Impact of outdoor air pollution on severity and mortality in COVID-19 pneumonia

O. Bronte a,h,⁎ F. García-García b, D.-J. Lee b, I. Urrutia a,h, A. Uranga a,h, M. Nieves a,h, J. Martínez-Minaya i, J.M. Quintana c, I. Arostegui d,h, R. Zalacain e,h, L.A. Ruiz-Iurregia e,h, L. Serrano e,h, R. Menéndez f, R. Méndez f, A. Torres g, C. Cilloniz g,j, P.P. España a,h, and the COVID-19 & Air Pollution Working Group

a Galdakao-Usansolo University Hospital, Pulmonology Department, Galdakao, Spain
b Basque Center for Applied Mathematics (BCAM), Bilbao, Spain
c Galdakao-Usansolo University Hospital, Research Unit, Galdakao, Spain
d University of the Basque Country (UPV/EHU), Department of Applied Mathematics, Statistics and Operative Research, Leioa, Spain
e Cruces University Hospital, Pulmonology Department, Baracaldo, Spain
f Hospital Universitari i Politècnic La Fe de Valencia, Pulmonology Department, Valencia, Spain
g Hospital Clinic i Provincial de Barcelona, Pulmonology Department, University of Barcelona, Barcelona, Spain
h BioCruces Biokasa Health Research Institute, Baracaldo, Spain
i Universitat Politècnica de València, Valencia, Spain
j Faculty of Health Sciences, Continental University, Huancayo, Peru

HIGHLIGHTS

• In COVID-19 pneumonia patients, the probability of death rises significantly with exposure to PM₁₀, NO₂, NO, NOₓ, and CO.
• Systemic inflammatory response increases with exposure to PM₁₀, NO₂, NO and NOₓ.
• Gas exchange disturbance is associated with exposure to NO, NOₓ, and NO₂.

GRAPHICAL ABSTRACT

IMPACT OF INDIVIDUAL OUTDOOR AIR POLLUTION EXPOSURE ON MORTALITY AND OTHER OUTCOMES IN COVID-19 PNEUMONIA

METHODS

• Daily exposure to outdoor air pollutants
• Georeferenced Bayesian generalized additive models

RESULTS

• Exposure to PM₁₀, NO₂, NO and NOₓ associated with mortality

CONCLUSION: Outdoor air pollution exposure may be related to higher probability of death. Further investigation is needed.

ARTICLE INFO

Editor: Jianmin Chen

Keywords:
SARS-CoV-2
COVID-19
Pneumonia
Mortality
Air pollution
Individual-level data

ABSTRACT

The relationship between exposure to air pollution and the severity of coronavirus disease 2019 (COVID-19) pneumonia and other outcomes is poorly understood. Beyond age and comorbidity, risk factors for adverse outcomes including death have been poorly studied. The main objective of our study was to examine the relationship between exposure to outdoor air pollution and the risk of death in patients with COVID-19 pneumonia using individual-level data. The secondary objective was to investigate the impact of air pollutants on gas exchange and systemic inflammation in this disease. This cohort study included 1548 patients hospitalised for COVID-19 pneumonia between February and May 2020 in one of four hospitals. Local agencies supplied daily data on environmental air pollutants (PM₁₀, PM₂.₅, O₃, NO₂, NO and NOₓ) and meteorological conditions (temperature and humidity) in the year before hospital admission (from January 2019 to December 2019). Daily exposure to pollution and meteorological conditions by individual postcode of residence was estimated using geospatial Bayesian generalised additive models. The influence of air pollution on health was evaluated using georeferenced Bayesian models. This study provides preliminary evidence for the association between air pollution and COVID-19 outcomes, suggesting potential targets for future interventions to mitigate the impact of air pollution on COVID-19 severity and mortality.

Abbreviations: COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus type 2; ARDS, acute respiratory distress syndrome; OAPE, outdoor air pollution exposure; NOₓ, nitrogen oxides; NO, nitrogen monoxide; O₃, ozone; PM₁₀, particulate matter <2.5 μm; PM₂.₅, particulate matter <10 μm; 95% CI, 95% confidence interval.

⁎ Corresponding author at: Galdakao-Usansolo University Hospital, Pulmonology Department, Galdakao, Spain
E-mail address: obronte001@ikasle.ehu.eus (O. Bronte).

http://dx.doi.org/10.1016/j.scitotenv.2023.164877
Received 9 February 2023; Received in revised form 23 May 2023; Accepted 12 June 2023
Available online 17 June 2023
0048-9697/© 2023 Published by Elsevier B.V.
Air pollution is the world’s leading environmental cause of illness and premature death (GBD, 2018; WHO, 2018). According to the World Health Organization (WHO), about seven million deaths a year across the world are attributable to air pollution (WHO, 2018). According to the European Environment Agency, there were 374,000 premature deaths attributable to particles with an aerodynamic diameter <2.5 μm (PM$_{2.5}$), 68,000 to nitrogen dioxide (NO$_2$) and 14,000 to ozone (O$_3$) in Europe in 2018 (European Environment Agency (EEA), 2019).

Air pollution is a complex mixture of gaseous and particulate components that vary both temporally and spatially. Outdoor air pollution exposure (OAPE) has been associated with marked detrimental effects on respiratory health (GBD, 2018; Dick et al., 2014; Raji et al., 2020; Fukuda et al., 2011; Huang et al., 2016; Huh et al., 2020; Liang et al., 2020; Somayaji et al., 2020; Jaligama et al., 2017; Cui et al., 2003). In line with this, OAPE has been identified as a cause of higher morbidity and mortality in viral and bacterial lower respiratory tract infections and pneumonia (Fukuda et al., 2011; Huang et al., 2016; Huh et al., 2020; Liang et al., 2020; Somayaji et al., 2020; Jaligama et al., 2017).

Epidemiological studies have previously investigated impacts of particulate matter (PM) and gaseous pollutants such as nitrogen oxides (NO$_2$) and ozone (O$_3$) on COVID-19 outcomes. In most cases, the results have linked mean air pollution levels to COVID-19 severity and mortality (Martellelli and Martellelli, 2020; Dutheil et al., 2020; Zhu et al., 2020; Frontera et al., 2020a, 2020b; Conticini et al., 2020; Wang et al., 2020; Setti et al., 2020; Adhikari and Yin, 2020; Copat et al., 2020; Fattorini and Regoli, 2020; Wu et al., 2020; Zoran et al., 2020; Bourdrel et al., 2021; Andersen et al., 2021; Borro et al., 2020). Among the pollutants studied, COVID-19 mortality appears to be more closely related to PM$_{2.5}$ (Copat et al., 2020) and NO$_2$ (Copat et al., 2020; Fattorini and Regoli, 2020; Ogen, 2020; Guan et al., 2020). Recently, specific mechanisms by which air pollution could increase the severity and mortality risk of COVID-19 infection have been described (Frntera et al., 2020a, 2020b; Andersen et al., 2021; Borro et al., 2020; Guan et al., 2020; Bourdrel et al., 2021).

Experimental studies have shown that air pollution can decrease immune response and, in the respiratory tract, facilitate viral entry through angiotensin-converting enzyme 2 by increasing protease activity, which might facilitate SARS-CoV-2 infection. Most severe forms of COVID-19 and deaths associated with the disease have been related to a disproportionate systemic inflammatory response. In relation to this, air pollution exposure can increase respiratory mucosal permeability leading to impaired gas exchange, oxidative stress and systemic acute inflammatory reactions, observed in severe forms of COVID-19 with multiorgan failure and pulmonary complications such as acute respiratory distress syndrome (ARDS) (Du et al., 2020b). Air pollution plus SARS-CoV-2 infection, may have a multiplicative effect on inflammatory response exacerbating the cytokine storm. Consequently, inferring more severe respiratory epithelium damage and immune dysregulation, pulmonary vascular endothelial cell apoptosis, inflammation and activation of prothrombotic state, leading to alveolar edema, ARDS, multiple organ failure and death (Boyd et al., 2022; Nieto-Codesido et al., 2022; Bronte-Moreno et al., 2023). The impact of acute phase reactants and related blood cellularity seems to be highly relevant as mortality predictor in COVID-19 pneumonia (Nieto-Codesido et al., 2022) and respiratory comorbidities (Bronte-Moreno et al., 2023). However, neutrophil count relationship with mortality from COVID-19 is not consistent in the current literature (Du et al., 2020b; Zhou et al., 2020). Air pollutants can also reduce antioxidant levels and modify surfactant antimicrobial properties. Additionally, air pollution is associated with the decompensation of pre-existing comorbidities, increasing COVID-19-related morbidity and mortality (Guan et al., 2020; Bourdrel et al., 2021). Furthermore, age older than 65 years, coexistence of cardiovascular comorbidities, lymphopenia and arterial oxygen pressure <60 mmHg (among others), have been postulated as risk factors associated with COVID-19 pneumonia mortality in hospitalised patients (Du et al., 2020b; Ali et al., 2023; Nieto-Codesido et al., 2022; Choi et al., 2022; Muñoz-Rodríguez et al., 2021). Finally, it should be taken into account that air pollution exposure can pre-dispose individuals to chronic diseases, in particular, respiratory and cardio-metabolic conditions, which are comorbidities that have been found to increase the risk of hospitalisation or death due to COVID-19 (Zoran et al., 2020; Guan et al., 2020).

Nonetheless, most of these studies have been ecological, that is, their design has not been appropriate for evaluating possible associations between air pollution and COVID-19 (Liang et al., 2020; Wu et al., 2020; Borro et al., 2020). Their main limitation is that they are based on aggregated data, and hence, lack detailed information at the individual level (Zoran et al., 2020).

In this context, the main objective of our study was to examine the relationship between exposure to outdoor air pollution and the risk of death in patients with COVID-19 pneumonia using individual-level data. The secondary objective was to investigate the impact of personal exposure to air pollutants on gas exchange and host inflammatory response in COVID-19 pneumonia.

2. Material and methods

2.1. Study population

Our study is retrospective, observational and multicentric cohort study. It was carried in Respiratory department of four public Spanish hospitals. The participating hospitals were: Hospital Universitari i Politecnic La Fe de Valencia (Valencia, Region of Valencia), Hospital Clinic i Provincial de Barcelona (Barcelona, Catalonia), Cruces University Hospital (Baracaldo, Biscay, Basque Country) and Galdakao-Usansolo University Hospital (inland region of Biscay and parts of Araba, Basque Country). The catchment populations of these hospitals in 2020 were 300, 540, 330 and 309 thousand, respectively.
We included all patients admitted in hospital with COVID-19 pneu-
nia diagnosis. All patients included in our cohort were older than
18 years and were admitted to one of the four participating hospitals for
COVID-19 pneumonia between 1st March 2020 and 31st May 2020. The
requirements for the diagnosis of COVID-19 pneumonia were: having a po-
itive microbiological test for SARS-CoV-2, involving DNA amplification by
polymer chain reaction, as well as compatible chest imaging findings on
chest radiography and/or chest computer tomography. Inclusion criteria
were: hospital admission with COVID-19 pneumonia diagnosis, accepted
to participate and give written informed consent. We excluded patients
with non-inclusion criteria, subsequent admissions, hospitalised for SARS-
CoV-2 infection without a diagnosis of pneumonia, duplicates for the
same patient, pediatric patient (<18 years old) or who declined to
participate and/or give written informed consent. The protocol was
approved by the research ethics committees of the autonomous region of
the Basque Country, Hospital Universitari i Politècnic La Fe de Valencia,
and Hospital Clinic i Provincial de Barcelona (reference codes: PI
20190906, PI 2020083-20-122-1, and HCB/2020/0273 respectively).

Data were gathered on place of residence (postcode), and socio-
demographic, clinical, laboratory and radiological characteristics and en-
tered into an ad hoc database. The respiratory physician of the research
group in charge of each patient reviewed the corresponding case from hos-
pital admission up to 3 months after discharge.

2.2. Air pollution exposure

We obtained daily pollution data from open sources, from 1st January
2019 to 31st December 2019, as published by the corresponding air quality
agencies of the regional authorities (see supplementary material, data
sources). Such data were only available for specific locations, namely,
the sites of monitoring stations, which form the air quality surveillance
networks.

In Spain, each autonomous community has its own network to monitor
air quality. In our study, the air quality networks from which we have col-
clected pollution data have been: (1) the Basque Country, for the Galdakao
and Baracaldo hospitals, and their respective areas of influence; (2) Barce-
lona, for the Hospital Clinic and its area of influence (3) Valencia, for the
Hospital la Fe de Valencia and its area of influence.

The Air Quality Control Network of the Basque Country includes 55 sta-
tions that are located throughout all the territory which is subdivided in
eight zones, in accordance with the requirements of current regulations.
This division is calculated based on aerial basis of similar orography in
which the levels of pollutants are fundamentally influenced by the same
sources, and by the same transport processes of the aerial mass of the
mentioned sources. The zoning of the territory also depends on the
pollutant (Alberdi et al., 2020). In Barcelona, 11 stations make up the
Atmospheric Pollution Monitoring and Forecasting Network and they mea-
sure the air concentration of the main environmental pollutants that are
harmful to people’s health. (Rodríguez-Rey et al., 2022). Finally, in the
Community of Valencia, at this moment, there are 65 operating samplers
(Estarlich et al., 2013).

The maximum mean levels of outdoor air pollutants recommended by
the World Health Organization (WHO) in the most recent air quality guide-
lines (AQGs) published in 2021 (WHO, 2021) were taken as a reference for
this study.

2.3. Covariates

As well as OAPE measurements, we considered meteorological con-
ditions (temperature and humidity), since evidence in the literature in-
dicates that they have an impact on mortality due to respiratory diseases
(Song et al., 2017). For this, we used data published by the meteorology
agencies in each geographical area (see supplementary material, data
sources).

In addition, we assessed the socioeconomic status of the patients.
Most of the articles that have analyzed the impact of socioeconomic
status on community-acquired pneumonia (CAP) point out that
adults residing in low-deprivation areas, they have a higher incidence,
severity, and mortality of CAP compared to adults residing in high-
deprivation areas (Wiemken et al., 2020, Gaoken et al., 2020). As the
collection of such data at an individual level was not feasible due to
data protection concerns, we decided to use the mean net personal in-
come at each individual’s postcode of residence, compared to the aver-
age net income in the province. For this, we used data published by
the Spanish National Institute of Statistics, in its 2019 census report
(see supplementary material, data sources).

2.4. Outcomes

The main objective of our study was to examine the relationship be-
tween exposure to outdoor air pollution and the risk of death in hospitalised
patients for COVID-19 pneumonia using individual postcode-level air pollu-
tion exposure data. The secondary objective was to investigate the impact
of personal exposure to air pollutants on gas exchange and host inflamma-
tory response in COVID-19 pneumonia.

2.5. Statistical analysis

For a descriptive analysis of the cohort, we performed univariate sta-
tistical comparisons: using the chi-squared test for discrete variables
and the non-parametric Mann-Whitney U test for continuous variables.
Effect size, which quantifies the magnitude of the difference between
groups (Sullivan and Feinn, 2012), was assessed using Cramer’s V statis-
tic and rank-biserial correlation. For the sake of exploring inter-group
differences, effect sizes were categorized by magnitude into negligible,
small, medium, or large attending to the methodology proposed by

For each pollutant, we estimated daily OAPE at postcode level, using
Bayesian spatial statistical models. In particular, we used Bayesian gener-
alised additive models (BGAMs) (Umlauf et al., 2018; Alas et al., 2021) to
compute the distribution of pollutant values as a function of latitude,
longitude and elevation with respect to the location of the monitoring
stations. Calculations were carried out for each of the six pollutants under
consideration here, namely: PM$_{10}$, PM$_{2.5}$, O$_3$, NO$_2$, NO, and NO$_x$. To assess
OAPE, we took into account daily levels over 2019 and obtained four percentile
values to summarise this exposure: per-year 50, 90, 95 and 99 % percentiles.

To assess temperature and humidity at postcode level, we developed
the same type of spatial statistical models using BAMLSS as for pollution ex-
sposure (Stauffer et al., 2018; Umlauf et al., 2018) to compute the lay out of
postcode

\[t_i \sim \text{Normal}(\mu_i, \sigma_i) \]

\[h_i \sim \text{Beta}(\mu_i', \sigma_i') \]

for the i-th location; and where their respective mean distribution param-
eters μ_i and μ_i' were explained as a function of latitude, longitude and eleva-
tion (x and y) as in Eq. (2). Again, no covariates and effects were included in
the linear predictor of the standard deviation.

For each patient, we computed the median of the values over the three
days before each patient’s admission.

A model estimating the quantitative impact of differences in air pollu-
tion exposure on the n-th patients’ mortality $\pi(n)$ was fitted using a general-
ised additive model approach (GAM, Wood, 2017), which makes it
possible to explore the effect of pollutant exposures ϵ on the probability
of death. The model assumed a binomial distribution, linking the proba-
bility for death π to the predictors using a logit link function, and it was fitted
for: each patient’s age a, sex s and Charlson comorbidity index c, hospital,
net income i, temperature t (Celsius) and relative humidity h (percentage)
in the days leading up to admission (median of the previous 3 days). The GAM was used to estimate the odds ratio (OR) for death per 1 μg/m³ increase in the corresponding air pollutant exposure (β_{Pollut}) and keeping constant the rest of the variables:

$$m_n \sim \text{Binomial}(\pi_n^{\text{Mort}}),$$

$$\logit(\pi_n^{\text{Mort}}) = \beta_{\text{Pollut}} + \beta_{\text{Pollut}}^n + \beta_{\text{SpO2/FiO2}} + \beta_{\text{SpO2/FiO2},\text{hospital}}(e_n, \text{hospital}),$$

$$\logit(\pi_n^{\text{Mort}}) \sim + \beta_{\text{Sex}} s_n + 1\text{Female}(c_n)\beta_{\text{Age}}^n + 1\text{Male}(\text{hospital})\beta_{\text{Mort}}^n,$$

$$\logit(\pi_n^{\text{Mort}}) \sim + 1\text{Female}(\text{hospital})\beta_{\text{Charlson},l}(c_n) + 1\text{Male}(\text{hospital})\beta_{\text{Charlson},m}(c_n),$$

$$\logit(\pi_n^{\text{Mort}}) \sim + f_{\text{temp}}(h_n) + f_{\text{SpO2/FiO2}}(h_n, \text{hospital}),$$

$$\logit(\pi_n^{\text{Mort}}) \sim + f_{\text{SpO2/FiO2}}(h_n) + \beta_{\text{Mort}}^n + f_{\text{SpO2/FiO2}}(h_n, \text{hospital}),$$

being β the parameters corresponding to the fixed effects, f univariate smoothing P-splines, g univariate smoothing P-splines estimated by hospital and 1Female, 1Male are indicator functions for sex.

In addition, we proposed equivalent GAMs to explain the impact of pollutants at the postcode in which the participating hospitals are located. We computed, as well as the proportion of area they occupied within each polygon. Subsequently, we calculated a weighted sum for each variable of interest.

3. Results

3.1. Study population

During the study period, 1548 patients were included. Among them, 243 (15.7 %) died during hospitalisation within 30 days after admission. The demographic and clinical characteristics of the study sample are summarised in Table 1.

3.2. Air pollution exposure

Table 2 lists the median values (i.e., 50 % percentiles) and 95 % confidence intervals (CI) for NO, NO2, NOX, and PM10 exposure. In particular, NO2 and NOX concentrations were higher than the annual and daily AQGs respectively. Note that AQGs for NO2 are for peak season and 8-hour exposure and that the WHO does not publish any guidelines for either NO or NOX. Similarly, the median and 97.5 % percentile values of PM10 exposure respectively exceeded the annual and daily AQGs at hospitals C and D. Moreover, the median and 97.5 % percentile values of PM2.5 and NOx concentrations were higher than the annual and daily AQGs at all hospitals (data on PM2.5 was unavailable for hospital C). C and D hospitals are located in more urbanized areas, with more industry and more transport not only by land but also by sea. It is for these reasons that these areas are most polluted. Similarly, for hospitals A and B, the most polluted areas correlate with more polluted locations, mainly by road traffic and industry.

Spearman’s correlations between pollutants are shown in Fig. 1. In general, there were strong and significant positive correlations between levels of certain pollutants: in particular, NO2, NO and NOX. Similarly, PM10 and PM2.5 concentrations were correlated. On the other hand, levels of ozone (O3) were significantly negatively correlated with those of nitrogen gases (NO, NO2 and NOX). Fig. 2 contains maps showing the geographical distribution of median NO2 exposure (over 2019). Similar figures for other pollutants and percentiles can be found in the online supplementary material (Fig. S1, a-I).

Fig. 3 depicts the distribution of the numbers of patients who were hospitalised (Fig. 3a) and who died (Fig. 3b) by postcode of residence.

3.3. Modelling the effect of air pollutants

We modelled how the OR of death among patients hospitalised for COVID-19 pneumonia changed as exposure levels to air pollution increased by 1 μg/m³, separately for each of the six air pollutants under consideration. Notably, for 1 μg/m³ rises in the median exposure to PM10, NO2, NO and NOX, the OR for death increased significantly (p < 0.05): 5.33 %, 3.59 %, 10.79 % and 2.24 % (Fig. 4a, and Table S1 in the online supplementary material). For the 90 % percentile, each 1 μg/m³ increment in NO and NOX levels translated to 3.12 % and 0.03 % higher ORs (p < 0.05); whereas considering the 90 % percentile for these same pollutants, rises of 1 μg/m³ corresponded to 2.10 % and 0.75 % higher ORs (p < 0.05). Finally, each 1 μg/m³ increment in terms of the 99 % percentile exposure to NO and NOX implied an increase of 1.28 % and 1.21 % higher ORs for death (p < 0.05).
Moreover, considering 90 %, 95 % and 99 % percentiles, for each 1 μg/m³ increase in NO and NOX concentration, CRP levels also rose: 1.72 % and 0.54 %; 1.12 % and 0.40 %; and 0.65 % and 0.27 % respectively (p < 0.05).

As for the relationship between gas exchange and pollution, each additional 1 μg/m³ of NO2, NO and NOX was significantly associated (p < 0.05) with decreases in SpO2/FiO2: −0.19 %, −0.73 % and −0.14 %, respectively (Fig. 4c, and Table S1 in the online supplementary material). For the 90 % percentiles of NO2, NO and NOX, per 1 μg/m³ increase, SpO2/FiO2 fell by −0.11 %, −0.33 % and −0.07 % (p < 0.05); while it decreased by −0.16 % and −0.05 % (p < 0.05) for the 95 % percentiles of NO and NOX, and by −0.07 % (p < 0.05) for the 99 % percentile of NO2.

The other correlations between air pollutant exposure and the aforementioned clinical outcomes in COVID-19 pneumonia were not statistically significant (p ≥ 0.05).

4. Discussion

4.1. Summary of the main results

Our models found that higher exposure to PM10, NO2, NO and NOX in the year before admission for COVID-19 pneumonia was associated with higher ORs for death. Likewise, each 1 μg/m³ increase in the levels of PM10, NO2, NO and NOX was associated with greater systemic inflammation, as reflected in an elevation of CRP levels in blood, and with greater severity of ARDS, as reflected in a decrease in the SpO2/FiO2 ratio.

4.2. Effect of OAPE on mortality in other studies and comparison with our findings

Numerous studies have linked COVID-19 mortality to exposure to air pollutants, in various locations worldwide (Copat et al., 2020). Among all

Univariate statistical comparisons were performed using χ² tests for discrete variables, and non-parametric Mann–Whitney U tests for continuous variables. Respectively, effect sizes of between-group differences (and their qualitative interpretations) were assessed using Cramer’s V statistic and rank-biserial correlation. Univariate statistical comparisons for inter-group differences (survivors vs. deceased) were performed using χ² tests for discrete variables, and non-parametric Mann–Whitney U tests for continuous variables. Their effect sizes for between-group differences were computed using Cramer’s V statistic and rank-biserial correlation, respectively. Subsequently, effect sizes were categorized by magnitude into negligible, small, medium, or large as in Cohen (2013). Num. valid: number of valid participating patients. N/A: not applicable. PSI: calculated as Fine et al. (1997).

Moreover, considering 90 %, 95 % and 99 % percentiles, for each 1 μg/m³ increase in NO and NOX concentration, CRP levels also rose: 1.72 % and 0.54 %; 1.12 % and 0.40 %; and 0.65 % and 0.27 % respectively (p < 0.05).

As for the relationship between gas exchange and pollution, each additional 1 μg/m³ of NO2, NO and NOX was significantly associated (p < 0.05) with decreases in SpO2/FiO2: −0.19 %, −0.73 % and −0.14 %, respectively (Fig. 4c, and Table S1 in the online supplementary material). For the 90 % percentiles of NO2, NO and NOX, per 1 μg/m³ increase, SpO2/FiO2 fell by −0.11 %, −0.33 % and −0.07 % (p < 0.05); while it decreased by −0.16 % and −0.05 % (p < 0.05) for the 95 % percentiles of NO and NOX, and by −0.07 % (p < 0.05) for the 99 % percentile of NO2.

The other correlations between air pollutant exposure and the aforementioned clinical outcomes in COVID-19 pneumonia were not statistically significant (p ≥ 0.05).

4. Discussion

4.1. Summary of the main results

Our models found that higher exposure to PM10, NO2, NO and NOX in the year before admission for COVID-19 pneumonia was associated with higher ORs for death. Likewise, each 1 μg/m³ increase in the levels of PM10, NO2, NO and NOX was associated with greater systemic inflammation, as reflected in an elevation of CRP levels in blood, and with greater severity of ARDS, as reflected in a decrease in the SpO2/FiO2 ratio.

4.2. Effect of OAPE on mortality in other studies and comparison with our findings

Numerous studies have linked COVID-19 mortality to exposure to air pollutants, in various locations worldwide (Copat et al., 2020). Among all

Univariate statistical comparisons were performed using χ² tests for discrete variables, and non-parametric Mann–Whitney U tests for continuous variables. Respectively, effect sizes of between-group differences (and their qualitative interpretations) were assessed using Cramer’s V statistic and rank-biserial correlation. Univariate statistical comparisons for inter-group differences (survivors vs. deceased) were performed using χ² tests for discrete variables, and non-parametric Mann–Whitney U tests for continuous variables. Their effect sizes for between-group differences were computed using Cramer’s V statistic and rank-biserial correlation, respectively. Subsequently, effect sizes were categorized by magnitude into negligible, small, medium, or large as in Cohen (2013). Num. valid: number of valid participating patients. N/A: not applicable. PSI: calculated as Fine et al. (1997).

Moreover, considering 90 %, 95 % and 99 % percentiles, for each 1 μg/m³ increase in NO and NOX concentration, CRP levels also rose: 1.72 % and 0.54 %; 1.12 % and 0.40 %; and 0.65 % and 0.27 % respectively (p < 0.05).

As for the relationship between gas exchange and pollution, each additional 1 μg/m³ of NO2, NO and NOX was significantly associated (p < 0.05) with decreases in SpO2/FiO2: −0.19 %, −0.73 % and −0.14 %, respectively (Fig. 4c, and Table S1 in the online supplementary material). For the 90 % percentiles of NO2, NO and NOX, per 1 μg/m³ increase, SpO2/FiO2 fell by −0.11 %, −0.33 % and −0.07 % (p < 0.05); while it decreased by −0.16 % and −0.05 % (p < 0.05) for the 95 % percentiles of NO and NOX, and by −0.07 % (p < 0.05) for the 99 % percentile of NO2.

The other correlations between air pollutant exposure and the aforementioned clinical outcomes in COVID-19 pneumonia were not statistically significant (p ≥ 0.05).

4. Discussion

4.1. Summary of the main results

Our models found that higher exposure to PM10, NO2, NO and NOX in the year before admission for COVID-19 pneumonia was associated with higher ORs for death. Likewise, each 1 μg/m³ increase in the levels of PM10, NO2, NO and NOX was associated with greater systemic inflammation, as reflected in an elevation of CRP levels in blood, and with greater severity of ARDS, as reflected in a decrease in the SpO2/FiO2 ratio.

4.2. Effect of OAPE on mortality in other studies and comparison with our findings

Numerous studies have linked COVID-19 mortality to exposure to air pollutants, in various locations worldwide (Copat et al., 2020). Among all
the known pollutants with negative effects on respiratory health, those that have been most related to COVID-19 mortality are particulates, both PM10 (Zhu et al., 2020) and PM2.5 (Copat et al., 2020; Pozzer et al., 2020) and nitrogen-containing air pollutants (NO2, NOX, NO) (Zoran et al., 2020; Copat et al., 2020; Bolaño-Ortiz et al., 2020).

In relation to PM10, in Spain, Culqui-Lévano et al. (2022) have recently found statistically significant associations of PM10 and NO2 with COVID-19 mortality in 41 of the 52 Spanish provinces, with PM10 being the variable that showed the strongest associations in most of the areas studied. Furthermore, Magazzino et al. (2020) reported that COVID-19 mortality was associated with exposure to PM10 and PM2.5 in three French cities.

Regarding NO2 and COVID-19 mortality in the United States, Liang et al. (2020) found that the mean concentrations of NO2 were positively associated with the COVID-19 mortality rate, regardless of exposure to O3 and PM2.5. Concerning this gas in Europe, Ogen (2020) found that 78 % of deaths were concentrated in five areas located in northern Italy and central Spain with very high levels of NO2 in the months prior to the COVID-19 pandemic.

Our results are consistent with these and other studies conducted in various locations worldwide. The models used in our study show that exposure to PM10, NO2, NO and NOx is significantly associated with a higher probability of death in individuals hospitalised for COVID-19 pneumonia. We also studied potential associations with O3, but trends did not reach statistical significance.

Levels of O3, considered one of the most dangerous air pollutants, are correlated with a high risk of respiratory problems, such as asthma exacerbation and lung inflammation, loss of lung function, and idiopathic pulmonary fibrosis (Johannson et al., 2014). The non-statistically significant associations in our study may be explained by the high levels of NO2 and NOx. That is, O3 is an air pollutant that is not directly emitted into the air; rather, it is formed through a series of reactions involving NO2 and O2. These reactions depend on the concentration of NO2 and volatile organic compounds (VOCs) and are facilitated by environmental factors such as solar radiation and atmospheric convection (WHO, 2005; Guarnieri and Balmes, 2014). In our study, O3 levels were negatively correlated with those of other pollutants.

4.3. OAPE and COVID-19 pneumonia severity and inflammation

In this study, we found no significant associations between OAPE and the severity of COVID-19 pneumonia, as measured by international Pneumonia Severity Index (PSI) scale. This may be due to the greater weight of the underlying disease in these scales compared to respiratory function, which would underestimate the severity of COVID-19 pneumonia. Unlike Bozack et al. (2022), we have not considered admission or the use of invasive mechanical ventilation as indicators of severity, since such data might have introduced a bias, due to potential overwhelming of resources in the context of the health emergency. Therefore, we decided to evaluate the relationship of PM10, NO2, NOx, and NO exposure with the severity of ARDS in COVID-19 as reflected in a measure of gas exchange, namely, SpO2/FiO2 (Ranieri et al., 2012). Additionally, CRP is a readily available and widely used inflammatory biomarker, it being both easy and inexpensive to measure. In COVID-19 infection, Tahery et al. (2021) related CRP levels to disease severity and fatality, while Yitbarek et al. (2021) in their systematic review concluded that CRP monitoring can contribute to the early detection
of severe manifestations and subsequently improve prognosis. For these reasons, we evaluated the impact of exposure to PM10, NO2, NOX, and NO on the level of CRP.

Studies in animals and humans have linked OAPE to systemic and respiratory inflammation. Specifically, the exposure of animal models to air pollutants has shown to be followed by the elevation of inflammatory markers at the systemic and pulmonary levels (Yang et al., 2019). The relationship between exposure to pollutants and inflammation has also been studied in humans (Pope et al., 2016). Pollutants that have been most strongly and frequently associated with systemic inflammation are PM10, PM2.5, and NO2, inducing the overexpression of inflammatory mediators, such as interleukin 6. This inflammation seems to be related to the duration of exposure to pollutants, as observed by Tsai et al. (2019). In line with this, Perret et al. (2017) described an incremental pattern of responses related to exposure to NO2 and interleukin 6.

In relation to this, recently, studies have been published that relate exposure to air pollutants to oxidative stress and the inflammatory response against SARS-CoV-2. Zhu et al. (2020) suggest that oxidative stress and the inflammatory response are the main mechanisms involved in the adverse effects induced by PM in COVID-19. In addition, among the mechanisms that explain the relationship of pollutants with the immune response associated with SARS-CoV-2, it has been observed that exposure to PM10 and NO2 (Di Ciaula et al., 2022) can weaken and modify the regulation of the immune response. This would reduce the host's defensive capacity to deal with viral invasion, increasing inflammation and tissue damage induced by the virus. For this reason, exposure to air pollutants such as PM10 and NO2 may induce hyperactivation of the innate immune system with overexpression of inflammatory cytokines and chemokines. This systemic proinflammatory state would trigger an apoptotic cascade (Gouda et al., 2018) that, together with immune deregulation, could be
responsible for ARDS, resulting in a poorer prognosis in patients with COVID-19, this being the main cause of death. On the other hand, exposure to air pollutants has a deleterious effect on pre-existing respiratory and cardiovascular conditions (comorbidities), in turn, leading to a poorer prognosis in COVID-19 patients.

Our results show a statistically significant relationship between air pollution exposure and both decreases in the SpO2/FiO2 ratio and increases in blood CRP level. On the one hand, 1 μg/m³ increase in NO, NO2, and NO were related to significant reductions in SpO2/FiO2; and on the other, CRP levels rose significantly with each 1 μg/m³ increase in PM10, NO2, NO and NOX.

4.4. Strengths

In this study, the participating patients have been individually evaluated and their exposure to PM10, PM2.5, O3, NO2, NOX and NO has been estimated by geospatial models, based on their postcode of residence. The first studies to evaluate the impact of pollution on COVID-19 were ecologically in nature, that is, they used aggregated data, which cannot be adjusted for individual risk factors for COVID-19-related death. Recently, individual-level studies have been reported (Travaglio et al., 2021; Pecoraro et al., 2021; Bozack et al., 2022; López-Feldman et al., 2021), but none have been carried out in Spain.

Concerning the methods, daily exposure to pollution and meteorological conditions based on individuals’ postcodes were estimated using geospatial models. Then, the influence of air pollution on pneumonia severity was studied using GAMs which included: age, sex, and Charlson comorbidity index, hospital, average income, air temperature and humidity, and exposures to each pollutant. In addition, GAMs were also generated for the effect of air pollution on CRP and SpO2/FIO2 levels at hospital admission.

Assessing the OAPE is challenging to carry out in an individualized manner. The joint report by ERS, ISEE, HEI and WHO (Andersen et al., 2021) identified a single cohort study with individual-level data (Bowen et al., 2021): where the authors employed the annual -i.e. throughout 2018- average PM2.5 exposure, at an approximate 1 km2 resolution, and linked with residential address in the USA. We performed postcode-based geospatial calculations, because postcode was the most detailed level of information available to researchers about the patients’ place of residence, due to privacy legislations. Nonetheless, postcode areas are arguably at a similar geographical resolution to the aforementioned 1 km2 squares, notably at the metropolitan areas, where most of the patients in our cohort came from (see Fig. S2, supplementary material). Meteorological covariates, to adjust for the well known effect of meteorology on respiratory diseases (Song et al., 2017), were also computed per postcode in the same manner, but where further particularized to the median of the 3 days prior to each patient’s admission. Other covariates adjusted in our statistical GAM models were patient-specific: sex, age, and Charlson comorbidity index.

Socioeconomic inequalities have been found to influence the pneumonia incidence, severity and mortality in community acquired pneumonia (CAP) (Wiernik et al., 2020) and in COVID-19 disease (Gao et al., 2021; Khanjahani et al., 2021; Agencia de Qualitat i Avaluació Sanitàries de Catalunya, 2020). However, the evidence of the impact of air pollution on pneumonia severity and mortality from COVID-19 pneumonia taking into account the socioeconomic level is scarce. Given that socioeconomic inequalities influence many diseases and health outcomes, we believe that having considered this aspect in our study is relevant. Moreover, socioeconomic position should be considered an important factor for research in air pollution and CAP.

Finally, we are not aware of any studies that have evaluated at an individual level the impact of exposure to air pollutants on the inflammatory response of patients hospitalised for COVID-19 pneumonia, considering either CRP or altered gas exchange as indicators of pneumonia severity and its relationship with air pollution.

4.5. Limitations

Our study has several limitations. Data from a number of stations were missing for PM2.5 and CO, leading to possible errors in the measurement of exposure in the corresponding areas. Additionally, pollutant concentration estimates were made for place of residence only, and therefore they did not capture variability in exposure due to time spent indoors and at locations other than the primary residence. Finally, from 14th March 2020 to 21st June 2020, the Spanish government declared a state of alarm due to the coronavirus pandemic and imposed a lockdown across the country, which reduced exposure to outdoor air pollution. All the aforementioned aspects may explain the observed relatively weak associations of exposure to some pollutants (especially PM2.5) with mortality, inflammatory response and decreased oxygen exchange in COVID-19 pneumonia.

In relation to socioeconomic status, we used data published by the Spanish National Institute of Statistics, in its 2019 census report. However, the information of this data is limited to censal data, and we could not register for each subject included in our study.

5. Conclusions

In patients hospitalised for COVID-19 pneumonia, we found statistically significant positive associations between death and exposure to certain pollutants, PM10, NO2, NO and NOX, independently of the levels of other pollutants analyzed (PM2.5, and O3). Further, exposure to PM10, NO2, NO and NOX was associated with lower SPO2/FIO2 ratios and higher CRP levels.

Therefore, exposure to these pollutants, largely due to vehicle emissions, should be considered an important risk factor for severity and adverse outcomes in COVID-19. These results highlight, in general, the importance of decreasing air pollution levels, and in particular, the need to implement specific public health measures to address this risk factor by reducing people’s exposure, such as cutting emissions from road traffic in areas with high levels of NO2, NO, NOX and PM10.

COVID-19 & air pollution working group

La Fe University and Polytechnical Hospital, Pulmonology Department: Ana Latorre, Paula González Jiménez, Raúl Méndez, Rosario Menéndez.
Crucers University Hospital, Pulmonology Department: Leyre Serrano Fernández, Eva Tabernero Huguet, Luis Alberto Ruiz Iturriaga, Rafael Zalacaín Jorge.
Hospital Clínic i Provincial de Barcelona, Pulmonology Department: Antoni Torres, Catia Cilloniz.
Galdakao-Uanssolo University Hospital, Pulmonology Department: Pedro Pablo España Yandiola, Ana Uranga Echeverría, Olafia Bronte Moreno, Isabel Urrutia Landa.

Fig. 4. Forest plot – Effects of increases in air pollution exposure on different clinical outcomes, by pollutant and percentile.

a: Odds ratio for COVID-19 pneumonia mortality (in-hospital or within 30 days after admission), per 1 μg/m³ increase in air pollution exposure (i.e., throughout 2019) for each pollutant, by yearly percentiles (50–99 %). The diagrams show the mean expected value (central dot) and its 95 % confidence interval (CI). The dot is solid when the effect was statistically significant (p < 0.05).
b: Multiplicative factor affecting blood CRP levels, per 1 μg/m³ increase in air pollution exposure (i.e., throughout 2019) for each pollutant, by yearly percentiles (50–99 %). The diagrams show the mean expected value (central dot) and its 95 % confidence interval (CI). The dot is solid when the effect is statistically significant (p < 0.05).
c: Multiplicative factor affecting SPO2/FIO2, per 1 μg/m³ increase in air pollution exposure (i.e., throughout 2019) for each pollutant, by yearly percentiles (50–99 %). The diagrams show the mean expected value (central dot) and its 95 % confidence interval (CI). The dot is filled when the effect is statistically significant (p < 0.05).

Funding

This research work was partially funded by the Spanish Respiratory and Thoracic Surgery Association (SEPAR) [grant number 004-2021]. This research was also partially funded by the Department of Education of the Basque Government through an Artificial Intelligence in BCAM grant [grant number 0632-2019], the ‘Mathematical Modelling Applied to Health’ strategy, the BERC 2018–2021 & 2022–2025 programmes and the Consolidated Research Group MATHMODE [IT1456-22]; and by the Spanish Ministry of Science, Innovation and Universities under BCAM Severo Ochoa accreditation SEV-2017-0718, as well as by the Spanish State Research Agency (AEI) through project S21MP4R [PID2020-115882RB-100].

CRediT authorship contribution statement

Olaia Bronte: conceptualization, investigation and resources – clinical data collection, interpretation of data, writing - original draft (lead), review and editing (lead), visualization, supervision. Fernando García-García: methodology, software, formal analysis, investigation and resources – air pollution and environmental data, data curation, writing - original draft (methodology), review and editing (supporting). Dae-Jin Lee: methodology, software, formal analysis, writing - review and editing (supporting). Isabel Urrutia: conceptualization (supporting), investigation and resources – clinical data collection, interpretation of data, writing - original draft, review and editing (supporting). Anue Aranguren: conceptualization (supporting), investigation and resources – clinical data collection, writing - original draft, review and editing (supporting), interpretation of data. Monica Nieves: investigation and resources – air pollution and environmental data collection, data curation, writing - original draft (results), review and editing (supporting). Joaquín Martínez-Minaya: methodology, software, formal analysis. Jose María Quintana: conceptualization (supporting), methodology, interpretation of data, writing - review and editing (supporting). Inmaculada Arostegui: methodology, formal analysis, interpretation of data, writing - review and editing (supporting). Rafael Zalacain, Leyre Serrano, Luis Alberto Ruiz Iturriaga, Rosario Menéndez, Raúl Méndez Antoni Torres, Catia Cilloniz: investigation and resources – clinical data collection. Pedro Pablo España: conceptualization (supporting), investigation and resources – clinical data collection, interpretation of data, writing - original draft, review and editing (supporting), funding acquisition. All authors contributed to final approval of the version submitted for publication.

Data availability

This data has been used is confidential.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to acknowledge patients who participated in this research, as well as the staff at the four hospitals involved: Hospital Clínic i Provincial de Barcelona, Hospital Universitari i Politécnic La Fe de València, Galdakao-Usansolo University Hospital and Cruces University Hospital. In addition, we are particularly grateful to all members of the COVID-19 & Air Pollution Working Group.

Finally, we would like to thank Nadia Arcarazo Arrizabalaga, the technical officer responsible for the Basque Air Quality Control Network, for her assessments, and the Associació Valenciana de Meteorologia ‘Josep Peinado’ (AVAMET), for agreeing to share their 2020 meteorological data.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2023.164877.

References

Dezalay, B., 2021. Socioeconomic inequalities in the number of cases and the mortality per COVID-19 in Catalu­nya. Agència de Qualitat i Avaluació Sanitàries de Catalunya, Barcelona.

10