0, n = 8000, N = 500,

mu = 0, sigma = 1, D = 1, h = 100 and T 1 = 2, T 2 = 4, T 3 = 6, T 4 = 8, T 5 = 10.

Remark
As expected from the theoretical results, all curves “collapse” on the same Gaus-

sian.
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A.2 Ornstein–Uhlenbeck Process

A.2.1 General facts

In many stochastic processes that appear in applications, their statistics remain

invariant under time translations. Such stochastic processes are called stationary.

It is possible to develop a quite general theory of stochastic processes that

enjoy this symmetry property. It is useful to distinguish between:

• stochastic processes for which all finite dimensional distribution (FDDs) are

translation-invariant (strictly stationary processes);

• processes for which this translation invariance holds only for the first two

moments (weakly stationary processes).

Let (Ω, F , P) be a probability space. Let Xt , t ∈ T (with T = R or Z), be a

real-valued random process on this probability space with finite second moment

E|Xt |2 <+∞ (i.e. Xt ∈ L2(Ω, P) for all t ∈ T ). Assume that is strictlu stationary.

Then

E(Xt+s) = EXt , s ∈ T

from which we conclude that EXt is constant, and

E((Xt1+s −µ)(Xt2+s −µ)) = E((Xt1 −µ)(Xt2 −µ)) , s ∈ T

implies that the covariance function depends on the difference between the

two times t and s

C(t,s) =C(t − s)

This motivates the following definition

A stochastic process Xt ∈ L2 is called second-order stationary, widesense

stationary or weakly stationary if the first moment EXt is a constant and the co-

variance function E(Xt −µ)(Xs −µ) depends only on the difference t − s:

EXt = µ , E((Xt1 −µ)(Xt2 −µ)) =C(t − s)
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- the constant µ is the expectation of the process Xt ;

- the function C(t) is the covariance, also called autocovariance or autocor-

relation function of Xt

Notice that a strictly stationary process with finite second moment is also station-

ary in the wide sense. The converse is not true, in general. It is true, however, for

Gaussian processes.

Continuity properties of the covariance function are equivalent to continuity

properties of the paths of Xt in the L2 sense, i.e.

lim
h→0

E|Xt+h −Xt |2 = 0

In particular, the following result holds

Lemma Assume that the covariance function C(t) of a second-order stationary

process is continuous at t = 0. Then it is continuous for all t ∈ R. Furthermore,

the continuity of C(t) is equivalent to the continuity of the process Xt in the L2

sense.

The Fourier transform of the covariance function of a second-order stationary

process always exists. This enables us to study second-order stationary processes

using tools from Fourier analysis.

The autocorrelation function of a second-order stationary process enables us

to associate a timescale to Xt , the correlation time τcor:

τcor =
1

C(0)

∫
∞

0
C(τ) dτ =

1
E(X2

0 )

∫
∞

0
E(XτX0) dτ.

The slower the decay of the correlation function, the larger the correlation

time. Note that when the correlations do not decay sufficiently fast, so that C(t) is

not integrable, then the correlation time will be infinite.
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Example Consider a mean-zero second-order stationary process with corre-

lation function

C(t) =C(0)e−α|t|, α > 0 (A.1)

we will write C(0) = D/α where D > 0. The correlation time is

τcor =
∫

∞

0
e−αt dτ = α

−1

A real-valued Gaussian stationary process defined on R with correlation function

given by (1) is called a stationary Ornstein–Uhlenbeck Process.

The Ornstein–Uhlenbeck process Xt can be used as a model for the velocity of a

Brownian particle. It is of interest to calculate the statistics of the position of the

Brownian particle.

A.2.2 Definition

The stationary Ornstein–Uhlenbeck process, that was introduced earlier, can

be defined through the Brownian motion via a time change.

The process can be considered to be a modification of the random walk in con-

tinuous time, or Wiener process, in which the properties of the process have been

changed so that there is a tendency of the walk to move back towards a central lo-

cation, with a greater attraction when the process is further away from the center.

Definition The Ornstein–Uhlenbeck process Xt is defined by the following

stochastic differential equation:

dXt =−θ xt dt +σ dWt

where θ > 0 and σ > 0 are parameters and Wt denotes the Wiener process.

The stochastic differential equation for Xt can be formally solved by variation of

parameters. We get

Xt = X0 e−θ t +µ (1− e−θ t)+σ

∫ t

0
e−θ(t−s) dWs.
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The Ornstein–Uhlenbeck process is an example of a Gaussian process that has

a bounded variance and admits a stationary probability distribution, in contrast to

the Wiener process.

The difference between the two is in their ”drift” term: for the Wiener process the

drift term is constant, whereas for the Ornstein–Uhlenbeck process it is dependent

on the current value of the process.

Remarks

• Brownian motion and the Ornstein–Uhlenbeck process are examples of a

diffusion process: a continuous-time Markov process with continuous paths;

• if the initial condition of the Ornstein-Uhlenbeck process is distributed ac-

cording to the invariant measure, then the Ornstein-Uhlenbeck process is a

stationary Gaussian process. Let Xt denote the one-dimensional Ornstein-

Uhlenbeck process with X0 ∼ N (0,D/α). Then Xt is a mean-zero Gaus-

sian second-order stationary process on [0,∞) with correlation function and

spectral density:

R(t) =
D
α

e−α t f (x) =
D
π

1
x2 +(α)2

• the Ornstein-Uhlenbeck process is the only real-valued mean-zero Gaussian

second-order stationary Markov process with continuous paths defined on

R. A few paths of the stationary Ornstein-Uhlenbeck process are presented

in the follow figure

A.2.3 Simulation

In this section we will use what was previously described in order to simulate

an Ornstein-Uhlenbeck process. In particular, the simulation will be divided into

several steps:

• calculate and show the trajectory of an Ornstein-Uhlenbeck process X(t);

• verify that for τ →+∞ we get the Wiener process;
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Figure A.19: Sample paths of the Ornstein-Uhlenbeck process

• show that the variance of the process is such that, after a certain instant, it

saturates then becomes constant;

• calculate the correlation function and show that it has an exponential trend.

Trajectory of an Ornstein-Uhlenbeck process

For simulation was built a function that, from a known starting point and a

known sequence of sample times, implements the Ornstein-Uhlenbeck process.

In particular the noise part of the process is due to the factor

dWn =
√

2 D
√

dt N(0,1)

therefore the process will be

Xn = Xn−1 −
Xn−1

τ
dt +

√
2 D dWn
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1

2 %The f u n c t i o n ’ oup ’ c r e a t e s and d i s p l a y s an O r n s t e i n −

Uhlenbeck p r o c e s s .

3

4 %INPUT : X0= s t a r t i n g p o i n t ( O r n s t e i n −Uhlenbeck ) ;

5 % W0= s t a r t i n g p o i n t ( Wiener ) ;

6 % n=number o f p a r t i c l e s ;

7 % T= p e r i o d of o b s e r v a t i o n ;

8 % N= d i s c r e t i z a t i o n s t e p ;

9 % mu=mean ;

10 % sigma= s t a n d a r d d e v i a t i o n ;

11 % D= d i f f u s i o n c o e f f i c i e n t ;

12 % t a u = c o r r e l a t i o n t ime .

13

14 %OUTPUT: X= O r n s t e i n −Uhlenbeck p r o c e s s ;

15 % t = v e c t o r o f o b s e r v a t i o n i n s t a n t s .

16

17 f u n c t i o n [X, t ] = oup ( X0 ,W0, n , T , N, mu , sigma , D, t a u )

18

19 d t =T /N; %D i s c r e t i z a t i o n

20 t = ( 0 : d t : T ) ; %Ve c t o r o f sample t i m e s a s s o c i a t e d wi th

a l l s i m u l a t e d p a t h s

21

22

23 %C o n s t r u c t i o n o f t h e O r n s t e i n −Uhlenbeck P r o c e s s :

24

25 f o r i =1 : n

26 X( i , 1 ) =X0 ( i ) ;

27 f o r j =1 :N

28 X( i , j +1)=X( i , j ) −(X( i , j ) / t a u ) * d t + s q r t (2*D) *
normrnd (mu , s igma ) * s q r t ( d t ) ;
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29 %The Mat lab f u n c t i o n ’ normrnd ’ g e n e r a t e s a

random

30 %number from t h e normal d i s t r i b u t i o n wi th mean

p a r a m e t e r mu and s t a n d a r d d e v i a t i o n

p a r a m e t e r s igma .

31 end
32 end
33

34 %P l o t t h e o u t p u t p a t h s :

35

36 p l o t ( t , X, ’ b ’ ) ;

37 x l a b e l ( ’ Time ’ ) , y l a b e l ( ’ P r o c e s s S t a t e ’ ) ;

38 t i t l e ( ’ T e r m i n a l S t r a t i f i c a t i o n : O r n s t e i n −Uhlenbeck

P r o c e s s ’ ) ;

39

40 %V e r i f y t h a t f o r τ → ∞ we have t h e Wiener p r o c e s s :

41

42 [W, t ]=wp (W0, n , T , N, mu , sigma ,D) ;

43 hold ( ’ on ’ ) ;

44 p l o t ( t ,W, ’ r ’ ) ;

45

46 end
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Figure A.20: Trajectories for X0 = randn(n,1), n = 5, T = 1, N = 500, mu = 0, sigma = 1, D = 1, τ = 1.

Figure A.21: Trajectories for X0 = randn(n,1), n = 1000, T = 1, N = 500, mu = 0, sigma = 1, D = 1, τ = 1.
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Using the same function, adding W0 as input, it is possible to verify that for

τ → ∞ we have the Wiener Process again:

Figure A.22: Trajectories for X0 = 0, W0 = 0, n = 1000 f or Ornstein−Uhlenbeck (blue),

n = 3000 f or Wiener (red), T = 1, N = 500, mu = 0, sigma = 1, D = 1, τ = ∞.

Distribution Trend

In this section we will study the distribution of the process considered.

In particular we use a function that constructs an histogram for a fixed instant of

time t at the arrival point x.

1 %The f u n c t i o n ’ d i s h i s t ’ e x p l o r e s t h e d i s t r i b u t i o n o f

p o i n t s and v e r i f i e s t h a t i t behaves l i k e a G a u s s i a n

.

2

3 %INPUT : X0= s t a r t i n g p o i n t ;

4 %. n=number o f p a r t i c l e s ;

5 %. T= p e r i o d of o b s e r v a t i o n ;

6 %. N= d i s c r e t i z a t i o n s t e p ;
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7 %. mu=mean ;

8 %. sigma= s t a n d a r d d e v i a t i o n ;

9 %. D= d i f f u s i o n c o e f f i c i e n t ;

10 %. h=number o f h i s t o g r a m columns .

11

12 %OUTPUT: x= a r r i v a l p o i n t s v e c t o r .

13

14 f u n c t i o n [ x ] = d i s h i s t ( X0 , n , T , N, mu , sigma , D, tau , h )

15

16 f i g u r e ( 1 ) ;

17 [X, t ]= oup ( X0 , n , T , N, mu , sigma , D, t a u ) ;

18 %[ coun t s , c e n t e r s ]= h i s t ( x , h )

19 %c o u n t s = c o u n t s o f t h e number o f e l e m e n t s i n each

column , r e t u r n e d as a row v e c t o r .

20 %c e n t e r s =columns c e n t e r s , r e t u r n e d as a numer ic row

v e c t o r .

21 [m, x ] = h i s t (X ( : , end ) , h ) ; %E m p i r i c a l h i s t o g r a m

f u n c t i o n

22 m norm = (m . / l e n g t h (X ( : , end ) ) ) . / ( x ( 2 ) x ( 1 ) ) ;

23 %Normal ize h i s t o g r a m f u n c t i o n

24 bar ( x , m norm ) ; %The Mat lab f u n c t i o n bar c r e a t e s

an

25 %h i s t o g r a m p l o t

26 hold ( ’ on ’ ) ;

27

28 %P l o t t h e shape o f e m p i r i c a l d i s t r i b u t i o n on t h e

h i s t o g r a m :

29 p l o t ( x , m norm , ’ r ’ ) ;

30 x l a b e l ( ’ x ’ ) , y l a b e l ( ’ D i s t r i b u t i o n ’ ) ;

31 t i t l e ( ’ E m p i r i c a l D i s t r i b u t i o n ’ ) ;

32
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33 f i g u r e ( 2 ) ;

34 pd = f i t d i s t (X ( : , end ) , ’ Normal ’ ) ; %The Mat lab f u n c t i o n

’ f i t d i s t ’ c r e a t e s a p r o b a b i l i t y d i s t r i b u t i o n o b j e c t

by f i t t i n g t h e d i s t r i b u t i o n s p e c i f i e d t o t h e d a t a

i n column v e c t o r .

35

36 y = pdf ( pd , x ) ; %The Mat lab f u n c t i o n ’ pdf ’ r e t u r n s t h e

p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n o f t h e pd ,

e v a l u a t e d a t t h e v a l u e s i n x .

37

38 %P l o t t h e shape o f t h e e m p i r i c a l d i s t r i b u t i o n on t h e

39 %G a u s s i a n one :

40 semi logy ( x , y , ’ b ’ ) ;

41 hold ( ’ on ’ ) ;

42 p l o t ( x , m norm , ’ r ’ ) ;

43 t i t l e ( ’ Comparison wi th G a u s s i a n ’ ) ;

44 end
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Figure A.23: Histogram with shape of the empirical distribution for X0 = randn, n = 10000, T = 10, N = 500,

mu = 0, sigma = 1, D = 1, τ = 1, h = 100.

Figure A.24: Distribution obtained from the arrival histogram for X0 = randn, n = 10000, T = 10, N = 500,

mu = 0, sigma = 1, D = 1, τ = 1, h = 100.
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After verifying the result for the vector of arrival points, varying the number

of particles n and the time T , we show how the empirical distribution step by step

becomes more and more similar to the Gaussian distribution.

For this purpose we use the following function which creates a single plot in

which both the histogram, the empirical distribution and the Gaussian one appear

at each execution.

1 %The f u n c t i o n ’ t o t h i s t ’ c r e a t e s a s i n g l e p l o t i n %

which bo th t h e h i s t o g r a m , t h e e m p i r i c a l

d i s t r i b u t i o n and t h e G a u s s i a n one a p p e a r .

2

3 %INPUT : W0= s t a r t i n g p o i n t ;

4 % n=number o f p a r t i c l e s ;

5 % T= p e r i o d of o b s e r v a t i o n ;

6 % N= d i s c r e t i z a t i o n s t e p ;

7 % mu=mean ;

8 % sigma= s t a n d a r d d e v i a t i o n ;

9 % D= d i f f u s i o n c o e f f i c i e n t ;

10 % h=number o f h i s t o g r a m columns .

11

12 %OUTPUT: pd= d i s t r i b u t i o n .

13

14 f u n c t i o n [ pd ] = t o t h i s t (W0, n , T , N, mu , sigma , D, h )

15

16 [W, t ]=wp (W0, n , T , N, mu , sigma ,D) ;

17 %[ coun t s , c e n t e r s ]= h i s t ( x , h )

18 %c o u n t s = c o u n t s o f t h e number o f e l e m e n t s i n each

column , r e t u r n e d as a row v e c t o r .

19 %c e n t e r s =columns c e n t e r s , r e t u r n e d as a numer ic row

v e c t o r .
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20 [m, x ] = h i s t (W( : , end ) , h ) ; %E m p i r i c a l h i s t o g r a m

f u n c t i o n

21 m norm = (m . / l e n g t h (W( : , end ) ) ) . / ( x ( 2 ) −x ( 1 ) ) ; %

Normal i ze h i s t o g r a m f u n c t i o n

22 bar ( x , m norm ) ; %The Mat lab f u n c t i o n ’ bar ’ c r e a t e s an

23 %h i s t o g r a m p l o t

24 hold ( ’ on ’ ) ;

25

26 %P l o t t h e shape o f e m p i r i c a l d i s t r i b u t i o n on t h e

h i s t o g r a m :

27 p l o t ( x , m norm , ’ r ’ , ’ L i n e w i d t h ’ , 1 ) ;

28 hold ( ’ on ’ ) ;

29 pd = f i t d i s t (W( : , end ) , ’ Normal ’ ) ; %The Mat lab f u n c t i o n

’ f i t d i s t ’ c r e a t e s a p r o b a b i l i t y d i s t r i b u t i o n o b j e c t

by f i t t i n g t h e d i s t r i b u t i o n s p e c i f i e d t o t h e d a t a

i n column v e c t o r .

30

31 y = pdf ( pd , x ) ; %The Mat lab f u n c t i o n ’ pdf ’ r e t u r n s t h e

p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n o f t h e pd ,

e v a l u a t e d a t t h e v a l u e s i n x .

32

33 %P l o t t h e shape o f t h e G a u s s i a n d i s t r i b u t i o n on t h e

h i s t o g r a m :

34 semi logy ( x , y , ’ L i n e w i d t h ’ , 1 . 5 )

35 x l a b e l ( ’ x ’ ) , y l a b e l ( ’ D i s t r i b u t i o n ’ )

36 t i t l e ( ’ D i s t r i b u t i o n s Trend ’ ) ;

37

38 end
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Figure A.25: STEP 1:X0 = randn, n = 100, T = 100, N = 500, mu = 0, sigma = 1, D = 1, τ = 1, h = 100

Figure A.26: STEP 2:X0 = randn, n = 150, T = 150, N = 500, mu = 0, sigma = 1, D = 1, τ = 1, h = 100
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Figure A.27: STEP 3:X0 = randn, n = 300, T = 300, N = 500, mu = 0, sigma = 1, D = 1, τ = 1, h = 100

Figure A.28: STEP 4:X0 = randn, n = 600, T = 600, N = 500, mu = 0, sigma = 1, D = 1, τ = 1, h = 100



120

Figure A.29: STEP 5:X0 = randn, n = 1000, T = 1000, N = 500, mu = 0, sigma = 1, D = 1, τ = 1, h = 100

Figure A.30: STEP 6:X0 = randn, n = 10000, T = 1000, N = 500, mu = 0, sigma = 1, D = 1, τ = 1, h = 100
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Variance Scale Law

In this section we intend to study the scale law of variance, for this purpose we

calculate the variance and build its graph to verify the trend. In particular we use

the function ’var trend’ that calculates the variance numerically using the Matlab

function ’var’.

We remember that we want to show that the variance of the process is such

that, after a certain instant, it saturates then becomes constant.

1 % The f u n c t i o n ’ v a r t r e n d ’ c a l c u l a t e s t h e v a r i a n c e

u s i n g t h e Mat lab f u n c t i o n ’ var ’ . Then t h e f u n c t i o n

makes t h e p l o t o f t h e v a r i a n c e t r e n d .

2

3 % INPUT : X0= s t a r t i n g p o i n t ;

4 % n=number o f p a r t i c l e s ;

5 % T= p e r i o d of o b s e r v a t i o n ;

6 % N= d i s c r e t i z a t i o n s t e p ;

7 % mu=mean ;

8 % sigma= s t a n d a r d d e v i a t i o n ;

9 % D= d i f f u s i o n c o e f f i c i e n t ;

10 % t a u = c o r r e l a t i o n t ime .

11

12 % OUTPUT: V= v a r i a n c e .

13

14 f u n c t i o n [V] = v a r t r e n d ( X0 , n , T , N, mu , sigma , D, t a u )

15

16 %R e c a l l t h e O r n s t e i n −Uhlenbeck P r o c e s s :

17 [X, t ] = oup ( X0 ,W0, n , T , N, mu , sigma , D, t a u )

18

19 V= v a r (X ( : , : ) , 1 ) ; %The Mat lab f u n c t i o n ’ var ’ r e t u r n s
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t h e v a r i a n c e o f t h e e l e m e n t s o f X

20

21 %P l o t o f t h e v a r i a n c e t r e n d :

22 p l o t ( t , V t o t )

23 x l a b e l ( ’ Time ( t ) ’ ) , y l a b e l ( ’ V a r i a n c e (V) ’ ) ;

24 t i t l e ( ’ V a r i a n c e Trend ’ ) ;

25

26 end

Figure A.31: Trend for X0 = randn, T = 10, N = 5000, mu = 0, sigma = 1, D = 1, τ = 1.
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Correlation Function

We use the following functions as τ and D vary, in order to find the relation-

ship between variance, correlation time and diffusion coefficient

1 %The s c r i p t ’ v a r t a u ’ c a l c u l a t e s t h e v a r i a n c e as t a u

v a r i e s

2

3 t a u 1 =1; [ Vt1 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , 1 , t a u 1 ) ;

4 hold ’ on ’

5 t a u 2 =2; [ Vt2 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , 1 , t a u 2 ) ;

6 t a u 3 =3; [ Vt3 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , 1 , t a u 3 ) ;

7 t a u 4 =4; [ Vt4 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , 1 , t a u 4 ) ;

8 t a u 5 =5; [ Vt5 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , 1 , t a u 5 ) ;

9 t a u 6 =6; [ Vt6 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , 1 , t a u 6 ) ;

10 t a u 7 =7; [ Vt7 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , 1 , t a u 7 ) ;

11 t a u 8 =8; [ Vt8 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , 1 , t a u 8 ) ;

12 t a u 9 =9; [ Vt9 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , 1 , t a u 9 ) ;

13 t a u 1 0 =10; [ Vt10 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , 1 , t a u 1 0

) ;

1 %The s c r i p t ’ v a r d i f f ’ c a l c u l a t e s t h e v a r i a n c e as D

v a r i e s

2

3 n =10000; X0=randn ; T=10; N=500; mu=0; s igma =1; t a u =1;

4 D1=1; [ V1 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , D1 , t a u ) ;

5 hold ’ on ’

6 D2=2; [ V2 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , D2 , t a u ) ;

7 D3=3; [ V3 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , D3 , t a u ) ;

8 D4=4; [ V4 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , D4 , t a u ) ;

9 D5=5; [ V5 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , D5 , t a u ) ;
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10 D6=6; [ V6 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , D6 , t a u ) ;

11 D7=7; [ V7 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , D7 , t a u ) ;

12 D8=8; [ V8 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , D8 , t a u ) ;

13 D9=9; [ V9 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , D9 , t a u ) ;

14 D10 =10; [ V10 ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , D10 , t a u ) ;

Figure A.32: Variance as D varies for X0 = randn, n = 8000, T = 10, N = 5000, mu = 0, sigma = 1, τ = 1 and

D = 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2.

Figure A.33: Variance as tau varies for X0 = randn, n = 8000, T = 10, N = 5000, mu = 0, sigma = 1, D = 1 and

τ = 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2.
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Figure A.34: Variance for X0 = randn, n = 10000, T = 10, N = 5000, mu = 0, sigma = 1, τ = [0.2 : 0.2 : 2],

D = [0.2 : 0.2 : 2].

The above figure was obtained using the following script

1 %This s c r i p t d i s p l a y s t h e r e l a t i o n s h i p between t h e

v a r i a n c e and t a u and t h e v a r i a n c e and D

2

3 t a u =[ t a u 1 t a u 2 t a u 3 t a u 4 t a u 5 t a u 6 t a u 7 t a u 8 t a u 9

t a u 1 0 ] ;

4 V t =[ Vt1 ( 1 , end ) Vt2 ( 1 , end ) Vt3 ( 1 , end ) Vt4 ( 1 , end ) Vt5

( 1 , end ) Vt6 ( 1 , end ) Vt7 ( 1 , end ) Vt8 ( 1 , end ) Vt9 ( 1 , end )

Vt10 ( 1 , end ) ] ;

5 p l o t ( t au , V t )

6 D=[D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 ] ;

7 V=[V1 ( 1 , end ) V2 ( 1 , end ) V3 ( 1 , end ) V4 ( 1 , end ) V5 ( 1 , end )

V6 ( 1 , end ) V7 ( 1 , end ) V8 ( 1 , end ) V9 ( 1 , end ) V10 ( 1 , end )

] ;

8 p l o t (D,V)
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We then used the following function to calculate the empirical correlation (E)

and the analytic correlation (C). In particular

E[XtXs] =
1

N −1

N

∑
i=1

(
Xti − X̄t

σ2
t

)(
Xsi − X̄s

σ2
s

)
and

C = e−|t−s|/τ ;

1 % The f u n c t i o n ’ c o r r e l a t i o n ’ c a l c u l a t e s t h e

c o r r e l a t i o n s E and C . Then t h e f u n c t i o n makes t h e

p l o t o f bo th t r e n d s .

2

3 % INPUT : X0= s t a r t i n g p o i n t ;

4 % n=number o f p a r t i c l e s ;

5 % T= p e r i o d of o b s e r v a t i o n ;

6 % N= d i s c r e t i z a t i o n s t e p ;

7 % mu=mean ;

8 % sigma= s t a n d a r d d e v i a t i o n ;

9 % D= d i f f u s i o n c o e f f i c i e n t ;

10 % t a u = c o r r e l a t i o n t ime .

11

12 % OUTPUT: E= e m p i r i c a l c o r r e l a t i o n ;

13 % C= a n a l y t i c c o r r e l a t i o n .

14

15 f u n c t i o n [ E , C] = c o r r e l a t i o n ( X0 , n , T , N, mu , sigma , D, t a u )

16

17 d t =T /N; %D i s c r e t i z a t i o n

18 t = ( 0 : d t : T ) ; %Ve c t o r o f sample t i m e s a s s o c i a t e d wi th

a l l s i m u l a t e d p a t h s

19

20 %C o n s t r u c t i o n o f t h e O r n s t e i n −Uhlenbeck P r o c e s s :

21 f o r i =1 : n
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22 X( i , 1 ) =X0 ( 1 ) ;

23 f o r j =1 :N

24 X( i , j +1) =X( i , j ) −(X( i , j ) / t a u ) * d t + s q r t (2*D) *
normrnd (mu , s igma ) * s q r t ( d t ) ;

25 %The Mat lab f u n c t i o n ’ normrnd ’ g e n e r a t e s a

random number from t h e normal d i s t r i b u t i o n

wi th mean p a r a m e t e r mu and s t a n d a r d

d e v i a t i o n p a r a m e t e r s igma .

26 end
27 end
28

29 %v a r i a n c e

30 V= v a r (X ( : , : ) , 1 ) ;

31

32 %e m p i r i c a l c o r r e l a t i o n

33 E= z e r o s ( 1 ,N+1) ;

34 m=mean (X) ;

35 f o r i =1 :N+1

36 f o r j =1 : n

37 E ( i ) =E ( i ) +(X( j , i ) −m( i ) ) . * (X( j , 2 5 0 ) −m( 2 5 0 ) ) ;

38 end
39 E ( i ) =E ( i ) . / ( V( i ) . *V( 2 5 0 ) ) ;

40 E ( i ) =E ( i ) . / ( n −1) ;

41 end
42 p l o t ( t , E )

43

44 %a n a l y t i c c o r r e l a t i o n

45 C=exp ( − abs ( t −5) . / t a u ) ;

46 hold on

47 p l o t ( t , C)

48
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49 x l a b e l ( ’ Time ’ ) , y l a b e l ( ’ C o r r e l a t i o n ’ )

50 t i t l e ( ’ C o r r e l a t i o n Trend ’ )

51 end

Figure A.35: Correlation for X0 = randn, n = 10000, T = 10, N = 500, mu = 0, sigma = 1, D = 1, τ = 1.
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A.3 Langevin Equation

The theory of Brownian motion is perhaps the simplest approximate way to

treat the dynamics of nonequilibrium systems. The fundamental equation is called

the Langevin equation, it contain both frictional forces and random forces.

The random motion of a small particle immersed in a fluid with the same

density as the particle is called Brownian motion.

While the motion of a dust particle performing Brownian motion appears to be

quite random, it must nevertheless be describable by the same equation of motion

as is any other dynamical system. In classical mechanics these are Newton’s or

Hamiltons equations. For simplicity we will consider motion in one dimension.

Newtons equation of motion for the particle in a fluid medium is

m
d v(t)

d t
= F(t)

where m is the mass of the particle, x(t) the position, v(t) the velocity and F(t)

the total instantaneous force on the particle at time t. This force is due to the

interaction of the Brownian particle with the surrounding medium. It is usually

not practical or even desirable to look for an exact expression for F(t). Experience

tells us that in typical cases this force is dominated by a friction force −γ v(t)

proportional to the velocity of the Brownian particle. We also expect a random

force ξ (t) due to random density fluctuations in the fluid.

The equations of motion of the Brownian particle are:
d x(t)

d t
= v(t)

d v(t)
d t

=− γ

m
v(t)+

1
m

ξ (t)
(A.2)

This is the Langevin equations of motion for the Brownian particle.

The random force ξ (t) is a stochastic variable giving the effect of background

noise due to the fluid on the Brownian particle. The effect of the fluctuating force

can be summarized by giving its first and second moments〈
ξ (t)

〉
ξ
= 0

〈
ξ (t1) ξ (t2)

〉
ξ
= g δ (t1 − t2) (A.3)
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The average ⟨. . .⟩ξ is an average with respect to the distribution of the realizations

of the stochastic variable ξ (t), g is a measure of the strength of the fluctuation

force and the delta function in time indicates that there is no correlation between

impacts in any distinct time intervals dt1 and dt2 because any memory between

forces at different times will be lost due to these frequent collisions.

The remaining mathematical specification of this dynamical model is that the

fluctuating force has a Gaussian distribution determined by the moments in A.3.

We can obtain an explicit formal solution of A.2 as

v(t) = e−t/τB v(0)+
1
m

∫ t

0
ds e−(t−s)/τB ξ (s) (A.4)

How do we know that the integral in A.4 exists?

To obtain a meaning to A.2 and A.4 we write A.2 as

d v(t) =− γ

m
v(t) dt +

1
m

d U(t) (A.5)

where

d U(t) = ξ (t) dt

We now discuss the integral noice U(t) for long times t. Dividing t into intervals

we have

U(t)−U(0) =
n

∑
k=1

[U(tk)−U(tk−1)] (A.6)

with 0 = t0 < t1 < · · · < tn = t. U(t) is a continous Markov process with zero

mean. Applying the central limit theorem to A.6 we deduce that U(t) is Gaussian

with zero mean. Therefore, it has all the requirements for a Wiener process, i.e.

U(t) =W (t)

and we can write A.5 as

d v(t) =− γ

m
v(t) dt +

1
m

d W (t) (A.7)

and the solution A.4 becomes

v(t) = e−t/τB v(0)+
1
m

∫ t

0
ds e−(t−s)/τB dW (s) (A.8)
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A.3.1 Fluctuation dissipation theorem

Now consider the correlation of the Ornstein-Uhlenbeck process with respect

to the velocity expressed as follows

Cv(t2, t1) =
g τB

2m2

[
e−(|t2−t1|)/τB − e−(t2+t1)/τB

]
(A.9)

where g denotes the variance of W (t).

We can therefore obtain the distribution functions for the velocity knowing the

first and second moments:

• First moment 〈
v(t)
〉
= v0e−t/τB

• Second moment〈
v(t2)v(t1)

〉
ξ
=

[
v2

0 −
g τB

2mm

]
e−(t2+t1)/τB +

g τB

2mm e−(|t2−t1|)/τB

Here we can also average over the velocity distribution where in equilibrium〈
v2

0
〉

eq =
kBT
m〈〈

v2〉
ξ

〉
eq =

[〈
v2

0
〉

eq −
g τB

2m2

]
e−2t/τB +

g τB

2m2

(A.10)

The condition for equilibrium is that
〈〈

v2〉
ξ

〉
eq = kBT/m. This requires

g =
2mkBT

τB
= 2γkBT (A.11)

This important result is known as the Fluctuation dissipation theorem. It relates

the strength g of the random noise or fluctuating force to the magnitude γ of the

friction or dissipation.

The variance of v(t) is obtained from A.9 for t2 = t1 = t and with g = 2γkBT

as

σ
2
v (t) =

kBT
m

[
1− e−2t/τB

]
(A.12)
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We can also get an expression for the displacement of the particle

x(t) = x0 + v0τB

[
1− e−t/τB

]
+

τB

m

∫ t

0

[
1− e−(t−u)/τB

]
dW (u) (A.13)

the average displacement is then

µx(t) =
〈
x(t)
〉

ξ
= x0 + v0τB

[
1− e−t/τB

]
(A.14)

An important quantity is the mean squared displacement of the particle from the

starting point, in equilibrium we get for long times〈〈
(x(t)− x0)

2〉〉= 2kBT
γ

t

that can be compared with the diffusion result〈〈
(x(t)− x0)

2〉〉= 2Dt

which gives the Stokes-Einstein result

D =
kBT

γ
(A.15)

A.3.2 Simulation

In this section we will use what was previously described in order to simulate

a Langevin Process. In particular, the simulation will be divided into several steps:

• calculate and show the trajectory of a Langiv process X(t) with velocity v(t)

given by the Ornstein-Uhlenbeck process;

• construct a histogram showing the distribution trend for a fixed time t at the

arrival point;

• show that the variance of the position has a constant asymptotic trend;

• compare the variance of the position with the variance of the velocity.
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Trajectory of a Langevin process

For simulation was built a function that, from a known starting point and a

known sequence of sample times, implements the Langevin process using the

Ornstein-Uhlenbeck process as velocity.

1 %The f u n c t i o n ’ lang ’ c r e a t e s and d i s p l a y s a Langevin

p r o c e s s .

2

3 %INPUT : X0= s t a r t i n g p o i n t ;

4 % n=number o f p a r t i c l e s ;

5 % T= p e r i o d of o b s e r v a t i o n ;

6 % N= d i s c r e t i z a t i o n s t e p ;

7 % mu=mean ;

8 % sigma= s t a n d a r d d e v i a t i o n ;

9 % D= d i f f u s i o n c o e f f i c i e n t ;

10 % t a u = c o r r e l a t i o n t ime .

11 %OUTPUT: X= Langevin p r o c e s s ;

12 % v= v e l o c i t y .

13

14 f u n c t i o n [X, v ] = l a n g ( X0 , n , T , N, mu , sigma , D, t a u )

15

16 d t =T /N; %D i s c r e t i z a t i o n

17 t = ( 0 : d t : T ) ; %Ve c t o r o f sample t i m e s

18

19 %C o n s t r u c t i o n o f t h e P r o c e s s :

20 [ v , ˜ ] = oup ( x0 , n , T , N, mu , sigma , D, t a u ) ; %r e c a l l t h e

v e l o c i t y from O r n s t e i n −Uhlenbeck

21 X= z e r o s ( n ,N) ; %i n i t i a l i z a t i o n o f t h e p o s i t i o n m a t r i x

22 f o r i =1 : n

23 f o r j =1 :N
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24 X( i , j +1) = X( i , j ) + v ( i , j ) * d t ;

25 end
26 end
27

28 %P l o t t h e o u t p u t p a t h s :

29 p l o t ( t ,X) ;

30 x l a b e l ( ’ Time ’ ) , y l a b e l ( ’ P r o c e s s S t a t e ’ ) ;

31 t i t l e ( ’ A p p l i c a t i o n o f t h e Langevin e q u a t i o n ’ ) ;

32 end

Figure A.36: Trajectories for X0 = randn, n = 5, T = 50, N = 100, mu = 0, sigma = 1, D = 1, τ = 1.

Figure A.37: Trajectories for X0 = randn, n = 10000, T = 50, N = 100, mu = 0, sigma = 1, D = 1, τ = 1.
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Distribution Trend

In this section we will study the distribution of the process considered.

In particular we use a function that constructs an histogram for a fixed instant of

time t at the arrival point x.

1 %The f u n c t i o n ’ d i s h i s t ’ e x p l o r e s t h e d i s t r i b u t i o n o f

p o i n t s and v e r i f i e s t h a t i t behaves l i k e a G a u s s i a n

.

2

3 %INPUT : X0= s t a r t i n g p o i n t ;

4 %. n=number o f p a r t i c l e s ;

5 %. T= p e r i o d of o b s e r v a t i o n ;

6 %. N= d i s c r e t i z a t i o n s t e p ;

7 %. mu=mean ;

8 %. sigma= s t a n d a r d d e v i a t i o n ;

9 %. D= d i f f u s i o n c o e f f i c i e n t ;

10 %. h=number o f h i s t o g r a m columns .

11

12 %OUTPUT: x= a r r i v a l p o i n t s v e c t o r .

13

14 f u n c t i o n [ x ] = d i s h i s t ( X0 , n , T , N, mu , sigma , D, tau , h )

15

16 f i g u r e ( 1 ) ;

17 [X, ˜ ] = l a n g ( X0 , n , T , N, mu , sigma , D, t a u ) ;

18 %[ coun t s , c e n t e r s ]= h i s t ( x , h )

19 %c o u n t s = c o u n t s o f t h e number o f e l e m e n t s i n each

column , r e t u r n e d as a row v e c t o r .

20 %c e n t e r s =columns c e n t e r s , r e t u r n e d as a numer ic row

v e c t o r .

21 [m, x ] = h i s t (X ( : , end ) , h ) ; %E m p i r i c a l h i s t o g r a m

f u n c t i o n
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22 m norm = (m . / l e n g t h (X ( : , end ) ) ) . / ( x ( 2 ) x ( 1 ) ) ;

23 %Normal ize h i s t o g r a m f u n c t i o n

24 bar ( x , m norm ) ; %The Mat lab f u n c t i o n bar c r e a t e s

an

25 %h i s t o g r a m p l o t

26 hold ( ’ on ’ ) ;

27

28 %P l o t t h e shape o f e m p i r i c a l d i s t r i b u t i o n on t h e

h i s t o g r a m :

29 p l o t ( x , m norm , ’ r ’ ) ;

30 x l a b e l ( ’ x ’ ) , y l a b e l ( ’ D i s t r i b u t i o n ’ ) ;

31 t i t l e ( ’ E m p i r i c a l D i s t r i b u t i o n ’ ) ;

32

33 f i g u r e ( 2 ) ;

34 pd = f i t d i s t (X ( : , end ) , ’ Normal ’ ) ; %The Mat lab f u n c t i o n

’ f i t d i s t ’ c r e a t e s a p r o b a b i l i t y d i s t r i b u t i o n o b j e c t

by f i t t i n g t h e d i s t r i b u t i o n s p e c i f i e d t o t h e d a t a

i n column v e c t o r .

35

36 y = pdf ( pd , x ) ; %The Mat lab f u n c t i o n ’ pdf ’ r e t u r n s t h e

p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n o f t h e pd ,

e v a l u a t e d a t t h e v a l u e s i n x .

37

38 %P l o t t h e shape o f t h e e m p i r i c a l d i s t r i b u t i o n on t h e

39 %G a u s s i a n one :

40 semi logy ( x , y , ’ b ’ ) ;

41 hold ( ’ on ’ ) ;

42 p l o t ( x , m norm , ’ r ’ ) ;

43 t i t l e ( ’ Comparison wi th G a u s s i a n ’ ) ;

44 end
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Figure A.38: Histogram with shape of the empirical distribution for X0 = randn, n = 10000, T = 50, N = 100,

mu = 0, sigma = 1, D = 1, τ = 1, h = 100.

Figure A.39: Distribution obtained from the arrival histogram for X0 = randn, n = 10000, T = 50, N = 100,

mu = 0, sigma = 1, D = 1, τ = 1, h = 100.
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Varying the number of particles n and the time T , we show how the empirical

distribution becomes similar to the Gaussian.

For this purpose we use the following function which creates a single plot in

which both the histogram, the empirical distribution and the Gaussian one appear

at each execution.

1 %The f u n c t i o n ’ t o t h i s t ’ c r e a t e s a s i n g l e p l o t i n %

which bo th t h e h i s t o g r a m , t h e e m p i r i c a l

d i s t r i b u t i o n and t h e G a u s s i a n one a p p e a r .

2

3 %INPUT : W0= s t a r t i n g p o i n t ;

4 % n=number o f p a r t i c l e s ;

5 % T= p e r i o d of o b s e r v a t i o n ;

6 % N= d i s c r e t i z a t i o n s t e p ;

7 % mu=mean ;

8 % sigma= s t a n d a r d d e v i a t i o n ;

9 % D= d i f f u s i o n c o e f f i c i e n t ;

10 % h=number o f h i s t o g r a m columns .

11

12 %OUTPUT: pd= d i s t r i b u t i o n .

13

14 f u n c t i o n [ pd ] = t o t h i s t (W0, n , T , N, mu , sigma , D, h )

15

16 [X, ˜ ] = l a n g ( X0 , n , T , N, mu , sigma , D, t a u ) ;

17 %[ coun t s , c e n t e r s ]= h i s t ( x , h )

18 %c o u n t s = c o u n t s o f t h e number o f e l e m e n t s i n each

column , r e t u r n e d as a row v e c t o r .

19 %c e n t e r s =columns c e n t e r s , r e t u r n e d as a numer ic row

v e c t o r .

20 [m, x ] = h i s t (W( : , end ) , h ) ; %E m p i r i c a l h i s t o g r a m
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f u n c t i o n

21 m norm = (m . / l e n g t h (W( : , end ) ) ) . / ( x ( 2 ) −x ( 1 ) ) ; %

Normal i ze h i s t o g r a m f u n c t i o n

22 bar ( x , m norm ) ; %The Mat lab f u n c t i o n ’ bar ’ c r e a t e s an

23 %h i s t o g r a m p l o t

24 hold ( ’ on ’ ) ;

25

26 %P l o t t h e shape o f e m p i r i c a l d i s t r i b u t i o n on t h e

h i s t o g r a m :

27 p l o t ( x , m norm , ’ r ’ , ’ L i n e w i d t h ’ , 1 ) ;

28 hold ( ’ on ’ ) ;

29 pd = f i t d i s t (W( : , end ) , ’ Normal ’ ) ; %The Mat lab f u n c t i o n

’ f i t d i s t ’ c r e a t e s a p r o b a b i l i t y d i s t r i b u t i o n o b j e c t

by f i t t i n g t h e d i s t r i b u t i o n s p e c i f i e d t o t h e d a t a

i n column v e c t o r .

30

31 y = pdf ( pd , x ) ; %The Mat lab f u n c t i o n ’ pdf ’ r e t u r n s t h e

p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n o f t h e pd ,

e v a l u a t e d a t t h e v a l u e s i n x .

32

33 %P l o t t h e shape o f t h e G a u s s i a n d i s t r i b u t i o n on t h e

h i s t o g r a m :

34 semi logy ( x , y , ’ L i n e w i d t h ’ , 1 . 5 )

35 x l a b e l ( ’ x ’ ) , y l a b e l ( ’ D i s t r i b u t i o n ’ )

36 t i t l e ( ’ D i s t r i b u t i o n s Trend ’ ) ;

37

38 end
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Figure A.40: STEP 1:X0 = randn, n = 1000, T = 50, N = 100, mu = 0, sigma = 1, D = 1, τ = 1, h = 100

Figure A.41: STEP 2:X0 = randn, n = 1500, T = 150, N = 500, mu = 0, sigma = 1, D = 1, τ = 1, h = 100
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Figure A.42: STEP 3:X0 = randn, n = 3000, T = 300, N = 500, mu = 0, sigma = 1, D = 1, τ = 1, h = 100

Figure A.43: STEP 4:X0 = randn, n = 6000, T = 600, N = 500, mu = 0, sigma = 1, D = 1, τ = 1, h = 100
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Figure A.44: STEP 5:X0 = randn, n = 10000, T = 1000, N = 500, mu = 0, sigma = 1, D = 1, τ = 1, h = 100

Figure A.45: STEP 6:X0 = randn, n = 100000, T = 1000, N = 500, mu = 0, sigma = 1, D = 1, τ = 1, h = 100
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Variance Trend

In this section we intend to study the scale law of variance, for this purpose we

calculate the variance and build its graph to verify the trend. In particular we use

the function ’var trend’ that calculates the variance numerically using the Matlab

function ’var’.

We remember that we want to show that the variance of the process is such that:

for t that tends to zero it behaves like t2 while its asymptotic trend is linear like t.

1 % The f u n c t i o n ’ v a r t r e n d ’ c a l c u l a t e s t h e v a r i a n c e

u s i n g t h e Mat lab f u n c t i o n ’ var ’ . Then t h e f u n c t i o n

makes t h e p l o t o f t h e e m p i r i c a l and a n a l y t i c a l

v a r i a n c e t r e n d .

2

3 % INPUT : X0= s t a r t i n g p o i n t ;

4 % n=number o f p a r t i c l e s ;

5 % T= p e r i o d of o b s e r v a t i o n ;

6 % N= d i s c r e t i z a t i o n s t e p ;

7 % mu=mean ;

8 % sigma= s t a n d a r d d e v i a t i o n ;

9 % D= d i f f u s i o n c o e f f i c i e n t ;

10 % t a u = c o r r e l a t i o n t ime .

11

12 % OUTPUT: V p= p o s i t i o n v a r i a n c e ;

13 % V v= v e l o c i t y v a r i a n c e .

14

15 f u n c t i o n [ V p , V v ] = v a r t r e n d ( X0 , n , T , N, mu , sigma , D, t a u )

16

17 d t =T /N; %D i s c r e t i z a t i o n

18 t = ( 0 : d t : T ) ; %Ve c t o r o f sample t i m e s

19 [X, v ] = l a n g ( X0 , n , T , N, mu , sigma , D, t a u )
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20

21 %P l o t o f t h e e m p i r i c a l v a r i a n c e s c a l e law :

22 V p= v a r (X, 1 ) ;

23 V v= v a r ( v , 1 ) ;

24 p l o t ( t , V p ) %p o s i t i o n

25 x l a b e l ( ’ Time ( t ) ’ ) , y l a b e l ( ’ V a r i a n c e (V) ’ ) ;

26 t i t l e ( ’ V a r i a n c e S c a l e Law ’ ) ;

27 hold ’ on ’

28 p l o t ( t , V v ) %v e l o c i t y

29

30 %P l o t o f t h e a n a l y t i c a l v a r i a n c e s c a l e law :

31 hold ’ on ’

32 V num=D. * 2 . * ( t a u ˆ 2 ) . * t ;

33 p l o t ( t , V num )

34

35 end

Figure A.46: Variance trend for X0 = randn, n = 1000, T = 10, N = 100, mu = 0, sigma = 1, D = 1,

τ = 0.2,0.3,0.5,0.8,1.
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After having seen the trend of the empirical variance as τ varies, we consider

the graph in A.47 that compares the latter with the analytical one〈
X2〉= 2 ν t

where the coefficient ν is

ν = D τ
2

The last figure A.48, on the other hand, compares the variance of the position

and the variance of the velocity.

Figure A.47: Variance trend for X0 = randn, n = 8000, T = 50, N = 100, mu = 0, sigma = 1, D = 1, τ = 1.

Figure A.48: Variance trend for X0 = randn, n = 1000, T = 10, N = 100, mu = 0, sigma = 1, D = 1, τ = 1.



Appendix B

Algorithms

In this appendix we report all the lines of code we wrote to carry out the anal-

ysis we discuss in the Chapter 3.

The codes are written for a general case in fact we write i in place of the

particular matrix considered. All the analysis reported here has been done in

the same way for the different cases: slope10◦, slope15◦, slope20◦, slope30◦,

slope40◦, slope45◦, considering the corresponding data.

B.1 Data cleansing� �
1 import numpy as np

2 import pandas as pd

3

4 dati = ’dati_slope.csv’ # data set 1000 threads

5 CSVData = open(dati)

6

7 X = np.loadtxt(CSVData , delimiter=",")

8

9 X0=X[1:1001 ,0] # t = 0 min

10 X1=X[1002:2002 ,0] # t = 10 min

11 X2=X[2003:3003 ,0] # t = 20 min

12 X3=X[3004:4004 ,0] # t = 30 min

13 X4=X[4005:5005 ,0] # t = 40 min

14 X5=X[5006:6006 ,0] # t = 50 min

15 X6=X[6007:7007 ,0] # t = 60 min

146



147

16 X7=X[7008:8008 ,0] # t = 70 min

17 X8=X[8009:9009 ,0] # t = 80 min

18 X9=X[9010:10010 ,0] # t = 90 min

19 X10=X[10011:11011 ,0] # t = 100 min

20

21 def no_repertir(X_curr , X_prev):

22 dif_x = X_curr-X_prev

23 X_curr = X_curr[dif_x > np.exp(-9)]

24

25 return X_curr

26

27

28 X1 = no_repertir(X1, X0)

29 X2 = no_repertir(X2, X1)

30 X3 = no_repertir(X3, X2)

31 X4 = no_repertir(X4, X3)

32 X5 = no_repertir(X5, X4)

33 X6 = no_repertir(X6, X5)

34 X7 = no_repertir(X7, X6)

35 X8 = no_repertir(X8, X7)

36 X9 = no_repertir(X9, X8)

37 X10 = no_repertir(X10 , X9)� �
B.2 Histogram representation� �

1 import matplotlib.pyplot as plt

2 import seaborn as sns

3

4 Ni,Bi,_=plt.hist(Xi, bins = 30, density=True , edgecolor=’black ’,

5 label=’t=ix10 min’)

6 plt.legend ()

7 plt.show()

8

9 # empirical distribution

10

11 sns.distplot(Xi , bins = 30, color="blue",hist_kws=dict( density=True ,

edgecolor="black", linewidth=1, label=’t=ix10 min’))

12 plt.legend ()

13 plt.show()

14

15 sns.distplot(Xi , bins = 30, color="green",hist_kws=dict( density=True ,

edgecolor="black", linewidth=1,label=’t=ix10 min’))

16 plt.legend ()

17 plt.semilogy ()

18 plt.show()
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19

20 Ci = 0.5 ∗ (Bi[1:]+Bi[:-1])

21 plt.plot(Ci ,Ni) ## using bin_centers

22 plt.show()� �� �
1 from matplotlib import rcParams

2

3 rcParams[’figure.figsize ’] = 20, 15

4 plt.hist(X0 , bins = 5, density=True ,edgecolor=’black’, label=’t=0m’)

5 plt.hist(X1 , bins = 5, density=True ,edgecolor=’black’, label=’t=10m’)

6 plt.hist(X2 , bins = 20, density=True , edgecolor=’black’, label=’t=20m’)

7 plt.hist(X3 , bins = 30, density=True , edgecolor=’black’, label=’t=30m’)

8 plt.hist(X4 , bins = 50, density=True , edgecolor=’black’, label=’t=40m’)

9 plt.hist(X5 , bins = 80, density=True , edgecolor=’black’, label=’t=50m’)

10 plt.hist(X6 , bins = 80, density=True , edgecolor=’black’, label=’t=60m’)

11 plt.hist(X7 , bins = 80, density=True , edgecolor=’black’, label=’t=70m’)

12 plt.hist(X8 , bins = 80, density=True , edgecolor=’black’, label=’t=80m’)

13 plt.hist(X9 , bins = 90, density=True , edgecolor=’black’, label=’t=90m’)

14 plt.hist(X10 , bins = 100, density=True , edgecolor=’black ’, label=’t=100m’)

15 plt.legend ()

16 plt.show()� �� �
1 from matplotlib import rcParams

2

3 rcParams[’figure.figsize ’] = 20, 15

4 kwargs = dict(hist_kws ={’alpha ’:.6}, kde_kws ={’linewidth ’:2})

5 sns.distplot(X1 , label=’pdf1 - t = 10 min’, ∗ ∗ kwargs)

6 sns.distplot(X2 , label=’pdf2 - t = 20 min’, ∗ ∗ kwargs)

7 sns.distplot(X3 , label=’pdf3 - t = 30 min’, ∗ ∗ kwargs)

8 sns.distplot(X4 , label=’pdf4 - t = 40 min’, ∗ ∗ kwargs)

9 sns.distplot(X5 , label=’pdf5 - t = 50 min’, ∗ ∗ kwargs)

10 sns.distplot(X6 , label=’pdf6 - t = 60 min’, ∗ ∗ kwargs)

11 sns.distplot(X7 , label=’pdf7 - t = 70 min’, ∗ ∗ kwargs)

12 sns.distplot(X8 , label=’pdf8 - t = 80 min’, ∗ ∗ kwargs)

13 sns.distplot(X9 , label=’pdf9 - t = 90 min’, ∗ ∗ kwargs)

14 sns.distplot(X10 , label=’pdf10 - t = 100 min’, ∗ ∗ kwargs)

15

16 plt.legend ()

17 plt.show()� �
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B.3 Other variables trend� �
1 area_mean = ’areamean_slope.csv’

2 CSVData = open(area_mean)

3

4 A = np.loadtxt(CSVData , delimiter=",")

5 y=A[:,0]

6 x=A[:,1]

7

8 fig1 = plt.figure ()

9 plt.plot(x,y)

10 fig1.suptitle(’mean area’)

11 plt.xlabel(’time’)

12 plt.ylabel(’area’)

13 plt.show()� �� �
1 from statistics import variance

2

3 # Var(X)=E[(X-mu)^2]

4

5 V0=variance(X0)

6 V1=variance(X1)

7 V2=variance(X2)

8 V3=variance(X3)

9 V4=variance(X4)

10 V5=variance(X5)

11 V6=variance(X6)

12 V7=variance(X7)

13 V8=variance(X8)

14 V9=variance(X9)

15 V10=variance(X10)

16

17 V=[V0, V1, V2, V3 , V4 , V5, V6, V7, V8, V9 , V10]

18 V = np.array(V)

19 print(V)

20

21 t=A[:,1]

22

23 fig2 = plt.figure ()

24 plt.plot(t,V)

25 fig2.suptitle(’variance trend of A’)

26 plt.xlabel(’time’)

27 plt.ylabel(’variance ’)

28

29 plt.show()� �
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� �
1 from scipy.stats import norm

2

3 norm_dist_Xi = norm(Xi.mean(), Xi.std())

4 xi = np.linspace(np.min(Xi), np.max(Xi), 1000)

5 pdf_Xi = [norm_dist_Xi.pdf(x) for x in xi]

6 pdf_Xi = np.array(pdf_Xi)

7 dxi=pdf_Xi [999]

8 maxi=np.max(pdf_Xi)

9

10 while True:

11 for x in Xi:

12 pdf_maxi = np.array([ norm_dist_Xi.pdf(x)])

13 maxxi=x

14 if not abs(maxi-pdf_maxi)<np.exp(-7):

15 break

16

17

18 maxx=np.array ([X0[1],maxx1 ,maxx2 ,maxx3 ,maxx4 ,maxx5 ,maxx6 ,maxx7 ,maxx8 ,maxx9 ,

maxx10 ])

19 fig3 = plt.figure ()

20 plt.plot(t,maxx)

21 fig3.suptitle(’maxtrend ’)

22 plt.xlabel(’time’)

23 plt.ylabel(’max’)

24

25 print(X0[1],maxx2 ,maxx3 ,maxx4 ,maxx5)

26 print(maxx6 ,maxx7 ,maxx8 ,maxx9 ,maxx10)

27 plt.show()� �� �
1 from scipy.stats import pearsonr

2

3 #function that calculates the Pearson correlation coefficient:

4 #output: r correlation coefficient;

5 # two -sided p-value.

6

7 # s fixed to the second time step

8 corr11=np.array(pearsonr(X[1002:2002 ,0] ,X[1002:2002 ,0]))

9 corr12=np.array(pearsonr(X[1002:2002 ,0] ,X[2003:3003 ,0]))

10 corr13=np.array(pearsonr(X[1002:2002 ,0] ,X[3004:4004 ,0]))

11 corr14=np.array(pearsonr(X[1002:2002 ,0] ,X[4005:5005 ,0]))

12 corr15=np.array(pearsonr(X[1002:2002 ,0] ,X[5006:6006 ,0]))

13 corr16=np.array(pearsonr(X[1002:2002 ,0] ,X[6007:7007 ,0]))

14 corr17=np.array(pearsonr(X[1002:2002 ,0] ,X[7008:8008 ,0]))

15 corr18=np.array(pearsonr(X[1002:2002 ,0] ,X[8009:9009 ,0]))

16 corr19=np.array(pearsonr(X[1002:2002 ,0] ,X[9010:10010 ,0]))

17 corr110=np.array(pearsonr(X[1002:2002 ,0] ,X[10011:11011 ,0]))

18
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19 corr1=np.array([ corr11 [0], corr12 [0], corr13 [0], corr14 [0], corr15 [0], corr16 [0],

corr17 [0], corr18 [0], corr19 [0], corr110 [0]])

20 print(corr1)

21

22 t=A[:,1]

23

24 fig6 = plt.figure ()

25 plt.plot(t[1:11] , corr1)

26 fig6.suptitle(’correlation trend’)

27 plt.xlabel(’time’)

28 plt.ylabel(’correlation ’)

29 plt.show()� �
B.4 Rescale data� �

1 totY=np.concatenate ((Y2,Y3 ,Y4,Y5,Y6 ,Y7,Y8,Y9 ,Y10),axis=None)

2

3 #data scaling

4

5 import numpy as np

6

7 def NormalizeData(data):

8 return (data - np.min(data)) / (np.max(data) - np.min(data))

9

10 scaled_totS = NormalizeData(totY)� �
B.5 Parameters calculation and data fitting

B.5.1 Beta distribution� �
1 from sklearn.datasets import load_diabetes

2 import matplotlib.pyplot as plt

3 import seaborn as sns; sns.set()

4 import pandas as pd

5 from distfit import distfit

6 from scipy.stats import beta

7

8 # loc is short for "location parameter", and scale is naturally any scale

parameters.

9 # Location parameters would include the mean in the normal distribution and

the median in the Cauchy distribution.
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10 # Scale parameters are like the standard deviation in the normal

distribution , or either parameter of the gamma distribution.

11

12 a_y , b_y , loc_y , scale_y = beta.fit(scaled_totY)

13 print(a_y , b_y , loc_y , scale_y)

14 ax = plt.subplot (111)

15 ax.plot(np.linspace(0, 1, 100), beta.pdf(np.linspace(0, 1, 100), a_y , b_y ,

loc_y , scale_y))

16 plt.show()

17

18 a_y10 , b_y10 , loc_y10 , scale_y10 = beta.fit(scaled_totY10)

19 print(a_y10 , b_y10 , loc_y10 , scale_y10)

20 ax = plt.subplot (111)

21 ax.plot(np.linspace(0, 1, 100), beta.pdf(np.linspace(0, 1, 100), a_y10 ,

b_y10 , loc_y10 , scale_y10))

22 plt.show()

23

24 l_y=[ min(CY2), min(CY3), min(CY4), min(CY5), min(CY6), min(CY7), min(CY8),

min(CY9), min(CY10)]

25 g_y=[ max(CY2), max(CY3), max(CY4), max(CY5), max(CY6), max(CY7), max(CY8),

max(CY9), max(CY10)]

26 mm_s=min(l_y)

27 MM_s=max(g_y)

28

29 fig , ax = plt.subplots(1, 1)

30 x=np.linspace (0,1,100)

31 y_y= mm_y + x ∗ (MM_y-mm_y)

32 z_y=(y_y-mm_y)/(MM_y-mm_y)

33 ax.plot(y_y , beta.pdf(z_y , a_y , b_y , loc_y , scale_y) ∗ [1/(MM_y-mm_y)], ’r-’,

lw=5, alpha =0.6, label=’beta pdf’)� �� �
1 from matplotlib import rcParams

2 rcParams[’figure.figsize ’] = 15, 10

3

4 #linear

5

6 plt.plot(CY2 ,NY2[2:], label=’pdf2 - t = 20 min’)

7 plt.plot(CY3 ,NY3 ,label=’pdf3 - t = 30 min’)

8 plt.plot(CY4 ,NY4 ,label=’pdf4 - t = 40 min’)

9 plt.plot(CY5 ,NY5 ,label=’pdf5 - t = 50 min’)

10 plt.plot(CY6 ,NY6 ,label=’pdf6 - t = 60 min’)

11 plt.plot(CY7 ,NY7 ,label=’pdf7 - t = 70 min’)

12 plt.plot(CY8 ,NY8 ,label=’pdf8 - t = 80 min’)

13 plt.plot(CY9 ,NY9 ,label=’pdf9 - t = 90 min’)

14 plt.plot(CY10 ,NY10 ,label=’pdf10 - t = 100 min’)

15

16 plt.plot(y_y , (beta.pdf(z_y , a_y , b_y , loc_y , scale_y) ∗ [1/(MM_y-mm_y)]/1.1+
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beta.pdf(z_y10 , a_y10 , b_y10 , loc_y10 , scale_y10) ∗ [1/(MM_y10-mm_y10)]/

10), ’r-’, lw=5, alpha =0.6, label=’beta pdf’)

17

18 plt.title(’Distribution (A-Amedia)/sqrt[var(A-Amedia)]’)

19 plt.legend ()

20 plt.show()

21

22 #logarithmic

23

24 plt.plot(CY2 ,NY2[2:], label=’pdf2 - t = 20 min’)

25 plt.plot(CY3 ,NY3 ,label=’pdf3 - t = 30 min’)

26 plt.plot(CY4 ,NY4 ,label=’pdf4 - t = 40 min’)

27 plt.plot(CY5 ,NY5 ,label=’pdf5 - t = 50 min’)

28 plt.plot(CY6 ,NY6 ,label=’pdf6 - t = 60 min’)

29 plt.plot(CY7 ,NY7 ,label=’pdf7 - t = 70 min’)

30 plt.plot(CY8 ,NY8 ,label=’pdf8 - t = 80 min’)

31 plt.plot(CY9 ,NY9 ,label=’pdf9 - t = 90 min’)

32 plt.plot(CY10 ,NY10 ,label=’pdf10 - t = 100 min’)

33

34 plt.plot(y_y , (beta.pdf(z_y , a_y , b_y , loc_y , scale_y) ∗ [1/(MM_y10-mm_y10)]/

1.3+beta.pdf(z_y10 , a_y10 , b_y10 , loc_y10 , scale_y10) ∗ [1/(MM_y10-mm_y10)

]/10), ’r-’, lw=5, alpha =0.6, label=’beta pdf’)

35

36 plt.semilogy ()

37 plt.title(’Distribution (A-Amedia)/sqrt[var(A-Amedia)]’)

38 plt.ylim(np.exp(-4) ,3)

39 plt.xlim(-3,3)

40 plt.legend ()

41 plt.show()� �
B.5.2 Generalized logistic distribution� �

1 from sklearn.datasets import load_diabetes

2 import matplotlib.pyplot as plt

3 import seaborn as sns; sns.set()

4 import pandas as pd

5 from distfit import distfit

6 from scipy.stats import genlogistic

7

8 a_y , loc_y , scale_y = genlogistic.fit(scaled_totY)

9 a_y10 , loc_y10 , scale_y10 = genlogistic.fit(scaled_totY10)

10 ax = plt.subplot (111)

11 ax.plot(np.linspace(0, 1, 100), genlogistic.pdf(np.linspace(0, 1, 100), a_y ,

loc_y , scale_y))

12 plt.show()
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13

14 fig , ax = plt.subplots(1, 1)

15 x=np.linspace (0,1,100)

16 y_y= mm_y + x ∗ (MM_y-mm_y)

17 z_y=(y_y-mm_y)/(MM_y-mm_y)

18

19 y_y10= mm_y10 + x ∗ (MM_y10-mm_y10)

20 z_y10=(y_y10-mm_y10)/(MM_y10-mm_y10)

21

22 ax.plot(y_y , genlogistic.pdf(z_y , a_y , loc_y , scale_y) ∗ [1/(MM_y-mm_y)], ’r-’

, lw=5, alpha =0.6, label=’genlogistic pdf’)

23 plt.show()

24 ax.plot(y_Y10 , genlogistic.pdf(z_y , a_y , loc_y , scale_y) ∗ [1/(MM_y-mm_y)], ’r

-’, lw=5, alpha =0.6, label=’genlogistic pdf’)

25 plt.show()� �� �
1 from matplotlib import rcParams

2 rcParams[’figure.figsize ’] = 15, 10

3

4 #linear

5

6 plt.plot(CY2 ,NY2[2:], label=’pdf2 - t = 20 min’)

7 plt.plot(CY3 ,NY3 ,label=’pdf3 - t = 30 min’)

8 plt.plot(CY4 ,NY4 ,label=’pdf4 - t = 40 min’)

9 plt.plot(CY5 ,NY5 ,label=’pdf5 - t = 50 min’)

10 plt.plot(CY6 ,NY6 ,label=’pdf6 - t = 60 min’)

11 plt.plot(CY7 ,NY7 ,label=’pdf7 - t = 70 min’)

12 plt.plot(CY8 ,NY8 ,label=’pdf8 - t = 80 min’)

13 plt.plot(CY9 ,NY9 ,label=’pdf9 - t = 90 min’)

14 plt.plot(CY10 ,NY10 ,label=’pdf10 - t = 100 min’)

15

16 plt.plot(y_y , (genlogistic.pdf(z_y , a_y , loc_y , scale_y) ∗ [1/(MM_y-mm_y)]/

1.11+genlogistic.pdf(z_y10 , a_y10 , loc_y10 , scale_y10) ∗ [1/(MM_y10-mm_y10

)]/15), ’r-’, lw=5, alpha =0.6, label=’genlogistic pdf’)

17

18 plt.title(’Distribution (A-Amedia)/sqrt[var(A-Amedia)]’)

19 plt.legend ()

20 plt.show()

21

22 #logarithmic

23

24 plt.plot(CY2 ,NY2[2:], label=’pdf2 - t = 20 min’)

25 plt.plot(CY3 ,NY3 ,label=’pdf3 - t = 30 min’)

26 plt.plot(CY4 ,NY4 ,label=’pdf4 - t = 40 min’)

27 plt.plot(CY5 ,NY5 ,label=’pdf5 - t = 50 min’)

28 plt.plot(CY6 ,NY6 ,label=’pdf6 - t = 60 min’)

29 plt.plot(CY7 ,NY7 ,label=’pdf7 - t = 70 min’)
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30 plt.plot(CY8 ,NY8 ,label=’pdf8 - t = 80 min’)

31 plt.plot(CY9 ,NY9 ,label=’pdf9 - t = 90 min’)

32 plt.plot(CY10 ,NY10 ,label=’pdf10 - t = 100 min’)

33

34 plt.plot(y_y , (genlogistic.pdf(z_y , a_y , loc_y , scale_y) ∗ [1/(MM_y-mm_y)]/1.2

+genlogistic.pdf(z_y10 , a_y10 , loc_y10 , scale_y10) ∗ [1/(MM_y10-mm_y10)]/

15), ’r-’, lw=5, alpha =0.6, label=’genlogistic pdf’)

35

36 plt.semilogy ()

37 plt.title(’Distribution (A-Amedia)/sqrt[var(A-Amedia)]’)

38 plt.ylim(np.exp(-4) ,3)

39 plt.xlim(-2.8 ,3)

40 plt.legend ()

41 plt.show()� �
B.6 Analysis of moments of various order� �

1 scaled_totY2 = NormalizeData(Y2)

2 scaled_totY3 = NormalizeData(Y3)

3 scaled_totY4 = NormalizeData(Y4)

4 scaled_totY5 = NormalizeData(Y5)

5 scaled_totY6 = NormalizeData(Y6)

6 scaled_totY7 = NormalizeData(Y7)

7 scaled_totY8 = NormalizeData(Y8)

8 scaled_totY9 = NormalizeData(Y9)

9 scaled_totY10 = NormalizeData(Y10)

10

11 a_y2 , b_y2 , loc_y2 , scale_y2 = beta.fit(scaled_totY2)

12 a_y3 , b_y3 , loc_y3 , scale_y3 = beta.fit(scaled_totY3)

13 a_y4 , b_y4 , loc_y4 , scale_y4 = beta.fit(scaled_totY4)

14 a_y5 , b_y5 , loc_y5 , scale_y5 = beta.fit(scaled_totY5)

15 a_y6 , b_y6 , loc_y6 , scale_y6 = beta.fit(scaled_totY6)

16 a_y7 , b_y7 , loc_y7 , scale_y7 = beta.fit(scaled_totY7)

17 a_y8 , b_y8 , loc_y8 , scale_y8 = beta.fit(scaled_totY8)

18 a_y9 , b_y9 , loc_y9 , scale_y9 = beta.fit(scaled_totY9)

19 a_y10 , b_y10 , loc_y10 , scale_y10 = beta.fit(scaled_totY10)

20

21 mY2 ,vY2 ,sY2 ,kY2 = beta.stats(a_y2 , b_y2 , loc_y2 , scale_y2 , moments=’mvsk’)

22 mY3 ,vY3 ,sY3 ,kY3 = beta.stats(a_y3 , b_y3 , loc_y3 , scale_y3 , moments=’mvsk’)

23 mY4 ,vY4 ,sY4 ,kY4 = beta.stats(a_y4 , b_y4 , loc_y4 , scale_y4 , moments=’mvsk’)

24 mY5 ,vY5 ,sY5 ,kY5 = beta.stats(a_y5 , b_y5 , loc_y5 , scale_y5 , moments=’mvsk’)

25 mY6 ,vY6 ,sY6 ,kY6 = beta.stats(a_y6 , b_y6 , loc_y6 , scale_y6 , moments=’mvsk’)

26 mY7 ,vY7 ,sY7 ,kY7 = beta.stats(a_y7 , b_y7 , loc_y7 , scale_y7 , moments=’mvsk’)

27 mY8 ,vY8 ,sY8 ,kY8 = beta.stats(a_y8 , b_y8 , loc_y8 , scale_y8 , moments=’mvsk’)

28 mY9 ,vY9 ,sY9 ,kY9 = beta.stats(a_y9 , b_y9 , loc_y9 , scale_y9 , moments=’mvsk’)



156

29 mY10 ,vY10 ,sY10 ,kY10 = beta.stats(a_y10 , b_y10 , loc_y10 , scale_y10 , moments=’

mvsk’)� �� �
1 MY2=np.mean(scaled_totY2)

2 MY3=np.mean(scaled_totY3)

3 MY4=np.mean(scaled_totY4)

4 MY5=np.mean(scaled_totY5)

5 MY6=np.mean(scaled_totY6)

6 MY7=np.mean(scaled_totY7)

7 MY8=np.mean(scaled_totY8)

8 MY9=np.mean(scaled_totY9)

9 MY10=np.mean(scaled_totY10)

10

11 mY=[mY2 ,mY3 ,mY4 ,mY5 ,mY6 ,mY7 ,mY8 ,mY9 ,mY10]

12 mY=np.array(mY)

13 print(mY)

14

15 MY=[MY2 , MY3 , MY4 , MY5 , MY6 , MY7 , MY8 , MY9 , MY10]

16 MY = np.array(MY)

17 print(MY)

18

19 t=A[:,1]

20 plt.plot(t[2:],mY, ’r-’, label=’distribution mean’)

21 plt.plot(t[2:],MY, ’g-’, label=’data mean’)

22 plt.xlabel(’time’)

23 plt.ylabel(’mean’)

24 plt.title(’Beta Mean’)

25 plt.legend ()

26 plt.show()� �� �
1 from statistics import variance

2

3 VY2=np.var(scaled_totY2)

4 VY3=np.var(scaled_totY3)

5 VY4=np.var(scaled_totY4)

6 VY5=np.var(scaled_totY5)

7 VY6=np.var(scaled_totY6)

8 VY7=np.var(scaled_totY7)

9 VY8=np.var(scaled_totY8)

10 VY9=np.var(scaled_totY9)

11 VY10=np.var(scaled_totY10)

12

13 vY=[vY2 ,vY3 ,vY4 ,vY5 ,vY6 ,vY7 ,vY8 ,vY9 ,vY10]

14 vY=np.array(vY)

15 print(vY)

16

17 VY=[VY2 , VY3 , VY4 , VY5 , VY6 , VY7 , VY8 , VY9 , VY10]
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18 VY = np.array(VY)

19 print(VY)

20

21 t=A[:,1]

22 plt.plot(t[2:],vY, ’r-’, label=’distribution variance ’)

23 plt.plot(t[2:],VY, ’g-’, label=’data variance ’)

24 plt.xlabel(’time’)

25 plt.ylabel(’variance ’)

26 plt.title(’Beta Variance ’)

27 plt.legend ()

28 plt.show()� �� �
1 from scipy.stats import skew

2

3 SY2=skew(scaled_totY2)

4 SY3=skew(scaled_totY3)

5 SY4=skew(scaled_totY4)

6 SY5=skew(scaled_totY5)

7 SY6=skew(scaled_totY6)

8 SY7=skew(scaled_totY7)

9 SY8=skew(scaled_totY8)

10 SY9=skew(scaled_totY9)

11 SY10=skew(scaled_totY10)

12

13 SY=[SY2 , SY3 , SY4 , SY5 , SY6 , SY7 , SY8 , SY9 , SY10]

14 SY = np.array(SY)

15 print(SY)

16

17 sY=[sY2 ,sY3 ,sY4 ,sY5 ,sY6 ,sY7 ,sY8 ,sY9 ,sY10]

18 sY=np.array(sY)

19 print(sY)

20

21 t=A[:,1]

22 plt.plot(t[2:],sY, ’r-’, label=’distribution skew’)

23 plt.plot(t[2:],SY, ’g-’, label=’data skew’)

24 plt.xlabel(’time’)

25 plt.ylabel(’skew’)

26 plt.title(’Beta Skewness ’)

27 plt.legend ()

28 plt.show()� �� �
1 from scipy.stats import kurtosis

2

3 KY2=kurtosis(scaled_totY2)

4 KY3=kurtosis(scaled_totY3)

5 KY4=kurtosis(scaled_totY4)

6 KY5=kurtosis(scaled_totY5)
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7 KY6=kurtosis(scaled_totY6)

8 KY7=kurtosis(scaled_totY7)

9 KY8=kurtosis(scaled_totY8)

10 KY9=kurtosis(scaled_totY9)

11 KY10=kurtosis(scaled_totY10)

12

13 KY=[KY2 , KY3 , KY4 , KY5 , KY6 , KY7 , KY8 , KY9 , KY10]

14 KY = np.array(KY)

15 print(KY)

16

17 kY=[kY2 ,kY3 ,kY4 ,kY5 ,kY6 ,kY7 ,kY8 ,kY9 ,kY10]

18 kY=np.array(kY)

19 print(kY)

20

21 t=A[:,1]

22 plt.plot(t[2:],kY, ’r-’, label=’distribution kurtosis ’)

23 plt.plot(t[2:],KY, ’g-’, label=’data kurtosis ’)

24 plt.xlabel(’time’)

25 plt.ylabel(’kurtosis ’)

26 plt.title(’Beta Kurtosis Efficiency ’)

27 plt.legend ()

28 plt.show()� �



Appendix C

Software

In this Appendix, you can find some of the functions from Python library used

for the analysis. This function are used in the codes reported in Appendix B.

The additional software used is also listed.

C.1 Functions

• plt.hist: uses numpy.histogram to bin the data in x and count the number of

values in each bin, then draws the distribution either as a BarContainer or

Polygon.

Parameters:

– x : (n,) array or sequence of (n,) arrays

Input values, this takes either a single array or a sequence of arrays

which are not required to be of the same length.

– bins: int or sequence

If bins is an integer, it defines the number of equal-width bins in the

range. If bins is a sequence, it defines the bin edges, including the

left edge of the first bin and the right edge of the last bin; in this case,

bins may be unequally spaced. All but the last (righthand-most) bin is

half-open.
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– range: tuple or None, default: None

The lower and upper range of the bins. Lower and upper outliers are

ignored. If not provided, range is (x.min(),x.max()). Range has no

effect if bins is a sequence. If bins is a sequence or range is specified,

autoscaling is based on the specified bin range instead of the range of

x.

– density: bool, default: False

If True, draw and return a probability density: each bin will display the

bin’s raw count divided by the total number of counts and the bin width

(density = counts/(sum(counts) ∗ np.di f f (bins))), so that the area

under the histogram integrates to 1 (np.sum(density∗np.di f f (bins))==

1). If stacked is also True, the sum of the histograms is normalized to

1.

– color: color or array-like of colors or None, default: None

Color or sequence of colors, one per dataset. Default (None) uses the

standard line color sequence.

– label: str or None, default: None

String, or sequence of strings to match multiple datasets. Bar charts

yield multiple patches per dataset, but only the first gets the label, so

that legend will work as expected.

Returns:

– n: array or list of arrays

The values of the histogram bins. See density and weights for a de-

scription of the possible semantics. If input x is an array, then this is an

array of length nbins. If input is a sequence of arrays [data1, data2, ...],

then this is a list of arrays with the values of the histograms for each of

the arrays in the same order. The dtype of the array n (or of its element

arrays) will always be float even if no weighting or normalization is

used.
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– bins: array

The edges of the bins. Length nbins + 1 (nbins left edges and right

edge of last bin). Always a single array even when multiple data sets

are passed in.

– patches:BarContainer or list of a single Polygon or list such objects

Container of individual artists used to create the histogram or list of

such containers if there are multiple input datasets.

• sns.distplot: a Distplot or distribution plot, depicts the variation in the data

distribution. Seaborn Distplot represents the overall distribution of continu-

ous data variables. The Seaborn module along with the Matplotlib module

is used to depict the distplot with different variations in it. The Distplot de-

picts the data by a histogram and a line in combination to it.

Parameters:

– data: pandas.DataFrame, numpy.ndarray, mapping, or sequence

Input data structure. Either a long-form collection of vectors that can

be assigned to named variables or a wide-form dataset that will be

internally reshaped.

– label: str or None, default: None

String, or sequence of strings to match multiple datasets. Bar charts

yield multiple patches per dataset, but only the first gets the label, so

that legend will work as expected.

– kwargs

Other keyword arguments are documented with the relevant axes-level

function.

Returns:

– FaceGrid: an object managing one or more subplots that correspond

to conditional data subsets with convenient methods for batch-setting

of axes attributes.
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• nunpy.mean: compute the arithmetic mean along the specified axis. Returns

the average of the array elements. The average is taken over the flattened

array by default, otherwise over the specified axis.

Parameters:

– a: array like

Array containing numbers whose mean is desired. If a is not an array,

a conversion is attempted.

– axis: None or int or tuple of ints, optional

Axis or axes along which the means are computed. The default is to

compute the mean of the flattened array.

Returns:

– m: ndarray.

If out=None, returns a new array containing the mean values, otherwise a

reference to the output array is returned.

• variance: returns the variance of the array elements, a measure of the spread

of a distribution. The variance is computed for the flattened array by default,

otherwise over the specified axis.

Parameters:

– a: array like

Array containing numbers whose mean is desired. If a is not an array,

a conversion is attempted.

– axis: None or int or tuple of ints, optional

Axis or axes along which the means are computed. The default is to

compute the mean of the flattened array.
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Returns:

– m: ndarray, see dtype parameter above.

If out=None, returns a new array containing the mean values, otherwise a

reference to the output array is returned.

• correlation: return Pearson product-moment correlation coefficients.The

relationship between the correlation coefficient matrix, R, and the covari-

ance matrix, C, is

Ri j =
Ci j√
CiiC j j

Parameters:

– x: array like

A 1-D or 2-D array containing multiple variables and observations.

Each row of x represents a variable, and each column a single obser-

vation of all those variables.

– y: array like

An additional set of variables and observations. y has the same shape

as x.

Returns:

– R: ndarray.

The correlation coefficient matrix of the variables.

• beta fit: given the input data, this function gives as outputs the parameters

for the distribution to be a beta one. Therefore, it is possible to say that the

distribution was calculated empirically.

Parameters: data: array like
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Returns:

– a, b: array like

Shape parameters

– loc: array like

Location parameter

– scale: array like

Location parameter

• beta.stats: is a beta continuous random variable that is defined with a stan-

dard format and some shape parameters to complete its specification.

Parameters: a, b, loc, scale

Returns: mean, variance, skweness, kurtosis.

• skewness: for normally distributed data, the skewness should be about zero.

For unimodal continuous distributions, a skewness value greater than zero

means that there is more weight in the right tail of the distribution. The

function skewtest can be used to determine if the skewness value is close

enough to zero, statistically speaking.

Parameters:

– a: ndarray

Input array

– axis: int or None, default: 0

If an int, the axis of the input along which to compute the statistic.

The statistic of each axis-slice (e.g. row) of the input will appear in a

corresponding element of the output. If None, the input will be raveled

before computing the statistic.
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Returns:

– skewness: ndarray.

The skewness of values along an axis, returning NaN where all values are

equal.

• kurtosis: compute the kurtosis (Fisher or Pearson) of a dataset. Kurtosis is

the fourth central moment divided by the square of the variance. If Fisher’s

definition is used, then 3.0 is subtracted from the result to give 0.0 for a

normal distribution. If bias is False then the kurtosis is calculated using k

statistics to eliminate bias coming from biased moment estimators.

Parameters:

– a: ndarray

Data for which the kurtosis is calculated.

– axisint or None, default: 0

If an int, the axis of the input along which to compute the statistic.

The statistic of each axis-slice (e.g. row) of the input will appear in a

corresponding element of the output. If None, the input will be raveled

before computing the statistic.

Returns:

– kurtosis: array.

The kurtosis of values along an axis, returning NaN where all values are

equal.

C.2 Hypatia

Hypatia is the Cloud infrastructure that has been developed to support the com-

putational needs of the ELIXIR-GR community, but also the broader community



166

of life scientists in Greece and abroad. It currently hosts important ELIXIR-GR

services and resources (e.g., the national COVID19 Data Portal of Greece), while

it undertakes computational tasks in the context of various projects of ELIXIR-

GR members. The infrastructure is named after Hypatia, a Greek philosopher,

astronomer, and mathematician, who lived in Alexandria, Egypt.

Under the hood, Hypatia consists of a powerful computational cluster of het-

erogeneous physical machines. Currently, its cluster is comprised of: 32 basic

nodes: (2 CPUs, 14 cores/CPU, 512GB DDR4 RAM), 2 hefty nodes: (2 CPUs,

24 cores/CPU, 1TB DDR4 RAM), 3 GPU nodes: (2 CPUs, 14 cores/CPU, 768GB

DDR4 RAM, 2 GPUs), 8 I/O nodes: (2 CPUs, 14 cores/CPU, 512GB DDR4

RAM, 2×2TB SSD 6G), 9 infrastructure nodes:(2 CPUs, 14 cores/CPU, 192GB

DDR4 RAM).

Hypatia’s computational resources are allocated for predetermined time peri-

ods to particular user-created projects.

We had the opportunity to use this computational resource because it was provided

by BCAM.

C.3 Minitab

Minitab is a statistics package developed at the Pennsylvania State University

by researchers Barbara F. Ryan, Thomas A. Ryan, Jr., and Brian L. Joiner in con-

junction with Triola Statistics Company in 1972. It began as a light version of

OMNITAB 80, a statistical analysis program by National Institute of Standards

and Technology.

Minitab statistical software helps you understand your current and past data, to

find trends and predict patterns, discover hidden relationships between variables,

visualise interactions and identify important factors to answer even the most dif-

ficult questions and problems.
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Minitab has all the tools you need to analyse your data effectively and is able

to suggest the right analyses, giving you clear and comprehensive results.

Minitab helps you find meaningful solutions to the most complex business

problems. It is used in various sectors of industry, for statistical analysis, cost

reduction, increased efficiency, defect reduction and variation control.

Using Minitab, it was possible to verify that the distribution sought was in-

deed a distribution with a restricted domain. In fact, performing an analysis using

Minitab, none of the distributions evaluated by the software were compatible with

the data.
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