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Abstract

Modeling a disease or the treatment of a patient has drawn much attention in re-

cent years due to the vast amount of information that Electronic Health Records

contain. This paper presents a probabilistic generative model of treatments that

are described in terms of sequences of medical activities of variable length. The

main objective is to identify distinct subtypes of treatments for a given disease,

and discover their development and progression. To this end, the model consid-

ers that a sequence of actions has an associated hierarchical structure of latent

variables that both classifies the sequences based on their evolution over time,

and segments the sequences into different progression stages. The learning pro-

cedure of the model is performed with the Expectation-Maximization algorithm

which considers the exponential number of configurations of the latent variables

and is efficiently solved with a method based on dynamic programming. The

evaluation of the model is twofold: first, we use synthetic data to demonstrate

that the learning procedure allows the generative model underlying the data to

be recovered; we then further assess the potential of our model to provide treat-

ment classification and staging information in real-world data. Our model can
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be seen as a tool for classification, simulation, data augmentation and missing

data imputation.

Keywords: Disease Progression Modeling, Electronic Health Records, Markov

Model, Probabilistic Generative Model, Unsupervised Machine Learning

1. Introduction

Disease progression research seeks to refine, from electronic health records

(EHRs), the definition of complex and heterogeneous pathologies by identifying

subgroups with similar temporal evolution patterns. These repositories contain

systematized collections of patient data, including demographics, procedures,5

diagnosis, medications, costs, medical service providers and so on. The order of

occurrence of these medical events in EHRs provides valuable information on the

treatment trajectory of a patient which could improve the understanding of the

disease [1]. Therefore, we represent each patient using chronologically ordered

sequences of medical actions. Constructing from these sequential medical events10

a comprehensive characterization of the treatment patterns and their temporal

evolution, that is, identifying distinct subtypes of treatments and discovering

their development and progression remains a major challenge in medical infor-

matics.

This model could benefit both the clinical practice and management of15

healthcare. Clinically, it can help discover the associations between the shared

characteristics of similar patients, reduce the uncertainty in a patient’s expected

outcome and identify a data-driven taxonomy of the progression of treatments

associated with a disease. Thereby, improving treatment decisions. From the

management viewpoint, subtyping can forecast the expected costs of care and20

improve the efficacy of clinical trials by enabling targeted enrollment [2].

A research area that has been used in the field of healthcare for treatment

modeling is process mining [3]. The basic idea is to discover process models from

event logs, where medical actions from EHRs are used as process logs. However,

treatment trajectories of patients in the healthcare system are complex in part25
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due to their variability, and this assumption leads to spaghetti-like workflow

models that are very difficult to interpret [4]. In fact, there is a wide variety of

activities that can typically be executed for a single disease, and, in addition,

these activities are influenced by the personal preferences and characteristics

of patients, physicians and other healthcare experts. Moreover, patients can30

respond differently to particular treatments, which may affect the order and

type of activities that follow [3]. The combination of all these factors tends to

make almost all cases different and becomes a problem for this type of models.

Machine learning techniques offer a potential solution to deal with the vari-

ability of treatment trajectories. The need to model these heterogeneous disease35

dynamics has been evidenced particularly by works on disease subtyping that

aim to identify subgroups of patients with similar disease progression trajecto-

ries [2]. In the literature, some of the works [5, 6, 7, 8] that assume differentiated

treatment subgroups are an extension of the conventional Latent Dirichlet Al-

location [9]. The limitation of these approaches is the assumption that all the40

individuals are at a unique treatment stage, so that their models are not able

to account for the treatment progression.

Probabilistic models, and in particular, hidden Markov models (HMMs),

have been widely used for disease progression due to their easy interpretabil-

ity and their temporal relation assumption in data. Most existing HMMs45

[10, 11, 12, 13, 14, 15, 16] assume that all patients evolve through the same

latent state transition dynamics, thus ignoring the heterogeneity of different

subtypes of disease progression. Other probabilistic approaches that simultane-

ously address disease state progression and treatment subtyping [17, 18, 19] are

limited to model the evolution of observed data through a latent process and do50

not handle the sequential dependence within medical actions. These methods

actually model the number of each type of action that occurs in each stage,

rather than being generative models of the sequence of actions. However, the

order of occurrence of medical actions is essential to understand the progression

of a disease.55

Various predictive deep learning models have also been developed for health-
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care settings [11, 20, 21, 22, 23, 24, 25, 26, 27]. Unfortunately, they not only

ignore the variability in treatments, but also their hidden states do not corre-

spond to clinically meaningful variables such as the treatment evolution patterns

provided by our model. While these methods succeed in predicting a target60

outcome, they do not provide a generative model of the disease progression to

identify patients with similar disease progression patterns, to understand the

evolution of treatments through interpretable distributions of stage transitions,

or to simulate populations of treatment trajectories.

This paper presents a method to model heterogeneous sequences of actions65

with a hierarchical structure of a set of latent classes of treatments and a set of

latent progression stages. In summary, the key contributions of this work are

as follows:

• We model EHRs using a probabilistic generative model built on Markov

models to capture the order of occurrence of the events. The model dis-70

covers the subtypes of treatments by grouping the sequences of medical

actions into different classes according to their evolution and identifies the

progression stages of the treatments over time.

• We learn the model using the Expectation-Maximization (EM) algorithm

[28], where we generalize the conventional forward-backward algorithm75

[29] used for HMMs to efficiently learn the parameters of our generative

model.

• We evaluate the learning performance of the model in multiple simulated

datasets of different sizes with the aim of demonstrating that the model

underlying the data is recovered.80

• We apply the model on a breast cancer dataset to represent the progression

of the different classes of treatments and their phases. The results are

contrasted with clinical guidelines and approved by physicians.

The remainder of this paper is organized as follows. Section II describes the

probabilistic generative model and the learning process of the parameters by85
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means of the EM algorithm. In Section III, we present the results of the synthetic

data experiments that evaluate the performance of the proposed method, and

the application of the model on a real-world dataset. Section IV discusses the

contributions and limitations of our approach, and draws the conclusions.

2. Methodology90

This section describes the proposed probabilistic generative model and the

procedure for the inference and the parameter estimation.

2.1. Notation and terminology

We use health related terms throughout the paper. These are notions to

guide intuition and clearly capture the idea of the model. Formally, we define95

them as follows:

• A medical action “a” represents an event in a hospital. In our case, a is

depicted by the healthcare service that a patient has visited. Examples

are primary care, surgery unit, hospitalization, and so on. A is the set of

all the possible medical actions and a ∈ A.100

• A treatment is a sequence ofm actions associated with a particular disease,

denoted by a = (a1, a2, ..., am). In fact, a treatment is a subsequence of the

whole medical history of a patient, where the actions that have nothing to

do with the target disease are excluded, leaving in the treatment sequence

a those directly related to the disease.105

• A progression stage “s” is modeled by a treatment subpattern given in a

the sequence of actions. That is, a sequence of actions is segmented into

different stages, where each stage represents a pattern of the treatment.

• A class of treatment “c” represents a subgroup/subtype of treatments that

share common progression stages.110

5



...

... ...

...a1 at−1 at at+1 am

s1 st−1 st st+1 sm

c

Figure 1: Markov model defined by the conditional distributions p(at|at−1, st−1, c) and

p(st|at, st−1, c) for sequences of actions a, latent sequences of stages s and latent classes

c.

2.2. The probabilistic generative model

The general idea is to develop a probabilistic generative model in order to

learn the complex distribution of a set of sequences of different lengths. We as-

sume that sequences of actions have an associated hierarchical structure of latent

variables: at the top-level, we consider that sequences belong to latent classes115

representing the different subtypes of treatments; at the lower-level, we assume

that the sequences of actions progress through a set of latent ordinal-valued

stages over time, that is, each action of a sequence has an associated stage that

indicates the phase of progression of the treatments at that time point. The

goal, therefore, is to infer these latent classes of treatments and their progres-120

sion stages. Inferring classes requires grouping the sequences of actions into

different categories based on common treatment patterns. Moreover, inferring

progression stages requires identifying a set of monotonous stages through which

sequences of actions evolve, and afterwards, individually segmenting sequences

according to the discovered stages. Both tasks have to be simultaneously con-125

sidered in order to capture the heterogeneity of the sequences of medical actions.

For the definition of the generative model (Fig 1), we consider that an ac-

tion depends on the sequence’s most recent action and stage within a class.

Furthermore, a stage depends on the current action and the previous stage.

The duration of the progression stages for each sequence is likely to be different130

because each patient evolves at their own rate, and consequently, the lengths
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of the sequences of actions vary. For that reason, we introduce the virtual end-

of-treatment action am, which allows the length of a population of sequences

of actions to be implicitly modeled. Without this end-of-treatment action, the

generative model would create sequences of actions of infinite length. Besides,135

we consider that the sequences of actions always start in the first stage, rep-

resenting the initial steps of the treatment. We assume that all the classes

of treatments have the same number of stages. The definition of such stages

makes it possible to segment each class of treatments into subsequences that

are related to their progression. Note that the same stage values from different140

classes of treatments represent different subsequences, which allows the model

to be more flexible and to better fit a population of sequences of actions. With

these assumptions in mind, we develop a generative process built on Markov

models that classifies and segments sequences automatically.

Let a = (a1, ..., am) be the sequence of medical actions representing a treat-145

ment of a patient associated with a disease. The medical actions ai belong to

a set A which is the set of all the possible medical actions including the vir-

tual end-of-treatment action. Each sequence can have a different length. Let

s = (s1, ..., sm) be the sequence of latent stages of the treatment associated

with the sequence of actions a. The stages si belong to a set S = {1, ..., r} that150

represents all the possible stages of a treatment. Finally, let c be the latent class

of treatment which a belongs to. The classes c belong to a set C = {1, ..., k}

that represents all the possible classes, i.e., the types of treatments for a disease.

Furthermore, we assume that the stages of progression of a sequence of actions

are non-decreasing, that is, a sequence can not progress backward. Therefore,155

st ≤ st+1 for all t = 1, ...,m− 1.

The proposal for the probabilistic generative model is as follows:

1. Choose a class c ∼ p(c)

2. For each sequence of actions a:

(a) Choose an action at from p(at|at−1, st−1, c), the transition matrix of160

the Markov model conditioned on the action at−1, the stage st−1 and
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the class c.

(b) Choose a stage st from p(st|at, st−1, c), the transition matrix of the

Markov model conditioned on the action at, the stage st−1, and to

the class c.165

Translating the generative process into a joint probability model results in

the expression:

p(a, s, c) = p(c)

m
∏

t=1

p(at, st|at−1, st−1, c) (1)

where

p(at, st|at−1, st−1, c) = p(at|at−1, st−1, c) · p(st|at, st−1, c)

and p(a1, s1|a0, s0, c) = p(a1, s1|c). Furthermore, s1 = 1, am = end, and st−1 ≤

st for all t.

In light of the above, p(c) is a discrete probability distribution that describes

the probability of drawing a class from the set of classes of treatments C. We

define θc as the vector of such probabilities:

θc = (θ1c , ..., θ
k
c ) (2)

where θic = p(c = i) for i = 1, ..., k. In addition, we define the Markov models

from which the actions and stages are drawn as follows (see Fig. 1). The first

conditional distributions are given by a set of |C| transition matrices of size

|A||S| × |A| whose model parameters are:

θa = {p(at|at−1, st−1, c) : at, at−1 ∈ A, st−1 ∈ S, c ∈ C}. (3)

The other conditional distributions are given by a set of |C| transition matrices

of size |A||S| × |S| whose model parameters are:

θs = {p(st|at, st−1, c) : at ∈ A, st, st−1 ∈ S, c ∈ C}. (4)

2.3. Maximum likelihood parameter estimation

In this section we introduce the learning procedure of the parameters of the

model. Let D = {a1, ...,aN} be the set of sequences of actions to learn the
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model. We seek to maximize the following weighted log likelihood of the data:

max
θ

∑

a∈D

∑

s∈Sa

∑

c∈C

p(s, c|a) · log p(a, s, c;θ) (5)

where Sa is the set of all the compatible sequences of stages for a, p(s, c|a) is

the contribution of the tuple (a, s, c) to the model, and θ = {θc,θa,θs}. The

reason for weighting the log likelihood is to make each sequence a contribute

equally to the model regardless of its length, and this is achieved because

∑

c∈C

∑

s∈Sa

p(s, c|a) =
∑

c∈C

∑

s∈Sa

p(s|c,a) · p(c|a) = 1. (6)

In order to find the parameters that maximize the log likelihood in (5), we

use an EM algorithm. In the initialization of the EM, we segment the sequences170

of actions into equal-length intervals of stages. For the initial model of classes,

we use the K-medoids method for the real EHRs. However, in the experiments

with synthetic data, which have the purpose of showing the convergence to the

real model underlying the data, we initialize the probability of each sequence

to belong to the classes with the uniform distribution. We then add a proba-175

bility ǫ = 0.1 to the true class to which they belong to avoid relabeling in the

results. Then, the EM algorithm that yields the following iterative algorithm is

as follows:

E-step. In this step we consider, for each sequence of actions a ∈ D, all the

compatible configurations of the latent sequences of stages s ∈ Sa of length180

ma and their probability. In order to do that, we compute the probability

p(st = s, c|st−1 = s′,a) for all s, s′ ∈ S and t = 1, ...,ma given the param-

eters of the current model. Notice that it requires
(

m−2
r−1

)

number of configu-

rations (the last stage is fixed), which is approximately exponential as long as

r << m. Adopting the notion of the forward-backward algorithm used for learn-185

ing HMMs, we develop a generalization of this dynamic programming method

for the specific characteristics of our model (Appendix A), which avoids its ap-

parent exponential complexity. The conventional algorithm does not suffice for

constructing our forward/backward filtering algorithm since we need to account
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for the temporal relation between the observations, as well as the classes and190

the latent correlation structures of stages on observed actions.

M-step. In the maximization step we aim to update the parameters of the

Markov model and the probability of the classes. We learn the new parame-

ters using the probabilities calculated in the E-step. Therefore, the probability

corresponding to the transition from the pair (a, s) to (a′, s′) given the class c

where a, a′ ∈ a and s, s′ ∈ S is updated as follows:

θca,s,a′ =
∑

a∈D

ma
∑

t=1

1a,a′(at−1, at) · p(st = s, c|a) (7)

θcs,a,s′ =
∑

a∈D

ma
∑

t=1

1a,a′(at−1, at) · p(st = s′, c|st−1 = s,a) (8)

where

1a,a′(at−1, at) =











1 if at−1 = a, at = a′

0 otherwise.

.

Finally, we update the probability of the classes of treatments c ∈ C as

follows:

θc = p(c) =

∑

a∈D p(c|a)
∑

c∈C

∑

a∈D p(c|a)
. (9)

At each iteration of the algorithm, we combine the expectation and max-

imization steps for each sequence of actions a in such a way that we avoid

storing, in the E-step, the exponential number of probabilities of all the possi-

ble sequences of stages and classes for all the dataset D. In addition, note that195

the dynamic programming based method (Appendix A) allows the EM algo-

rithm to be solved considering the exponential number of sequences of stages

with a computational complexity of O(N · m2), where m is the length of the

longest sequence of actions.

The large amount of possibilities in the combination of pairs of sequences200

of actions and stages creates problems of sparsity in the Markov models. Once

the maximum likelihood estimation of the parameters assigns zero probability

to some transition, there is no possibility to obtain in the subsequent step a
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different value for that pair of action-stages. We solve this problem by smoothing

the parameters of the Markov models in each iteration of the EM algorithm.205

For the sake of simplicity, we explain the classes of treatments with a fixed

number of stages. This way, the notation is simplified and it is easier to un-

derstand the main idea of the model. However, it is possible to define a more

flexible model in terms of stages. It may be the case that some sequences are

incomplete because the treatment of a patient is still in progress by the clos-210

ing date of the dataset. With this flexibility, the model manages to segment

the complete sequences into the maximum number of stages r+, but also the

incomplete sequences into a lower number of stages, ranging from r− to r+.

2.4. Inference on latent classes and stages

Given the proposed model and the observed sequences of actions, we can215

efficiently make inference regarding the latent classes and stages by means of

the dynamic programming based algorithm (Appendix A) in spite of their ex-

ponential number of configurations. In this way, we can compute:

• The probability of the latent classes given a sequence of actions p(c|a) or

the entire dataset p(c).220

• The probability of a latent sequence of stages given a sequence of actions

and a class, p(s|a, c).

• The probability of being in each latent stage of a class at each time point

given the observed sequences of actions, that is, p(st = s|a, c) for t =

1, ...,ma.225

• The probability of a sequence of actions given a class, p(a|c).

• The probabilities p(st, c|a) and p(st, c|a, st−1) computed in the EM algo-

rithm (Equation 7 and 8) for the parameter estimation.

• Expectations such as Ep(s,c|a;θ′)[log p(a, s, c;θ)].
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Subsequently, these inferences can be used to find the most probable latent230

class for each sequence of actions, and group together those with common evo-

lution patterns. In addition, in order to show the general behavior of a class,

the groups can be represented by the most probable sequences of actions. All

these probabilities are calculated with a polynomial time complexity using the

dynamic programming based method.235

3. Experimental results

In this section we empirically show two types of results. Firstly, we use

synthetic datasets of different sizes to evaluate the behavior of the learning al-

gorithm by comparing the learned models with the original generative model

underlying the data. The corresponding source code is publicly available1. Sec-240

ondly, we apply the model on real-world EHRs about breast cancer disease

to classify the sequences of actions and segment them in different progression

stages.

3.1. Synthetic data

We firstly create a probabilistic generative model p, whose parameters are245

generated as follows: p(c) is sampled from a uniform Dirichlet distribution with

parameters αc = 1 for c ∈ C; p(a′|a, s, c) is also sampled from a uniform Dirichlet

distribution with parameters α = 1 for a, a′ ∈ A, s ∈ S and c ∈ C; and

p(s′|a, s, c) is sampled from a Dirichlet distribution setting α = 0.7 for the

parameters whose corresponding transition stays in the same stage (s′ = s) and250

setting α = 0.3 for those that progress to a different stage (s′ 6= s), for a ∈ A,

s, s′ ∈ S and c ∈ C. The fundamental reason for setting a lower value when the

transition progresses to a different stage is to generate more realistic phases by

avoiding subsequences of stages which are too short.

For the sake of simplicity, we fix the total number of classes |C| = 3, the min-255

imum number of stages r− = 3, and the maximum number of stages r+ = 4 to

1https://github.com/onintzezaballa/ProbGenerativeModel
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sample the training sets of sizesN = {300, 400, 500, 600, 700, 800, 900, 1000, 2000,

3000} using the randomly generated model p (see Appendix B for more details

about the training sets). In particular, we use 10 unique actions to generate

these sequences. Apart from that, we also sample a test set of 4000 sequences260

from p in order to evaluate the learning process.

The objective is to show that the proposed learning algorithm is able to

recover the generative model. Therefore, we fit the model on the training sets

using the EM-based procedure proposed in Section 2.3 and we then analyze the

evolution of the quality of the learned models as the training set sizeN increases.265

For each value of N we obtain a new model θ = {θc,θa,θs} and we measure

the quality of such a model by using the log likelihood of (5) normalized by N

to make the datasets comparable.

The experiment is carried out five times, considering in each of them a

different random generative model p, from which the N training sets and the270

test sets are generated. Fig. 2 shows the fitting and generalization ability of

our model by means of the average log likelihood. The average log likelihood of

the learned models on the training sets (solid orange line) quantifies the fitting

of the models to the data, while on the test set (solid blue lines) it measures

its ability of generalization. The dotted lines correspond to the average log275

likelihood of the 5 original generative models evaluated in the training (orange)

and test (blue) datasets. We can see that as N increases, the curves that

quantify the fitting and generalization of the learned models converge to the

curves of the original generative models. This means that, given a sufficiently

large dataset, the proposed learning algorithm recovers the original generative280

model underlying the data.

3.2. Breast cancer data

Here we show the application of the model on a real-world dataset of breast

cancer, where we represent the classification and stage progression of the se-

quences of actions associated with such pathology. The achieved results were285

compared with clinical guidelines [30] and discussed in detail with physicians to
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Figure 2: Fitting and generalization of synthetic models.

check their coherence and validity.

3.2.1. Dataset

We use a dataset provided by the public health care system of the Basque

Country, Spain. This dataset records the sequences of actions of patients for290

any diagnosed disease from 2016 to 2019. As a case of use, we focus our atten-

tion on the breast cancer treatment population as in [31]. The dataset contains

complete and incomplete sequences of actions. Therefore, individuals with treat-

ments which have already started are excluded from this study, however, those

that continue their treatments are included. The resulting dataset consists of295

645 sequences of actions, whose average length is of 115 actions, the minimum

sequence length is 63 and the maximum is 369 (see Fig. 3 for more details). They

are generated by 23 unique medical actions (Appendix C), whose frequency in

patients and their transition frequency are shown in Appendix D.

3.2.2. Hyperparameters300

The hyperparameters (classes, minimum stage and maximum stage) of the

model are set before the learning procedure. Regarding the class, we use the

method developed in [31] to appropriately pick the number of different classes of

treatments and initialize in the same group those with similar trajectories. We

obtain a total of 5 classes of treatments and we set the minimum and maximum305
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Figure 4: Fitting and generalization of the breast cancer generative model.

stages as r− = 3 and r+ = 4 respectively.

We replicate the experiment of Section 3.1 with the breast cancer dataset. In

this case we randomly create the training sets of sizesN = {100, 200, 300, 400, 500,

600}, leaving 45 sequences of actions out to create the test set. Fig. 4 shows

the results of 5 experiments where the generalization curve and the fitting curve310

of the models converge to the same point. Therefore, we can conclude that the

size of the dataset is large enough to learn the generative model, and the hyper-

parameters chosen beforehand are appropriate for the breast cancer dataset, as

well as the smoothing parameter with value 0.2.
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3.2.3. Analysis of breast cancer treatments315

The first application of the generative model is the representation of the

evolution of the breast cancer disease, by classifying the different sequences of

actions and identifying their multiple phases of progression over time.

Considering the hyperparameters of the previous section and randomly ini-

tializing the sequences of stages, we trained the model using the EM-based

procedure described in Section 2.3. The classification of sequences of actions is

carried out by associating each sequence of actions a with the most probable

class c∗ (Section 2.4), that is,

c∗ = argmax
c

p(c|a). (10)

The evolution patterns of the sequences of actions of each class are characterized

by a representative sequence. This is defined as the most probable sequence of

actions a within each class (Section 2.4) normalized by the length of a, in order

to avoid the probability p(a|c) to exponentially decrease as long as the length

of a increases. That is,

a∗ = argmax
a

log p(a|c)

|a|
. (11)

Finally, the sequence of stages associated with the representative sequence a∗ is

given by the most probable stage at each time point (Section 2.4), that is,

s∗t = argmax
s∈S

p(st = s|a∗, c∗) (12)

in such a way that the representative sequence of stages associated with the

representative sequences of actions a∗ is s∗ = (s∗1, ..., s
∗
m).320

We show in Fig. 5 the five representative breast cancer treatments (sequences

of actions) that characterize the progression classes and stages. The width of

the horizontal lines refers to the size of the groups. The vertical lines refer to

the medical actions ordered in time. To get a better insight into the behavior

of the sequences of actions, we explain the major patterns of the representative325

treatments, which are real sequences of actions from EHRs, as follows (see

Table 1).
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Figure 5: Representative treatments of breast cancer segmented in the different phases of

evolution. The medical actions of the legend are anesthesia (ANES), pathological anatomy

(PATH), external consultation (EXTC), consultation (CONS), pharmacy (PHAR), day hospi-

tal (DAYH), hospitalization (HOSP), nuclear medicine (NUCM), functional testing (FUNT),

surgery unit (SURG), radiology (RADI), radiotherapy (RTER), surgery without hospitaliza-

tion unit (SWH), nursing unit (NURS), and post anesthesia care unit (PAU).

To begin with, the diagnosis of breast cancer is based on clinical examination

in combination with imaging and confirmed by pathological assessment [30].

Every class of treatments in Stage 1 includes this diagnosis process (performed330

on radiology, nuclear medicine and pathological anatomy medical services), and

before any type of treatment is initiated, as recommended.

There exist two types of surgeries when it comes to breast cancer: breast-

conserving surgery, in which the surgical team removes the tumor but tries to
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N STAGE 1 STAGE 2 STAGE 3 STAGE 4

GROUP 1 25.7%

Medical examinations Chemotherapy Radiotherapy Medical examinations

Diagnostic tests Diagnostic tests

Surgery

GROUP 2 20.7%

Medical examinations Radiotherapy Medical examinations Medical examinations

Diagnostic tests Diagnostic tests

Surgery

GROUP 3 13.1%

Medical examinations Hospitalization Medical examinations Hormonal therapy

Diagnostic tests Diagnostic tests Surgery

Surgery

GROUP 4 23.3%

Medical examinations Radiotherapy Hormonal therapy Hormonal therapy

Diagnostic tests Medical examinations

Surgery Diagnostic tests

GROUP 5 17.2%

Medical examinations Radiotherapy Chemotherapy Medical examinations

Diagnostic tests Hospitalization Diagnostic tests Diagnostic tests

Chemotherapy

Surgery

Table 1: Evolution patterns of the breast cancer treatments obtained from the learned gener-

ative model.

keep as much of the breast as possible (it is the preferred local treatment option335

for the majority of early breast cancer patients); or mastectomy, in which the

whole breast is removed [30].

Group 1: Surgery + Chemotherapy + Radiotherapy (166 patients,

25.7 %). The vast majority of these sequences of actions undergo breast-

conserving surgery (Stage 1), followed by chemotherapy (Stage 2) and radio-340

therapy (Stage 3). According to the guideline suggestions, if both therapies are

used, chemotherapy should usually precede radiotherapy, as done here. This

type of treatment used after primary treatments, such as surgery, is called adju-

vant treatment and its aim is to decrease the chance of cancer recurrence. Some

of these patients also include adjuvant hormonal therapy in their Stage 4.345

Group 2: Surgery + Radiotherapy (134 patients, 20.7 %). The sequences

of actions in this group begin with breast-conserving surgery (Stage 1). This is

followed by radiation therapy (Stage 2), which is highly recommended after this

18



type of surgery by the medical guidelines. Regular follow-up actions are given

in Stages 3 and 4.350

Group 3: Surgery + Hospitalization + Hormonal Therapy (84 patients,

13.1%). This group represents patients undergoing mastectomy (Stage 1). Hos-

pitalization actions (Stage 2) and additional surgical events (Stage 4) are due

to breast reconstruction. These patients are followed up with diagnostic tests

and physical examinations in Stage 3. Finally, they have hormonal therapy as355

adjuvant treatment (Stage 4).

Group 4: Surgery + Radiotherapy + Hormonal Therapy (150 patients,

23.3%). Individuals in this group undergo breast-conserving surgery (Stage 1)

and postoperative radiotherapy (Stage 2), as suggested. Additionally, they take

hormonal therapy as adjuvant systemic treatment (Stage 3) and followed up360

with clinical examinations (Stage 4).

Group 5: Chemotherapy + Surgery + Radiotherapy + Chemother-

apy (111 patients, 17.2%). Neoadjuvant systemic therapy is treatment admin-

istered preoperatively to reduce the extent of surgery in locally advanced and

large operable cancers. This is the case for this group of patients, who receive365

neoadjuvant chemotherapy before breast-conservative surgery or mastectomy

(Stage 1). Afterwards, they complete their adjuvant treatment with radiother-

apy (Stage 2) and chemotherapy (Stage 3). They are followed up in Stage 4.

See Appendix D for more details about the behavior of the medical actions

within each class of treatments.370

4. Discussion

The main contribution of this paper is the development of a novel prob-

abilistic generative model, which characterizes the progression of the treat-

ment trajectories of a disease. State-of-the-art disease progression approaches

[5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] partially adopt the main375

properties of our model, which we consider essential in order to describe and

understand the behavior of the treatment trajectories. In particular, our model
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simultaneously classifies the heterogeneous sequences of actions based on their

treatment evolution over time, segments the sequences of actions in different

progression stages of the disease, and captures the sequential dependence be-380

tween medical actions.

Another contribution of this work is the proposal of an efficient learning

process of the parameters of the model to make the computation of the EM

algorithm feasible. Exact inference often requires high computational cost for

learning, in fact, an ad hoc algorithm would require an exponential complexity.385

We propose a generalization of the forward-backward algorithm for the learning

process to reduce this complexity to be polynomial.

Experiments on synthetic datasets validate that our model converges to the

original model underlying the data. On the other hand, the breast cancer exper-

iment shows the ability of the model to discover different treatment progression390

patterns and their temporal evolution by means of explainable treatment stages.

Nevertheless, we intend to validate the model on an external dataset to increase

the robustness of the results. Treatment subtyping and phase identification are

useful to extract potential information, such as essential or critical treatment

behaviors and their causal dependencies in treatment sequences, as well as to395

understand disease mechanisms and health practices. Apart from classification

and segmentation of treatment trajectories, another benefit of our model is the

simulation of fictitious sequences of actions that resemble original treatments.

This can have an economic impact on the healthcare system by assisting in re-

source management and anticipating the expected costs of treatments [2]. The400

model can be also regarded as a data augmentation tool when little information

is available, for example, for rare diseases. In addition to this, since health-

care datasets are frequently incomplete and the removal of missing values may

result in a dataset that is too small or induce statistical bias [1], the model

has the ability to impute such missing values in the trajectories of patients or405

reconstruct incomplete sequences of actions. In terms of interpretability, our

model provides easier comprehension and explanation for end-users than other

approaches developed in the healthcare setting [22, 23, 24, 25, 26, 27].
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Let us also mention some limitations of our approach. The stages are defined

as ordered discrete values of progression and in their evolution only two steps are410

allowed: to be increased in one stage with respect to the previous stage; or be

maintained in the same one. In a more realistic scenario, diseases with recurrent

stages would be considered, and, consequently, the sequences of actions could

pass through the same stage more than once or move from one stage to another

without setting an ordered progression. However, this assumption requires a415

modification in the dynamic programming procedure that would exponentially

increase the complexity of the model. On the other hand, as in many other

classification machine learning methods, the number of classes is not a flexi-

ble parameter and has to be chosen beforehand. Despite this, we solved this

problem by initializing the classes of treatments with a previous clustering of420

sequences, where the number of classes that best fits the data was selected. For

the minimum and maximum stages, we could estimate their value by including

them in the learning process of the model, assuming again an increase in its

complexity.

Note that this is a memoryless model due to Markovianity assumption. That425

is, the actions and stages only depend on the previous time instead of depending

on the whole or part of the medical history. In some cases the duration in a

stage matters, or a medical event could be a result of more than one previous

action. In the future we plan to include this relevant information about the past

of patients in the model.430

For future work, we propose an extension of the generative model by includ-

ing new features. For instance, irregular timing between medical actions is an

interesting task due to its important role in the progression of a disease [32].

Another line of effort is related to the assignment of the stages. In our model the

stages of a class are independently defined from the stages of the other classes.435

However, there may exist a relationship between the stages even if they belong

to different classes of treatments. The sequences of actions would be separated

into multiple fragments in such a way that the fragments would refer to the

common patterns of all the treatments of the disease.
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In conclusion, we introduce a model to characterize the treatment variability440

of a disease. We demonstrate the potential of our approach as a treatment

classification and stage identification tool in breast cancer patients. We further

validate the proposed learning process by a simulation experiment, where the

original model is recovered. Definitely, the proposed method has the capability

to make substantial clinical impact and is readily applicable to any progressive445

disease, such as other types of cancers, respiratory diseases or neurodegenerative

diseases.
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Appendix A. Efficient inference based on dynamic programming

Training a generative model is a challenging task. In fact, the exact learning

of the parameters of the model is computationally expensive for large datasets

and long sequences. The forward-backward algorithm proposes a dynamic pro-

gramming based method to compute the posterior marginal distribution of hid-460

den states given a sequence of observations in HMMs. Following the same

strategy, we develop a dynamic programming method for the specific character-

istics of our generative model, reducing the number of computations, and thus,

the complexity of our approach. This inference plays an important role in the

learning procedure of the model, particularly in the E-step. These results are465

then used in the M-step to solve 7, 8 and 9 so that we update the parameters

of the model θ = {θc,θa, θs}.

Let us assume that we have a training set D of sequences of actions a =

(a1, ..., am), a latent variable of stages s = (s1, ..., sm) and a latent variable of

classes c. Remember that we aim to estimate the maximum likelihood param-470

eters θ of the model in each iteration of the EM algorithm. Hence, we aim to

learn a model p(a|a′, s′, c) and p(s|a, s′, c) for any value of a, a′ ∈ A s, s′ ∈ S and

c ∈ C, using the set of sequences of actions in D. Suppose that, for a sequence

of actions a, we observe the transition at−1 = a to at = a′ in the training set.

Now, we shall calculate the sum of the probabilities of all the possible sequences475

of stages for which st = s in each class c. That is, the probability of all the

sequences of stages with the form (s1, ...st−2, st−1, s
′, st+1, ..., sm) in c.

Let us assume that fc(t, s) is the sum of the probabilities of all the sequences

of stages (s1, ..., st) in the class c that ends at st = s, and gc(t, s) is the sum of

the probabilities of all the sequences of stages (st+1, ..., sm) that starts at st = s′

in the class c. Then,

fc(t, s) =
∑

s1...t−2

p(s1...t−2, s|a1...t−1, c) · p(s
′|at, at−1, s, c)

gc(t, s) =
∑

st+1,...,m

p(st+1...m|at,...,m, s′, c),
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where ai,...,j = (ai, ...., aj) and si,...,j = (si, ...., sj). Note that fc includes the

term p(s′|at, at−1, s, c) and the probability in gc is conditioned to (at,...,m, s′, c).

Now, we can express the sum of the probabilities of the sequences for which480

st−1,t = (s, s′) as

p(s1,...,t−2, st−1 = s, st = s′, st+1,...,m|a1,...,m, c) (A.1)

= fc(t− 1, s) · p(s′|at, at−1, s, c) · gc(t, s
′)

=
∑

s1,...,t−2,t+1,...,m

p(s1,....t−2, st−1 = s|a1,...,t−1, c)·

· p(st = s′|at, at−1, st−1 = s, c)·

· p(st+1,...,m|at,...,m, st = s′, c)

With this in mind, we propose to create a matrix associated with each func-

tion f and g. These functions are defined as recursive functions (Fig. A.6):

fc(t, s) =p(s|at, at−1, s, c) · fc(t− 1, s)+

p(s|at, at−1, s− 1, c) · fc(t− 1, s− 1)

gc(t, s) =p(s+ 1|at, at+1, s, c) · gc(t+ 1, s+ 1)+

p(s|at, at+1, s, c) · gc(t+ 1, s)

The functions fc and gc are defined in such a way that the stages are non-

decreasing. By means of dynamic programming, we complete the matrices f485

and g and, consequently, reduce the number of computations for the parameter

estimation. Intuitively, instead of calculating the probability of all the possible

(a, s, c) independently one by one, dynamic programming reuses those proba-

bilities of transition that the sequences of actions-stages share.
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s1

s2

s3

s4

t− 1 t t+ 1

f

g

Figure A.6: Dynamic programming procedure developed to learn the parameters of the

Markov model. In this case, the orange box represents (A.1), and f and g correspond to

the recursive functions. The black arrows generate all the possible sequences of stages that

pass through the orange box. Note that in this example the maximum stage r+ is the same

as the minimum stage r−.
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Appendix B. Heterogeneity on synthetic sequences.490

In this appendix we aim to show the variability of the synthetic sequences

generated for the experiments in Section 3.1. For each experiment we represent

the distribution of the lengths of the sequences, the frequency of actions and the

frequency of the transition between actions for two different sizes of the dataset.
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Figure B.7: Experiment 1: histogram of the lengths of the sequences of actions.
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Figure B.8: Experiment 1: frequency of actions and their transitions.
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Figure B.9: Experiment 2: histogram of the lengths of the sequences of actions.
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Figure B.10: Experiment 2: frequency of actions and their transitions.
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Figure B.11: Experiment 3: histogram of the lengths of the sequences of actions.
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Figure B.12: Experiment 3: frequency of actions and their transitions.
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Figure B.13: Experiment 4: histogram of the lengths of the sequences of actions.
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Figure B.14: Experiment 4: frequency of actions and their transitions.
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Figure B.15: Experiment 5: histogram of the lengths of the sequences of actions.
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Figure B.16: Experiment 5: frequency of actions and their transitions.
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Appendix C. Description of the medical actions of real EHRs.495

In this appendix we explain the abbreviation and description of each medical

action of the real breast cancer data.

Abbreviated form Full Form

ANES Anesthesia

CONS Consultation

DAYH Day Hospital

EXTC External Consultation

FUNT Functional Testing

HCRI Critical Care Hospitalization

HOMEH Home Hospitalization

HOSP Hospitalization

INCO Interconsultation

LABO Laboratory

NUCM Nuclear Medicine

NURS Nursing Unit

OSAT Osatek (Magnetic Resonance Service)

PATH Pathological Anatomy

PAU Post Anesthesia Care Unit

PHAR Pharmacy

PHARAMB Hospital Pharmacy Services

RADI Radiology

REHA Rehabilitation

RTER Radiotherapy

SURG Surgery Unit

SWH Surgery without Hospitalization

UCRI Nursing Critical Care Unit

Table C.2: Description of the medical actions
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Appendix D. Heterogeneity in sequences of real EHRs.

In this appendix we firstly show the frequency of medical actions and their

transitions in real EHRs. Secondly, we represent these frequencies within each500

class of treatments that we obtained in the experiment of Section 3.2.3.
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Figure D.17: Frequency (%) of medical actions in real EHRs.
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Figure D.18: Frequency (%) of the transitions between medical actions in real EHRs.

Appendix D.1. Inter-class heterogeneity.

The objective of Fig. D.19 is to show the variety of medical actions that can

typically be executed for each class, as well as the transition between them.
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(a) Class 1: Frequency (%) of actions.
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(b) Class 1: Frequency (%) of transitions.
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(c) Class 2: Frequency (%) of actions.
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(d) Class 2: Frequency (%) of transitions.
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(f) Class 3: Frequency (%) of transitions.
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(h) Class 4: Frequency (%) of transitions.
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(j) Class 5: Frequency (%) of transitions.

Figure D.19: Frequency (%) of actions and their transitions of each class.
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