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Abstract

We generalize to multi–commutators the usual Lieb–Robinson bounds
for commutators. In the spirit of constructive QFT, this is done so as to
allow the use of combinatorics of minimally connected graphs (tree expan-
sions) in order to estimate time–dependent multi–commutators for interact-
ing fermions. Lieb–Robinson bounds for multi–commutators are effective
mathematical tools to handle analytic aspects of the dynamics of quantum
particles with interactions which are non–vanishing in the whole space and
possibly time–dependent. To illustrate this, we prove that the bounds for
multi–commutators of order three yield existence of fundamental solutions
for the corresponding non–autonomous initial value problems for observ-
ables of interacting fermions on lattices. We further show how bounds for
multi–commutators of order higher than two can be used to study linear and
non–linear responses of interacting fermions to external perturbations. The
results discussed here are also valid for quantum spins on lattices, with obvi-
ous modifications. However, we only discuss the fermionic case in detail, in
view of applications to microscopic quantum theory of electrical conduction
discussed here and because this case is technically more involved.
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1 Introduction
Lieb–Robinson bounds are upper–bounds on time–dependent commutators and
were originally used to estimate propagation velocities of information in quantum
spin systems. They have first been derived in 1972 by Lieb and Robinson [LR].
Nowadays, they are widely used in quantum information and condensed matter
physics. Phenomenological consequences of Lieb–Robinson bounds have been
experimentally observed in recent years, see [Ch].

For the reader’s convenience and completeness, we start by deriving such
bounds for fermions on the lattice with (possibly non–autonomous) interactions.
As explained in [NS] in the context of quantum spin systems, Lieb–Robinson
bounds are only expected to hold true for systems with short–range interactions.
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We thus define Banach spaces W of short–range interactions and prove Lieb–
Robinson bounds for the corresponding fermion systems. The spaces W include
density–density interactions resulting from the second quantization of two–body
interactions defined via a real–valued and integrable interaction kernel v (r) :
[0,∞) → R. Considering fermions with spin 1/2, our setting includes, for in-
stance, the celebrated Hubbard model (and any other system with finite–range
interactions) or models with Yukawa–type potentials. Two–body interactions de-
caying polynomially fast in space with sufficiently large degree are also allowed,
but the Coulomb potential is excluded because it is not summable at large dis-
tances. The method of proof we use to get Lieb–Robinson bounds for non–
autonomous C∗–dynamical systems related to lattice fermions is, up to simple
adaptations, the one used in [NS] for (autonomous) quantum spin systems. Com-
pare Theorem 3.1, Lemma 3.2, Theorem 4.1 and Corollary 4.2 with [NS, Theo-
rems 2.3. and 3.1.]. See also [BMNS] where (usual) Lieb–Robinson bounds for
non–autonomous quantum spin systems have already been derived [BMNS, The-
orems 4.6].

Once the Lieb–Robinson bounds for commutators are established, we com-
bine them with results of the theory of strongly continuous semigroups to de-
rive properties of the infinite volume dynamics. These allow us to extend Lieb–
Robinson bounds to time–dependent multi–commutators, see Theorems 3.8–3.9
and 4.4. The new bounds on multi–commutators make possible rigorous stud-
ies of dynamical properties that are relevant for response theory of interacting
fermion systems. For instance, they yield tree–decay bounds in the sense of
[BPH1, Section 4] if interactions decay sufficiently fast in space (typically some
polynomial decay with large enough degree is needed). In fact, by using the Lieb–
Robinson bounds for multi–commutators, we extend in [BP2, BP3] our results
[BPH1, BPH2, BPH3, BPH4] on free fermions to interacting particles with short–
range interactions. This is an important application of such new bounds: The rig-
orous microscopic derivation of Ohm and Joule’s laws for interacting fermions,
in the AC–regime. See Section 5 and [BP1] for a historical perspective on this
subject.

Via Theorems 5.1 and 5.5, we show, for example, how Lieb–Robinson bounds
for multi–commutators can be applied to derive decay properties of the so–called
AC–conductivity measure at high frequencies. This result is new and is obtained
in Section 5. Cf. [BP2, BP3]. Lieb–Robinson bounds for multi–commutators
have, moreover, further applications which go beyond the use on linear response
theory presented in Section 5. For instance, as explained in Sections 3.3 and 4.3,
they also make possible the study of non–linear corrections to linear responses to
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external perturbations.
The new bounds can also be applied to non–autonomous systems. Indeed, the

existence of a fundamental solution for the non–autonomous initial value prob-
lem related to infinite systems of fermions with time–dependent interactions is
usually a non–trivial problem because the corresponding generators are time–
dependent unbounded operators. The time–dependency cannot, in general, be
isolated into a bounded perturbation around some unbounded time–constant gen-
erator and usual perturbation theory cannot be applied. In many important cases,
the time–dependent part of the generator is not even relatively bounded with re-
spect to (w.r.t.) the constant part. In fact, no unified theory of non–autonomous
evolution equations that gives a complete characterization of the existence of
fundamental solutions in terms of properties of generators, analogously to the
Hille–Yosida generation theorems for the autonomous case, is available. See,
e.g., [K3, C, S, P, BB] and references therein. Note that the existence of a funda-
mental solution implies the well–posedness of the initial value problem related to
states or observables of interacting lattice fermions, provided the corresponding
evolution equation has a unique solution for any initial condition.

The Lieb–Robinson bounds on multi–commutators we derive here yield the
existence of fundamental solutions as well as other general results on non–auto-
nomous initial value problems related to fermion systems on lattices with inter-
actions which are non–vanishing in the whole space and time–dependent. This
is done in a rather constructive way, by considering the large volume limit of fi-
nite volume dynamics, without using standard sufficient conditions for existence
of fundamental solutions of non–autonomous linear evolution equations. If inter-
actions decay exponentially fast in space, then we moreover show, also by using
Lieb–Robinson bounds on multi–commutators, that the non–autonomous dynam-
ics is smooth w.r.t. its generator on the dense set of local observables. See The-
orem 4.6. Note that the generator of the (non–autonomous) dynamics generally
has, in our case, a time–dependent domain, and the existence of a dense set of
smooth vectors is a priori not at all clear.

Observe that the evolution equations for lattice fermions are not of parabolic
type, in the precise sense formulated in [AT], because the corresponding genera-
tors do not generate analytic semigroups. They seem to be rather related to Kato’s
hyperbolic case [K1, K2, K3]. Indeed, by structural reasons – more precisely,
the fact that the generators are derivations on a C∗–algebra – the time–dependent
generator defines a stable family of operators in the sense of Kato. Moreover,
this family always possesses a common core. In some specific situations one
can directly show that the completion of this core w.r.t. a conveniently chosen
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norm defines a so–called admissible Banach space Y of the generator at any time,
which satisfies further technical conditions leading to Kato’s hyperbolic condi-
tions [K1, K2, K3]. See also [P, Sect. 5.3.] and [BB, Sect. VII.1]. Nevertheless,
the existence of such a Banach space Y is a priori unclear in the general case
treated here (Theorem 4.5).

Our central results are Theorems 3.8–3.9 and 4.4. Other important assertions
are Corollary 3.10 and Theorems 4.5–4.6, 4.8–4.9, 5.1, 5.5. This paper is orga-
nized as follows:

• Section 2 defines our setting. In particular, Banach spaces of short–range
interactions are introduced.

• Section 3 is devoted to Lieb–Robinson bounds, which are generalized to
multi–commutators. We also give a proof of the existence of the infinite–
volume dynamics as well as some applications of such bounds. The tree–
decay bounds on time–dependent multi–commutators (Corollary 3.10) are
proven here. However, only the autonomous dynamics is considered in this
section.

• Section 4 extends results of Section 3 to the non–autonomous case. We
prove, in particular, the existence of a fundamental solution for the non–
autonomous initial value problems related to infinite interacting systems
of fermions on lattices with time–dependent interactions (Theorem 4.5).
This implies well–posedness of the corresponding initial value problems
for states and observables, provided their solutions are unique for any initial
condition. Applications in (possibly non–linear) response theory (Theorems
4.8–4.9) are discussed as well.

• Finally, Section 5 explains how Lieb–Robinson bounds for multi–commu-
tators can be applied to study (quantum) charged transport properties within
the AC–regime. This analysis yields, in particular, the asymptotics at high
frequencies of the so–called AC–conductivity measure. See Theorems 5.1
and 5.5.

Notation 1.1
(i) We denote by D any positive and finite generic constant. These constants do
not need to be the same from one statement to another.
(ii) A norm on the generic vector space X is denoted by ∥·∥X and the identity map
of X by 1X . The space of all bounded linear operators on (X , ∥ · ∥X ) is denoted
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by B(X ).
(iii) If O is an operator, ∥ · ∥O stands for the graph norm on its domain.
(iv) By a slight abuse of notation, we denote in the sequel elements Xi ∈ Y
depending on the index i ∈ I by expressions of the form {Xi}i∈I ⊂ Y (instead of
(Xi)i∈I ⊂ I × Y ).

2 Algebraic Setting for Interacting Fermions on the
Lattice

2.1 The Lattice CAR C∗–Algebra
We consider fermions on a lattice L. For convenience, the latter is taken to be
a cubic one, i.e., L .

= Zd for d ∈ N. This special choice is not essential in our
proofs. In fact, we could take instead of Zd any countable metric space L as soon
as it is regular (see Section 2.2), as defined in [NS, Section 3.1].

Let Pf (L) ⊂ 2L be the set of all finite subsets of L. For any Λ ∈ Pf (L), UΛ

is the finite dimensional C∗–algebra generated by 1 and generators {ax,s}x∈Λ,s∈S
satisfying the canonical anti–commutation relations, S being some finite set of
spins. To simplify notation, we omit the spin dependence of ax,s ≡ ax, which
is irrelevant in our proofs (up to trivial modifications). In fact, without loss of
generality (w.l.o.g.), we will only consider spinless fermions, i.e., the case S =
{0}.

Let
ΛL

.
= {(x1, . . . , xd) ∈ L : |x1|, . . . , |xd| ≤ L} ∈ Pf (L) (1)

for all L ∈ R+
0 and observe that {UΛL

}L∈R+
0

is an increasing net of C∗–algebras.
Hence, the set

U0
.
=
∪

L∈R+
0

UΛL
(2)

of local elements is a normed ∗–algebra with ∥A∥U0
= ∥A∥UΛL

for all A ∈ UΛL

and L ∈ R+
0 . The CAR C∗–algebra U of the infinite system is by definition the

completion of the normed ∗–algebra U0. It is separable, by finite dimensional-
ity of UΛ for Λ ∈ Pf (L). In other words, U is the inductive limit of the finite
dimensional C∗–algebras {UΛ}Λ∈Pf (L).

For any fixed θ ∈ R/(2πZ), the condition

σθ(ax) = e−iθax (3)
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defines a unique automorphism σθ of the C∗–algebra U . A special role is played
by σπ. Elements B1, B2 ∈ U satisfying σπ(B1) = B1 and σπ(B2) = −B2 are
respectively called even and odd, while elements B ∈ U satisfying σθ(B) = B
for any θ ∈ [0, 2π) are called gauge invariant. The set

U+ .
= {B ∈ U : B = σπ(B)} ⊂ U (4)

of all even elements and the set

U◦ .
=

∩
θ∈R/(2πZ)

{B ∈ U : B = σθ(B)} ⊂ U+ (5)

of all gauge invariant elements are ∗–algebras. By continuity of σθ, it follows
that U+ and U◦ are closed and hence C∗–algebras. U◦ is known as the fermion
observable algebra.

2.2 Banach Spaces of Short–Range Interactions
An interaction is a family Φ = {ΦΛ}Λ∈Pf (L) of even and self–adjoint local ele-
ments ΦΛ = Φ∗

Λ ∈ U+ ∩ UΛ with Φ∅ = 0. Obviously, the set of all interactions
can be endowed with a real vector space structure:

(α1Φ + α2Ψ)Λ
.
= α1ΦΛ + α2ΨΛ

for any interactions Φ, Ψ, and any real numbers α1, α2. We define Banach spaces
of short–range interactions by introducing specific norms for interactions, taking
into account space decay.

To this end, following [NOS, Eqs. (1.3)–(1.4)], we consider positive–valued
and non–increasing decay functions F : R+

0 → R+ satisfying the following prop-
erties:

• Summability on L.

∥F∥1,L
.
= sup

y∈L

∑
x∈L

F (|x− y|) =
∑
x∈L

F (|x|) <∞ . (6)

• Bounded convolution constant.

D
.
= sup

x,y∈L

∑
z∈L

F (|x− z|)F (|z − y|)
F (|x− y|)

<∞ . (7)
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In the case L would be a general countable set with infinite cardinality and
some metric d, the existence of such a function F satisfying (6)–(7) with d(·, ·)
instead of |· − ·| refers to the so–called regular property of L. For any d ∈ N,
L
.
= Zd is in this sense regular with the metric d(·, ·) = |· − ·|. Indeed, a typical

example of such a F for L = Zd, d ∈ N, and the metric induced by |·| is the
function

F (r)
.
= (1 + r)−(d+ϵ) , r ∈ R+

0 , (8)

which has convolution constant D ≤ 2d+1+ϵ ∥F∥1,L for ϵ ∈ R+. See [NOS, Eq.
(1.6)] or [Si, Example 3.1]. Note that the exponential function F (r) = e−ςr,
ς ∈ R+, satisfies (6) but not (7). Nevertheless, for every function F with bounded
convolution constant (7) and any strictly positive parameter ς ∈ R+, the function

F̃ (r) = e−ςrF (r) , r ∈ R+
0 ,

clearly satisfies Assumption (7) with a convolution constant that is no bigger
than the one of F. In fact, as observed in [Si, Section 3.1], the multiplication
of such a function F with a non–increasing weight f : R+

0 → R+ satisfying
f (r + s) ≥ f (r) f (s) (logarithmically superadditive function) does not increase
the convolution constant D. In all the paper, (6)–(7) are assumed to be satisfied.

The function F encodes the short–range property of interactions. Indeed, an
interaction Φ is said to be short–range if

∥Φ∥W
.
= sup

x,y∈L

∑
Λ∈Pf (L), Λ⊃{x,y}

∥ΦΛ∥U
F (|x− y|)

<∞ . (9)

Since the map Φ 7→ ∥Φ∥W defines a norm on interactions, the space of short–
range interactions w.r.t. to the decay function F is the real separable Banach space
W ≡ (W , ∥ · ∥W) of all interactions Φ with ∥Φ∥W < ∞. Note that a short–range
interaction Φ ∈ W is not necessarily weak away from the origin of L: Generally,
the element Φx+Λ, x ∈ L, does not vanish when |x| → ∞. It turns out that
all the Φ ∈ W define, in a natural way, infinite–volume quantum dynamics, i.e.,
they define C∗–dynamical systems on U . For more details, see Section 3.1, in
particular Theorem 3.6.

3 Lieb–Robinson Bounds for Multi–Commutators
Lieb–Robinson bounds for multi–commutators are studied here for fermion sys-
tems, only. In the case of quantum spin systems, U has to be replaced by the
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infinite tensor product of copies of some finite dimensional C∗–algebra attached
to each site x ∈ L. All results of this section also hold in this situation. We
concentrate our attention on fermion algebras in view of applications to micro-
scopic foundations of the theory of electrical conduction [BP1, BP2]. Moreover,
the fermionic case is, technically speaking, more involved, because of the non–
commutativity of elements of the CAR algebra U sitting on different lattice sites.

3.1 Existence of Dynamics and Lieb–Robinson Bounds
Recall that an interaction is a family Ψ = {ΨΛ}Λ∈Pf (L) of even and self–adjoint
local elements ΨΛ = Ψ∗

Λ ∈ U+ ∩ UΛ with Ψ∅
.
= 0. In Section 2.2, we define a

Banach space W of short–range interactions by using a convenient norm ∥ · ∥W
for interactions, see (9). Ψ ∈ W ensures the existence of an infinite–volume
derivation δ associated with Ψ by taking the thermodynamic limit of commuta-
tors involving ΨΛ, Λ ∈ Pf (L). Every generator of a C∗–dynamical system is a
derivation, but the converse does not generally hold. We show here that δ is the
generator of a C∗–dynamical system in U when Ψ ∈ W .

The key ingredient in this analysis are the so–called Lieb–Robinson bounds.
Indeed, they lead, among other things, to the existence of the infinite–volume dy-
namics for interacting particles. By using this, we define a C∗–dynamical system
in U for any short–range interaction Ψ ∈ W . These bounds are, moreover, a piv-
otal ingredient to study transport properties of interacting fermion systems later
on. Thus, for the reader’s convenience, below we review this topic in detail.

We start by defining the finite–volume dynamics as follows: Take any short–
range interaction Ψ

.
= {ΨΛ}Λ∈Pf (L) ∈ W and any potential V. By potential, we

mean here a collection V
.
= {V{x}}x∈L of even (cf. (4)) and self–adjoint elements

such that V{x} = V∗
{x} ∈ U+ ∩U{x} for all x ∈ L. Indeed, strictly speaking, such

a potential is nothing but a special case of interaction in the sense of Section 2.2.
Such potentials are sometimes also called on–site interactions. The interaction
representing V can possibly be outside W because we allow V to be unbounded,
i.e., the case

sup
x∈L

∥∥V{x}
∥∥
U = ∞ (10)

is included in the discussion below. To such objects we associate the (internal)
energy observable

HL
.
=
∑
Λ⊆ΛL

ΨΛ +
∑
x∈ΛL

V{x} , L ∈ R+
0 , (11)
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of the cubic box ΛL defined by (1). The finite–volume dynamics then corresponds
to the continuous group {τ (L)t }t∈R of ∗–automorphisms of U defined by

τ
(L)
t (B) = eitHLBe−itHL , B ∈ U , (12)

for any L ∈ R+
0 , Ψ ∈ W and potential V. Obviously, its generator is the bounded

linear operator δ(L) defined on U by

δ(L)(B)
.
= i

∑
Λ⊆ΛL

[ΨΛ, B] + i
∑
x∈ΛL

[
V{x}, B

]
, B ∈ U . (13)

It is a symmetric derivation on U because, for all B1, B2 ∈ U ,

δ(L)(B∗
1) = δ(L)(B1)

∗ and δ(L)(B1B2) = δ(L)(B1)B2 +B1δ
(L)(B2) .

It is convenient to introduce at this point the notation

SΛ(Λ̃)
.
=
{
Z ⊂ Λ : Z ∩ Λ̃ ̸= 0 and Z ∩ Λ̃c ̸= 0

}
(14)

for any set Λ̃ ⊂ Λ ⊂ L with complement Λ̃c .= L\Λ̃, as well as

∂ΨΛ
.
= {x ∈ Λ : ∃Z ∈ SL(Λ) with x ∈ Z and ΨZ ̸= 0}

for any interaction Ψ
.
= {ΨZ}Z∈Pf (L) and any finite subset Λ ∈ Pf (L) of L. We

are now in position to prove Lieb–Robinson bounds for finite–volume fermion
systems with short–range interactions and in presence of potentials:

Theorem 3.1 (Lieb–Robinson bounds)
Let Ψ ∈ W and V be any potential. Then, for any t ∈ R, L ∈ R+

0 , and elements
B1 ∈ U+ ∩ UΛ(1) , B2 ∈ UΛ(2) with Λ(1),Λ(2) ∈ Pf (L) and Λ(1) ∩ Λ(2) = ∅,∥∥∥[τ (L)t (B1) , B2]

∥∥∥
U

≤ 2D−1 ∥B1∥U ∥B2∥U
(
e2D|t|∥Ψ∥W − 1

)
(15)

×
∑

x∈∂ΨΛ(1)

∑
y∈Λ(2)

F (|x− y|) .

The constant D ∈ R+ is defined by (7).

Proof: The arguments are essentially the same as those proving [NS, Theorem
2.3.] for quantum spin systems. Here, we consider fermion systems and we give

10



the detailed proof for completeness and to prepare its extension to time–dependent
interactions and potentials, in Theorem 4.1 (i). We fix L ∈ R+

0 , B1 ∈ U+ ∩ UΛ(1)

and B2 ∈ UΛ(2) with disjoint sets Λ(1),Λ(2) ( ΛL. [Note that Λ(1) ∩ Λ(2) = ∅
yields L ≥ 1.]

Let

CB2 (Λ; t)
.
= sup

B∈U+∩UΛ,B ̸=0

∥∥∥[τ (L)t (B) , B2]
∥∥∥
U

∥B∥U
, t ∈ R , Λ ∈ Pf (L) .

At time t = 0, we observe that

|CB2 (Λ; 0)| ≤ 2 ∥B2∥U 1
[
Λ ∩ Λ(2) ̸= ∅

]
,

while, for any t ∈ R,

CB2 (Λ; t) = sup
B∈U+∩UΛ,B ̸=0

∥∥∥[τ (L)t ◦ τ (Λ)−t (B) , B2]
∥∥∥
U

∥B∥U
.

Here, {τ (Λ)t }t∈R is the continuous group of ∗–automorphisms defined like {τ (L)t }t∈R
by replacing the box ΛL with the (finite) set Λ ∈ Pf (L).

Consider the function

f (t)
.
=
[
τ
(L)
t ◦ τ (Λ

(1))
−t (B1) , B2

]
, t ∈ R . (16)

Then, using B1 ∈ U+ ∩ UΛ(1) and Λ(1) ⊂ ΛL, we deduce from (13) and explicit
computations that

∂tf (t) = i
∑

Z∈SΛL
(Λ(1))

[
τ
(L)
t (ΨZ) , f (t)

]
(17)

−i
∑

Z∈SΛL
(Λ(1))

[
τ
(L)
t ◦ τ (Λ

(1))
−t (B1) ,

[
τ
(L)
t (ΨZ) , B2

]]
.

Let gt (B) be the solution of

∀t ≥ 0 : ∂tgt (B) = i
∑

Z∈SΛL
(Λ(1))

[τ
(L)
t (ΨZ) , gt (B)] , g0 (B) = B ∈ U .
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Since ∥gt (B) ∥U = ∥B∥U for any B ∈ U , it follows from (17), by variation of
constants, that

∥f (t)∥U ≤ ∥f (0)∥U + 2 ∥B1∥U
∑

Z∈SΛL
(Λ(1))

∫ |t|

0

∥∥∥[τ (L)±s (ΨZ) , B2

]∥∥∥
U
ds . (18)

[The sign of s in ±s depends whether t is positive or negative.] Hence, as
Λ(1),Λ(2) are disjoint, for any t ∈ R,

CB2

(
Λ(1); t

)
≤ 2

∑
Z∈SΛL

(Λ(1))

∥ΨZ∥U
∫ |t|

0

CB2 (Z;±s) ds . (19)

By estimating CB2 (Z; s) in a similar manner and iterating this procedure, we
show that, for every L ∈ R+

0 , t ∈ R and all B1 ∈ U+ ∩ UΛ(1) , B2 ∈ UΛ(2) with
disjoint Λ(1),Λ(2) ⊂ ΛL,

CB2

(
Λ(1); t

)
≤ 2 ∥B2∥U

∑
k∈N

|2t|k

k!
uk , (20)

where, for any k ∈ N,

uk
.
=

∑
Z1∈SΛL

(Λ(1))

∑
Z2∈SΛL

(Z1)

· · ·
∑

Zk∈SΛL
(Zk−1)

1
[
Zk ∩ Λ(2) ̸= ∅

] k∏
j=1

∥∥ΨZj

∥∥
U .

The above series is absolutely and uniformly convergent for L ∈ R+
0 (with fixed

Λ(1),Λ(2) ( ΛL). Indeed, from straightforward estimates,

uk ≤ Dk−1 ∥Ψ∥kW
∑

x∈∂ΨΛ(1)

∑
y∈Λ(2)

F (|x− y|) , (21)

by Equations (7) and (9).
Note that (20)–(21) yield (15), provided Λ(1),Λ(2) ( ΛL. This last condition

can easily be removed by taking, at any fixed L ∈ R+
0 , an interaction Ψ̃(L) ∈ W

defined by Ψ̃
(L)
Z

.
= ΨZ for any Z ⊆ ΛL, while Ψ̃

(L)
Z

.
= 0 when Z * ΛL. Indeed,

for all L ∈ R+
0 , we obviously have ∥Ψ̃(L)∥W ≤ ∥Ψ∥W . Furthermore, for all

L, L̃ ∈ R+
0 with L̃ > L, τ̃ (L̃)t = τ

(L)
t , where {τ̃ (L̃)t }t∈R is the (finite–volume) group

of ∗–automorphisms of U defined by (12) with L = L̃ and Ψ = Ψ̃(L). Therefore,

12



it suffices to apply (20)–(21) to the interaction Ψ̃(L) for sufficiently large L̃ ∈ R+
0

in order to get the assertion without the condition Λ(1),Λ(2) ( ΛL.

As explained in [NS, Theorem 3.1] for quantum spin systems, Lieb–Robinson
bounds lead to the existence of the infinite–volume dynamics:

Lemma 3.2 (Infinite–volume dynamics)
Let Ψ ∈ W and V be any potential. Then, for any t ∈ R, Λ ∈ Pf (L), B ∈ UΛ

and L1, L2 ∈ R+
0 with Λ ⊂ ΛL1 ( ΛL2 ,∥∥∥τ (L2)

t (B)− τ
(L1)
t (B)

∥∥∥
U

≤ 2 ∥B∥U ∥Ψ∥W |t| e4D|t|∥Ψ∥W

×
∑

y∈ΛL2
\ΛL1

∑
x∈Λ

F (|x− y|) .

Proof: Again, the arguments are those proving [NS, Theorem 3.1.] for quantum
spin systems. We give them for completeness, having also in mind the extension
of the lemma to time–dependent interactions and potentials, in Theorem 4.1 (ii).
We fix in all the proof Λ ∈ Pf (L) and B ∈ UΛ.

For any L ∈ R+
0 and s, t ∈ R, define the unitary element

UL (t, s)
.
= eitVΛLe−i(t−s)HLe−isVΛL ∈ UΛL

(22)

with
VZ

.
=
∑
x∈Z

V{x} ∈ U+ ∩ UZ , Z ∈ Pf (L) .

Clearly, UL (t, t) = 1U for all t ∈ R while

∂tUL (t, s) = −iGL (t)UL (t, s) and ∂sUL (t, s) = iUL (t, s)GL (s)

with
GL (t)

.
=
∑
Z⊆ΛL

eitVΛLΨZe
−itVΛL .

Let
τ̃
(L)
t (B)

.
= UL (0, t)BUL (t, 0) , B ∈ UΛ .

For any t ∈ R and L ∈ R+
0 such that Λ ⊂ ΛL,

τ
(L)
t (B) = τ̃

(L)
t

(
eitVΛLBe−itVΛL

)
= τ̃

(L)
t

(
eitVΛBe−itVΛ

)
13



and it suffices to study the net {τ̃ (L)t (B)}L∈R+
0

in U . The equality above is related
to the so–called “interaction picture” (w.r.t. potentials) of the time–evolution de-
fined by the ∗–automorphism τ

(L)
t .

Fix L1, L2 ∈ R+
0 with Λ ⊂ ΛL1  ΛL2 . Note that, for any t ∈ R,

τ̃
(L2)
t (B)− τ̃

(L1)
t (B) =

∫ t

0

∂s {UL2 (0, s)UL1 (s, t)BUL1 (t, s)UL2 (s, 0)} ds .
(23)

Straightforward computations yield

∂s {UL2 (0, s)UL1 (s, t)BUL1 (t, s)UL2 (s, 0)}

= iUL2 (0, s)
[
GL2 (s)−GL1 (s) ,UL1 (s, t)BUL1 (t, s)

]
UL2 (s, 0)

= iUL2 (0, s) e
isVΛL1

[
Bs, τ

(L1)
t−s (B̃t)

]
e
−isVΛL1UL2 (s, 0) , (24)

where, for any s, t ∈ R, we define

Bs
.
= e

−isVΛL1 (GL2 (s)−GL1 (s)) e
isVΛL1 and B̃t

.
= e−itVΛBeitVΛ . (25)

Thus, we infer from Equations (23)–(25) that∥∥∥τ̃ (L2)
t (B)− τ̃

(L1)
t (B)

∥∥∥
U
≤
∫ |t|

0

∥∥∥[τ (L1)
±s−t (B±s) , B̃t

]∥∥∥
U
ds . (26)

[The sign of s in ±s depends whether t is positive or negative.] Note that B̃t ∈ UΛ

and

Bs =
∑

Z⊆ΛL2
, Z∩(ΛL2

\ΛL1
)̸=∅

e
isVΛL2

\ΛL1ΨZe
−isVΛL2

\ΛL1 ∈ U+ ∩ UΛL2

where, for any Z ⊆ ΛL2 ,

e
isVΛL2

\ΛL1ΨZe
−isVΛL2

\ΛL1 ∈ UZ .

Now, we apply the Lieb–Robinson bounds given by Theorem 3.1 to deduce that,

14



for any Λ ∈ Pf (L), s, t ∈ R, B ∈ UΛ and L1, L2 ∈ R+
0 with Λ ⊂ ΛL1  ΛL2 ,∥∥∥[τ (L1)

s−t (Bs) , B̃t

]∥∥∥
U

2 ∥B∥U
≤ D−1

(
e2D|s−t|∥Ψ∥W − 1

)
(27)

×
∑

Z⊆ΛL2
,

Z∩(ΛL2
\ΛL1

) ̸=∅, Z∩Λ=∅

∥ΨZ∥U
∑

z∈∂ΨZ

∑
x∈Λ

F (|x− z|)

+
∑

Z⊆ΛL2
,

Z∩(ΛL2
\ΛL1

) ̸=∅, Z∩Λ̸=∅

∥ΨZ∥U .

Direct estimates using (7) and (9) show that∑
Z⊆ΛL2

, Z∩(ΛL2
\ΛL1

)̸=∅

∥ΨZ∥U
∑

z∈∂ΨZ

∑
x∈Λ

F (|x− z|)

≤
∑

y∈ΛL2
\ΛL1

∑
Z⊆ΛL2

, Z⊃{y}

∥ΨZ∥U
∑
z∈Z

∑
x∈Λ

F (|x− z|)

≤
∑

y∈ΛL2
\ΛL1

∑
z∈ΛL2

∑
Z⊆ΛL2

, Z⊃{y,z}

∥ΨZ∥U
∑
x∈Λ

F (|x− z|)

≤ ∥Ψ∥W
∑

y∈ΛL2
\ΛL1

∑
x∈Λ

∑
z∈ΛL2

F (|y − z|)F (|x− z|)

≤ D∥Ψ∥W
∑

y∈ΛL2
\ΛL1

∑
x∈Λ

F (|x− y|) , (28)

while, by using (9) only, ∑
Z⊆ΛL2

, Z∩(ΛL2
\ΛL1

)̸=∅, Z∩Λ̸=∅

∥ΨZ∥U

≤
∑

y∈ΛL2
\ΛL1

∑
x∈Λ

∑
Z⊆ΛL2

, Z⊃{x,y}

∥ΨZ∥U

≤ ∥Ψ∥W
∑

y∈ΛL2
\ΛL1

∑
x∈Λ

F (|x− y|) . (29)

The lemma is then a direct consequence of (26)–(27) combined with the upper
bounds (28)–(29).
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The infinite–volume dynamics is obtained from Lemma 3.2 and the complete-
ness of U . Indeed, from the above lemma, for all t ∈ R, τ (L)t converges strongly
on U0 to τ t, as L → ∞. By density of U0 in the Banach space U and the fact that
τ
(L)
t are isometries for all L ∈ R+

0 and t ∈ R, the limit τ t, t ∈ R, uniquely defines
a ∗–automorphism, also denoted by τ t, of the C∗–algebra U . {τ t}t∈R is clearly a
group of ∗–automorphisms on U . Again by the above lemma, for any element B
in the dense subset U0 ⊂ U , the convergence of τ (L)t (B), as L → ∞, is uniform
for t on compacta and {τ t}t∈R thus defines a C0–group on U , that is, a strongly
continuous group on U .

We need in the sequel an explicit characterization of the infinitesimal generator
of this C0–group. Since the generator equals (13) at finite–volume, one expects
that the infinitesimal generator equals on U0 the linear map δ from U0 to U defined
by

δ(B)
.
= i

∑
Λ∈Pf (L)

[ΨΛ, B] + i
∑
x∈L

[
V{x}, B

]
, B ∈ U0 , (30)

for any Ψ ∈ W and potential V. Indeed, for any Λ ∈ Pf (L) and local element
B ∈ UΛ, ∑

Z∈Pf (L)

∥[ΨZ , B]∥U +
∑
x∈L

∥∥[V{x}, B
]∥∥

U (31)

≤ 2 ∥B∥U

(
|Λ|F (0) ∥Ψ∥W +

∑
x∈Λ

∥∥V{x}
∥∥
U

)
and the series (30) is absolutely convergent for all B ∈ U0. Moreover, by (13), we
obviously have

δ(B) = lim
L→∞

δ(L)(B) , B ∈ U0 . (32)

To prove that the closure of the linear map δ : U0 → U is the generator of the
C0–group {τ t}t∈R of ∗–automorphisms we use the second Trotter–Kato approxi-
mation theorem [EN, Chap. III, Sect. 4.9].

To this end, we first show that the (generally unbounded) operator δ on U with
dense domain Dom(δ) = U0 is closable. Observe that both ±δ are symmetric
derivations and δ is thus conservative [BR, Definition 3.1.13.], by structure of the
set U0 of local elements:

Lemma 3.3 (Conservative infinite–volume derivation)
Let Ψ ∈ W and V be any potential. Then, the derivation δ defined on U0 by (30)
is a conservative symmetric derivation.
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Proof: Let B ∈ U0 satisfying B ≥ 0. By definition of U0, B ∈ UΛ for some
Λ ∈ Pf (L). Since UΛ is a unital C∗–algebra, there is B1/2 ∈ UΛ ⊂ U0 such that
B1/2 ≥ 0 and (B1/2)2 = B. Therefore, the lemma follows from [BR, Proposition
3.2.22].

It follows that the symmetric derivation δ is (norm–) closable:

Lemma 3.4 (Closure of the infinite–volume derivation)
Let Ψ ∈ W and V be any potential. Then, the derivations ±δ defined on U0

by (30) are closable and their closures, again denoted for simplicity by ±δ, are
conservative.

Proof: ±δ are densely defined dissipative operators on the Banach space U .
Therefore, the lemma is an obvious application of [BR, Proposition 3.1.15.].

In order to apply the second Trotter–Kato approximation theorem [EN, Chap.
III, Sect. 4.9], we also prove that the range Ran{(x1U∓δ)} of the closed operators
x1U ∓ δ are dense in the Banach space U for x > 0. This is done in the following
lemma:

Lemma 3.5 (Range of the infinite–volume derivation)
Let Ψ ∈ W and V be any potential. Then, for any x ∈ R+,

U0 ⊆ Ran{(x1U ∓ δ)} ⊆ U

with 1U being the identity on U . In particular, Ran{(x1U ∓ δ)} is dense in U .

Proof: We only give the proof for the range of the operator x1U−δ, since the
other case uses similar arguments.

Note that ∥τ (L)t ∥B(U) = 1 for any L ∈ R+
0 and t ∈ R. Here, B(U) is the

Banach space of bounded linear operators acting on U . Thus, for any L ∈ R+
0 ,

x ∈ R+, and B ∈ U , the improper Riemann integral∫ ∞

0

e−xsτ (L)s (B) ds
.
= lim

t→∞

∫ t

0

e−xsτ (L)s (B) ds

exists. By [EN, Chap. II, Sect. 1.10], it follows that, for any L ∈ R+
0 and x ∈ R+,

the resolvent (x1U − δ(L))−1 of the generator δ(L) of the group {τ (L)t }t∈R also
exists and satisfies

(x1U−δ(L))−1(B) =

∫ ∞

0

e−xsτ (L)s (B) ds (33)
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for all B ∈ U . Now, take B ∈ U0, x ∈ R+, and consider the element

BL
.
= (x1U−δ(L))−1(B) ∈ U (34)

for some sufficiently large parameter L ∈ R+
0 such that B ∈ UΛL

. Note that
τ
(L)
s (UΛL

) ⊂ UΛL
and BL ∈ UΛL

⊂ U0 because of (33). Then, we observe that

(x1U−δ)(BL) = B + (δ(L)−δ)(BL) ,

where we recall that L ∈ R+
0 , x ∈ R+, and B ∈ U0. Now, by the Lumer–Phillips

theorem [BR, Theorem 3.1.16] (see also its proof), if there is x ∈ R+ such that

lim
L→∞

∥∥∥(δ−δ(L))(BL)
∥∥∥
U
= 0 (35)

for all B ∈ U0 then we obtain the assertion. Indeed, by using Lemma 3.2 together
with ∥τ (L)t ∥B(U) = 1 and (33), one verifies that {BL}L∈R+

0
is a Cauchy net, thus a

convergent one in U , while x1U − δ is a closed operator, by Lemma 3.4.
To prove (35) we use Lieb–Robinson bounds (Theorem 3.1) as follows: Since

BL ∈ UΛL
for sufficiently large L ∈ R+

0 , we can combine (13) and (30) with
(33)–(34) to compute that

(δ−δ(L))(BL) = i
∑

Z∈Pf (L), Z∩Λc
L ̸=∅

∫ ∞

0

e−xs
[
ΨZ , τ

(L)
s (B)

]
ds (36)

for any x ∈ R+, sufficiently large L ∈ R+
0 , and B ∈ U0. Here, Λc

L
.
= L\ΛL. It

suffices to consider the case B ̸= 0. Using now Theorem 3.1, similar to (27), one
gets that, for all s ∈ R+ and any sufficiently large L ∈ R+

0 such that B ∈ UΛ ⊂
UΛL

with Λ ∈ Pf (L),

∑
Z∈Pf (L), Z∩Λc

L ̸=∅

∥∥∥[ΨZ , τ
(L)
s (B)

]∥∥∥
U

2 ∥B∥U
(37)

≤ D−1
(
e2D|s|∥Ψ∥W − 1

) ∑
Z∈Pf (L), Z∩Λc

L ̸=∅, Z∩Λ=∅

∥ΨZ∥U
∑

x∈∂ΨZ

∑
y∈Λ

F (|x− y|)

+
∑

Z∈Pf (L), Z∩Λc
L ̸=∅, Z∩Λ ̸=∅

∥ΨZ∥U .
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Similar to Inequalities (28)–(29), we thus infer from (7) and (9) that

∑
Z∈Pf (L), Z∩Λc

L ̸=∅

∥∥∥[ΨZ , τ
(L)
s (B)

]∥∥∥
U

2 ∥B∥U
≤ ∥Ψ∥W e2D|s|∥Ψ∥W

∑
y∈Λc

L

∑
x∈Λ

F (|x− y|) ,

(38)
while

lim
L→∞

∑
y∈Λc

L

∑
x∈Λ

F (|x− y|) = 0 , (39)

because of (6). Therefore, by (36)–(39), we deduce (35) for all x > 2D∥Ψ∥W and
B ∈ U0.

We now apply the second Trotter–Kato approximation theorem [EN, Chap.
III, Sect. 4.9] to deduce that δ is the generator of the group {τ t}t∈R of ∗–auto-
morphisms and resume all the main results, so far, in the following theorem:

Theorem 3.6 (Infinite–volume dynamics and its generator)
Let Ψ ∈ W , V be any potential, and D ∈ R+ be defined by (7).
(i) Infinite–volume dynamics. The continuous groups {τ (L)t }t∈R, L ∈ R+

0 , defined
by (12) converge strongly to a C0–group {τ t}t∈R of ∗–automorphisms with gener-
ator δ.
(ii) Infinitesimal generator. δ is a conservative closed symmetric derivation which
is equal on its core U0 to

δ(B) = i
∑

Λ∈Pf (L)

[ΨΛ, B] + i
∑
x∈L

[
V{x}, B

]
, B ∈ U0 .

(iii) Rate of convergence. For any Λ ∈ Pf (L), B ∈ UΛ and L ∈ R+
0 such that

Λ ⊂ ΛL,∥∥∥τ t (B)− τ
(L)
t (B)

∥∥∥
U
≤ 2 ∥B∥U ∥Ψ∥W |t| e4D|t|∥Ψ∥W

∑
y∈L\ΛL

∑
x∈Λ

F (|x− y|) .

(iv) Lieb–Robinson bounds. For any t ∈ R and B1 ∈ U+ ∩UΛ(1) , B2 ∈ UΛ(2) with
disjoint sets Λ(1),Λ(2) ∈ Pf (L),

∥[τ t (B1) , B2]∥U ≤ 2D−1 ∥B1∥U ∥B2∥U
(
e2D|t|∥Ψ∥W − 1

)
×

∑
x∈∂ΨΛ(1)

∑
y∈Λ(2)

F (|x− y|) .
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Proof: By Lemma 3.4, the set U0 of local elements is a core of the dissipative
derivation δ and one obtains (ii), see (30). Moreover, δ(L) (B) → δ (B) for all
B ∈ U0, see (32). Recall that δ(L) is the generator of the group {τ (L)t }t∈R for any
L ∈ R+

0 . Therefore, since one also has Lemma 3.5, (i) is a direct consequence of
[EN, Chap. III, Sect. 4.9]. The third statement (iii) thus follows from Lemma 3.2.
(iv) is an obvious consequence of Theorem 3.1 and the first assertion (i).

3.2 Lieb–Robinson Bounds for Multi–Commutators
Recall that multi–commutators are defined by induction as follows:

[B1, B0]
(2) .= [B1, B0]

.
= B1B0 −B0B1 , B0, B1 ∈ U , (40)

and, for all integers k ≥ 2,

[Bk, Bk−1, . . . , B0]
(k+1) .= [Bk, [Bk−1, . . . , B0]

(k)] , B0, . . . , Bk ∈ U . (41)

The aim of this subsection is to extend Theorem 3.6 (iv) to multi–commutators.
The arguments we use below to prove Lieb–Robinson bounds for multi–com-
mutators are not a generalization of the proof of Theorem 3.1 or Theorem 3.6 (iv).
Instead, we use a pivotal lemma deduced from Theorem 3.6 (iii), which in turn
results from finite–volume Lieb–Robinson bounds of Theorem 3.1. This lemma
expresses the C0–group {τ t}t∈R of Theorem 3.6 (i) as telescoping series.

To this end, it is convenient to introduce the family {χx}x∈L of ∗–automor-
phisms of U , which implements the action of the group of lattice translations on
the CAR C∗–algebra U . This family is uniquely defined by the conditions

χx(ay) = ay+x , x, y ∈ L . (42)

We also define, for any n ∈ N0, x ∈ L, Ψ ∈ W and potential V, a space
translated finite–volume dynamics which is the continuous group {τ (n,x)t }t∈R of
∗–automorphisms of U generated by the symmetric and bounded derivation

δ(n,x)(B)
.
= i

∑
Λ⊆x+Λn

[ΨΛ, B] + i
∑

y∈x+Λn

[
V{y}, B

]
, B ∈ U .

Note that the fermion system is generally not translation invariant and, in general,

τ
(n,x)
t ◦ χx ̸= χx ◦ τ

(n)
t , x ∈ L, n ∈ N0 , t ∈ R .
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For m ∈ N0, x ∈ L, B ∈ UΛm and t ∈ R, we finally introduce the local elements

BB,t,x (m) ≡ B
(m)
B,t,x (m)

.
= τ

(m,x)
t ◦ χx (B) ∈ UΛm+x (43)

and

BB,t,x (n) ≡ B
(m)
B,t,x (n)

.
= (τ

(n,x)
t − τ

(n−1,x)
t ) ◦χx(B) ∈ UΛn+x , n ≥ m+1 .

(44)
The family {BB,t,x (n)}n≥m ⊂ U0 is used to define telescoping series:

Lemma 3.7 (Infinite–volume dynamics as telescoping series)
Let Ψ ∈ W and V be any potential. Then, for any m ∈ N0, x ∈ L, B ∈ UΛm and
t ∈ R:

∞∑
n=m

BB,t,x (n) = τ t ◦ χx (B) . (45)

The above telescoping series is absolutely convergent in U with

∥BB,t,x (n)∥U ≤ 2 ∥B∥U ∥Ψ∥W |t| e4D|t|∥Ψ∥W
∑

y∈Λn\Λn−1

∑
z∈Λm

F (|z − y|) (46)

for any n ≥ m+ 1, while ∥BB,t,x (m)∥U = ∥B∥U .

Proof: Since, for any N ∈ N0 so that N ≥ m,

N∑
n=m

BB,t,x (n) = τ
(N,x)
t ◦ χx (B) , (47)

it suffices to study the limit N → ∞ of the group {τ (N,x)
t }t∈R at any fixed x ∈ L.

Similar to the proof of Theorem 3.6 (i), δ(N,x) (B) → δ (B) for all B ∈ U0, as
N → ∞. By Lemma 3.5 and [EN, Chap. III, Sect. 4.9], the translated groups
{τ (N,x)

t }t∈R, N ∈ N0, converge strongly to the C0–group {τ t}t∈R for any x ∈
L. In other words, we deduce Equation (45) from (47) in the limit N → ∞.
Moreover, one easily checks that Theorem 3.1 and thus Lemma 3.2 also hold for
the (space translated) groups {τ (n,x)t }t∈R, n ∈ N0, at any fixed x ∈ L. This yields
Inequality (46) for n > m, while ∥BB,t,x (m)∥U = ∥B∥U , because τ (m,x)

t is a
∗–automorphism on UΛm . It follows that

∞∑
n=m+1

∥BB,t,x (n)∥U ≤ 2 ∥B∥U ∥Ψ∥W |t| e4D|t|∥Ψ∥W
∑
z∈Λm

∑
n∈N

∑
y∈Λn\Λn−1

F (|z − y|) .
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Finally, by Assumption (6),∑
z∈Λm

∑
n∈N

∑
y∈Λn\Λn−1

F (|z − y|) ≤
∑
z∈Λm

∑
y∈L

F (|z − y|) = |Λm| ∥F∥1,L <∞ .

To extend Lieb–Robinson bounds to multi–commutators we combine Lemma
3.7 with tree decompositions of sequences of clustering subsets of L (cf. (56)):
Let T2 be the set of all (non–oriented) trees with exactly two vertices. This set
contains a unique tree T = {{0, 1}} which, in turn, contains the unique bond
{0, 1}, i.e., T2

.
= {{{0, 1}}}. Then, for each integer k ≥ 2, we recursively define

a set Tk+1 of trees with k + 1 vertices by

Tk+1
.
=
{
{{j, k}} ∪ T : j = 0, . . . , k − 1, T ∈ Tk

}
. (48)

Therefore, for k ∈ N and any tree T ∈ Tk+1, there is a map

PT : {1, . . . , k} → {0, . . . , k − 1} (49)

such that PT (j) < j, PT (1) = 0, and

T =
k∪

j=1

{{PT (j), j}} . (50)

For any k ∈ N, T ∈ Tk+1, and every sequence {(nj, xj)}kj=0 in N0×L with length
k + 1, we define

κT

(
{(nj, xj)}kj=0

)
.
=

k∏
j=1

1
[
(Λnj

+ xj) ∩ (ΛnPT (j)
+ xPT (j)) ̸= ∅

]
∈ {0, 1} ,

(51)
while, for all ℓ ∈ {1, . . . , k},

Sℓ,k
.
= {π | π : {ℓ, . . . , k} → {1, . . . , k} such that π (i) < π (j) when i < j} .

(52)
Then, one gets the following bound on multi–commutators:

Theorem 3.8 (Lieb–Robinson bounds for multi–commutators – Part I)
Let Ψ ∈ W and V be any potential. Then, for any integer k ∈ N, {mj}kj=0 ⊂ N0,
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times {sj}kj=1 ⊂ R, lattice sites {xj}kj=0 ⊂ L, and local elements B0 ∈ U0,
{Bj}kj=1 ⊂ U0 ∩ U+ such that Bj ∈ UΛmj

for j ∈ {0, . . . , k},∥∥∥[τ sk ◦ χxk
(Bk), . . . , τ s1 ◦ χx1

(B1), χx0
(B0)

](k+1)
∥∥∥
U

≤ 2k
k∏

j=0

∥Bj∥U
∑

T∈Tk+1

(
κT

(
{(mj, xj)}kj=0

)
+ ℜT,∥Ψ∥W

)
with, for any α ∈ R+

0 ,

ℜT,α
.
=

k∑
ℓ=1

(2α)k−ℓ+1
∑

π∈Sℓ,k

 ∏
j∈{π(ℓ),...,π(k)}

|sj| e4Dα|sj |

 (53)

∞∑
nπ(ℓ)=mπ(ℓ)+1

∑
zπ(ℓ)∈Λmπ(ℓ)

∑
yπ(ℓ)∈Λnπ(ℓ)

\Λnπ(ℓ)−1

· · ·

· · ·
∞∑

nπ(k)=mπ(k)+1

∑
zπ(k)∈Λmπ(k)

∑
yπ(k)∈Λnπ(k)

\Λnπ(k)−1

κT

(
{(nj, xj)}kj=0

) ∏
j∈{π(ℓ),...,π(k)}

F (|zj − yj|) .

In the right–hand side (r.h.s.) of (53), we set nj
.
= mj if

j ∈ {0, . . . , k} \ {π (ℓ) , . . . , π (k)} .

The constant D ∈ R+ is defined by (7).

Proof: Fix k ∈ N, {mj}kj=0 ⊂ N0, {sj}kj=1 ⊂ R, {xj}kj=0 ⊂ L and elements
{Bj}kj=0 ⊂ U0 such that the conditions of the theorem are satisfied. From Lemma
3.7, [

τ sk ◦ χxk
(Bk), . . . , τ s1 ◦ χx1

(B1), χx0
(B0)

](k+1) (54)

=
∞∑

n1=m1

· · ·
∞∑

nk=mk

[
BBk,sk,xk

(nk) , . . . ,BB1,s1,x1 (n1) , χx0
(B0)

](k+1)
.
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Since Bj ∈ UΛmj
∩ U+ for j ∈ {1, . . . , k}, we infer from (43)–(44) that[
BBk,sk,xk

(nk) , . . . ,BB1,s1,x1 (n1) , χx0
(B0)

](k+1)

=
k∏

j=1

1

[
j−1∪
i=0

(
Λnj

+ xj
)
∩ (Λni

+ xi) ̸= ∅

]
(55)

[
BBk,sk,xk

(nk) , . . . ,BB1,s1,x1 (n1) , χx0
(B0)

](k+1)

for all integers {nj}kj=0 ⊂ N0 with n0
.
= m0 and nj ≥ mj when j ∈ {1, . . . , k}.

The conditions inside characteristic functions in (55) refer to the fact that the se-
quence of sets {Λnj

}kj=0 has to be a cluster to have a non–zero multi–commutator.
Note further that

k∏
j=1

1

[
j−1∪
i=0

(
Λnj

+ xj
)
∩ (Λni

+ xi) ̸= ∅

]
≤

∑
T∈Tk+1

κT

(
{(nj, xj)}kj=0

)
. (56)

Using (54)–(56) one then shows that∥∥∥[τ sk ◦ χxk
(Bk), . . . , τ s1 ◦ χx1

(B1), χx0
(B0)

](k+1)
∥∥∥
U

≤ 2k ∥B0∥U
∑

T∈Tk+1

∞∑
n1=m1

· · ·
∞∑

nk=mk

κT

(
{(nj, xj)}kj=0

)

×
k∏

j=1

∥∥BBj ,sj ,xj
(nj)

∥∥
U . (57)

This inequality combined with (46) yields the assertion.

The above theorem extends Lieb–Robinson bounds to multi–commutators. In-
deed, if F(r) decays fast enough as r → ∞, then Theorem 3.8 and Lebesgue’s
dominated convergence theorem imply that, for any j ∈ {0, . . . , k},

lim
|xj |→∞

∥∥∥[τ sk ◦ χxk
(Bk), . . . , τ s1 ◦ χx1

(B1), χx0
(B0)

](k+1)
∥∥∥
U
= 0 . (58)

The rate of convergence if this multi–commutator towards zero is, however, a
priori unclear. Hence, to obtain bounds on the space decay of the above multi–
commutator, more in the spirit of the original Lieb–Robinson bounds for commu-
tators, we consider two situations w.r.t. the behavior of the function F : R+

0 → R+

at large arguments:
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• Polynomial decay. There is a constant ς ∈ R+ and, for all m ∈ N0, an
absolutely summable sequence {un,m}n∈N ∈ ℓ1(N) such that, for all n ∈ N
with n > m,

|Λn\Λn−1|
∑
z∈Λm

max
y∈Λn\Λn−1

F (|z − y|) ≤ un,m

(1 + n)ς
. (59)

• Exponential decay. There is ς ∈ R+ and, for m ∈ N0, a constant Cm ∈ R+

such that, for all n ∈ N with n > m,

|Λn\Λn−1|
∑
z∈Λm

max
y∈Λn\Λn−1

F (|z − y|) ≤ Cme
−2ςn . (60)

For sufficiently large ϵ ∈ R+, the function (8) clearly satisfies Condition (59),
while (59)–(60) hold for the choice

F (r) = e−2ςr(1 + r)−(d+ϵ) , r ∈ R+
0 , (61)

with arbitrary ς, ϵ ∈ R+. Under one of these both very general assumptions, one
can put the upper bound of Theorem 3.8 in a much more convenient form. In fact,
one obtains an estimate on the norm of the multi–commutator (58) as a function
of the distances between the points {x0, . . . , xk}, like in the usual Lieb–Robinson
bounds (i.e., the special case k = 2). To formulate such bounds, we need some
preliminary definitions related to properties of trees.

For any k ∈ N and T ∈ Tk+1, we define the sequence dT ≡ {dT (j)}kj=0 in
{1, . . . , k} by

dT (j)
.
= |{b ∈ T : j ∈ b}| , j ∈ {0, . . . , k} ,

i.e., dT (j) is the degree of the j–th vertex of the tree T . For k ∈ N and T ∈ Tk+1,
observe that

dT (0) + · · ·+ dT (k) = 2k . (62)

We also introduce the following notation:

dT !
.
= dT (0)! · · · dT (k)!

for any tree T ∈ Tk+1, k ∈ N. The degree of any vertex of a tree is at least 1, by
connectedness of such a graph, and (62) yields

dT ! ≤ k! , k ∈ N , T ∈ Tk+1 . (63)
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For any k ∈ N, T ∈ Tk+1, and any sequence f : N0 → R+, note that

k∏
j=0

{f (j)}dT (j) =
k∏

j=1

f (j) f (PT (j)) . (64)

This property is elementary but pivotal to estimate the remainder ℜT,α, defined by
(53), of Theorem 3.8.

Theorem 3.9 (Lieb–Robinson bounds for multi–commutators – Part II)
Let α ∈ R+

0 , k ∈ N, {mj}kj=0 ⊂ N0, {sj}kj=1 ⊂ R, {xj}kj=0 ⊂ L, and T ∈ Tk+1.
(i) Polynomial decay: Assume (59). Then,

ℜT,α ≤ d
ςk
2

k∑
ℓ=1

(2α)k−ℓ+1
∑

π∈Sℓ,k

 ∏
j∈{π(ℓ),...,π(k)}

∥∥u·,mj

∥∥
ℓ1(N) |sj| e

4D|sj |α


 ∏

j∈{0,...,k}\{π(ℓ),...,π(k)}

(1 +mj)
ς

 ∏
{j,l}∈T

1

(1 + |xj − xl|)ς(max{dT (j),dT (l)})−1 .

(ii) Exponential decay: Assume (60). Then,

ℜT,α ≤
k∑

ℓ=1

(
2α

eς − 1

)k−ℓ+1 ∑
π∈Sℓ,k

 ∏
j∈{π(ℓ),...,π(k)}

Cmj
|sj| e4D|sj |α−ςmj


 ∏

j∈{0,...,k}\{π(ℓ),...,π(k)}

eςmj

 ∏
{j,l}∈T

exp

(
− ς |xj − xl|√

dmax{dT (j), dT (l)}

)
.

Proof: (i) Fix all parameters of the theorem. We infer from (53) and (59) that

ℜT,α ≤
k∑

ℓ=1

(2α)k−ℓ+1
∑

π∈Sℓ,k

 ∏
j∈{π(ℓ),...,π(k)}

|sj| e4D|sj |α

 ∞∑
nπ(ℓ)=mπ(ℓ)+1

· · ·
∞∑

nπ(k)=mπ(k)+1

κT

(
{(nj, xj)}kj=0

) ∏
j∈{π(ℓ),...,π(k)}

unj ,mj

(1 + nj)
ς .
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Recall that nj
.
= mj when j ∈ {0, . . . , k} \ {π (ℓ) , . . . , π (k)}. By Hölder’s

inequality, it follows that

ℜT,α ≤
k∑

ℓ=1

(2α)k−ℓ+1
∑

π∈Sℓ,k

 ∏
j∈{π(ℓ),...,π(k)}

∥∥u·,mj

∥∥
ℓ1(N) |sj| e

4D|sj |α

 (65)

× max
nπ(ℓ),...,nπ(k)∈N

κT

(
{(nj, xj)}kj=0

) ∏
j∈{π(ℓ),...,π(k)}

1

(1 + nj)
ς

 .

Therefore, it suffices to bound the above maximum in an appropriate way. Using
(64), note that

k∏
j=0

1

(1 + nj)
ς =

k∏
j=0

(
1

(1 + nj)
ς

dT (j)

)dT (j)

=
k∏

j=1

1

(1 + nj)
ς

dT (j)
(
1 + nPT (j)

) ς
dT (PT (j))

≤
k∏

j=1

1(
1 + nj + nPT (j)

) ς
mT (j)

, (66)

where, for k ∈ N, any tree T ∈ Tk+1, and j ∈ {1, . . . , k},

mT (j)
.
= max{dT (j), dT (PT (j))} .

Meanwhile, the condition

(Λnj
+ xj) ∩ (ΛnPT (j)

+ xPT (j)) ̸= ∅

implies √
d(nj + nPT (j)) ≥ |xj − xPT (j)| . (67)

Therefore, we infer from (66)–(67) that

max
nπ(ℓ),...,nπ(k)∈N

κT

(
{(nj, xj)}kj=0

) ∏
j∈{π(ℓ),...,π(k)}

1

(1 + nj)
ς


≤

 ∏
j∈{0,...,k}\{π(ℓ),...,π(k)}

(1 + nj)
ς

 k∏
j=1

d
ς
2

(1 + |xj − xPT (j)|)
ς

mT (j)

.
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Combined with (65), this last inequality yields Assertion (i).
(ii) The second assertion is proven exactly in the same way. We omit the

details.

We defined in [BPH1, Section 4] the concept of tree–decay bounds for pairs
(ρ, τ), where ρ ∈ U∗ and τ ≡ {τ t}t∈R are respectively any state and any one–
parameter group of ∗–automorphisms on the C∗–algebra U . They are a useful tool
to control multi–commutators of products of annihilation and creation operators.
Such bounds are related to cluster or graph expansions in statistical physics. For
more details see the preliminary discussions of [BPH1, Section 4]. As a straight-
forward corollary of Theorems 3.8–3.9 we give below an extension of the tree–
decay bounds [BPH1, Section 4] to the case of interacting fermions on lattices:

Corollary 3.10 (Tree–decay bounds)
Let Ψ ∈ W , V be any potential, k ∈ N, m0 ∈ N0, t ∈ R+

0 , {sj}kj=1 ⊂ [−t, t],
B0 ⊂ UΛm0

, and {xj}kj=0, {zj}kj=1 ⊂ L such that |zj| = 1 for j ∈ {1, . . . , k}.
(i) Polynomial decay: Assume (59) for m = 1. Then,∥∥∥[τ sk(a∗xk

axk+zk), . . . , τ s1(a
∗
x1
ax1+z1), χx0

(B0)
](k+1)

∥∥∥
U

≤ ∥B0∥U (1 +m0)
ςKk

0

∑
T∈Tk+1

∏
{j,l}∈T

1

(1 + |xj − xl|)ς(max{dT (j),dT (l)})−1

with
K0

.
= 2d

ς
2

(
2ς + 2 ∥u·,1∥ℓ1(N) ∥Ψ∥W |t| e4D|t|∥Ψ∥W

)
.

(ii) Exponential decay: Assume (60) for m = 1. Then,∥∥∥[τ sk(a∗xk
axk+zk), . . . , τ s1(a

∗
x1
ax1+z1), χx0

(B0)
](k+1)

∥∥∥
U

≤ ∥B0∥U em0ςKk
1

∑
T∈Tk+1

∏
{j,l}∈T

exp

(
− ς |xj − xl|√

dmax{dT (j), dT (l)}

)
with

K1
.
= 2

(
eς +

2C1∥Ψ∥W |t| e4D|t|∥Ψ∥W

e2ς − eς

)
.

Proof: For all k ∈ N, T ∈ Tk+1, and any sequence {(mj, xj)}kj=0 in N0 × L of
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length k + 1, the following upper bounds hold for κT (see (51)):

κT

(
{(mj, xj)}kj=0

)
≤ d

kς
2

k∏
j=0

(1 +mj)
ς
∏

{j,l}∈T

1

(1 + |xj − xl|)
ς

max{dT (j),dT (l)}

(68)
while

κT

(
{(mj, xj)}kj=0

)
≤ e(m0+···+mk)ς

∏
{j,l}∈T

exp

(
− ς |xj − xl|√

dmax{dT (j), dT (l)}

)
.

(69)
Cf. proof of Theorem 3.9. Therefore, the corollary is a direct consequence of
Theorems 3.8 and 3.9 together with the two previous inequalities.

Up to the powers 1/max{dT (j), dT (l)}, Corollary 3.10 gives for interacting sys-
tems upper bounds for multi–commutators like [BPH1, Eq. (4.14)] for the free
case. We show in the next subsection how to use these bounds to obtain results
similar to [BPH1, Theorem 3.4] on the dynamics perturbed by the presence of
external electromagnetic fields.

Remark 3.11
All results of this subsection depend on Theorem 3.6 (iii), i.e., the rate of conver-
gence, as n → ∞, of the family {τ (n,x)}n∈N0 of finite–volume groups introduced
in the preliminary discussions before Lemma 3.7. It is the only information on the
Fermi system we needed here.

Remark 3.12
The Lieb–Robinson bound for multi–commutators given by Theorems 3.8–3.9 at
k = 1 is not as good as the previous Lieb–Robinson bound of Theorem 3.6 (iv).
Nevertheless, they are qualitatively equivalent in the following sense: For inter-
actions with polynomial decay, the first bound also has polynomial decay, even if
with lower degree than the second one. For interactions with exponential decay,
both bounds are exponentially decaying, even if the first one has a worse prefactor
and exponential rate than the second one.

3.3 Application to Perturbed Autonomous Dynamics
Let Ψ ∈ W and V be a potential. For any l ∈ R+

0 , we consider a map η 7→ W(l,η)

from R to the subspace of self–adjoint elements of UΛl
. In the case that interests
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us, the following property holds:∥∥W(l,η)
∥∥
U = O(η |Λl|) . (70)

More precisely, we consider elements W(l,η) of the form

W(l,η) .=
∑
x∈Λl

∑
z∈L,|z|≤1

wx,x+z(η)a
∗
xax+z , l ∈ R+

0 , (71)

where {wx,y}x,y∈L are complex–valued functions of η ∈ R with

wx,y = wy,x and wx,y(0) = 0 (72)

for all x, y ∈ L.
Equation (71) has the form

W(l,η) =
∑
x∈Λl

Wx(η) (73)

where, for some fixed radius R ∈ R+ and any x ∈ L, Wx(η) is a self–adjoint even
element of Ux+ΛR

that depends on the real parameter η. All results below in this
subsection hold for the more general case (73) as well, with obvious modifications.
Indeed, we could even consider more general perturbations with R = ∞, see
proofs of Inequality (131) and Theorem 4.6.

We refrain from treating cases more general than (71) to keep technical aspects
as simple as possible. Observe that perturbations due to the presence of external
electromagnetic fields are included in the class of perturbations defined by (71).
In fact, as discussed in the introduction, our final aim is the microscopic quantum
theory of electrical conduction [BP1, BP2, BP3]. Indeed, at fixed l ∈ R+

0 , W(l,η)

defined by (71) is related to perturbations of dynamics caused by constant external
electromagnetic fields that vanish outside the box Λl.

We assume that {wx,y}x,y∈L are uniformly bounded and Lipschitz continuous:
There is a constant K1 ∈ R+ such that, for all η, η0 ∈ R,

sup
x,y∈L

|wx,y(η)−wx,y(η0)| ≤ K1 |η − η0| and sup
x,y∈L

sup
η∈R

|wx,y(η)| ≤ K1 .

(74)
These two uniformity conditions could hold for parameters η, η0 on compact sets
only, but we refrain again from considering this more general case, for simplicity.

The perturbed dynamics is defined via the symmetric derivation

δ(l,η)
.
= δ + i

[
W(l,η), ·

]
, l ∈ R+

0 , η ∈ R . (75)
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Recall that δ is the symmetric derivation of Theorem 3.6 which generates the C0–
group {τ t}t∈R on U . The second term in the r.h.s. of (75) is a bounded perturbation
of δ. Hence, δ(l,η) generates a C0–group {τ̃ (l,η)t }t∈R on U , see [EN, Chap. III,
Sect. 1.3]. By Lemma 3.4, the (generally unbounded) closed operator δ(l,η) is
a conservative symmetric derivation and τ̃ (l,η)t is a ∗–automorphism of U for all
t ∈ R.

Let Φ be any interaction with energy observables

UΦ
ΛL

.
=
∑
Λ⊆ΛL

ΦΛ , L ∈ R+
0 . (76)

The main aim of this subsection is to study the energy increment

T
(l,η,L)
t,s

.
= τ̃

(l,η)
t−s (U

Φ
ΛL
)− τ t−s(U

Φ
ΛL
) , l, L ∈ R+

0 , s, t, η ∈ R , (77)

in the limit L→ ∞ to obtain similar results as [BPH1, Theorem 3.4]. This can be
done by using the (partial) Dyson–Phillips series:

T
(l,η,L)
t,s −T

(l,η0,L)
t,s (78)

=
m∑
k=1

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk

[
X(l,η0,η)

sk,s
, . . . ,X(l,η0,η)

s1,s
, τ̃

(l,η0)
t−s (UΦ

ΛL
)
](k+1)

+im+1

∫ t

s

ds1 · · ·
∫ sm

s

dsm+1

τ̃
(l,η)
sm+1−s

([
W(l,η) −W(l,η0),X(l,η0,η)

sm,sm+1
, . . . ,X(l,η0,η)

s1,sm+1
, τ̃

(l,η0)
t−sm+1

(UΦ
ΛL
)
](m+2)

)
for any m ∈ N, where

X
(l,η0,η)
t,s

.
= τ̃

(l,η0)
t−s (W(l,η) −W(l,η0)) , l ∈ R+

0 , s, t, η0, η ∈ R . (79)

By (72), note that T(l,0,L)
t,s = 0.

By (70), naive bounds on the r.h.s. of (78) predict that[
X(l,η0,η)

sk,s
, . . . ,X(l,η0,η)

s1,s
, τ̃

(l,η0)
t−s (UΦ

ΛL
)
](k+1)

= O(|Λl|k |ΛL|) .

To obtain more accurate estimates, we use the tree–decay bounds on multi–commutators
of Corollary 3.10.
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To this end, for any x ∈ L and m ∈ N, we define

D (x,m)
.
= {Λ ∈ Pf (L) : x ∈ Λ, Λ ⊆ Λm + x, Λ * Λm−1 + x} ⊂ 2L . (80)

All elements of D(x,m) are finite subsets of the lattice L that contain at least two
sites which are separated by a distance greater or equal than m. Using, for any
x ∈ L and m = 0, the convention

D (x, 0)
.
= {{x}} , (81)

we obviously have that

Pf (L) =
∪

x∈L, m∈N0

D (x,m) . (82)

We now consider the following assumption on interactions Φ:

sup
x∈L

∑
m∈N0

vm

∑
Λ∈D(x,m)

∥ΦΛ∥U <∞ (83)

for some (generally diverging) sequence {vm}m∈N0 ⊂ R+
0 . For instance, if Φ ∈

W and Condition (59) holds true, then one easily verifies (83) with vm = (1 +m)ς .
In the case (60) holds and Φ ∈ W , then (83) is also satisfied even with vm = emς .

We are now in position to state the first main result of this section, which is an
extension of [BPH1, Theorem 3.4 (i)] to interacting fermions:

Theorem 3.13 (Taylor’s theorem for increments)
Let l,T ∈ R+

0 , s, t ∈ [−T,T], η, η0 ∈ R, Ψ ∈ W , and V be any potential.
Assume (59) with ς > d, (72) and (74). Take an interaction Φ satisfying (83) with
vm = (1 +m)ς . Then:
(i) The map η 7→ T

(l,η,L)
t,s converges uniformly on R, as L → ∞, to a continuous

function T
(l,η)
t,s of η and

T
(l,η)
t,s −T

(l,η0)
t,s =

∑
Λ∈Pf (L)

i

∫ t

s

ds1τ̃
(l,η)
s1−s

([
W(l,η) −W(l,η0), τ̃

(l,η0)
t−s1 (ΦΛ)

])
.
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(ii) For any m ∈ N satisfying d(m+ 1) < ς ,

T
(l,η)
t,s −T

(l,η0)
t,s = (84)

m∑
k=1

∑
Λ∈Pf (L)

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk

[
X(l,η0,η)

sk,s
, . . . ,X(l,η0,η)

s1,s
, τ̃

(l,η0)
t−s (ΦΛ)

](k+1)

+
∑

Λ∈Pf (L)

im+1

∫ t

s

ds1 · · ·
∫ sm

s

dsm+1

τ̃
(l,η)
sm+1−s

([
W(l,η) −W(l,η0),X(l,η0,η)

sm,sm+1
, . . . ,X(l,η0,η)

s1,sm+1
, τ̃

(l,η0)
t−sm+1

(ΦΛ)
](m+2)

)
.

(iii) All the above series in Λ absolutely converge: For any m ∈ N satisfying
d(m+ 1) < ς , k ∈ {1, . . . ,m}, and {sj}m+1

j=1 ⊂ [−T,T],∑
Λ∈Pf (L)

∥∥∥∥[X(l,η0,η)
sk,s

, . . . ,X(l,η0,η)
s1,s

, τ̃
(l,η0)
t−s (ΦΛ)

](k+1)
∥∥∥∥
U
≤ D |Λl| |η − η0|

k

and∑
Λ∈Pf (L)

∥∥∥∥τ̃ (l,η)sm+1−s

([
W(l,η) −W(l,η0),X(l,η0,η)

sm,sm+1
, . . . ,X(l,η0,η)

s1,sm+1
, τ̃

(l,η0)
t−sm+1

(ΦΛ)
](m+2)

)∥∥∥∥
U

≤ D |Λl| |η − η0|
m+1 ,

for some constant D ∈ R+ depending only on m, d,T,Ψ, K1,Φ,F. The last
assertion also holds for m = 0.

Proof: We only prove (ii)–(iii), Assertion (i) being easier to prove by very
similar arguments. For simplicity, we assume w.l.o.g. η0 = s = 0 and m ∈ N.
Because of Equations (71), (78), (79) and (82), we first control the multi–commu-
tator sum

zk,L
.
=

∑
x0∈L\ΛL

∑
m0∈N0

∑
Λ∈D(x0,m0)

∑
x1∈Λl

∑
z1∈L,|z1|≤1

· · ·
∑
xk∈Λl

∑
zk∈L,|zk|≤1∥∥∥ξx1,z1,...,xk,zk

[
τ sk(a

∗
xk
axk+zk), . . . , τ s1(a

∗
x1
ax1+z1), τ t(ΦΛ)

](k+1)
∥∥∥
U

for any fixed k ∈ {1, . . . ,m}, T ∈ R+
0 , {sj}kj=1 ⊂ [−T,T] and L ∈ R+

0 ∪ {−1},
where we use the convention Λ−1

.
= ∅ and

ξx1,z1,...,xk,zk

.
=

k∏
j=1

wxj ,xj+zj(η) . (85)
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By (72)–(74), there is a constant D ∈ R+ (depending on K1) such that

sup
x1,z1,...,xk,zk∈L

sup
η∈R

∣∣ξx1,z1,...,xk,zk

∣∣ ≤ D and sup
x1,z1,...,xk,zk∈L

∣∣ξx1,z1,...,xk,zk

∣∣ ≤ D|η|k .

(86)
At fixed k ∈ {1, . . . ,m} observe further that the condition ς > dk yields

max
x∈L

∑
y∈L

1

(1 + |y − x|)ς(max{dT (j),dT (l)})−1 ≤
∑
y∈L

1

(1 + |y|)
ς
k

<∞ (87)

for any tree T ∈ Tk+1 and all j, l ∈ {0, . . . , k}. Using (83) with vm = (1 +m)ς ,
(86)–(87) and the equality∥∥∥[τ sk(a∗xk

axk+zk), . . . , τ s1(a
∗
x1
ax1+z1), τ t(ΦΛ)

](k+1)
∥∥∥
U

=
∥∥∥[τ sk−t(a

∗
xk
axk+zk), . . . , τ s1−t(a

∗
x1
ax1+z1),ΦΛ

](k+1)
∥∥∥
U
, (88)

we obtain from Corollary 3.10 that, for any m ∈ N and k ∈ {1, . . . ,m} with
ς > dk, zk,−1 ≤ D|Λl||η|k for some constant D ∈ R+ depending only on
m, d,T,Ψ, K1,Φ,F.

Hence, by Lebesgue’s dominated convergence theorem, for any k ∈ N sat-
isfying ς > dk, there is R ∈ R+ such that zk,L < ε for any L ≥ R. This
ensures the convergence of the first k multi–commutators of (78) to the first k
multi–commutators of (84) as well as the corresponding absolute summability.
Cf. Assertions (ii)–(iii). The convergence is even uniform for η ∈ R because of
the first assertion of (86).

Because τ̃ (l,η)t is an isometry for any time t ∈ R, the same arguments are used
to control the multi–commutator

τ̃
(l,η)
sm+1−s

([
W(l,η) −W(l,η0),X(l,η0,η)

sm,sm+1
, . . . ,X(l,η0,η)

s1,sm+1
, τ̃

(l,η0)
t−sm+1

(ΦΛ)
](m+2)

)
(89)

in (78). By (74), notice additionally that there is a constant D ∈ R+ and a family
{Ψ(l,η)}l∈R+

0 ,η∈R ⊂ W such that

sup
η∈R

sup
l∈R+

0

∥∥Ψ(l,η)
∥∥
W ≤ D <∞

and, for all l ∈ R+
0 and η ∈ R, {τ̃ (l,η)t }t∈R is the C0–group of ∗–automorphisms

on U associated to the interaction Ψ(l,η) and the potential V. The norm ∥·∥W in
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the last inequality, which defines the space W of interactions, is of course defined
w.r.t. the same function F to which the conditions of the theorem are imposed.
This property justifies the simplifying assumption η0 = 0 at the beginning of the
proof. This concludes the proof of Assertions (ii)–(iii).

Assertion (i) is proven in the same way and we omit the details. Note only
that the convergence of z1,L as L → ∞ is uniform for η ∈ R because of the
first assertion of (86). The latter implies the continuity of the map η 7→ T

(l,η)
t,s for

η ∈ R.

A direct consequence of Theorem 3.13 is that T(l,η)
t,s = O(|Λl|). Note furthermore

that Theorem 3.13 also holds when the cubic box Λl is replaced by any finite sub-
set Λ ∈ Pf (L). The assumptions of this theorem are fulfilled for any interactions
Ψ,Φ ∈ W with (8), provided the parameter ϵ ∈ R+ is sufficiently large. Theorem
3.13 is thus a significant extension of [BPH1, Theorem 3.4 (i)] in the sense that
very general inter–particle interactions and the full range of parameters η ∈ R are
now allowed.

In the case of exponentially decaying interactions we can bound the derivatives
|Λl|−1∂mη T

(l,η)
t,s for all m ∈ N, uniformly w.r.t. l ∈ R+

0 . We thus extend [BPH1,
Theorem 3.4 (ii)] for interactions Φ satisfying (83).

Under these conditions, we show below that the map η 7→ |Λl|−1T
(l,η)
t,s from R

to U is bounded in the sense of Gevrey norms, uniformly w.r.t. l ∈ R+
0 . Note that

real analytic functions (cf. [BPH1, Theorem 3.4 (ii)]) are a special case of Gevrey
functions.

Theorem 3.14 (Increments as Gevrey maps)
Let l,T ∈ R+

0 , s, t ∈ [−T,T], Ψ ∈ W , and V be any potential. Assume (60)
and take an interaction Φ satisfying (83) with vm = emς . Assume further the
real analyticity of the maps η 7→ wx,y(η), x, y ∈ L, from R to C as well as the
existence of r ∈ R+ such that

K2
.
= sup

x,y∈L
sup
m∈N

sup
η∈R

rm∂mη wx,y(η)

m!
<∞ . (90)

(i) Smoothness. As a function of η ∈ R, T(l,η)
t,s ∈ C∞(R;U) and for any m ∈ N,

∂mη T
(l,η)
t,s =

m∑
k=1

∑
Λ∈Pf (L)

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk

∂mε

[
X(l,η,η+ε)

sk,s
, . . . ,X(l,η,η+ε)

s1,s
, τ̃

(l,η)
t,s (ΦΛ)

](k+1)
∣∣∣∣
ε=0

.
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The above series in Λ are absolutely convergent.
(ii) Uniform boundedness of the Gevrey norm of density of increments. There exist
r̃ ≡ r̃d,T,Ψ,K2,F ∈ R+ and D ≡ DT,Ψ,K2,Φ ∈ R+ such that, for all l ∈ R+

0 , η ∈ R
and s, t ∈ [−T,T], ∑

m∈N

r̃m

(m!)d
sup
l∈R+

0

∥∥∥|Λl|−1 ∂mη T
(l,η)
t,s

∥∥∥
U
≤ D .

Before giving the proof, note first that the assumptions of Theorem 3.14 are
satisfied for any interactions Ψ,Φ ∈ W with (61). Moreover, under conditions
of Theorem 3.14, the family {|Λl|−1T

(l,η)
t,s }l∈R+

0
of functions of the variable η at

dimension d = 1 is uniformly bounded w.r.t. analytic norms. In particular, for
d = 1 and any state ϱ ∈ U∗, the limit of the increment density |Λl|−1ϱ(T

(l,η)
t,s ),

as l → ∞ (possibly along subsequences), is either identically vanishing for all
η ∈ R, or is different from zero for η outside a discrete subset of R. Note that,
by contrast, general non–vanishing Gevrey functions can have arbitrarily small
support. We discuss this with more details at the end of Section 4.3.

We now conclude this subsection by proving Theorem 3.14. To this end, we
need the following estimate:

Proposition 3.15
There is a constant D ∈ R+ such that, for all k ∈ N,∑

T∈Tk+1

max
j∈{0,...,k}

max
xj∈L

∑
x0,..., /xj ,...,xk∈L

∏
{p,l}∈T

e
− ς|xp−xl|√

dmax{dT (p),dT (l)} ≤ Dk(k!)d .

The proof of this upper bound uses the fact that trees with vertices of large degree
are “rare” in a way that summing up the numbers (dT !)α for T ∈ Tk+1 and any α ∈
R+ gives factors behaving, at worse, like Dk(k!)α. The arguments are standard
results of finite mathematics. We prove them below for completeness, in two
simple lemmata.

Let k ∈ N. For any fixed sequence d = (d(0), . . . , d(k)) ∈ Nk+1 define the set
Tk+1(d) ⊂ Tk+1 by

Tk+1(d)
.
= {T ∈ Tk+1 : dT ≡ (dT (0), . . . , dT (k)) = d} .

In other words, Tk+1(d) is the set of all trees of Tk+1 with vertices having their
degree fixed by the sequence d. The cardinality of this set is bounded as follows:
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Lemma 3.16 (Number of trees with vertices of fixed degrees)
For all k ∈ N and d ∈ Nk+1,

|Tk+1(d)| ≤
(k − 1)!

(d(0)− 1)! · · · (d(k)− 1)!
.

Proof: The bound can be proven, for instance, by using so–called “Prüfer
codes”. We give here a proof based on a simplified version of such codes, well
adapted to the particular sets of trees Tk+1. At fixed k ∈ N, define the map
C : Tk+1 → {0, . . . , k − 1}k−1 by

C(T )
.
= (PT (2), . . . ,PT (k)) .

See (48)–(50). This map is clearly injective and if j ∈ {0, . . . , k} is a vertex of
degree dT (j), then it appears exactly (dT (j)−1) times in the sequence C(T ). Note
that dT (k) = 1 for all T ∈ Tk+1. To finish the proof, fix d = (d(0), . . . , d(k)) ∈
Nk+1 and observe that if d(0) + · · ·+ d(k) = 2k then there are exactly

(k − 1)!

(d(0)− 1)! · · · (d(k)− 1)!

sequences in {0, . . . , k − 1}k−1 with j ∈ {0, . . . , k} appearing exactly (d(j)− 1)
times in such sequences. If d(0)+ · · ·+ d(k) ̸= 2k then such a sequence does not
exist.

Lemma 3.17
For all k ∈ N, ∑

d(0),...,d(k)∈N

1[d(0) + · · ·+ d(k) = 2k] ≤ 4k .

Proof: For k ∈ N, the coefficient c2k of the analytic function

z 7→ zk+1

(1− z)k+1
=

∞∑
m=1

cmz
m

on the complex disc {z ∈ C : |z| < 1} is exactly the finite sum∑
d(0),...,d(k)∈N

1[d(0) + · · ·+ d(k) = 2k] .
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In particular,∑
d(0),...,d(k)∈N

1[d(0) + · · ·+ d(k) = 2k] =
1

2πi

∮
|z|=1/2

1

zk(1− z)k+1
dz ,

which combined with the inequality∣∣∣∣∣∣∣
1

2πi

∮
|z|=1/2

1

zk(1− z)k+1
dz

∣∣∣∣∣∣∣ ≤ 4k

yields the assertion.

By using the two above lemmata, we now prove Proposition 3.15:

Proof: Fix α ∈ R+ and note first that, for all d ∈ N,

lim
g→∞

1

gd

∑
x∈L

e
−α|x|

g
√

d =

∫
Rd

e
−α|x|√

d ddx <∞ .

Hence, for d ∈ N, there is a constant Sd ∈ R+ such that∑
x∈L

e
−α|x|

g
√

d ≤ Sdg
d , g ∈ N .

From this estimate and by using the Stirling–type bounds [R]

gge−ge
1

12g+1

√
2πg ≤ g! ≤ gge−ge

1
12g

√
2πg , g ∈ N , (91)

we obtain

max
j∈{0,...,k}

max
xj∈L

∑
x0,..., /xj ,...,xk∈L

∏
{p,l}∈T

exp

(
− ς |xp − xl|√

dmax{dT (p), dT (l)}

)

≤ Sk
d

k∏
j=0

dT (j)
dT (j)d ≤ Sk

de
dT (j)d(dT !)

d (92)

for all d, k ∈ N and T ∈ Tk+1. We infer from (63) that∑
T∈Tk+1

(dT !)
d ≤ (k!)d−1

∑
T∈Tk+1

(dT !) . (93)
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We use now Lemma 3.16 to get∑
T∈Tk+1

(dT !) =
∑

d(0),...,d(k)∈N

1[d(0) + · · ·+ d(k) = 2k]
∑

T∈Tk+1((d(0),...,d(k)))

(dT !)

≤ k!
∑

d(0),...,d(k)∈N

1[d(0) + · · ·+ d(k) = 2k] d(0) · · · d(k)

≤ k!
∑

d(0),...,d(k)∈N

1[d(0) + · · ·+ d(k) = 2k] ed(0) · · · ed(k) .

We invoke (62) and Lemma 3.17 to arrive at∑
T∈Tk+1

(dT !) ≤ (k!)e2k
∑

d(0),...,d(k)∈N

1[d(0)+ · · ·+d(k) = 2k] ≤ (k!)(4e2)k . (94)

Proposition 3.15 is then a consequence of (92), (93) and (94).

We are now in position to prove Theorem 3.14:
Proof: (i) Observe that

∂mη T
(l,η,L)
t,s = ∂mε (T

(l,η+ε,L)
t,s −T

(l,η,L)
t,s )

∣∣∣
ε=0

. (95)

The difference T
(l,η+ε,L)
t,s − T

(l,η,L)
t,s is explicitly given by a Dyson–Phillips series

involving multi–commutators (40)–(41): Use (78) to produce an infinite series.
As the function η 7→ W(l,η) is, by assumption, real analytic, it follows that

∂mε (T
(l,η+ε,L)
t,s −T

(l,η,L)
t,s )

∣∣∣
ε=0

= (96)
m∑
k=1

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk∂
m
ε

[
X(l,η,η+ε)

sk,s
, . . . ,X(l,η,η+ε)

s1,s
, τ̃

(l,η)
t,s (UΦ

ΛL
)
](k+1)

∣∣∣∣
ε=0

for any m ∈ N, l ∈ R+
0 , and s, t, η ∈ R. Set

ξx1,z1,...,xk,zk

.
= ∂mε

{
k∏

j=1

(
wxj ,xj+zj(η + ε)−wxj ,xj+zj(η)

)}∣∣∣∣∣
ε=0

.

By (90), these coefficients are uniformly bounded w.r.t. x1, z1, . . . , xk, zk and η:

sup
x1,z1,...,xk,zk∈L

sup
η∈R

|ξx1,z1,...,xk,zk
| ≤ Dmm! (97)
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for some constant D ∈ R+ depending on K2 but not on m ≥ k. Bounding the
above multi–commutators exactly as done for the proof of Theorem 3.13 and by
taking the limit L → ∞, we deduce from (95)–(96) that, for any m ∈ N and
s, t, η ∈ R,

lim
L→∞

∂mη T
(l,η,L)
t,s =

m∑
k=1

∑
Λ∈Pf (L)

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk (98)

∂mε

[
X(l,η,η+ε)

sk,s
, . . . ,X(l,η,η+ε)

s1,s
, τ̃

(l,η)
t,s (ΦΛ)

](k+1)
∣∣∣∣
ε=0

.

This limit is uniform for η ∈ R because of (97). As in Theorem 3.13 (ii), the
above series in Λ are absolutely convergent. Moreover, the uniform convergence
of ∂mη T

(l,η,L)
t,s , m ∈ N, together with Theorem 3.13 (i) implies that the energy

increment limit T(l,η)
t,s is a smooth function of η with m–derivatives

∂mη T
(l,η)
t,s = lim

L→∞
∂mη T

(l,η,L)
t,s

for all m ∈ N and s, t, η ∈ R. Because of (98), Assertion (i) thus follows.
(ii) is a direct consequence of (i), Corollary 3.10, and Proposition 3.15 together
with (97) and ∫ t

s

ds1 · · ·
∫ sk−1

s

dsk ≤
(2T)k

k!
.

4 Lieb–Robinson Bounds for Non–Autonomous Dy-
namics

Like in Section 3, we only consider fermion systems, but all results can easily be
extended to quantum spin systems. For quantum spin systems, note that Lieb–
Robinson bounds for non–autonomous dynamics have already been considered
in [BMNS]. However, [BMNS] only proves Lieb–Robinson bounds for com-
mutators, while the multi–commutator case was not considered, in contrast with
results of this section. Observe also that some aspects of the non–autonomous
case can be treated in a similar way to the autonomous case. However, several im-
portant arguments cannot be directly extended to the non–autonomous situation.
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Here, we only address in detail the technical issues which are specific to the non–
autonomous problem. See for instance Corollary 4.2 (iii), Lemma 4.3, Theorem
4.5, and Theorem 4.7.

4.1 Existence of Non–Autonomous Dynamics
We now consider time–dependent models. So, let Ψ .

= {Ψ(t)}t∈R be a map from
R to W such that

∥Ψ∥∞
.
= sup

t∈R

∥∥Ψ(t)
∥∥
W <∞ .

I.e., {Ψ(t)}t∈R is a bounded family in W . We could easily extend the study of
this section to families {Ψ(t)}t∈R which are only bounded for t on compacta. We
refrain from considering this more general case, for simplicity. Take, furthermore,
any collection {V(t)}t∈R of potentials. Note that (10) is allowed for any t ∈ R.

For all x ∈ L and Λ ∈ Pf (L), assume the continuity of the two maps t 7→ Ψ
(t)
Λ ,

t 7→ V
(t)
{x} fromR to U , i.e., ΨΛ,V{x} ∈ C (R;U). For any L ∈ R+

0 , this yields the
existence, uniqueness and an explicit expression, as a Dyson–Phillips series, of the
solution {τ (L)t,s }s,t∈R of the (finite–volume) non–autonomous evolutions equations

∀s, t ∈ R : ∂sτ
(L)
t,s = −δ(L)s ◦ τ (L)t,s , τ

(L)
t,t = 1U , (99)

and
∀s, t ∈ R : ∂tτ

(L)
t,s = τ

(L)
t,s ◦ δ(L)t , τ (L)s,s = 1U . (100)

Here, for any t ∈ R and L ∈ R+
0 , the bounded linear operator δ(L)t is defined on U

by
δ
(L)
t (B)

.
= i

∑
Λ⊆ΛL

[
Ψ

(t)
Λ , B

]
+ i

∑
x∈ΛL

[
V

(t)
{x}, B

]
, B ∈ U .

Compare this definition with (13).
Similar to the autonomous case, for any L ∈ R+

0 , {τ (L)t,s }s,t∈R is a continuous
two–parameter family of bounded operators that satisfies the (reverse) cocycle
property

∀s, r, t ∈ R : τ
(L)
t,s = τ (L)r,s τ

(L)
t,r . (101)

Its time–dependent generator δ(L)t is clearly a symmetric derivation and τ
(L)
t,s is

thus a ∗–automorphism on U for all L ∈ R+
0 and s, t ∈ R. Moreover, similar

to the autonomous case (cf. Theorem 3.1 and Lemma 3.2), for all L ∈ R+
0 and

s, t ∈ R, τ (L)t,s satisfies Lieb–Robinson bounds and thus converges in the strong
sense on U0, as L→ ∞:
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Theorem 4.1 (Properties of non–autonomous finite–volume dynamics)
Let Ψ .

= {Ψ(t)}t∈R be a bounded family on W (i.e., ∥Ψ∥∞ < ∞ ) and {V(t)}t∈R
a collection of potentials. For any x ∈ L and Λ ∈ Pf (L), assume ΨΛ,V{x} ∈
C (R;U). Fix s, t ∈ R.
(i) Lieb–Robinson bounds. For any L ∈ R+

0 , B1 ∈ U+ ∩ UΛ(1) , and B2 ∈ UΛ(2)

with Λ(1),Λ(2) ( ΛL and Λ(1) ∩ Λ(2) = ∅,∥∥∥[τ (L)t,s (B1) , B2]
∥∥∥
U

≤ 2D−1 ∥B1∥U ∥B2∥U
(
e2D|t−s|∥Ψ∥∞ − 1

) ∑
x∈∂ΨΛ(1)

∑
y∈Λ(2)

F (|x− y|) .

(ii) Convergence of the finite–volume dynamics. For any Λ ∈ Pf (L), B ∈ UΛ,
and L1, L2 ∈ R+

0 with Λ ⊂ ΛL1  ΛL2 ,∥∥∥τ (L2)
t,s (B)− τ

(L1)
t,s (B)

∥∥∥
U

≤ 2 ∥B∥U ∥Ψ∥∞ |t− s| e4D|t−s|∥Ψ∥∞
∑

y∈ΛL2
\ΛL1

∑
x∈Λ

F (|x− y|) .

Proof: (i) The arguments are a straightforward extension of those proving The-
orem 3.1 to non–autonomous dynamics: Fix L ∈ R+

0 , B1 ∈ U+ ∩ UΛ(1) and
B2 ∈ UΛ(2) with disjoint sets Λ(1),Λ(2) ( ΛL. Similar to (16)–(17), we infer from
(99)–(100) that the derivative w.r.t. to t of the function

f (s, t)
.
=
[
τ
(L)
t,s ◦ τ (Λ

(1))
s,t (B1) , B2

]
, s, t ∈ R ,

equals

∂tf (s, t) = i
∑

Z∈SΛL
(Λ(1))

[
τ
(L)
t,s (Ψ

(t)
Z ), f (s, t)

]
(102)

−i
∑

Z∈SΛL
(Λ(1))

[
τ
(L)
t,s ◦ τ (Λ

(1))
s,t (B1) ,

[
τ
(L)
t,s (Ψ

(t)
Z ), B2

]]
.

Exactly like (18), it follows that

∥f (s, t)∥U ≤ ∥f (s, s)∥U+2 ∥B1∥U
∑

Z∈SΛL
(Λ(1))

∫ max{s,t}

min{s,t}

∥∥∥[τ (L)α,s(Ψ
(α)
Z ), B2

]∥∥∥
U
dα
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for any s, t ∈ R. Therefore, by using estimates that are similar to (19)–(21), we
deduce Assertion (i).
(ii) The arguments are extensions to the non–autonomous case of those proving
Lemma 3.2: Since ΨΛ,V{x} ∈ C (R;U) for any x ∈ L and Λ ∈ Pf (L), the
time–dependent energy observables

H
(t)
L

.
=
∑
Λ⊆ΛL

Ψ
(t)
Λ +

∑
x∈ΛL

V
(t)
{x} , L ∈ R+

0 , t ∈ R ,

and potentials

V
(t)
Z

.
=
∑
x∈Z

V
(t)
{x} ∈ U+ ∩ UZ , Z ∈ Pf (L) , t ∈ R ,

generate two solutions {Vs,t(HL)}s,t∈R and {Vs,t(VZ)}s,t∈R, respectively, of the
non–autonomous evolution equations

∂t (Vs,t(X)) = iVs,t(X)X(t) and ∂s (Vs,t(X)) = −iX(s)Vs,t(X) (103)

withX(t) = H
(t)
L or V(t)

Z . These evolution families satisfy Vt,t(X) = 1U for t ∈ R
as well as the (usual) cocycle (Chapman–Kolmogorov) property

∀t, r, s ∈ R : Vs,t(X) = Vs,r(X)Vr,t(X) . (104)

For any L ∈ R+
0 and s, t, α ∈ R, we then replace (22) in the proof of Lemma 3.2

with
UL (t, α)

.
= Vs,t(VΛL

)Vt,α(HL)Vα,s(VΛL
) . (105)

By (104), UL (t, t) = 1U for all t ∈ R while

∂tUL (t, α) = −iGL (t)UL (t, α) and ∂αUL (t, α) = iUL (t, α)GL (α)
(106)

with
GL (t)

.
=
∑
Z⊆ΛL

Vs,t(VΛL
) ΨZ Vt,s(VΛL

) . (107)

Using the notation

τ̃
(L)
t,s (B)

.
= UL (s, t)BUL (t, s) , B ∈ UΛ , (108)

for any s, t ∈ R and L ∈ R+
0 such that Λ ⊂ ΛL, observe that

τ
(L)
t,s (B) = Vs,t(HL)BVt,s(HL) = τ̃

(L)
t,s (Vs,t(VΛ)BVt,s(VΛ)) . (109)
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Note that, for any s, t ∈ R, Λ,Z ∈ Pf (L) and B ∈ UΛ,

Vs,t(VZ)BVt,s(VZ) ∈ UΛ and ∥Vs,t(VZ)BVt,s(VZ)∥U = ∥B∥U . (110)

Hence, it suffices to study the net {τ̃ (L)t,s (B)}L∈R+
0

with B ∈ UΛ. Up to straight-
forward modifications taking into account the initial time s ∈ R, the remaining
part of the proof is now identical to the arguments starting from Equation (23) in
the proof of Lemma 3.2.

Corollary 4.2 (Infinite–volume dynamics)
Under the conditions of Theorem 4.1, finite–volume families {τ (L)t,s }s,t∈R, L ∈ R+

0 ,
converge strongly and uniformly for s, t on compact sets to a strongly continuous
two–parameter family {τ t,s}s,t∈R of ∗–automorphisms on U satisfying the follow-
ing properties:
(i) Reverse cocycle property.

∀s, r, t ∈ R : τ t,s = τ r,sτ t,r .

(ii) Lieb–Robinson bounds. For any s, t ∈ R, B1 ∈ U+ ∩ UΛ(1) , and B2 ∈ UΛ(2)

with disjoint sets Λ(1),Λ(2) ∈ Pf (L),

∥[τ t,s (B1) , B2]∥U
≤ 2D−1 ∥B1∥U ∥B2∥U

(
e2D|t−s|∥Ψ∥∞ − 1

) ∑
x∈∂ΨΛ(1)

∑
y∈Λ(2)

F (|x− y|) .

(iii) Non–autonomous evolution equation. If Ψ ∈ C(R;W) then {τ t,s}s,t∈R is the
unique family of bounded operators on U satisfying, in the strong sense on the
dense domain U0 ⊂ U ,

∀s, t ∈ R : ∂tτ t,s = τ t,s ◦ δt , τ s,s = 1U . (111)

Here, δt, t ∈ R, are the conservative closed symmetric derivations, with common
core U0, associated to the interactions Ψ(t) ∈ W and the potentials V(t). See
Theorem 3.6.

Proof: The existence of a strongly continuous two–parameter family {τ s,t}s,t∈R
of ∗–automorphisms satisfying Lieb–Robinson bounds (ii) is a direct consequence
of Theorem 4.1 together with the density of U0 ⊂ U and completeness of U . This
limiting family also satisfies the reverse cocycle property (i) because of (101).
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(iii) For any B ∈ U0 ⊂ Dom(δt), the map t 7→ τ t,s ◦ δt(B) from R to U is
continuous. Indeed, for any B ∈ U0 and α, t ∈ R,

∥τα,s ◦ δα (B)− τ t,s ◦ δt (B)∥U ≤ ∥(τα,s − τ t,s) ◦ δt (B)∥U+∥δα (B)− δt (B)∥U .

By applying (31) to the interaction Ψ(t) − Ψ(α) and the potential V(t) − V(α)

together with the strong continuity of {τ t,s}s,t∈R, one sees that, in the limit α → t,
the r.h.s of the above inequality vanishes when B ∈ U0 and Ψ ∈ C(R;W). Now,
because of (100), for any L ∈ R+

0 , B ∈ U0, and s, t ∈ R,∥∥∥∥τ t,s (B)−B −
∫ t

s

τα,s ◦ δα (B) dα

∥∥∥∥
U

≤
∥∥∥τ t,s (B)− τ

(L)
t,s (B)

∥∥∥
U

(112)

+

∫ t

s

∥∥(τ (L)α,s − τα,s
)
◦ δα (B)

∥∥
U dα

+

∫ t

s

∥∥∥δ(L)α (B)− δα (B)
∥∥∥
U
dα .

By using the strong convergence of τ (L)t,s towards τ t,s as well as (31) and (32)
together with Lebesgue’s dominated convergence theorem, one checks that the
r.h.s. of (112) vanishes when B ∈ U0 and L → ∞. Because of the continuity of
the map t 7→ τ t,s ◦ δt(B), (111) is verified on the dense set U0 ⊂ Dom(δt).

To prove uniqueness, assume that {τ̂ t,s}s,t∈R is any family of bounded oper-
ators on U satisfying (111) on U0. By (99) and because τ (L)t,s (B) ∈ U0 for any
B ∈ U0,

τ̂ t,s (B)− τ
(L)
t,s (B) =

∫ t

s

τ̂α,s ◦
(
δα − δ(L)α

)
◦ τ (L)t,α (B) dα (113)

for any B ∈ U0, L ∈ R+
0 and s, t ∈ R. Similar to (36)–(38), we infer from

Theorem 4.1 (i) that, for any Λ ∈ Pf (L), B ∈ UΛ, α, t ∈ R and sufficiently large
L ∈ R+

0 ,∥∥∥(δα − δ(L)α

)
◦ τ (L)t,α (B)

∥∥∥
U
≤ ∥Ψ∥∞ e2D|t−α|∥Ψ∥∞

∑
y∈Λc

L

∑
x∈Λ

F (|x− y|) .

In particular, by (39), for any B ∈ U0 and α, t ∈ R,

lim
L→∞

∥∥∥(δα − δ(L)α

)
◦ τ (L)t,α (B)

∥∥∥
U
= 0 (114)
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uniformly for α on compacta. Because of (113) and {τ̂ t,s}s,t∈R ⊂ B(U), we then
conclude from (114) that, for every s, t ∈ R, τ̂ t,s coincides on the dense set U0

with the limit τ t,s of τ (L)t,s , as L → ∞. By continuity, τ t,s = τ̂ t,s on U for any
s, t ∈ R.

The solution of (111) exists under very weak conditions on interactions and po-
tentials, i.e., their continuity, like in the finite–volume case. It yields a fundamen-
tal solution for the states of the interacting lattice fermions driven by the time–
dependent interaction {Ψ(t)}t∈R. More precisely, for any fixed ρs ∈ U∗ at time
s ∈ R, the family {ρs ◦ τ t,s}t∈R solves the following ordinary differential equa-
tions, for each B ∈ U0:

∀t ∈ R : ∂tρt(B) = ρt ◦ δt(B) . (115)

By Corollary 4.2, the initial value problem on U∗ associated to the above infinite
system of ordinary differential equations is well–posed. Indeed, the solution of
(115) is unique: Take any solution {ρt}t∈R of (115) and, similar to (113), use the
equality

ρt (B)− ρs ◦ τ
(L)
t,s (B) =

∫ t

s

ρα

((
δα − δ(L)α

)
◦ τ (L)t,α (B)

)
dα

for any ρs ∈ U∗, B ∈ U0, L ∈ R+
0 and s, t ∈ R together with (114) and the

weak∗–convergence of ρs ◦ τ
(L)
t,s to ρs ◦ τ t,s, as L→ ∞, by Corollary 4.2.

Note that (111) is the evolution equation one formally obtains for automor-
phisms of the algebra of observables from the Schrödinger equation, in the non–
autonomous case. See also [BPH1, Remark 2.1]. A similar remark can be done
for the infinite system (115) of ordinary differential equations.

It is a priori unclear whether {τ t,s}s,t∈R solves the non–autonomous Cauchy
initial value problem

∀s, t ∈ R : ∂sτ t,s = −δs ◦ τ t,s , τ t,t = 1U , (116)

on some dense domain. The generators {δt}t∈R are generally unbounded opera-
tors acting on U and their domains can additionally depend on time. No unified
theory of such linear evolution equations, similar to the Hille–Yosida generation
theorems in the autonomous case, is available. See, e.g., [K3, C, S, P, BB] and
the corresponding references therein.
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By using Lieb–Robinson bounds for multi–commutators, we show below in
Theorem 4.5 that the evolution equation (116) also holds on the dense set U0, un-
der conditions like polynomial decays of interactions and boundedness of the ex-
ternal potential. Another example – more restrictive in which concerns the time–
dependency of the generator of dynamics, but less restrictive w.r.t. the behavior
at large distances of the potential V – for which (116) holds is given by Theorem
4.7 (i) in Section 4.3.

4.2 Lieb–Robinson Bounds for Multi–Commutators
As explained in Remark 3.11, all results of Section 3.2 depend on Theorem 3.6
(iii). It is the crucial ingredient we need in order to prove Lemma 3.7, from which
we derive Lieb–Robinson bounds for multi–commutators. Theorem 4.1 (ii) to-
gether with Corollary 4.2 extend Theorem 3.6 (iii) to time–dependent interactions
and potentials. This allows us to prove Lemma 3.7 in the non–autonomous case
as well. It is then straightforward to extend Lieb–Robinson bounds for multi–
commutators to time–dependent interactions and potentials.

Recall that the proof of Lemma 3.7 uses that the space translated finite–volume
groups {τ (n,x)t }t∈R, x ∈ L, have all the same limit {τ t}t∈R, as n → ∞. This also
holds in the non–autonomous case. Indeed, for any n ∈ N0, x ∈ L, every bounded
family Ψ

.
= {Ψ(t)}t∈R on W (i.e., ∥Ψ∥∞ <∞ ), and each collection {V(t)}t∈R of

potentials, consider the (space) translated family {τ (n,x)t,s }s,t∈R of finite–volume ∗–
automorphisms generated (cf. (99) and (100)) by the symmetric bounded deriva-
tion

δ
(n,x)
t (B)

.
= i

∑
Λ⊆Λn+x

[
Ψ

(t)
Λ , B

]
+ i

∑
y∈Λn+x

[
V

(t)
{y}, B

]
, B ∈ U .

In the autonomous case the strong convergence of these evolution families towards
{τ t,s}s,t∈R easily follows from the second Trotter–Kato approximation theorem
[EN, Chap. III, Sect. 4.9]. We use the Lieb–Robinson bound of Theorem 4.1 (i)
to prove it in the non–autonomous case:

Lemma 4.3 (Limit of translated dynamics)
Let Ψ .

= {Ψ(t)}t∈R be a bounded family on W (i.e., ∥Ψ∥∞ < ∞ ) and {V(t)}t∈R
a collection of potentials. For any y ∈ L and Λ ∈ Pf (L), assume ΨΛ,V{y} ∈
C (R;U). Then

lim
n→∞

τ
(n,x)
t,s (B) = τ t,s (B) , B ∈ U , x ∈ L, s, t ∈ R .
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Proof: For any n ∈ N0 and x ∈ L, the translated finite–volume family
{τ (n,x)s,t }s,t∈R solves non–autonomous evolution equations like (99)–(100). There-
fore, similar to (113), for any n ∈ N0, x ∈ L, Λ ∈ Pf (L), B ∈ UΛ and s, t ∈ R,

τ
(n,x)
t,s (B)− τ

(n,0)
t,s (B) =

∫ t

s

τ (n,x)α,s ◦
(
δ(n,x)α − δ(n,0)α

)
◦ τ (n,0)t,α (B) dα . (117)

For sufficiently large n ∈ N0 such that Λ ⊂ (Λn + x) ∩ Λn, note that∥∥∥(δ(n,x)α − δ(n,0)α

)
◦ τ (n,0)t,α (B)

∥∥∥
U
≤

∑
Z∈Pf (L), Z∩((Λn+x)c∪Λc

n )̸=∅

∥∥∥[Ψ(t)
Λ , τ

(n,0)
t,α (B)

]∥∥∥
U

with Zc .
= L\Z being the complement of any set Z ∈ Pf (L). Then, similar

to Inequality (38), by using Theorem 4.1 (i), one verifies that, for any x ∈ L,
Λ ∈ Pf (L), B ∈ UΛ, α, t ∈ R, and sufficiently large n ∈ N0,∥∥∥(δ(n,x)α − δ(n,0)α

)
◦ τ (n,0)t,α (B)

∥∥∥
U

(118)

≤ 2 ∥B∥U ∥Ψ∥∞ e2D|t−α|∥Ψ∥∞
∑

y∈(Λn+x)c∪Λc
n

∑
z∈Λ

F (|z − y|) ,

while
lim
n→∞

∑
y∈(Λn+x)c∪Λc

n

∑
z∈Λ

F (|z − y|) = 0 , (119)

because of (6). We thus deduce from (118)–(119) that

lim
n→∞

∥∥∥(δ(n,x)α − δ(n,0)α

)
◦ τ (n,0)t,α (B)

∥∥∥
U
= 0

uniformly for α on compacta. Combined with (117) and Corollary 4.2, this uni-
form limit implies the assertion.

With the above result and the introducing remarks of this subsection, it is now
straightforward to extend Theorem 3.8 to the non–autonomous case:

Theorem 4.4 (Lieb–Robinson bounds for multi–commutators – Part I)
Let Ψ .

= {Ψ(t)}t∈R be a bounded family on W (i.e., ∥Ψ∥∞ < ∞ ), {V(t)}t∈R
a collection of potentials, and s ∈ R. For any y ∈ L and Λ ∈ Pf (L), as-
sume ΨΛ,V{y} ∈ C (R;U). Then, for any integer k ∈ N, {mj}kj=0 ⊂ N0, times
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{sj}kj=1 ⊂ R, lattice sites {xj}kj=0 ⊂ L, and elements B0 ∈ U0, {Bj}kj=1 ⊂
U0 ∩ U+ such that Bj ∈ UΛmj

for j ∈ {0, . . . , k},∥∥∥[τ sk,s ◦ χxk
(Bk), . . . , τ s1,s ◦ χx1

(B1), χx0
(B0)

](k+1)
∥∥∥
U

≤ 2k
k∏

j=0

∥Bj∥U
∑

T∈Tk+1

(
κT

(
{(mj, xj)}kj=0

)
+ ℜT,∥Ψ∥∞

)
,

where κT and ℜT,α are respectively defined by (51) and (53) for T ∈ Tk+1 and
α ∈ R+

0 , the times {sj}kj=1 in (53) being replaced with {(sj − s)}kj=1.

Proof: One easily checks that Theorem 4.1 (ii) holds for {τ (n,x)t,s }s,t∈R at any
fixed x ∈ L and n ∈ N0. By Lemma 4.3, Lemma 3.7 also holds in the non–auto-
nomous case and the assertion follows from (57) with the ∗–automorphism τ sj
being replaced by τ sj ,s for every j ∈ {1, . . . , k}.

By Theorems 3.9 and 4.4, we obtain Lieb–Robinson bounds for multi–com-
mutators as well as a version of Corollary 3.10 in the non–autonomous case. I.e.,
interacting and non–autonomous systems also satisfy the so–called tree–decay
bounds.

Another application of Theorems 3.9 and 4.4 is a proof of existence of a fun-
damental solution for the non–autonomous abstract Cauchy initial value problem
for observables

∀s ∈ R : ∂sBs = −δs(Bs) , Bt = B ∈ U0 , (120)

in the Banach space U , i.e., a proof of existence of a solution of the evolution
equation (116). The latter is a non–trivial statement, as previously discussed,
among other things because the domain of δs depends, in general, on the time
s ∈ R. [Here, t ∈ R is the “initial” time.]

To this end, like in (80)–(83), we add the following condition on interactions
Φ:

• Polynomial decay. Assume (59) and the existence of constants υ,D ∈ R+

such that

sup
x∈L

∑
Λ∈D(x,m)

∥ΦΛ∥U ≤ D (m+ 1)−υ , m ∈ N0 , (121)
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while the sequence {un,m}n∈N ∈ ℓ1(N) of (59) satisfies∑
m,n∈N

m−υ |un,m| <∞ . (122)

As F(|x|) > 0 for all x ∈ L, note that (59) implies∑
n∈N

|un,m| ≥ Dmς

for someD ∈ R+ and allm ∈ N0. Hence, the inequality (122) imposes υ > ς+1.
Then, one gets the following assertion:

Theorem 4.5 (Infinite dynamics and non–autonomous evolution equations)
Let Ψ .

= {Ψ(t)}t∈R ∈ C(R;W) be a bounded family on W (i.e., ∥Ψ∥∞ < ∞)
and {V(t)

{x}}x∈L,t∈R a bounded family on U of potentials with V{x} ∈ C (R;U) for
any x ∈ L. Assume (59) with ς > 2d and that (121)–(122) with Φ = Ψ(t) and
ν > ς + 1 hold uniformly for t ∈ R. Then, for any s, t ∈ R, τ t,s (U0) ⊂ Dom(δs)
and {τ t,s}s,t∈R solves the non–autonomous evolution equation

∀s, t ∈ R : ∂sτ t,s = −δs ◦ τ t,s , τ t,t = 1U , (123)

in the strong sense on the dense set U0.

Proof: 1. Let s, t ∈ R, Λ ∈ Pf (L) and take any element B ∈ UΛ. As a
preliminary step, we prove that {δs ◦ τ (L)t,s (B)}L∈R+

0
converges to δs ◦ τ t,s (B), as

L→ ∞. In particular, τ t,s (U0) ⊂ Dom(δs). By using similar arguments as in the
proof of Theorem 4.1 (ii), it suffices to study the limit of {δs ◦ τ̃ (L)t,s (B)}L∈R+

0
, see

(108).
Similar to (26), from (104)–(109) and straightforward computations, for any

L1, L2 ∈ R+
0 with Λ ⊂ ΛL1  ΛL2 ,∥∥∥δs ◦ (τ̃ (L2)

t,s (B)− τ̃
(L1)
t,s (B)

)∥∥∥
U

(124)

≤
∫ max{s,t}

min{s,t}

∑
Z∈Pf (L)

∥∥∥∥[τ̂ (L1,L2)
s,α (Ψ

(s)
Z ), B(L1,L2)

α , τ
(L1)
t,α (B̃t)

](3)∥∥∥∥
U
dα ,

where B̃t
.
= Vt,s(VΛ)BVs,t(VΛ),

τ̂ (L1,L2)
s,α (B)

.
= Vs,α(VΛL2

\ΛL1
)τ (L2)

s,α (B)Vα,s(VΛL2
\ΛL1

) , B ∈ U , s, α ∈ R ,
(125)
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and

B(L1,L2)
α

.
=

∑
Z⊆ΛL2

, Z∩(ΛL2
\ΛL1

)̸=∅

Vα,s(VΛL2
\ΛL1

)ΨZVs,α(VΛL2
\ΛL1

) ∈ U+∩UΛL2
.

Using (110), observe that, for all Z ⊆ ΛL2 and α, s ∈ R,

Vα,s(VΛL2
\ΛL1

)ΨZVs,α(VΛL2
\ΛL1

) ∈ U+ ∩ UZ (126)

with ∥∥∥Vα,s(VΛL2
\ΛL1

)ΨZVs,α(VΛL2
\ΛL1

)
∥∥∥
U
= ∥ΨZ∥U . (127)

Similarly, for all t ∈ R,

B̃t ∈ UΛ and ∥B̃t∥U = ∥B∥U . (128)

In order to bound the sum∑
Z∈Pf (L)

[
τ̂ (L1,L2)
s,α (Ψ

(s)
Z ), B(L1,L2)

α , τ
(L1)
t,α (B̃t)

](3)
(129)

of multi–commutators of order three we represent it as a convenient series, whose
summability is uniform w.r.t. L1, L2 ∈ R+

0 (Λ ⊂ ΛL1  ΛL2). To this end, first
develop τ (L1)

t,α (B̃t) as a telescoping series: Let m0 ∈ N0 be the smallest integer
such that Λ ⊂ Λm0 . Then, similar to Lemma 3.7 (autonomous case) and as
explained in the proof of Theorem 4.4, for any α, t ∈ R and L1 ∈ R+

0 ,

τ
(L1)
t,α (B̃t) =

∞∑
n=m0

B̃t,α(n) .

Here, for all integers n ≥ m0, B̃t,α(n) ∈ UΛn where ∥B̃t,α(m0)∥U = ∥B∥U (see
(128)) and, for all n ∈ N with n > m0,

∥B̃t,α(n)∥U ≤ 2∥B∥U ∥Ψ∥∞ |t− α| e4D|t−α|∥Ψ∥∞
un,m0

(1 + n)ς
, (130)

by Theorem 4.1 (ii) and Assumption (59). Of course, B̃t,α(n) = 0 for any in-
teger n > L1 and α, t ∈ R because {τ (L1)

t,s }s,t∈R is a finite–volume dynamics.
Meanwhile, because of (110), Theorem 4.4 holds by replacing {τ t,s}s,t∈R with
{τ̂ (L1,L2)

t,s }s,t∈R at sufficiently large L1, L2 ∈ R+
0 (ΛL1 ( ΛL2). Using this together
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with (121)–(122) for Φ = Ψ(t), Equations (126)–(128), Theorem 3.9, as well as
the assumptions ν > ς + 1 and ς > 2d,

∞∑
n0=m0

∑
x2∈L

∑
m2∈N0

∑
Z2∈D(x2,m)

∑
x1∈L

∑
m1∈N0

∑
Z1∈D(x1,m)

(131)∥∥∥∥[τ̂ (L1,L2)
s,α (Ψ

(s)
Z2
),Vα,s(VΛL2

\ΛL1
)ΨZ1Vs,α(VΛL2

\ΛL1
), B̃t,α(n)

](3)∥∥∥∥
U

≤ D ∥B∥U ∥u·,m0∥ℓ1(N)

( ∑
m1∈N0

(m1 + 1)ς−υ

)

×
∑

m2∈N0

(m2 + 1)−υ

(∑
n2∈N

un2,m2 + (m2 + 1)ς
)
<∞ .

Similar to (130) and because (121)–(122) with Φ = Ψ(t) hold uniformly for t ∈ R,
the strictly positive constantD ∈ R+ is uniformly bounded for s, t, α on compacta
and L1, L2 ∈ R+

0 (Λ ⊂ ΛL1  ΛL2). The last sum is an upper bound of the
integrand of the r.h.s. of (124). Indeed, we deduce from (82) that

B(L1,L2)
α =

∑
x∈ΛL2

\ΛL1

∑
m∈N0

∑
Z⊆ΛL2

, Z∈D(x,m)

1

|Z ∩ ΛL2\ΛL1|
Vα,s(VΛL2

\ΛL1
)ΨZVs,α(VΛL2

\ΛL1
)

and ∑
Z∈Pf (L), Z∩ΛL2

̸=∅

τ̂ (L1,L2)
s,α (Ψ

(s)
Z ) =

∑
x∈ΛL2

∑
m∈N0

∑
Z∈D(x,m)

1

|Z ∩ ΛL2 |
τ̂ (L1,L2)
s,α (Ψ

(s)
Z ) .

[Compare this last sum with (129) by using (126) and (128) to restrict the whole
sum over Z ∈ Pf (L) to finite sets Z so that Z ∩ ΛL2 ̸= ∅.]

As a consequence, for any s, t ∈ R and B ∈ U0, we infer from (124), (131),
and Lebesgue’s dominated convergence theorem that {δs ◦ τ̃ (L)t,s (B)}L∈R+

0
, and

hence {δs ◦ τ (L)t,s (B)}L∈R+
0

, are Cauchy nets within the complete space U . By

Corollary 4.2, {τ (L)t,s }L∈R+
0

converges strongly to τ t,s for every s, t ∈ R. Recall
meanwhile that the operator δs is the closed operator described in Theorem 3.6
for the interaction Ψ(s) ∈ W and the potential V(s) at fixed s ∈ R. Therefore,
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τ t,s (B) ∈ Dom(δs) and the family {δs ◦ τ (L)t,s (B)}L∈R+
0

converges to δs ◦ τ t,s (B),
i.e.,

lim
L→∞

∥∥∥δs ◦ (τ t,s (B)− τ
(L)
t,s (B)

)∥∥∥
U
= 0 . (132)

In particular, τ t,s (U0) ⊂ Dom(δs).
Now, by using (99) one gets that, for L ∈ R+

0 , s, t, h ∈ R, h ̸= 0, and B ∈ U0,∥∥|h|−1 (τ t,s+h (B)− τ t,s (B)) + δs ◦ τ t,s (B)
∥∥
U

≤
∥∥∥δs ◦ (τ t,s (B)− τ

(L)
t,s (B)

)∥∥∥
U

(133)

+ sup
α∈[s−|h|,s+|h|]

∥∥∥δ(L)s ◦ τ (L)t,s (B)− δ(L)α ◦ τ (L)t,α (B)
∥∥∥
U

+
∥∥∥(δ(L)s − δs

)
◦ τ (L)t,s (B)

∥∥∥
U

+2 |h|−1 sup
α∈[s−|h|,s+|h|]

∥∥∥τ t,α (B)− τ
(L)
t,α (B)

∥∥∥
U
.

We proceed by estimating the four terms in the upper bound of (133). The first one
is already analyzed, see (132). So, we start with the second. If nothing is explicitly
mentioned, the parameters L ∈ R+

0 , s, t, h ∈ R, Λ ∈ Pf (L) andB ∈ UΛ are fixed.
2. For any α ∈ R, observe that∥∥∥δ(L)s ◦ τ (L)t,s (B)− δ(L)α ◦ τ (L)t,α (B)

∥∥∥
U

≤
∥∥∥(δ(L)s − δ(L)α

)
◦ τ (L)t,α (B)

∥∥∥
U

(134)

+
∥∥∥δ(L)s ◦

(
τ
(L)
t,s − τ

(L)
t,α

)
(B)
∥∥∥
U
.

By using first (30) for the interaction Ψ(s) and potential V(s) and then Lieb–
Robinson bounds (Theorem 4.1 (i)) in the same way as (38), one verifies that,
for any α ∈ R and B ̸= 0,∥∥∥(δ(L)s − δ(L)α

)
◦ τ (L)t,α (B)

∥∥∥
U

2 ∥B∥U
(135)

≤
∥∥Ψ(s) −Ψ(α)

∥∥
W e2D|t−α|∥Ψ∥∞|Λ| ∥F∥1,L +

∑
x∈Λ

∥V(α)
{x} −V

(s)
{x}∥U

+D−1
(
e2D|t−α|∥Ψ∥∞ − 1

) ∑
x∈L\Λ

∥V(α)
{x} −V

(s)
{x}∥U

∑
y∈Λ

F (|x− y|) .
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By assumption, Ψ ∈ C(R;W), {V(t)
{x}}x∈L,t∈R is a bounded family in U , and

V{x} ∈ C (R;U) for any x ∈ L. So, by Lebesgue’s dominated convergence
theorem, it follows from (135) that

lim
h→0

sup
α∈[s−|h|,s+|h|]

∥∥∥(δ(L)s − δ(L)α

)
◦ τ (L)t,α (B)

∥∥∥
U
= 0 . (136)

On the other hand, by (99),

sup
α∈[s−|h|,s+|h|]

∥∥∥δ(L)s ◦
(
τ
(L)
t,s − τ

(L)
t,α

)
(B)
∥∥∥
U
≤
∫ s+|h|

s−|h|

∥∥∥δ(L)s ◦ δ(L)α ◦ τ (L)t,α (B)
∥∥∥
U
dα ,

(137)
where∥∥∥δ(L)s ◦ δ(L)α ◦ τ (L)t,α (B)

∥∥∥
U

≤
∑

Z1,Z2∈Pf (L)

∥∥∥∥[Ψ(s)
Z1
,Ψ

(α)
Z2
, τ

(L)
t,α (B)

](3)∥∥∥∥
U

(138)

+
∑

Z∈Pf (L)

∑
x∈L

∥∥∥∥[Ψ(s)
Z ,V

(α)
{x}, τ

(L)
t,α (B)

](3)∥∥∥∥
U

+
∑

Z∈Pf (L)

∑
x∈L

∥∥∥∥[V(s)
{x},Ψ

(α)
Z , τ

(L)
t,α (B)

](3)∥∥∥∥
U

+
∑
x,y∈L

∥∥∥∥[V(s)
{x},V

(α)
{y}, τ

(L)
t,α (B)

](3)∥∥∥∥
U
.

Similar to (131), we use Theorems 3.9 (i) and 4.4 for k = 2 to derive an upper
bound for the r.h.s. of (138), uniformly w.r.t. large L ∈ R+

0 and α ∈ [s− 1, s+ 1].
By (137), it follows that

lim
h→0

sup
α∈[s−|h|,s+|h|]

∥∥∥δ(L)s ◦
(
τ
(L)
t,s − τ

(L)
t,α

)
(B)
∥∥∥
U
= 0 .

Combined with (134) and (136) this yields

lim
h→0

sup
α∈[s−|h|,s+|h|]

∥∥∥δ(L)s ◦ τ (L)t,s (B)− δ(L)α ◦ τ (L)t,α (B)
∥∥∥
U
= 0 . (139)

3. Similar to (38), one gets from Lieb–Robinson bounds (Theorem 4.1 (i)) that∥∥∥(δ(L)s − δs

)
◦ τ (L)t,s (B)

∥∥∥
U
≤ ∥Ψ∥∞ e2D|t−s|∥Ψ∥∞

∑
y∈Λc

L

∑
x∈Λ

F (|x− y|) ,
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which combined with (39) gives

lim
L→∞

∥∥∥(δ(L)s − δs

)
◦ τ (L)t,s (B)

∥∥∥
U
= 0 . (140)

4. In the limit h→ 0, we take Lh → ∞ such that

lim
h→0

|h|−1 sup
α∈[s−|h|,s+|h|]

∥∥∥τ t,α (B)− τ
(Lh)
t,α (B)

∥∥∥
U
= 0 . (141)

This is possible because τ (L)t,s (B) converges to τ t,s (B), uniformly for t, s on com-
pacta, by Corollary 4.2. We eventually combine (132), (139), (140), and (141)
with Inequality (133) to arrive at the assertion.

Note that uniqueness of the solution of the non–autonomous evolution equation
(123) cannot be proven as done for the proof of uniqueness in Corollary 4.2 (iii).
Indeed, take any family {τ̂ t,s}s,t∈R of bounded operators on U satisfying (123) on
U0. Then, as before in the proof of Corollary 4.2 (iii), for any B ∈ U0, L ∈ R+

0

and s, t ∈ R,

τ
(L)
t,s (B)− τ̂ t,s (B) =

∫ t

s

τ (L)α,s ◦
(
δ(L)α − δα

)
◦ τ̂ t,α (B) dα , (142)

by using (100). However, it is not clear this time whether the norm∥∥∥τ (L)α,s ◦
(
δ(L)α − δα

)
◦ τ̂ t,α (B)

∥∥∥
U
=
∥∥∥(δα − δ(L)α

)
◦ τ̂ t,α (B)

∥∥∥
U

vanishes, as L → ∞, even if (32) for δα and δ(L)α holds true, because τ̂ t,α (B) ∈
Dom(δα) can be outside U0. The strong convergence of δ(L)α to δα on some core
of δα does not imply, in general, the strong convergence on any core of δα. The
equality (142) with τ t,s, δs replacing τ (L)t,s , δ

(L)
s is also not clear because (111) only

known to hold true on U0 and a priori not on the whole domain Dom(δα) of δα.
The non–autonomous evolution equation (120) of Theorem 4.5 is not parabolic

because the symmetric derivation δt, t ∈ R, is generally not the generator of an
analytic semigroup. Note also that no Hölder continuity condition is imposed
on {δt}t∈R, like in the class of parabolic evolution equations introduced in [AT,
Hypotheses I–II]. See also [S] or [P, Sect. 5.6.] for more simplified studies.

In fact, (120) is rather related to Kato’s hyperbolic evolution equations [K1,
K2, K3]. The so–called Kato quasi–stability is satisfied by the family of genera-
tors {δt}t∈R because they are always dissipative operators, by Lemma 3.3. {δt}t∈R
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is also strongly continuous on the dense set U0, which is a common core of all δt,
t ∈ R. However, in general, even for finite range interactions Ψ ∈ W , the strongly
continuous two–parameter family {τ t,s}s,t∈R does not conserve the dense set U0,
i.e., τ t,s (U0) * U0 for any s ̸= t. In some specific situations one can directly
show that the completion of the core U0 w.r.t. a conveniently chosen norm de-
fines a so–called admissible Banach space Y ⊃ U0 of the generator at any time,
which satisfies further technical conditions leading to Kato’s hyperbolic condi-
tions [K1, K2, K3]. See also [P, Sect. 5.3.] and [BB, Sect. VII.1], which is used
in the proof of Theorem 4.7 (i). Nevertheless, the existence of such a Banach
space Y is a priori unclear in the general case treated in Theorem 4.5. See for
instance the uniqueness problem explained just above.

Note that we only assume in Theorem 4.5 some polynomial decay for the
interaction with (59) and (121)–(122) (uniformly in time). Recall that these as-
sumptions are fulfilled for any interaction Ψ ∈ W with (8), provided the parameter
ϵ ∈ R+ is sufficiently large. In the case of exponential decays, stronger results
can be deduced from Lieb–Robinson bounds for multi–commutators. For the in-
terested reader, we give below one example, which is based on interactions Φ
satisfying the following condition:

• Exponential decay. Assume (60) and the existence of constants υ > ς and
D ∈ R+ such that

sup
x∈L

∑
Λ∈D(x,m)

∥ΦΛ∥U ≤ De−υm , m ∈ N0 , (143)

while ∑
m∈N

Cme
−(ς+υ)m <∞ . (144)

Theorem 4.6 (Graph norm convergence and Gevrey vectors)
Let Ψ .

= {Ψ(t)}t∈R be a bounded family on W (i.e., ∥Ψ∥∞ < ∞ ), {V(t)}t∈R a
collection of potentials, and B ∈ U0. For any x ∈ L and Λ ∈ Pf (L), ΨΛ,V{x} ∈
C (R;U). Assume that (60) and (143)–(144) hold for Φ = Ψ(t), uniformly in time.
(i) Graph norm convergence. As L → ∞, τ (L)t,s (B) converges, uniformly for s, t
on compacta, to τ t,s(B) within the normed space (Dom(δms ), ∥·∥δms ), where, for
all m ∈ N0, ∥·∥δms stands for the graph norm of the densely defined operator δms .

(ii) Gevrey vectors. If {V(t)
{x}}x∈L,t∈R is a bounded family on U then, for any
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T ∈ R+
0 , there exist r ≡ rd,T,Ψ,V,F ∈ R+ and D ≡ DT,Ψ,V ∈ R+ such that, for

all s, t ∈ [−T,T], m0 ∈ N0 and B ∈ UΛm0
,∑

m∈N

rm

(m!)d
∥δms ◦ τ t,s(B)∥U ≤ Dem0ς ∥B∥U .

Proof: (i) The case m = 0 follows from Corollary 4.2. Let m ∈ N and B ∈ U0.
Similar to (124), for any sufficiently large L1, L2 ∈ R+

0 , ΛL1 ( ΛL2 ,∥∥∥δms ◦
(
τ̃
(L2)
t,s (B)− τ̃

(L1)
t,s (B)

)∥∥∥
U

≤
∫ max{s,t}

min{s,t}

∑
Z1,...,Zm∈Pf (L)

∥∥∥[τ̂ (L1,L2)
s,α (Ψ

(s)
Zm

), . . . , τ̂ (L1,L2)
s,α (Ψ

(s)
Z1
),

, B(L1,L2)
α , τ

(L1)
t,α (B̃t)

](m+2)
∥∥∥∥
U
dα , (145)

see (125). From a straightforward generalization of (131) for multi–commutators
of degree m + 2 and the same kind of arguments used in point 1. of the proof of
Theorem 4.5, the r.h.s. of the above inequality tends to zero in the limit of large
L1, L2 ∈ R+

0 (ΛL1 ( ΛL2). This holds for every m ∈ N because the interaction
has, by assumption, exponential decay, see (60) and (143)–(144).

Consequently, {δms ◦τ̃
(L)
t,s (B)}L∈R+

0
, and hence {δms ◦τ

(L)
t,s (B)}L∈R+

0
, are Cauchy

nets in U for any fixed s, t ∈ R and m ∈ N. At m = 0, the limit is τ t,s(B). As
the operator δs is closed, by induction, for any m ∈ N and s, t ∈ R, τ t,s(B) ∈
Dom(δms ) and δms ◦ τ (L)t,s (B) converges to δms ◦ τ t,s (B), as L→ ∞.
(ii) For any m ∈ N, B ∈ U0, and sufficiently large L ∈ R+

0 ,∥∥∥δms ◦ τ (L)t,s (B)
∥∥∥
U

≤
m∑
ℓ=0

∑
π∈Sℓ,m

∑
xπ(ℓ)∈L

· · ·
∑

xπ(m)∈L

∑
Z1∈Pf (L)

· · ·
∑

Zπ(ℓ)−1∈Pf (L)

∑
Zπ(ℓ)+1∈Pf (L)

· · ·

· · ·
∑

Zπ(m)−1∈Pf (L)

∑
Zπ(m)+1∈Pf (L)

· · ·
∑

Zm∈Pf (L)∥∥∥[Ψ(s)
Z1
, . . . ,Ψ

(s)
Zπ(ℓ)−1

,V
(s)
{xπ(ℓ)}

,Ψ
(s)
Zπ(ℓ)+1

,

. . . ,Ψ
(s)
Zπ(m)−1

,V
(s)
{xπ(m)}

,Ψ
(s)
Zπ(m)+1

, . . . ,Ψ
(s)
Zm
, τ

(L)
t,s (B)

](m+1)
∥∥∥∥
U
,
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with Sℓ,m being defined by (52) for ℓ ∈ {1, . . . ,m}. For ℓ = 0, we use here
the convention S0,m

.
= ∅ and all sums involving the maps π in the r.h.s. of the

above inequality disappear in this case. Similar to (145), Lieb–Robinson bounds
for multi–commutators imply that, if B ∈ UΛm0

, m0 ∈ N0, then the r.h.s. of
the above inequality is bounded by D(m!)drmem0ς∥B∥U , uniformly for s, t on
compacta, where r ≡ rd,T,Ψ,V,F ∈ R+ and D ≡ DT,Ψ,V ∈ R+. We omit the
details. By Assertion (i), the same bound thus holds for the norm ∥δms ◦ τ t,s(B)∥U
of the limiting vector.

The assumptions of Theorem 4.6 are satisfied for interactions Ψ(t) ∈ W with
(61). Note additionally that Theorem 4.6 for s = t shows that

U0 ⊆
∩

s∈R,m∈N

Dom (δms ) ⊂ U .

In fact, U0 is a common core for {δs}s∈R and thus the intersection of domains∩
s∈R,m∈N

Dom (δms ) ⊂ U

is also a common core of {δs}s∈R. Observe that, at fixed s ∈ R, the dense space

Dom (δ∞s )
.
=
∩
m∈N

Dom (δms ) ⊂ U

is always a core of δs. See, e.g., [EN, Chap. II, 1.8 Proposition].

4.3 Application to Response Theory
In the present subsection we extend to the time–dependent case the assertions of
Section 3.3. As previously discussed, these results can be proven, also in the non–
autonomous case, for more general (time–dependent) perturbations of the form
(73). See also proofs of Inequality (131) and Theorem 4.6. Similar to Section
3.3, the case of perturbations considered below is the relevant one to study lin-
ear and non–linear responses of interacting fermions to time–dependent external
electromagnetic fields.

Let Ψ ∈ W and V be a potential. [So, these objects do not depend on time.]
For any l ∈ R+

0 , we consider a map (η, t) 7→ W
(l,η)
t from R2 to the subspace of

self–adjoint elements of UΛl
. Like (71), we consider elements of the form

W
(l,η)
t

.
=
∑
x∈Λl

∑
z∈L,|z|≤1

wx,x+z(η, t)a
∗
xax+z , (η, t) ∈ R2, l ∈ R+

0 , (146)
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where {wx,y}x,y∈L are complex–valued functions of (η, t) ∈ R2 with

wx,y (η, t) = wy,x (η, t) and wx,y(0, t) = 0 (147)

for all x, y ∈ L and (η, t) ∈ R2. We assume that {wx,y(η, ·)}x,y∈L,η∈R is a family
of continuous and uniformly bounded functions (of time): There is K1 ∈ R+ such
that

sup
x,y∈L

sup
η,t∈R

|wx,y(η, t)| ≤ K1 . (148)

The self–adjoint elements W
(l,η)
t of U are related to perturbations of dynamics

caused by time–dependent external electromagnetic fields that vanish outside the
box Λl. By the conditions above on wx,y, for all l, η ∈ R, t 7→ W

(l,η)
t is a

continuous map from R to B(U).
We now denote the perturbed dynamics by the family {τ̃ (l,η)t,s }s,t∈R of ∗–automor-

phisms generated by the symmetric derivation

δ
(l,η)
t

.
= δ + i

[
W

(l,η)
t , ·

]
, l ∈ R+

0 , η ∈ R , (149)

in the sense of Corollary 4.2. [This family of ∗–automorphisms has nothing to do
with (108).] Recall that δ is the symmetric derivation of Theorem 3.6. The last
term in the r.h.s. of (149) is clearly a perturbation of δ which depends continuously
on time, in the sense of the operator norm on B(U). It is easy to prove in this
case that {τ̃ (l,η)t,s }s,t∈R is the unique fundamental solution of (116). It means that
{τ̃ (l,η)t,s }s,t∈R is strongly continuous, conserves the domain

Dom(δ
(l,η)
t ) = Dom(δ) ,

satisfies

τ̃
(l,η)
t,· (B) ∈ C1(R; (Dom(δ), ∥·∥U)) , τ̃ (l,η)·,s (B) ∈ C1(R; (Dom(δ), ∥·∥U))

for all B ∈ Dom(δ), and solves the abstract Cauchy initial value problem (116)
on Dom(δ).

To explicitly verify this, define the family {Vt,s}s,t∈R ⊂ U of unitary elements
by the absolutely summable series

Vt,s
.
= 1U+

∑
k∈N

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dskW
(l,η)
sk,sk

· · ·W(l,η)
s1,s1

, (150)
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where
W

(l,η)
t,s

.
= τ t(W

(l,η)
s ) ∈ Dom(δ) , l ∈ R+

0 , η, s, t ∈ R .
By using this unitary family, we obtain the following additional properties of the
perturbed dynamics:

Theorem 4.7 (Properties of the perturbed dynamics)
Let Ψ ∈ W , l ∈ R+

0 , η, η0 ∈ R, and V be a potential. Assume Conditions (147)–
(148) with {wx,y(η, ·)}x,y∈L,η∈R being a family of continuous functions (of time).
Then, the family {τ̃ (l,η)t,s }s,t∈R of ∗–automorphisms has the following properties:
(i) Non–autonomous evolution equation. It is the unique fundamental solution of

∀s, t ∈ R : ∂sτ̃
(l,η)
t,s = −δ(l,η)s ◦ τ̃ (l,η)t,s , τ̃

(l,η)
t,t = 1U .

(ii) Interaction picture. For any s, t ∈ R,

τ̃
(l,η)
t,s (B) = τ−s

(
Vt,sτ t(B)V∗

t,s

)
, B ∈ U .

(iii) Dyson–Phillips series. For any s, t ∈ R and B ∈ U ,

τ̃
(l,η)
t,s (B) = τ̃

(l,η0)
t,s (B) +

∑
k∈N

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk (151)

[
X(l,η0,η)

sk,s,sk
, . . . ,X(l,η0,η)

s1,s,s1
, τ̃

(l,η0)
t,s (B)

](k+1)

.

Here, the series absolutely converges and

X
(l,η0,η)
t,s,α

.
= τ̃

(l,η0)
t,s

(
W(l,η)

α −W(l,η0)
α

)
, l ∈ R+

0 , α, s, t, η0, η ∈ R . (152)

Proof: Before starting, note that Assertion (i) cannot be deduced from Theorem
4.5 because the cases for which (10) holds for some time t ∈ R is excluded by
assumptions of that theorem.
1. Assertion (i) could be deduced from [K1, Theorem 6.1]. Here, we use [BB,
Theorem 88] because it is proven from three conditions (B1–B3) that are elemen-
tary to verify:

B1 (Kato quasi–stability). For any t ∈ R, the generator δ(l,η)t is conservative, by
Lemma 3.3, and Condition B1 of [BB, Section VII.1] is clearly satisfied for
λ1, . . . , λn ∈ R+, even with non–ordered and all real times t1, . . . , tn ∈ R.
Indeed, {δ(l,η)t }t∈R, l ∈ R+

0 , generate strongly continuous groups, and not
only C0–semigroups.
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B2 (Domains and continuity). {wx,y(η, ·)}x,y∈L,η∈R is by assumption a family
of continuous functions (of time) and thus, the map t 7→ [W

(l,η)
t , ·] from

R to B(U) is continuous in operator norm. It follows that Condition B2 of
[BB, Section VII.1] holds with the Banach space

Y .
= (Dom(δ), ∥ · ∥δ) , (153)

∥ · ∥δ being the graph norm of the closed operator δ.

B3 (Intertwining condition). Since δ is a symmetric derivation with core U0

(Theorem 3.6 (ii)) and W
(l,η)
t ∈ UΛl

, for any l ∈ R+
0 , η ∈ R, t ∈ R and

B ∈ Dom(δ),

δ
([

W
(l,η)
t , B

])
−
[
W

(l,η)
t , δ (B)

]
=
[
δ
(
W

(l,η)
t

)
, B
]
∈ U

while, by using (31), one verifies that∥∥∥[δ (W(l,η)
t

)
, B
]∥∥∥

U
≤ 4∥B∥U∥W(l,η)

t ∥U

×

(
|Λl|F (0) ∥Ψ∥W +

∑
x∈Λl

∥∥V{x}
∥∥
U

)
.

In particular, Condition B3 of [BB, Section VII.1] holds true with Θ = δ.

Therefore, similar to [BB, Theorem 70 (v)], we infer from an extension of [BB,
Theorem 88], which takes into account the fact that B1 holds with non–ordered
real times (see, e.g., the proof of [BB, Lemma 89]), the existence of a unique
solution {Ws,t}s,t∈R of the non–autonomous evolution equation

∀s, t ∈ R : ∂sWs,t = −δ(l,η)s ◦Ws,t , Wt,t = 1U , (154)

in the strong sense on Dom(δ) ⊂ U . Here, {Ws,t}s,t∈R is an evolution family of
B (U), that is, a strongly continuous two–parameter family of bounded operators
acting on U that satisfies the cocycle (Chapman–Kolmogorov) property

∀t, r, s ∈ R : Ws,t = Ws,rWr,t .
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2. Note now that the family {Vt,s}s,t∈R was already studied in the proof of [BPH1,
Theorem 5.3] for general closed symmetric derivations δ on U : The series (150)
absolutely converges in the Banach space Y (153). Additionally, for any s, t ∈ R,

∂tVt,s = iVt,sW
(l,η)
t,t and ∂sVt,s = −iW(l,η)

s,s Vt,s

hold in the sense of the Banach space Y , and thus also in the sense of U . Therefore,
for any s, t ∈ R,

Ws,t (B) = τ−s

(
Vt,sτ t(B)V∗

t,s

)
, B ∈ U . (155)

To show this equality, use the fact that the r.h.s. of this equation defines an evo-
lution family that is a fundamental solution of (154), see [BPH1, Eqs. (5.24)–
(5.26)].
3. Since {τ t}t∈R is a group of ∗–automorphisms and {Vt,s}s,t∈R is a family of
unitary elements of U , we deduce from (155) that {Ws,t}s,t∈R is a collection of
∗–automorphisms of the C∗–algebra U . We also infer from (155) that the two–
parameter evolution family {Ws,t}s,t∈R solves on Dom(δ) the abstract Cauchy
initial value problem

∀s, t ∈ R : ∂tWs,t = Ws,t ◦ δ(l,η)t , Ws,s = 1U . (156)

The solution of (156) is unique in B(U), by Corollary 4.2 (iii). We thus arrive at
Assertions (i)–(ii) with the equality

τ̃
(l,η)
t,s = Ws,t , l ∈ R+

0 , η, s, t ∈ R . (157)

4. For any l ∈ R+
0 , s, t ∈ R, η, η0 ∈ R, and B ∈ U , define

τ̂
(l,η,η0)
t,s (B)

.
= τ̃

(l,η0)
t,s (B) +

∑
k∈N

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk (158)

[
X(l,η0,η)

sk,s,sk
, . . . ,X(l,η0,η)

s1,s,s1
, τ̃

(l,η0)
t,s (B)

](k+1)

.

This series is well–defined and absolutely convergent. Indeed, because of (148),
there is a constant D ∈ R+ such that, for all l ∈ R+

0 and η, η0 ∈ R,

sup
t∈R

∥∥δ(l,η)t − δ
(l,η0)
t

∥∥
B(U)

< D .

62



It follows that∥∥τ̂ (l,η,η0)t,s

∥∥
B(U)

≤ eD(t−s) , l ∈ R+
0 , s, t ∈ R, η, η0 ∈ R . (159)

See, e.g., [P, Chap. 5, Theorems 2.3 and 3.1 ]. Now, for any l ∈ R+
0 , s, t ∈ R,

η, η0 ∈ R, and B ∈ U , note that (158) yields

τ̂
(l,η,η0)
t,s (B) = τ̃

(l,η0)
t,s (B) + i

∫ t

s

ds1τ̂
(l,η,η0)
s1,s

([
W(l,η)

s1
−W(l,η0)

s1
, τ̃

(l,η0)
t,s1 (B)

])
from which we deduce that {τ̂ (l,η)t,s }s,t∈R solves (111), by (156)–(157), (159) and
continuity of the maps t 7→ W

(l,η)
t and t 7→ τ̃

(l,η0)
t,s (B) from R to U . Hence, by

Corollary 4.2 (iii), τ̂ (l,η,η0)t,s = τ̃
(l,η)
t,s for any l ∈ R+

0 , s, t ∈ R and η, η0 ∈ R.

Now, by assuming the uniform Lipschitz continuity of the family

{wx,y(·, t)}x,y∈L,t∈R

of functions (of η), i.e., for all parameters η, η0 ∈ R,

sup
x,y∈L

sup
t∈R

|wx,y(η, t)−wx,y(η0, t)| ≤ K1 |η − η0| , (160)

we can extend Theorem 3.13 to the non–autonomous case.
To this end, for some interaction Φ with energy observables UΦ

ΛL
defined by

(76) we study the increment (77), which now equals

T
(l,η,L)
t,s

.
= τ̃

(l,η)
t,s (UΦ

ΛL
)− τ t,s(U

Φ
ΛL
) , l, L ∈ R+

0 , s, t, η ∈ R . (161)

By (147), note again that T(l,0,L)
t,s = 0. Exactly like in the proof of Theorem 3.13,

we prove a version of Taylor’s theorem for increments in the non–autonomous
case:

Theorem 4.8 (Taylor’s theorem for increments)
Let l,T ∈ R+

0 , s, t ∈ [−T,T], η, η0 ∈ R, Ψ ∈ W , and V be any potential.
Assume (59) with ς > d, (147)–(148) and (160), with {wx,y(η, ·)}x,y∈L,η∈R being
a family of continuous functions (of time). Take an interaction Φ satisfying (83)
with vm = (1 +m)ς . Then:
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(i) The map η 7→ T
(l,η,L)
t,s converges uniformly on R, as L → ∞, to a continuous

function T
(l,η)
t,s of η and

T
(l,η)
t,s −T

(l,η0)
t,s =

∑
Λ∈Pf (L)

i

∫ t

s

ds1τ̃
(l,η)
s1,s

([
W(l,η)

s1
−W(l,η0)

s1
, τ̃

(l,η0)
t,s1 (ΦΛ)

])
.

(ii) For any m ∈ N satisfying d(m+ 1) < ς ,

T
(l,η)
t,s −T

(l,η0)
t,s

=
m∑
k=1

∑
Λ∈Pf (L)

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk

[
X(l,η0,η)

sk,s,sk
, . . . ,X(l,η0,η)

s1,s,s1
, τ̃

(l,η0)
t,s (ΦΛ)

](k+1)

+
∑

Λ∈Pf (L)

im+1

∫ t

s

ds1 · · ·
∫ sm

s

dsm+1

τ̃ (l,η)sm+1,s

([
W(l,η)

sm+1
−W(l,η0)

sm+1
,X(l,η0,η)

sm,sm+1,sm
, . . . ,X(l,η0,η)

s1,sm+1,s1
, τ̃

(l,η0)
t,sm+1

(ΦΛ)
](m+2)

)
.

(iii) All the above series in Λ absolutely converge: For any m ∈ N satisfying
d(m+ 1) < ς , k ∈ {1, . . . ,m}, and {sj}m+1

j=1 ⊂ [−T,T],∑
Λ∈Pf (L)

∥∥∥∥[X(l,η0,η)
sk,s,sk

, . . . ,X(l,η0,η)
s1,s,s1

, τ̃
(l,η0)
t,s (ΦΛ)

](k+1)
∥∥∥∥
U
≤ D |Λl| |η − η0|

k

and∑
Λ∈Pf (L)

∥∥∥∥τ̃ (l,η)sm+1,s

([
W(l,η)

sm+1
−W(l,η0)

sm+1
,X(l,η0,η)

sm,sm+1,sm
, . . . ,X(l,η0,η)

s1,sm+1,s1
, τ̃

(l,η0)
t,sm+1

(ΦΛ)
](m+2)

)∥∥∥∥
U

≤ D |Λl| |η − η0|
m+1

for some constant D ∈ R+ depending only on m, d,T,Ψ, K1,Φ,F. The last
assertion also holds for m = 0.

Proof: By Theorems 3.9 and 4.4, Corollary 3.10 holds in the non–autonomous
case. Moreover, by Lemma 4.3, Lemma 3.7 is also satisfied in the non–auto-
nomous case. Therefore, the proof is an easy extension of the proof of Theorem
3.13.

If the interaction has exponential decay, we show that the map η 7→ |Λl|−1T
(l,η)
t,s

from R to U is bounded in the sense of Gevrey classes, uniformly w.r.t. l ∈ R+
0 .

This corresponds to Theorem 3.14 in the non–autonomous case:
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Theorem 4.9 (Increments as Gevrey maps)
Let l,T ∈ R+

0 , s, t ∈ [−T,T], Ψ ∈ W , and V be any potential. Assume (60) and
take an interaction Φ satisfying (83) with vm = emς . For all x, y ∈ L, assume
further the real analyticity of the map η 7→ wx,y(η, ·) from R to the Banach space
C(R;C), which is equipped with the supremum norm, as well as the existence of
r ∈ R+ such that

K2
.
= sup

x,y∈L
sup
m∈N

sup
η,t∈R

rm∂mη wx,y(η, t)

m!
<∞ .

(i) Smoothness. As a function of η ∈ R, T(l,η)
t,s ∈ C∞(R;U) and for any m ∈ N,

∂mη T
(l,η)
t,s =

m∑
k=1

∑
Λ∈Pf (L)

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk

∂mε

[
X(l,η,η+ε)

sk,s,sk
, . . . ,X(l,η,η+ε)

s1,s,s1
, τ̃

(l,η)
t,s (ΦΛ)

](k+1)
∣∣∣∣
ε=0

.

The above series in Λ are absolutely convergent.
(ii) Uniform boundedness of the Gevrey norm of density of increments. There exist
r̃ ≡ r̃d,T,Ψ,K2,F ∈ R+ and D ≡ DT,Ψ,K2,Φ ∈ R+ such that, for all l ∈ R+

0 , η ∈ R
and s, t ∈ [−T,T], ∑

m∈N

r̃m

(m!)d
sup
l∈R+

0

∥∥∥|Λl|−1 ∂mη T
(l,η)
t,s

∥∥∥
U
≤ D .

Proof: Like for Theorem 4.8, the assertions are easily proven by extending the
proof of Theorem 3.14 to the non–autonomous case.

This theorem has important consequences in terms of increment density limit

lim
l→∞

|Λl|−1ρ(T
(l,η)
t,s )

at any fixed s, t ∈ R and state ρ ∈ U∗. This limit is to be understood as an
accumulation point of the bounded net {|Λl|−1ρ(T

(l,η)
t,s )}l>0:

Corollary 4.10 (Increment density limit)
Let ρ ∈ U∗. Under the conditions of Theorem 4.9, there is a subsequence {ln}n∈N ⊂
R+

0 such that, for all s, t ∈ [−T,T], the following limit exists

η 7→ gt,s (η)
.
= lim

n→∞
|Λln |−1ρ(T

(ln,η)
t,s )
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and defines a smooth function gt,s ∈ C∞(R). Furthermore, there exist r̃ ≡
r̃d,T,Ψ,K2,F ∈ R+ and D ≡ DT,Ψ,K2,Φ ∈ R+ such that, for all η ∈ R and
s, t ∈ [−T,T], ∑

m∈N

r̃m

(m!)d
∣∣∂mη gt,s (η)

∣∣ ≤ D .

Proof: Let T ∈ R+
0 . By Theorem 4.8 (i) for η0 = 0 together with (147) and

Corollary 4.2 (ii),

sup
l∈R+

0

sup
η∈R

sup
s,t∈[−T,T]

{
|Λl|−1ρ(T

(l,η)
t,s )

}
<∞ . (162)

Furthermore, we infer from Theorem 4.9 that, for any m ∈ N,

sup
l∈R+

0

sup
η∈R

sup
s,t∈[−T,T]

{
|Λl|−1ρ(∂mη T

(l,η)
t,s )

}
<∞ . (163)

By (162) and (163), the assertions are consequences of Theorem 4.9 combined
with the mean value theorem and the (Arzelà–) Ascoli theorem [Ru, Theorem
A5]. Indeed, {ln}n∈N ⊂ R+

0 is taken as a so–called diagonal sequence ln = l
(n)
n

of a family {l(m)
n }n∈N, m ∈ N0, of sequences in R+

0 such that, for all m ∈ N0,

the m–th derivative |Λln |−1∂mη T
(l
(m)
n ,η)

t,s uniformly converges as n→ ∞. With this
choice,

∂mη gt,s (η) = lim
n→∞

|Λln |−1ρ(∂mη T
(ln,η)
t,s ) .

From the above corollary, at dimension d = 1 and s, t on compacta, the in-
crement density limit gt,s ∈ C∞(R) defines a real analytic function. As a conse-
quence, the increment density limit is never zero for η outside a discrete subset of
R, unless gt,s is identically vanishing for all η ∈ R.

This mathematical property refers to a physical one. It reflects a generic
alternative between either strictly positive or identically vanishing heat produc-
tion density, at macroscopic scale, in presence of non–vanishing external electric
fields. Indeed, by taking Φ = Ψ in Theorem 4.9, T(l,η)

t,s is related to the heat pro-
duced by the presence of an electromagnetic field, encoded in W

(l,η)
t . If we use

cyclic processes, which means here that W(l,η)
t = 0 outside some compact set

[t0, t1] ⊂ R, then the KMS state ϱ ∈ U∗ applied on the energy increment T(l,η)
t1,t0

is the total heat production (1st law of Thermodynamics) with increment density
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limit equal to gt1,t0(η). It is non–negative, by the 2nd law of Thermodynamics.
See [BP2] for more details on the 1st and 2nd laws for the quantum systems con-
sidered here. Now, if gt1,t0(η) is identically vanishing for all η ∈ R then it means
that the external perturbation never produces heat in the system, which is a very
strong property. The latter is expected to be the case, for instance, for supercon-
ductors driven by electric perturbations. This kind of behavior should highlight
major features of the system (like possibly broken symmetry). Hence, if the heat
production density is not identically vanishing, generically, it is strictly positive,
at least at dimension d = 1, because of properties of real analytic functions men-
tioned above.

For higher dimensions d > 1 and s, t on compacta, Corollary 4.10 implies that
the increment density limit gt,s ∈ C∞(R) belongs to the Gevrey class

Cω
d (R)

.
=

{
f ∈ C∞(R) : sup

η∈R

∣∣∂mη f (η)∣∣ ≤ Dm (m!)d for any m ∈ N
}
.

If d > 1, the elements of Cω
d (R) are usually neither analytic nor quasi–analytic. In

particular, functions of Cω
d (R) can have arbitrarily small support, while Cω

d (R)  
Cω

d′(R) whenever d < d′. Thus, the alternative above, which is related to the
heat production density in presence of external electric fields, does not follow
from Corollary 4.10 for higher dimensions d ≥ 2. However, note that, at least
for the quasi–free dynamics (also in the presence of a random potential), the heat
production density is a real analytic function of η at any dimension d ∈ N, at
least for η near zero. This follows from [BPH1, Theorem 3.4]. Therefore, the
above alternative for the heat production density may be true at any dimension,
provided the interaction decays fast enough in space (or is finite–range, in the
extreme case).

Observe finally that if a Gevrey function f : R→ R is invertible on some open
interval I ⊂ R then the inverse f−1 : f(I)→ R is again a Gevrey function. So,
the above theorem implies that, if the relation between applied field strength η and
the density of increment at l → ∞ is injective for some range of field strengths η,
then the applied field strength in that range is a Gevrey function of the density of
increment. For more details on Gevrey classes, see, e.g., [H].
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5 Applications to Conductivity Measures

5.1 Charged Transport Properties in Mathematics
Altogether, the classical theory of linear conductivity (including the theory of
(Landau) Fermi liquids, see, e.g., [BP1] for a historical perspective) is more like
a makeshift theoretical construction than a smooth and complete theory. It is
unsatisfactory to use the Drude (or the Drude–Lorentz) model – which does not
take into account quantum mechanics – together with certain ad hoc hypotheses
as a proper microscopic explanation of conductivity. For instance, in [NS1, NS2,
SE, YRMK], the (normally fixed) relaxation time of the Drude model has to be
taken as an effective frequency–dependent parameter to fit with experimental data
[T] on usual metals like gold. In fact, as claimed in the famous paper [So, p.
505], “it must be admitted that there is no entirely rigorous quantum theory of
conductivity.”

Concerning AC–conductivity, however, in the last years significant mathemat-
ical progress has been made. See, e.g., [KLM, KM1, KM2, BC, BPH1, BPH2,
BPH3, BPH4, BP2, BP3, W, DG] for examples of mathematically rigorous deriva-
tions of linear conductivity from first principles of quantum mechanics in the AC–
regime. In particular, the notion of conductivity measure has been introduced for
the first time in [KLM], albeit only for non–interacting systems. These results in-
dicate a physical picture of the microscopic origin of Ohm and Joule’s laws which
differs from usual explanations coming from the Drude (Lorentz–Sommerfeld)
model.

As electrical resistance of conductors may result from the presence of inter-
actions between charge carriers, an important issue is to tackle the interacting
case. This is first1 done in [BP2, BP3] for very general systems of interacting
quantum particles on lattices, including many important models of condensed
matter physics like the celebrated Hubbard model. This was out of scope of
[KLM, KM1, KM2, DG, BPH1, BPH2, BPH3, BPH4, W] which strongly rely
on properties of quasi–free dynamics and states.

The central issue in [BP2, BP3] is to get estimates on transport coefficients re-
lated to electric conduction, which are uniform w.r.t. the random parameters and
the volume |Λl| of the box Λl where the electromagnetic field lives. This is crucial

1With regard to interacting systems, explicit constructions of KMS states are obtained in the
Ph.D. thesis [W] for a one–dimensional model of interacting fermions with a finite range pair
interaction. But, the author studies in [W, Chap. 9] the linear response theory only for non–
interacting fermions, keeping in mind possible generalizations to interacting systems.
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to get valuable information on conductivity in the macroscopic limit l → ∞ and
otherwise the results presented in [BP2, BP3] would loose almost all their interest.
To get such estimates in the non–interacting case [BPH1, BPH2, BPH3, BPH4],
we applied tree–decay bounds on multi–commutators in the sense of [BPH1, Sec-
tion 4]. The latter are based on combinatorial results [BPH1, Theorem 4.1] already
used before, for instance in [FMU], and require the dynamics to be implemented
by Bogoliubov automorphisms. A solution to the issue for the interacting case
is made possible by the results of Sections 3.3 and 4.3, which are direct con-
sequences of the Lieb–Robinson bounds for multi–commutators. Detailed dis-
cussions on the estimates for the interacting case are found in [BP2]. See also
Corollary 3.10, which is an extension of the tree–decay bounds [BPH1, Section
4] to the interacting case.

In [BP3] the existence of macroscopic AC–conductivity measures for interact-
ing systems is derived from the 2nd law of thermodynamics, explained in Section
5.4. The Lieb–Robinson bound for multi–commutators of order 3 implies that it is
always a Lévy measure, see [BP3, Theorems 7.1 and 5.2]. We also derive below
other properties of the AC–conductivity measures from Lieb–Robinson bounds
for multi–commutators of higher orders. See Sections 5.5–5.6. In particular, we
study their behavior at high frequencies (Theorems 5.1 and 5.5): in contrast to
the prediction of the Drude (Lorentz–Sommerfeld) model, widely used in physics
[So, LTW] to describe the phenomenon of electrical conductivity, the conductivity
measure stemming from short–range interparticle interactions has to decay rapidly
at high frequencies.

The proposed mathematical approach to the problem of deriving macroscopic
conductivity properties from the microscopic quantum dynamics of an infinite sys-
tem of particles also yield new physical insight, beyond classical theories of con-
duction: a notion of current viscosity related to the interplay of paramagnetic and
diamagnetic currents, heat/entropy production via different types of energy and
current increments, existence of (AC–) conductivity measures from the 2nd law
and (possibly) as a spectral (excitation) measure from current fluctuations are all
examples of new physical concepts derived in the course of the studies performed
in [BPH2, BPH4, BP2, BP3] and previously not discussed in the literature.

Note, however, that, by now, our results do not give explicit information on the
conductivity measure for concrete models (like the Hubbard model, for instance).
The latter belongs to “hard analysis”, by contrast with our results which are rather
on the side of the “soft analysis” (similar to the difference between knowing the
spectrum of a concrete self–adjoint operator and knowing the spectral theorem).
Moreover, our approach do not directly provide a mathematical understanding
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from first principles of Ohm’s laws as a bulk property in the DC–regime, which
is one of the most important and difficult problems in mathematical physics for
more than one century. We believe, however, that our results can support further
rigorous developments towards a solution of such a difficult problem: one could,
for instance, try to show, for some class of models, that the conductivity measure is
absolutely continuous w.r.t. to the Lebesgue measure and that its Radon–Nikodym
derivative is continuous at low frequencies, having a well-defined zero–frequency
limit.

We thus present in the following some central results of [BP2, BP3], with a
few complementary studies, as an example of an important application in mathe-
matical physics of Lieb–Robinson bounds for multi–commutators.

5.2 Interacting Fermions in Disordered Media
(i) Kinetic part: Let ∆d ∈ B(ℓ2(L)) be (up to a minus sign) the usual d–dimensional
discrete Laplacian defined by

[∆d(ψ)](x)
.
= 2dψ(x)−

∑
z∈L, |z|=1

ψ(x+ z) , x ∈ L, ψ ∈ ℓ2(L) .

This defines a short–range interaction Ψ(d) ∈ W by

Ψ
(d)
Λ

.
= ⟨ex,∆dey⟩a∗xay + (1− δx,y) ⟨ey,∆dex⟩a∗yax ∈ U+ ∩ UΛ

whenever Λ = {x, y} for x, y ∈ L, and Ψ
(d)
Λ

.
= 0 otherwise.

(ii) Disordered media: Disorder in the crystal is modeled by a random potential
associated to a probability space (Ω,AΩ, aΩ) defined as follows: Let Ω .

= [−1, 1]L.
I.e., any element of Ω is a function on lattice sites with values in [−1, 1]. For
x ∈ L, let Ωx be an arbitrary element of the Borel σ–algebra of the interval
[−1, 1] w.r.t. the usual metric topology. AΩ is the σ–algebra generated by the
cylinder sets

∏
x∈L Ωx, where Ωx = [−1, 1] for all but finitely many x ∈ L. Then,

aΩ is an arbitrary ergodic probability measure on the measurable space (Ω,AΩ).
This means that the probability measure aΩ is invariant under the action

ω (y) 7→ χ(Ω)
x (ω) (y)

.
= ω (y + x) , x, y ∈ Zd , (164)

of the group (Zd,+) of lattice translations on Ω and, for any X ∈ AΩ such that
χ
(Ω)
x (X ) = X for all x ∈ Zd, one has aΩ(X ) ∈ {0, 1}. We denote by E[ · ] the

expectation value associated with aΩ.
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Then, any realization ω ∈ Ω and strength λ ∈ R+
0 of disorder is implemented

by the potential V(ω) defined by

V
(ω)
{x}

.
= λω (x) a∗xax , x ∈ L . (165)

(iii) Interparticle interactions: They are taken into account by choosing some short–
range interaction ΨIP ∈ W such that ΨIP

Λ = 0 whenever Λ = {x, y} for x, y ∈ L,
and ∑

Λ∈Pf (L)

[
ΨIP

Λ , a
∗
xax
]
= 0 , ΨIP

Λ+x = χx

(
ΨIP

Λ

)
, Λ ∈ Pf (L), x ∈ L .

(166)
Here, the family {χx}x∈L of ∗–automorphisms of U implements the action of the
group (Zd,+) of lattice translations on the CAR C∗–algebra U , see (42). Ob-
serve that this class of interparticle interactions includes all density–density inter-
actions resulting from the second quantization of two–body interactions defined
via a real–valued and summable function v (r) : [0,∞) → R such that

sup
r∈R+

0

{
v (r)

F (r)

}
<∞ .

Then, by (i)–(iii), the full interaction

Ψ = Ψ(d) +ΨIP ∈ W (167)

and the potential V(ω) uniquely defines an infinite volume dynamics correspond-
ing to the C0–group τ (ω) .

= {τ (ω)t }t∈R of ∗–automorphisms with generator δ(ω).
See Theorem 3.6.

(iv) Space–homogeneous electromagnetic fields: Let l ∈ R+, η ∈ R, and the com-
pactly supported function A ∈ C∞

0 (R;Rd) with A(t)
.
= 0 for all t ≤ 0. Set

E (t)
.
= −∂tA(t) for all t ∈ R. Then, the electric field at time t ∈ R equals

ηE (t) inside the cubic box Λl and (0, 0, . . . , 0) outside. Up to negligible terms
of order O(ld−1), this leads to a perturbation (of the generator of dynamics) of
the form (146), (149) with complex–valued {wx,y}x,y∈L functions of (η, t) ∈ R2

defined by wx,x+z(η, t) = 0 for any x, z ∈ L with |z| > 1 while

wx,x±eq(η, t)
.
=

(
exp

(
∓iη

∫ t

0

Eq (s) ds

)
− 1

)
⟨ex,∆dex±eq⟩ = wx±eq ,x(η, t)
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for any q ∈ {1, . . . , d}. Here, E(t) = (E1(t), . . . , Ed(t)) and {eq}dq=1 is the
canonical orthonormal basis of the Euclidian space Rd. These functions clearly
satisfy Conditions (147)–(148) and (160).

Thus, the system of fermions in disordered medium, the interaction of which is
encoded by (167), is perturbed from t = 0 onwards by space–homogeneous elec-
tromagnetic fields, leading to a well–defined family {τ̃ (ω,l,η)t,s }s,t∈R of ∗–automor-
phisms, as explained in Theorem 4.7.

5.3 Paramagnetic Conductivity
(i) Paramagnetic currents: For any pair (x, y) ∈ L2, we define the current observ-
able by

I(x,y)
.
= i(a∗yax − a∗xay) = I∗(x,y) ∈ U0 . (168)

It is seen as a current because it satisfies a discrete continuity equation. See, e.g.,
[BP2, Section 3.2]. For any A ∈ C∞

0 (R;Rd), l ∈ R+, ω ∈ Ω, η ∈ R and
t ∈ R+

0 , these observables are used to define a paramagnetic current increment
density observable J(ω)p,l (t, η) ∈ Ud:{

J(ω)p,l (t, η)
}
k

.
= |Λl|−1

∑
x∈Λl

{
τ̃
(ω,l,η)
t,0

(
I(x+ek,x)

)
− τ

(ω)
t

(
I(x+ek,x)

)}
.

Compare with Equation (161).
Note that electric fields accelerate charged particles and induce so–called dia-

magnetic currents, which correspond to the ballistic movement of particles. In
fact, as explained in [BPH2, Sections III and IV], this component of the total cur-
rent creates a kind of “wave front” that destabilizes the whole system by changing
its state. The presence of diamagnetic currents leads then to the progressive ap-
pearance of paramagnetic currents which are responsible for heat production and
the in–phase AC–conductivity of the system. Diamagnetic currents are not rele-
vant for the present purpose and are thus not defined here. For more details, see
[BPH2, BP2, BP3].

(ii) Paramagnetic conductivity: We define the space–averaged paramagnetic trans-

port coefficient observable C(ω)
p,l ∈ C1(R;B(Rd;Ud)), w.r.t. the canonical or-

thonormal basis {eq}dq=1 of the Euclidian space Rd, by the corresponding matrix
entries {

C(ω)
p,l (t)

}
k,q

.
=

1

|Λl|
∑

x,y∈Λl

∫ t

0

i[τ
(ω)
−s (I(y+eq ,y)), I(x+ek,x)]ds (169)
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for any l ∈ R+, ω ∈ Ω, t ∈ R and k, q ∈ {1, . . . , d}.

By (i)–(ii), if ΨIP satisfies (59) with ς > 2d (polynomial decay) then we infer
from Theorem 4.8 that, for any A ∈ C∞

0 (R;Rd),

J(ω)p,l (t, η) = ηJ
(ω)
p,l (t) +O

(
η2
)
. (170)

The correction terms of order O(η2) are uniformly bounded in l ∈ R+, ω ∈ Ω and
λ, t ∈ R+

0 . By explicit computations, one checks that

J
(ω)
p,l (t) =

∫ t

0

τ
(ω)
t

(
C(ω)
p,l (t− s)

)
E (s) ds (171)

for any A ∈ C∞
0 (R;Rd), l ∈ R+, ω ∈ Ω and t ∈ R+

0 . The latter is the param-
agnetic linear response current. For more details, see also [BP2, Theorem 3.7].
Here, for any D ∈ B(Rd;Ud), τ (ω)t (D) ∈ B(Rd;Ud) is, by definition, the linear
operator onRd defined by the matrix entries w.r.t. the canonical orthonormal basis
{eq}dq=1 of the Euclidian space Rd{

τ
(ω)
t (D)

}
k,q

.
= τ

(ω)
t

(
{D}k,q

)
, k, q ∈ {1, . . . , d} .

5.4 2nd law of Thermodynamics and Equilibrium States
(i) States: ρ ∈ U∗ is a state if ρ ≥ 0, that is, ρ(B∗B) ≥ 0 for all B ∈ U ,
and ρ(1) = 1. States encode the statistical distribution of all physical quantities
associated to observables B = B∗ ∈ U .

For any D ∈ B(Rd;Ud), ρ (D) ∈ B(Rd) is, by definition, the linear operator
defined, w.r.t. the canonical orthonormal basis {eq}dq=1 of Rd, by

{ρ (D)}k,q
.
= ρ

(
{D}k,q

)
, k, q ∈ {1, . . . , d} .

(ii) 2nd law of thermodynamics: As explained in [LY1, LY2], different formula-

tions of the same principle have been stated by Clausius, Kelvin (and Planck), and
Carathéodory. Our study is based on the Kelvin–Planck statement while avoiding
the concept of “cooling” [LY1, p. 49]. It can be expressed as follows [PW, p.
276]:

Systems in the equilibrium are unable to perform mechanical work in cyclic pro-
cesses.
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(iii) Passive states: To define equilibrium states, the 2nd law, as expressed in [PW],
is pivotal because it leads to a clear mathematical formulation of the Kelvin–
Planck notion of equilibrium: For any strongly continuous one–parameter group
τ ≡ {τ t}t∈R of ∗–automorphisms of U , one obtains a well–defined strongly con-
tinuous two–parameter family {τ (W)

t,t0 }t≥t0 of ∗–automorphisms of U by perturbing
the generator of dynamics with bounded time–dependant symmetric derivations

B 7→ i [Wt, B] , B ∈ U , t ∈ R ,

for any arbitrary cyclic process {Wt}t≥t0 of time length T ≥ 0, that is, a differen-
tiable family {Wt}t≥t0 ⊂ U of self–adjoint elements of X such that Wt = 0 for
all real times t /∈ [t0, T + t0]. Then, a state ϱ ∈ U∗ is passive (cf. [PW, Definition
1.1]) iff the work ∫ t

t0

ϱ ◦ τ (W)
t,t0 (∂tWt) dt

performed on the system is non–negative for all cyclic processes {Wt}t≥t0 of any
time length T ≥ 0. By [PW, Theorem 1.1], such states are invariant w.r.t. the
unperturbed dynamics: ϱ = ϱ ◦ τ t for any t ∈ R.

If τ = τ (ω) with ω ∈ Ω then, as explained in [BP2, Section 2.6], at least
one passive state ϱ(ω) exists. It represents an equilibrium state of the system (in a
broad sense), the mathematical definition of which encodes the 2nd law.

(iv) Random invariant passive states: We impose two natural conditions on the
map ω 7→ ϱ(ω) from the set Ω to the dual space U∗:

• Translation invariance. Using definitions (42) and (164), we assume that

ϱ(χ
(Ω)
x (ω)) = ϱ(ω) ◦ χx , x ∈ L = Zd . (172)

• Measurability. The map ω 7→ ϱ(ω) is measurable w.r.t. to the σ–algebra AΩ

on Ω and the Borel σ–algebra AU∗ of U∗ generated by the weak∗–topology.
Note that a similar assumption is also used to define equilibrium for classi-
cal systems in disordered media, see, e.g., [Bo].

A map satisfying such properties is named here a random invariant state [BP3,
Definition 3.1]. Such maps alway exist in the one–dimension case if the norm∥∥ΨIP

∥∥
W of the interparticle interaction is finite. The same is true in any dimension

if the inverse temperature β ∈ R+ is small enough. This is a consequece of the
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uniqueness of KMS, which is implied by the mentioned conditions. By using
methods of constructive quantum field theory, one can also verify the existence of
such random invariant passive states ϱ(ω), ω ∈ Ω, at arbitrary dimension and any
fixed β ∈ R+, if the interparticle interaction

∥∥ΨIP
∥∥
W is small enough and (166)

holds. See, for instance, [FU, Theorem 2.1] (together with [PW, Theorem 1.4])
for the small β case in quantum spin systems. See also [BP3, Section 3.3] for
further discussions on this topic.

5.5 Macroscopic Paramagnetic Conductivity
For any short–range interaction ΨIP ∈ W , the limit

Ξp (t)
.
= lim

l→∞
E
[
ϱ(ω)(C(ω)

p,l (t))
]
∈ B(Rd) (173)

exists and is uniform for t on compacta. To see this, use the usual Lieb–Robinson
bounds (Theorem 3.6 (iv)) to estimate (169) in the limit l → ∞. Here, for any
measurable D(ω) ∈ B(Rd), the expectation value E[D(ω)] ∈ B(Rd) (associated
with aΩ) is defined, w.r.t. the canonical orthonormal basis {eq}dq=1 of Rd, by the
matrix entries{

E
[
D(ω)

]}
k,q

.
= E

[
{D}k,q

]
, k, q ∈ {1, . . . , d} .

The function Ξp ∈ C1(R;B(Rd)) can be directly related to a linear response
current, as suggested by (170)–(171). See [BP3, Theorem 4.2 (p)] for more de-
tails. [If one does not take expectation values of currents, one can also show that
the limit l → ∞ of ϱ(ω)(J(ω)

p,l ) almost everywhere exists and equals the expecta-
tion value, in the same limit, by using the Akcoglu–Krengel ergodic theorem, see
[BPH3, BP3].]

[BP3, Theorem 7.1] asserts that

Ξp ∈ C2(R;B(Rd))

if ΨIP ∈ W and (59) holds with ς > 2d. Now, we give a stronger version
of this result which is an application of Lieb–Robinson bounds for multi–com-
mutators (Theorems 3.8–3.9) of high orders. This new result on the regularity of
the function Ξp of time has important consequences on the asymptotics of AC–
Conductivity measures at high frequencies, see Theorem 5.5.
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Theorem 5.1 (Regularity of the paramagnetic conductivity)
Let λ ∈ R+

0 and assume that the map ω 7→ ϱ(ω) is a random invariant passive
state and ΨIP ∈ W satisfies (166).
(i) Polynomial decay: Assume ΨIP satisfies (59). Then, for any m ∈ N satisfying
d(m+ 1) < ς , Ξp ∈ Cm+1(R;B(Rd)) and, uniformly for t on compacta,

∂m+1
t Ξp (t) = lim

l→∞
∂m+1
t E

[
ϱ(ω)(C(ω)

p,l (t))
]
. (174)

(ii) Exponential decay: Assume ΨIP satisfies (60). Then, for all m ∈ N, Ξp ∈
C∞(R;B(Rd)) and (174) holds true with the limit being uniform for t on com-
pacta.

Remark 5.2 (Fermion systems with random Laplacians)
The same assertion holds for the random models treated in [BP3], i.e., for fermions
on the lattice with short–range and translation invariant (cf. (166)) interaction
ΨIP ∈ W , random potentials (cf. (165)) and, additionally, random next neigh-
bor hopping amplitudes. [So, ∆d is replaced in [BP3] with a random Laplacian
∆ω,ϑ.] Similar to what is done here, disorder is defined in [BP3] via ergodic
distributions of random potentials and hopping amplitudes.

The proof of this statement is a consequence of the following general lemma:

Lemma 5.3
Let Ψ ∈ W and V be any potential such that

sup
x∈L

∥∥V{x}
∥∥
U <∞ . (175)

Take T ∈ R+
0 and B0, B1 ∈ U0.

(i) Polynomial decay: Assume (59). Then, for any m ∈ N satisfying dm < ς ,
U0 ⊆ Dom(δm). Moreover, if d(m+ 1) < ς ,∑

y∈L

sup
t∈[−T,T ]

sup
x∈L

∥∥[τ t ◦ χx(B1), δ
m ◦ χy (B0))

]∥∥
U <∞ . (176)

(ii) Exponential decay: Assume (60). Then,

U0 ⊆
∩
m∈N

Dom (δm) ⊂ U

and (176) holds true for all m ∈ N.
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Proof: (i) Because of (175), assume w.l.o.g. that V = 0. Take t ∈ R, n0, n1 ∈ N
and local elements B0 ∈ UΛn0

and B1 ∈ UΛn1
. Then, we infer from Theorem 3.6

(ii) and (80)–(82) that, for any x, y ∈ L and n ∈ N,∥∥[τ t ◦ χx(B1), δ
n ◦ χy (B0))

]∥∥
U

≤
∑
xn∈L

∑
mn∈N0

∑
Zn∈D(xn,mn)

· · ·
∑
x1∈L

∑
m1∈N0

∑
Z1∈D(x1,m1)

(177)∥∥∥[τ t ◦ χx(B1),ΨZn , . . . ,ΨZ1 , χy (B0)
](n+2)

∥∥∥
U
.

Therefore, we can directly use Lieb–Robinson bounds for multi–commutators of
order n+ 2 to bound (177): We combine Theorems 3.8 and 3.9 (i) with Equation
(68) to deduce from (177) that, for any x, y ∈ L and n ∈ N,∥∥[τ t ◦ χx(B1), δ

n ◦ χy (B0))
]∥∥

U

≤ 2n+1d
ς(n+1)

2 (1 + n0)
ς ∥B1∥U ∥B0∥U (178)

×
(
2∥Ψ∥W |t| e4D|t|∥Ψ∥W ∥u·,n1∥ℓ1(N) + (1 + n1)

ς
)

×

sup
x∈L

∑
m∈N0

(1 +m)ς
∑

Z∈D(x,m)

∥ΨZ∥U

n

×
∑
xn∈L

· · ·
∑
x1∈L

 ∑
T∈Tn+2

∏
{j,l}∈T

1

(1 + |xj − xl|)ς(max{dT (j),dT (l)})−1


with x0

.
= y ∈ L and xn+1

.
= x ∈ L. If Ψ ∈ W and Condition (59) holds true,

then one easily verifies (83) with vm = (1 +m)ς . Recall also that the condition
ς > (n+ 1) d yields (87) with k = n + 1. Using these observations, one directly
arrives at (176), starting from (178).

Remark that U0 ⊆ Dom(δn) is proven exactly in the same way. In fact, it is
easier to prove and only requires the condition ς > nd because we have in this
case multi–commutators of only order n+ 1.
(ii) The proof is very similar to the polynomial case. We omit the details. See
Theorem 3.9 (ii) and (69), and in the case (60) holds and Ψ ∈ W , note again that
Condition (83) is satisfied with vm = emς .

We are now in position to prove Theorem 5.1.

Proof: Fix k, q ∈ {1, . . . , d}, t ∈ R and m ∈ N. By Theorem 3.6 (i), τ (ω) .
=

{τ (ω)t }t∈R is a C0–group of ∗–automorphisms with generator δ(ω). It is, indeed,
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associated with the interaction (167) and the potential defined by (165). If ΨIP

satisfies (59), then Condition (59) also holds true for the full interaction (167). A
similar observation can be made when ΨIP satisfies (60).

Paramagnetic current observables (168) are local elements, i.e., I(x,y) ∈ U0 for
any (x, y) ∈ L2. Then, by Lemma 5.3, we thus compute from (169) that, for any
m ∈ N such that U0 ⊆ Dom(δm),

∂m+1
t

{
E
[
ϱ(ω)(C(ω)

p,l (t))
]}

k,q
(179)

= − 1

|Λl|
∑

x,y∈Λl

E
[
ϱ(ω)

(
i[τ

(ω)
−t ◦ (δ(ω))m(I(y+eq ,y)), I(x+ek,x)]

)]
.

The last function of ω ∈ Ω in the expectation value E[ · ] (associated with aΩ)
is measurable, because ω 7→ ϱ(ω) is, by definition, a random invariant state while
one can check that the map

ω 7→ i[τ
(ω)
−t ◦ (δ(ω))m(I(y+eq ,y)), I(x+ek,x)]

from Ω to U is continuous, using Theorem 3.6 and the second Trotter–Kato ap-
proximation theorem [EN, Chap. III, Sect. 4.9]. Additionally, if ϱ(ω) is a passive
state w.r.t. to τ (ω) for any ω ∈ Ω then, ϱ(ω) = ϱ(ω) ◦ τ (ω)t , see [PW, Theorem 1.1].
Therefore, it follows from (179) that

∂m+1
t

{
ϱ̄
(
C(ω)
p,l (t)

)}
k,q

(180)

=
1

|Λl|
∑

x,y∈Λl

E
[
ϱ(ω)

(
i[τ

(ω)
t

(
I(x+ek,x)

)
, (δ(ω))m(I(y+eq ,y))]

)]
.

Now, if (166) and (172) hold true, then, by using the fact that aΩ is also a transla-
tion invariant probability measure (it is even ergodic), we obtain from (180) that,
for any m ∈ N such that U0 ⊆ Dom(δm),

∂m+1
t

{
ϱ̄
(
C(ω)
p,l (t)

)}
k,q

(181)

=
∑
y∈L

ξl (y)E
[
ϱ(ω)

(
i[τ

(ω)
t

(
I(ek,0)

)
, (δ(ω))m ◦ χy(I(eq ,0))]

)]
with

ξl (y)
.
=

1

|Λl|
∑
x∈Λl

1{y∈Λl−x} ∈ [0, 1] , y ∈ L , l ∈ R+ .
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For any l ∈ R+, the map y 7→ ξl (y) on L has finite support and, for any y ∈ L,

lim
l→∞

ξl (y) = 1 . (182)

As a consequence, if (i) ΨIP satisfies (59) and d(m + 1) < ς or (ii) ΨIP satisfies
(60), then, by combining Lemma 5.3 with Lebesgue’s dominated convergence
theorem, one gets from (173) and (181)–(182) that the map

t 7→ ∂m+1
t

{
E
[
ϱ(ω)(C(ω)

p,l (t))
]}

= E
[
∂m+1
t ϱ(ω)(C(ω)

p,l (t))
]

converges uniformly on compacta, as l → ∞, to the continuous function ∂m+1
t Ξp ∈

C(R;B(Rd)).

5.6 AC–Conductivity Measure
By applying [BP3, Theorems 5.2 and 5.6 (p), Remark 5.3] to the interacting
fermion system under consideration we get a Lévy–Khintchine representation of
the paramagnetic (in–phase) conductivity Ξp: Assume ΨIP satisfies (59) with
ς > 2d (polynomial decay). Then, there is a unique finite and symmetric B+(Rd)–
valued measure µ on R such that, for any t ∈ R,

Ξp (t) = −t
2

2
µ ({0}) +

∫
R\{0}

(cos (tν)− 1) ν−2µ (dν) . (183)

Here, B+(Rd) ⊂ B(Rd) stands for the set of positive linear operators on Rd, i.e.,
symmetric operators w.r.t. to the canonical scalar product of Rd with positive
eigenvalues. The (in–phase) AC–conductivity measure is defined from the mea-
sure µ as follows:

Definition 5.4 (AC–conductivity measure)
We name the Lévy measure µAC, the restriction of ν−2µ (dν) to R\{0}, the (in–
phase) AC–conductivity measure.

Indeed, by [BP3, Theorems 5.1 and 5.6 (p)], one checks that µAC quantifies the
energy (or heat) production Q per unit volume due to the component of frequency
ν ∈ R\{0} of the electric field, in accordance with Joule’s law in the AC–regime:
Indeed, for any smooth electric field E (t) = E (t) w⃗ with w⃗ ∈ Rd, E .

= −∂tA(t)
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and A ∈ C∞
0 (R;R), the total heat per unit volume produced by the electric field

(after being switch off) is equal to

Q =
1

2

∫
R
ds1

∫
R
ds2Es2Es1⟨w⃗,Ξp (s1 − s2) w⃗⟩Rd .

If the Fourier transform Ê of E ∈ C∞
0 (R;R) has support away from ν = 0, then

Q =
1

2

∫
R\{0}

|Ê (ν) |2 ⟨w⃗, µAC (dν) w⃗⟩Rd .

Moreover, by using [BP3, Theorems 4.2 and 5.6 (p)] together with simple com-
putations, one checks that the in–phase linear response currents Jin, which is the
component of the total current producing heat, also called active current, is equal
in this case to

Jin(t) =

∫
R\{0}

Ê (ν) eiνt µAC (dν) w⃗ .

By (183) and Definition 5.4, observe that the AC–conductivity measure µAC

of the system under consideration is a Lévy measure. This is reminiscent of exper-
imental observations of other quantum phenomena like (subrecoil) laser cooling
[BBAC]. In fact, an alternative effective description of the phenomenon of lin-
ear conductivity by using Lévy processes in Fourier space is discussed in [BP3,
Section 6].

The explicit form of the conductivity measure for concrete models (like the
Hubbard model, for instance) is still an open problem. However, in [BP3, Sec-
tion 5.3], we were able to qualitatively compare the AC–conductivity measure
associated with the celebrated Drude model with the Lévy measure µAC given by
Definition 5.4. Indeed, the (in–phase) AC–conductivity measure obtained from
the Drude model is absolutely continuous w.r.t. the Lebesgue measure with the
function

ν 7→ ϑT (ν) ∼ T

1 + T2ν2
(184)

being the corresponding Radon–Nikodym derivative. Here, the relaxation time
T > 0 is related to the mean time interval between two collisions of a charged
carrier with defects in the crystal. See for instance [BPH4, Section 1] for more
discussions. This measure heavily overestimates µAC at high frequencies. Indeed,
as explained in [BP3, Section 5.3], by finiteness of the positive measure µ, the
AC–conductivity measure satisfies

µAC ([ν,∞)) ≤ ν−2µ ([ν,∞)) ≤ ν−2µ (R) , ν ∈ R+ , (185)
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provided ΨIP satisfies (59) with ς > 2d. The same property of course holds for
negative frequencies, by symmetry of µ (w.r.t. ν). Compare (185) with (184).
From Theorem 5.1, much stronger results on the frequency decay of µAC can be
obtained if the interaction ΨIP is fast decaying in space:

Theorem 5.5 (Moments of AC–conductivity measures)
Let λ ∈ R+

0 , ΨIP ∈ W satisfying (166), and assume that the map ω 7→ ϱ(ω) is a
random invariant passive state.
(i) Polynomial decay: Assume ΨIP satisfies (59) with ς > 2d. Then, for anym ∈ N
satisfying d(m+ 1) < ς ,∫

R\{0}
νm+1µAC (dν) ∈ B+(Rd) , (186)

i.e., the (m+ 1)-th moment of the measure µAC exists.
(ii) Exponential decay: Assume ΨIP satisfies (60). Then, (186) holds true for all
m ∈ N.

Proof: By (183) and Lebesgue’s dominated convergence theorem, for any t ∈
R,

∂2tΞp (t) = −
∫
R
cos (tν)µ (dν) = −

∫
R
eitνµ (dν) ,

provided ς > 2d in (59) (with Ψ = ΨIP). In other words, the finite and sym-
metric B+(Rd)–valued measure µ on R can be seen as the Fourier transform of
−∂2tΞp (t) or, that is, as the characteristic function of µ. Therefore, by well–
known properties of characteristic functions (see, e.g., [D, Theorem 3.3.9.] for
the special case n = 2 and [Kl, Theorem 15.34] for the general case n ∈ 2N0),
for any even n ∈ N0, ∂2tΞp ∈ Cn(R;B(Rd)) implies that∫

R
νnµ (dν) ∈ B+(Rd) .

If m ∈ N0 is odd, then, by the above assertion for n < m and the symmetry of the
measure µ (which follows from the symmetry of µAC), we conclude that∫

R
νmµ (dν) = 0 ∈ B+(Rd) .

This observation combined with Theorem 5.1 and Definition 5.4 yields Assertions
(i)–(ii).
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Remark 5.6 (Fermion systems with random Laplacians)
The same assertion holds for the random models treated in [BP3]. See also Re-
mark 5.2.

This last theorem is an significant improvement of the asymptotics (185) of [BP3]
and is a straightforward application of Lieb–Robinson bounds for multi–com-
mutators of high orders (Theorems 3.8–3.9), see Lemma 5.3.
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[FU] J. FRÖHLICH AND D. UELTSCHI, Some properties of correlations
of quantum lattice systems in thermal equilibrium, J. Math. Phys. 56
(2015) 053302–1-14.
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