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Abstract. This article is a continuation of our previous work [5], where we formulated
general existence theorems for pullback exponential attractors for asymptotically compact
evolution processes in Banach spaces and discussed its implications in the autonomous case.
We now study properties of the attractors and use our theoretical results to prove the ex-
istence of pullback exponential attractors in two examples, where previous results do not
apply.

1. Introduction

Global pullback attractors proved to be a useful tool to study the asymptotic dynamics
of infinite dimensional non-autonomous dynamical systems. To be more precise, let here
and in the sequel (X, dX) denote a complete metric space and T = R or T = Z. The
rules of time evolution in the non-autonomous setting are dictated by a two-parameter family
U = {U(t, s)| t ≥ s}, t, s ∈ T, of continuous operators from X into itself, which is called an
evolution process in X, if it satisfies the properties

U(t, t) = Id t ∈ T,

U(t, s) ◦ U(s, r) = U(t, r) t ≥ s ≥ r, t, s, r ∈ T

(t, s, x) 7→ U(t, s)x is continuous from T ×X → X,

where T := {(t, s) ∈ T × T| t ≥ s}, Id denotes the identity in X and ◦ the composition of
operators.

If T = Z we call U a discrete evolution process and for T = R a time continuous evolution
process.
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Definition 1. The family of non-empty subsets {A(t)| t ∈ T} of X is called the global

pullback attractor of the evolution process {U(t, s)| t ≥ s} if the sets A(t) are compact,
for all t ∈ T, and the family {A(t)| t ∈ T} is strictly invariant,

U(t, s)A(s) = A(t) ∀ t ≥ s.

Moreover, it pullback attracts all bounded subsets of X; that is, for every time t ∈ T the set
A(t) pullback attracts every bounded set D ⊂ X at time t,

lim
s→∞

distH

(
U(t, t− s)D,A(t)

)
= 0,

and {A(t)| t ∈ T} is minimal within the families of closed subsets that pullback attract all
bounded subsets of X.

Here, distH(·, ·) is the Hausdorff semidistance in X; that is,

distH(A,B) = sup
a∈A

inf
b∈B

dX(a, b) for subsets A,B ⊂ X.

Different from the definition of global attractors in the autonomous case, the minimality
property is an additional property needed to ensure the uniqueness of the global pullback
attractor. It can be omitted if the pullback attractor is uniformly bounded in the past, i.e., if
the union ⋃

t≤t0

A(t)

is bounded for all t0 ∈ T. The following theorem characterizes the evolution processes pos-
sessing a global pullback attractor, for its proof we refer to [7] or [4].

Theorem 1. Let {U(t, s)| t ≥ s} be an evolution process in a complete metric space X. Then,
the following statements are equivalent:

(a) The evolution process {U(t, s)| t ≥ s} possesses a global pullback attractor.
(b) There exists a family of compact subsets {K(t)| t ∈ T} of X such that for all t ∈ T

the set K(t) pullback attracts all bounded subsets of X at time t.

Furthermore, the pullback global attractor is given by

A(t) =
⋃

D ⊂ X
bounded

ω(D, t) t ∈ T,

where ω(D, t) denotes the pullback ω-limit set of the set D ⊂ X at time instant t ∈ T.

The pullback ω-limit set of the subset D ⊂ X at time instant t ∈ T is defined by

ω(D, t) :=
⋂
r≥0

⋃
s≥r

U(t, t− s)D,

and A denotes the closure of a subset A ⊂ X.
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Like global attractors of semigroups in the autonomous context, global pullback attractors
are generally not stable under perturbations and the rate of convergence to the attractor is
unknown, which motivates to consider pullback exponential attractors (see [8], [16] and [5]).
Pullback exponential attractors are families of compact subsets of the phase space whose fractal
dimension is uniformly bounded and that pullback attract all bounded sets at an exponential
rate. They are, due to the exponential rate of attraction, more stable under perturbations
and contain the global pullback attractor. In particular, to show the existence of a pullback
exponential attractor is one way of proving the existence and finite dimensionality of the global
pullback attractor.

Definition 2. Let {U(t, s)| t ≥ s} be an evolution process in the metric space (X, dX). We call
the family of non-autonomous sets M = {M(t)| t ∈ T} a pullback exponential attractor

for the evolution process {U(t, s)| t ≥ s} if

(i) the subsetM(t) ⊂ X is non-empty and compact ∀ t ∈ T,
(ii) the familyM is positively semi-invariant; that is,

U(t, s)M(s) ⊂M(t) ∀ t ≥ s,

(iii) the fractal dimension of the sectionsM(t), t ∈ T, is uniformly bounded,

sup
t∈T

{
dimX

f (M(t))
}
<∞,

(iv) andM exponentially pullback attracts all bounded subsets of X: There exists a positive
constant ω > 0 such that for every bounded subset D ⊂ X and every t ∈ T

lim
s→∞

eωsdistH

(
U(t, t− s)D,M(t)

)
= 0.

If an evolution process possesses a pullback exponential attractor {M(t)| t ∈ T}, the ex-
istence of the global pullback attractor {A(t)| t ∈ T} follows immediately from Theorem 1.
Moreover, the global pullback attractor is contained in the pullback exponential attractor and
possesses finite dimensional sections. Indeed, the minimality property in Definition 1 implies

A(t) ⊂M(t) ∀t ∈ T.

An algorithm for the construction of non-autonomous exponential attractors was first devel-
oped in [11] for discrete evolution processes, where the authors considered forwards exponential
attractors. The method is based on the compact embedding of the phase space V into an aux-
iliary normed space W and the smoothing or regularizing property of the evolution process
(see Section 2). Using the pullback approach the result was recently extended in [8] and [16]
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for time continuous evolution processes. Common assumptions in both articles were that the
process satisfies the smoothing property, which implies that it is eventually compact, and
the existence of a fixed bounded uniformly pullback absorbing set. This allows the pullback
exponential attractor M to be unbounded in the future but it is always uniformly bounded
in the past, i.e., the union ⋃

t≤t0

M(t)

is bounded for all t0 ∈ T. Moreover, the Hölder continuity in time of the evolution process was
essential for the construction in [8] and [16]. It is typically satisfied in parabolic problems, but
not by evolution processes generated by hyperbolic equations. We proposed an alternative
method for time-continuous evolution processes in [5], which does not require the Hölder
continuity in time of the evolution process, we extended the algorithm for evolution processes
that are asymptotically compact and considered a time-dependent family of bounded pullback
absorbing sets instead of a fixed bounded pullback absorbing set. Our construction leads to
better bounds for the fractal dimension of the sections of the attractors and to existence
results for pullback exponential attractors that are not necessarily uniformly bounded in the
past. To prove the finite fractal dimension of global pullback attractors that are not uniformly
bounded in the past has been an open problem. Previous constructions of pullback exponential
attractors were therefore limited to evolution processes possessing global pullback attractors
that are uniformly bounded in the past (see Section 1 in [16] and Remark 3.2 in [18]).

In [13] the authors proposed a construction for forwards exponential attractors for time
continuous evolution processes, which is similar to our method. However, the existence of
the uniform attractor for the evolution process is a priori known and the existence of a fixed
bounded uniformly forwards absorbing set is assumed. This is equivalent to the assumption of
a fixed bounded uniformly pullback absorbing set and implies the uniform boundedness of the
forwards exponential attractor (i.e.,

⋃
t∈TM(t) is bounded). They consider asymptotically

compact evolution processes in the weaker space W , a construction for processes that are
asymptotically compact in the stronger phase space V as we formulated in [5] has not been
considered before (see [8], [16], [13] and for autonomous exponential attractors [12], [11]). We
discussed and compared these different settings and results in [5], Section 3.2.

Our present article is the continuation of [5], where we constructed pullback exponential
attractors for asymptotically compact evolution processes in Banach spaces assuming that the
process possesses a family of time-dependent pullback absorbing sets that possibly grow in
the past and studied its implications in the autonomous setting. We now discuss properties of
the attractors and apply the theoretical results to prove the existence of pullback exponential
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attractors in two applications. In both examples, previous results are not applicable and the
generalizations we developed in [5] are essentially needed.

In particular, we consider a non-autonomous Chafee-Infante equation in a bounded domain
Ω ⊂ Rn, n ∈ N,

∂

∂t
u(x, t) = 4u(x, t) + λu(x, t)− β(t)

(
u(x, t)

)3
x ∈ Ω, t > s,

∂

∂ν
u(x, t) = 0 x ∈ ∂Ω, t ≥ s,

u(x, s) = us(x) x ∈ Ω, s ∈ R,

where λ > 0 and the initial data us ∈ C(Ω). The non-autonomous term β : R→ R+ is strictly
positive, continuously differentiable, bounded when time t tends to ∞ and vanishes as t goes
to −∞. We show that the generated evolution process satisfies the smoothing property and
possesses a semi-invariant family of pullback absorbing sets. The diameter of the absorbing
sets grows in the past since the function β vanishes when t tends to −∞. From our results
in [5] we deduce the existence of a pullback exponential attractor for the generated evolution
process. This implies that the global pullback attractor exists and that its sections are of finite
fractal dimension. Furthermore, we prove that the global pullback attractor is unbounded in
the past,

lim
t→−∞

diam(A(t)) =∞,

where diam denotes the diameter in the space C(Ω), which provides a positive answer to the
question whether the finite fractal dimension can be established for global pullback attractors
that are not uniformly bounded in the past (see Section 1 in [16] and Remark 3.2 in [18]).

The second application is the non-autonomous dissipative wave equation
∂2

∂t2
u(x, t) + β(t)

∂

∂t
u(x, t) = ∆u(x, t) + f(u(x, t)) x ∈ Ω, t > s,

u(x, t) = 0 x ∈ ∂Ω, t ≥ s,

u(x, s) = us(x),
∂

∂t
u(x, s) = vs(x) x ∈ Ω, s ∈ R,

where Ω ⊂ Rn, n ∈ N, n ≥ 3, is a bounded domain. We assume that the non-linearity
f : R→ R is continuously differentiable and of sub-critical growth.

The initial value problem generates an asymptotically compact evolution process U in the
phase space V := H1

0 (Ω)×L2(Ω). We prove that the evolution process can be represented as a
sum U = S+C, where the family of operators S satisfies the smoothing property with respect
to V and an auxiliary normed space W compactly embedded into V , and C is a family of
contractions in the stronger space V . Our main result in [5] implies the existence of a pullback
exponential attractor for the evolution process U . Previous results cannot be applied since the
constructions of exponential attractors were developed for evolution processes or semigroups
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that are asymptotically compact in the weaker space W , i.e., under the assumption that the
family C is a contraction in W (among others see [12], [11] and [13]). Moreover, the former
existence results for pullback exponential attractors in [8] and [16] required the Hölder conti-
nuity in time of the evolution process, which is generally not satisfied by hyperbolic equations.

The outline of our paper is as follows. In Section 2 we recall the main result of [5] about the
existence of pullback exponential attractors for asymptotically compact evolution processes.
We discuss properties of the pullback exponential attractors and consequences of our existence
theorem in Section 3. Finally, in Section 4 we apply our theoretical results and show the
existence of pullback exponential attractors for a non-autonomous damped wave equation and
a non-autonomous Chafee-Infante equation.

2. A General Existence Theorem for Pullback Exponential Attractors

In this section we recall the existence result for pullback exponential attractors obtained
in [5]. Let U = {U(t, s)| t ≥ s} be an evolution process in the Banach space (V, ‖ · ‖V ).
The construction of the pullback exponential attractor is based on the existence of a time-
dependent pullback absorbing family, the compact embedding of the phase space into an
auxiliary normed space and the asymptotic smoothing property of the process. We assume
the process U can be represented as U = S + C, where {S(t, s)| t ≥ s} and {C(t, s)| t ≥ s}
are families of operators satisfying the following properties:

(H0) Let (W, ‖ ·‖W ) be another normed space such that the embedding V ↪→↪→W is dense,
compact and

‖v‖W ≤ µ‖v‖V ∀ v ∈ V,

for some constant µ > 0.
(H1) There exists a family of bounded sets B(t) ⊂ V , t ∈ T, that pullback absorbs all

bounded subsets of V : For every bounded set D ⊂ V and every t ∈ T there exists a
pullback absorbing time TD,t ∈ T+ := {t ∈ T| t ≥ 0} such that

U(t, t− s)D ⊂ B(t) ∀ s ≥ TD,t.

(H2) The family {S(t, s)| t ≥ s} satisfies the smoothing property within the absorbing sets:
There exist t̃ ∈ T+\{0} and a constant κ > 0 such that

‖S(t+ t̃, t)u− S(t+ t̃, t)v‖V ≤ κ‖u− v‖W ∀u, v ∈ B(t), t ∈ T.

(H3) The family {C(t, s)| t ≥ s} is a contraction within the absorbing sets:

‖C(t+ t̃, t)u− C(t+ t̃, t)v‖V ≤ λ‖u− v‖V ∀u, v ∈ B(t), t ∈ T,

where the contraction constant 0 ≤ λ < 1
2 .
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(H4) The process {U(t, s)| t ≥ s} is Lipschitz continuous within the absorbing sets: For all
t ∈ T and t ≤ s ≤ t+ t̃ there exists a constant Lt,s > 0 such that

‖U(s, t)u− U(s, t)v‖V ≤ Lt,s‖u− v‖V ∀u, v ∈ B(t), t ∈ T.

The construction of pullback exponential attractors requires to impose additional assump-
tions on the pullback absorbing family in Hypothesis (H1).

(A1) The family of absorbing sets {B(t)| t ∈ T} is positively semi-invariant for the evolution
process {U(t, s)| t ≥ s},

U(t, s)B(s) ⊂ B(t) ∀ t ≥ s, t, s ∈ T.

(A2) For every bounded subset D ⊂ V and time t ∈ T the corresponding absorbing times
are bounded in the past: There exists TD,t ∈ T+ such that

U(s, s− r)D ⊂ B(s) ∀ s ≤ t, r ≥ TD,t.

The above-stated assumptions allow to construct pullback exponential attractors for the
evolution process {U(t, s)| t ≥ s} (see [5]).

Definition 3. We say that a time-dependent family of bounded subsets {B(t)| t ∈ T} grows

sub-exponentially in the past if

diam(B(t))eγt −−−−→
t→−∞

0 ∀ γ > 0,

where diam(B) denotes the diameter of a subset B ⊂ V .

In the sequel, we denote by BX
r (a) the ball of radius r > 0 and center a ∈ X in the metric

space X and by NX
ε (A) the minimal number of balls in X with radius ε > 0 and centers in A

needed to cover the subset A ⊂ X.

Theorem 2. Let {U(t, s)| t ≥ s}, t, s ∈ T, be an evolution process in the Banach space V
and the assumptions (H0)–(H4), (A1) and (A2) be satisfied. Moreover, we assume that the
diameter of the family of absorbing sets {B(t)| t ∈ T} grows at most sub-exponentially in the
past. Then, for every ν ∈ (0, 1

2−λ) there exists a pullback exponential attractor {Mν(t)| t ∈ T}
for the evolution process {U(t, s)| t ≥ s}, and the fractal dimension of its sections is uniformly
bounded by

dimV
f (Mν(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
∀ t ∈ T.

Remark 1. For discrete evolution processes the Lipschitz continuity assumption (H4) in The-
orem 2 can be omitted.
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3. Properties of the Pullback Exponential Attractor

An immediate consequence of Theorem 2 is the existence and finite dimensionality of the
global pullback attractor. For the proof of the following theorem we define the group of time

shift operators or temporal translations {Sr| r ∈ T} by

SrU(t, s) := U(t+ r, s+ r) t ≥ s, t, s ∈ T,

where r ∈ T and {U(t, s)| t ≥ s} is an evolution process.

Theorem 3. Let T = Z or T = R, {U(t, s)| t ≥ s} be an evolution process in the Banach space
V and the assumptions (H0)–(H3), (A1) and (A2) be satisfied. Moreover, we assume that the
diameter of the family of absorbing sets {B(t)| t ∈ T} grows at most sub-exponentially in the
past. Then, the global pullback attractor {A(t)| t ∈ T} of the evolution process {U(t, s)| t ≥ s}
exists, and the fractal dimension of its sections is uniformly bounded by

dimV
f (A(t)) ≤ inf

ν∈(0, 1
2
−λ)

{
log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)}
∀ t ∈ T.

Proof. For discrete evolution processes the statements follow from Theorem 2, Remark 1 and
the minimality property of the global pullback attractor (see Definition 1).

Otherwise, if T = R, we define the associated discrete evolution process {Ũ(n,m)| n ≥ m}
by Ũ(n,m) := U(nt̃,mt̃) for all n ≥ m, n,m ∈ Z. It satisfies the assumptions of Theorem
2, and we conclude that for every ν ∈ (0, 1

2 − λ) there exists a pullback exponential attractor
{Mν

d(k)| k ∈ Z} for the discrete evolution process {Ũ(n,m)| n ≥ m}. We define the sets

M̂ν(t) := U(t, kt̃)Mν
d(k) for t ∈ [kt̃, (k + 1)t̃[, k ∈ Z,

which implies M̂ν(kt̃) = Mν
d(k) for all k ∈ Z. Since the operators U(t, s) : V → V , t ≥ s,

are continuous and the sections Mν
d(k), k ∈ Z, are compact, {M̂ν(t), | t ∈ R} is a family

of compact subsets of V . Moreover, it follows as in the proof of Theorem 2 that the family
{M̂ν(t)| t ∈ R} pullback attracts all bounded subsets of V . By Theorem 1 we conclude that
the global pullback attractor {A(t)| t ∈ R} of the time continuous process {U(t, s)| t ≥ s}
exists, and the minimality property implies A(t) ⊂ M̂ν(t) for all t ∈ R.

Since ν ∈ (0, 1
2 − λ) was arbitrary Theorem 2 implies that the fractal dimension of the

discrete global pullback attractor is uniformly bounded by

dimV
f (A(kt̃)) ≤ inf

ν∈(0, 1
2
−λ)

{
log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)}
∀ k ∈ Z,

and it remains to estimate the fractal dimension of the time continuous sections. To this
end let r ∈ R be arbitrary. We consider the shifted evolution process {SrU(t, s)| t ≥ s} and
the associated discrete evolution process {Ur(n,m)| n ≥ m}, which is given by Ũr(n,m) :=

Ur(nt̃,mt̃) for all n ≥ m, n,m ∈ Z. By Theorem 2 and Remark 1 for every ν ∈ (0, 1
2−λ) there
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exists a pullback exponential attractor {Mν
r,d(k)| k ∈ Z} for the discrete evolution process

{Ũr(n,m)| n ≥ m}, and the fractal dimension of its sections satisfies the estimate stated in
the theorem. We follow the previous arguments to conclude that the global pullback attractor
{Ar(t)| t ∈ R} for the time continuous evolution process {SrU(t, s)| t ≥ s} exists and observe
that

Ar(t) = A(t+ r) ∀ t ∈ R.

Moreover, the fractal dimension of the discrete sections of the global pullback attractor is
uniformly bounded,

dimV
f (Ar(kt̃)) ≤ inf

ν∈(0, 1
2
−λ)

{
dimV

f

(
Mν

r,d(k)
)}
≤ inf

ν∈(0, 1
2
−λ)

{
log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)}
for all k ∈ Z. Finally, since r ∈ R was arbitrary and

Ar(kt̃) = A(kt̃+ r) ∀ k ∈ Z,

we obtain the uniform bound for the fractal dimension of the time continuous global pullback
attractor {A(t)| t ∈ R}. �

Remark 2. We remark that the Lipschitz continuity (H4), which is essential for the con-
struction of the time continuous pullback exponential attractor, is not required to establish the
existence of the global pullback attractor and to derive estimates on its fractal dimension (see
the hypothesis in Theorem 3).

Remark 3. The (Kolmogorov-) ε-entropy of a pre-compact subset A ⊂ X is defined as

Hε(A) = log2(NX
ε (A))

and was introduced by Kolmogorov and Tihomirov in [15]. The order of growth of Hε as ε
tends to zero is a measure for the massiveness of the set A in X, even if the fractal dimension
of A is infinite.

The bound on the fractal dimension of the global pullback attractor in Theorem 3 is related
to the entropy numbers for the embedding of the spaces V and W . For k ∈ N the k-th entropy
number for the embedding V ↪→W is defined as

ek := inf
{
ε > 0

∣∣BV
1 (0) ⊂

2k−1⋃
j=1

BW
ε (wj), wj ∈W, j = 1, . . . , 2k−1

}
.

If V and W are infinite dimensional Banach spaces such that the embedding V ↪→↪→ W is
compact, then 0 < ek <∞ for all k ∈ N.

Let λ = 0 and ν ∈ (0, 1
2) be as in Theorem 3, that is, the evolution process U satisfies the

smoothing property. Assuming that ek → 0 as k → ∞ and that there exists k ∈ N such that
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ek = ν
κ we obtain in our estimate

log 1
2ν

(
NW

ν
κ

(BV
1 (0))

)
≤ (k − 1) ln(2)

ln( 1
2κek

)
.

We further observe that

log 1
2ν

(
NW

ν
κ

(BV
1 (0))

)
−−−→
ν→ 1

2

∞.

On the other hand, if the entropy numbers grow polynomially in 1
k , i.e., if ek = c

kα for some
constants c, α > 0, then

log 1
2ν

(
NW

ν
κ

(BV
1 (0))

)
≤ (k − 1) ln(2)

ln( 1
2κc) + α ln(k)

−−−→
k→∞

∞,

and consequently,

log 1
2ν

(
NW

ν
κ

(BV
1 (0))

)
−−−→
ν→0

∞.

These observations illustrate that there exists an optimal constant ν ∈ (0, 1
2) to minimize the

bound on the fractal dimension in Theorem 3.
For certain function spaces the entropy numbers can explicitly be estimated (see [10]). For

instance, for the embeddings of the Sobolev spaces W s1,p(Ω) into W s2,q(Ω), where Ω ⊂ Rn is a
smooth bounded domain and s1, s2 ∈ R, p, q ∈ (1,∞) are such that s1−s2−nmax

{
0, 1

p−
1
q

}
> 0

it is known that

c1k
− s1−s2

n ≤ ek ≤ c2k
− s1−s2

n

for some constants c1, c2 ≥ 0 (Theorem 2, Section 3.3.3 in [10]), and our argumentation above
applies.

The following proposition illustrates the relation between the global pullback and the pull-
back exponential attractor for evolution processes. We recall that an evolution process U was
called B̂-asymptotically compact in [19], where B̂ = {B(t)| t ∈ T} is a family of bounded
subsets, if for every t ∈ T and all sequences (tn)n∈N in T+ and (xn)n∈N in B(t− tn) such that
limn→∞ tn = ∞ the set {U(t, t − tn)xn|n ∈ N} is pre-compact in V . Furthermore, the sets
Λ(B̂, t), t ∈ T, were defied as

Λ(B̂, t) :=
⋂
s≤t

⋃
τ≤s

U(t, τ)B(τ)
‖·‖V

∀ t ∈ T,

where A‖·‖V denotes the closure of the set A in V. Under the assumptions of Theorem 2 it can
be observed from its proof in [5] that the evolution process U is B̂-asymptotically compact,
where the family B̂ is the family of pullback absorbing sets B̂ = {B(t)| t ∈ T} in Assumption
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(H1). Moreover, it follows from [19] that Λ(B̂, t), t ∈ T, is a strictly invariant family of
non-empty, compact subsets of V that pullback attracts all bounded sets and

A(t) ⊂ Λ(B̂, t) ∀ t ∈ T.

However, the sets do not coincide in general.

Remark 4. For an evolution process {U(t, s)| t ≥ s} satisfying the hypotheses of Theorem 2
the pullback exponential attractor in [5] was defined as

Mν(t) =
⋃
n∈N0

U(t, kt̃)En(k)
‖·‖V

∀ t ∈ [kt̃, (k + 1)t̃[, k ∈ Z

(see the proof of Theorem 3.2 and Theorem 3.3). The family of discrete sets En(k), n ∈
N0, k ∈ Z, satisfies the properties

• En(k) ⊂ U(k, k − n)B(k − n) ⊂ B(k),

• ]En(k) ≤
∑n

l=0N
l, N := NW

ν
κ

(BV
1 (0)),

• U(k, k − n)B(k − n) ⊂
⋃
u∈En(k)B

V
(2(ν+λ))nRk−n

(u),

where ] denotes the cardinality of a set, B(k) are the pullback absorbing sets for discrete times
k ∈ Z in Hypothesis (H1), and Rk > 0 is the radius of a ball in V that contains B(k).

Proposition 1. Let {U(t, s)| t ≥ s} be an evolution process in the Banach space V and the
assumptions of Theorem 2 be satisfied. Then, the pullback exponential attractor of Theorem 2
can be represented as

Mν(t) = Λ(B̂, t) ∪
⋃
n∈N0

U(t, kt̃)En(k) ∀ t ∈ [kt̃, (k + 1)t̃[, k ∈ Z,

where t̃ is given by (H2) and (H3), and we refer to [5] for the definition and construction of
the family of sets En(k), n ∈ N0, k ∈ Z.

Moreover, if the family of pullback absorbing sets is bounded in the past, i.e., if the union⋃
t≤t0 B(t) is bounded for all t0 ∈ T, then

Mν(t) = A(t) ∪
⋃
n∈N0

U(t, kt̃)En(k) ∀ t ∈ [kt̃, (k + 1)t̃[, k ∈ Z,

where {A(t)| t ∈ T} denotes the global pullback attractor of the evolution process.

Proof. The pullback exponential attractor in [5] was defined as

Mν(t) =
⋃
n∈N0

U(t, kt̃)En(k)
‖·‖V

∀ t ∈ [kt̃, (k + 1)t̃[, k ∈ Z.

Let k ∈ Z, t ∈ [kt̃, (k + 1)t̃[, x ∈ Mν(t) and (xm)m∈N be a sequence in
⋃
n∈N0

U(t, kt̃)En(k)

such that limm→∞ xm = x. For everym ∈ N there exists nm ∈ N0 such that xm ∈ U(t, kt̃)Enm(k).
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If N0 := sup{nm|m ∈ N} < ∞, then {xm|m ∈ N} ⊂
⋃N0
m=0 U(t, kt̃)Enm(k) and since the set

is finite,

x = lim
m→∞

xm ∈
N0⋃
m=0

U(t, kt̃)Enm(k).

Otherwise, there exists a subsequence, which we denote by (nm)m∈N as well, such that
limm→∞ nm = ∞, and by the definition of the sets En(k) we have xm = U

(
t, (k − nm)t̃

)
ym

with ym ∈ B
(
(k − nm)t̃

)
. It follows that x ∈ Λ(B̂, t), and we conclude

Mν(t) ⊂ Λ(B̂, t) ∪
⋃
n∈N0

U(t, kt̃)En(k).

To show the reverse inclusion let t ∈ T and x ∈ Λ(B̂, t). Then, there exist sequences (tm)m∈N

in T+, limm→∞ tm = ∞, and (xm)m∈N in B(t − tm) such that x = limm→∞ U(t, t − tm)xm.

We argue by contradiction and assume that there exist ε > 0 and N0 ∈ N such that

distH

(
U(t, t− tm)xm,Mν(t)

)
≥ ε ∀m ≥ N0.

Let k ∈ Z be such that t ∈ [kt̃, (k + 1)t̃[, and let km ∈ Z, sm ∈ [0, t̃[ be such that t − tm =

(k− km)t̃− sm. We observe that U
(
(k− km)t̃, (k− km)t̃− sm

)
xm ∈ B

(
(k− km)t̃

)
and obtain

by the definition of the pullback exponential attractor

distH

(
U(t, t− tm)xm,Mν(t)

)
≤ distH

(
U(t, kt̃)U(kt̃, t− tm)xm, U(t, kt̃)

⋃
n∈N0

En(k)
)

≤ LdistH

(
U(kt̃, t− tm)xm,

⋃
n∈N0

En(k)
)

≤ LdistH

(
U
(
kt̃, (k − km)t̃

)
B
(
(k − km)t̃

)
,
⋃
n∈N0

En(k)
)
,

for some constant L ≥ 0, where we used the Lipschitz-continuity (H1) in the second inequality
and the semi-invariance of the absorbing sets in the last inequality. It follows from the proof
of Theorem 2 in [5] that

U
(
(kt̃, (k − km)t̃)

)
B
(
(k − km)t̃

)
⊂

⋃
u∈Ekm (k)

BV
rkm

(u),

where the sequence of radii rkm → 0 as km tends to ∞. We conclude that

distH (U(t, t− tm)xm,Mν(t)) < ε

if m ∈ N is sufficiently large, which contradicts our assumption and shows the relation
Λ(B̂, t) ⊂Mν(t).

To prove the second statement in the proposition it suffices to show the inclusion

Mν(t) ⊂ A(t) ∪
⋃
n∈N0

U(t, kt̃)En(k) ∀ t ∈ [kt̃, (k + 1)t̃[, k ∈ Z,
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since the global pullback attractor is contained in the pullback exponential attractor. Let
k ∈ Z, t ∈ [kt̃, (k + 1)t̃[, x ∈ Mν(t) and (xm)m∈N be a sequence in

⋃
n∈N0

U(t, kt̃)En(k) such
that limm→∞ xm = x. For every m ∈ N there exists nm ∈ N0 such that xm ∈ U(t, kt̃)Enm(k).
If N0 := sup{nm|m ∈ N} <∞, it follows as above that

x = lim
m→∞

xm ∈
N0⋃
m=0

U(t, kt̃)Enm(k).

Otherwise, there exists a subsequence, which we denote by (nm)m∈N as well, such that
limm→∞ nm = ∞, and by the definition of the sets En(k) we have xm ∈ U

(
t, (k − nm)t̃

)
ym

with ym ∈ B((k− nm)t̃). By assumption, the family of absorbing sets is bounded in the past,
which implies that {ym|m ∈ N} ⊂

⋃
s≤tB(s) ⊂ D for some bounded set D ⊂ V , and it follows

x = lim
m→∞

xm = lim
m→∞

U
(
t, (k − nm)t̃

)
ym ∈ ω(D, t) ⊂ A(t) =

⋃
D ⊂ X
bounded

ω(D, t)
‖·‖V

,

where we used the representation of the global pullback attractor in Theorem 1.
�

Remark 5. Let {U(t, s)| t ≥ s} be an evolution process in V, the hypothesis of Theorem 2 be
satisfied and {A(t)| t ∈ T} and {Mν(t)| t ∈ T} be the corresponding global and exponential
pullback attractor. We remark that

⋃
n∈N0

U(t, kt̃)En(k) ∩A(t) is a countable dense subset of
the section A(t) of the global pullback attractor for every t ∈ [kt̃, (k + 1)t̃[, k ∈ Z.

Moreover, if the pullback exponential attractor is bounded in the past, Proposition 1 implies
that the Hausdorff dimensions of the sections A(t) and ofMν(t) coincide,

dimV
H(Mν(t)) = dimV

H(A(t)) ∀t ∈ T,

since the Hausdorff dimension of every countable set is zero. In this case, if we required finite
Hausdorff instead of finite fractal dimension in the definition of exponential attractors we could
add an arbitrarily large countable semi-invariant set to the global attractor without changing
its dimension. This is not possible if we impose finite fractal dimension in the definition of
exponential attractors (see also [9], Chapter 7, for the autonomous case).

If an evolution process {U(t, s)| t ≥ s} possesses the global pullback attractor {A(t)| t ∈ T}
and is periodic, that is SrU = U for some r ∈ T, the invariance property

U(t, s)A(s) = A(t) ∀ t ≥ s, t, s ∈ T,

shows that the periodicity is directly inherited by the attractor. Since pullback exponential
attractors are not unique we could certainly construct for an evolution process U and the
shifted process SrU , where r ∈ T, pullback exponential attractorsMU andMSrU that do not
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satisfy the cocycle property

MU (t+ r) =MSrU (t) ∀ t, r ∈ T.

However, if {MU (t)| t ∈ T} is a pullback exponential attractor for the evolution process U
the translation of the attractor {MU (t+ r)| t ∈ T} yields a pullback exponential attractor for
the shifted process SrU , for every r ∈ T.

Corollary 1. Let {U(t, s)| t ≥ s} be an evolution process in the Banach space V . We assume
that the hypotheses of Theorem 2 are satisfied and denote by {Mν

U (t)| t ∈ T} the pullback
exponential attractor for {U(t, s)| t ≥ s} in Theorem 2. Then, for every r ∈ T the family
{Mν

SrU (t)| t ∈ T}, whereMν
SrU (t) :=Mν

U (t+ r), t ∈ T, is a pullback exponential attractor for
the evolution process {SrU(t, s)| t ≥ s}, and the family of exponential attractors satisfies

Mν
U (t+ r) =Mν

SrU (t) ∀ t, r ∈ T.

If an evolution process is periodic the family of pullback exponential attractors {Mν
SrU (t)| t ∈

T}r∈T exhibits the same property.

Proof. Let r ∈ T, {Mν
U (t)| t ∈ T} be the pullback exponential attractor for the evolution

process {U(t, s)| t ≥ s} in Theorem 2 and

Mν
SrU (t) :=Mν

U (t+ r) ∀ t ∈ T.

Then, the family {Mν
SrU (t)| t ∈ T} is semi-invariant under the action of the evolution process

{SrU(t, s)| t ≥ s}. The exponential pullback attraction property with respect to the process
{SrU(t, s)| t ≥ s}, the compactness of the sections and the uniform bound for its fractal
dimension immediately follow from the corresponding properties of the family {Mν

U (t)| t ∈ T},
which proves that {Mν

SrU (t)| t ∈ T} is a pullback exponential attractor for the shifted process.
�

Finally, we formulate assumptions for the construction of forwards exponential attractors.

Definition 4. Let {U(t, s)| t ≥ s}, t, s ∈ T, be an evolution process in the metric space
(X, dX). We call the family M = {M(t)| t ∈ T} a forwards exponential attractor for

the evolution process {U(t, s)| t ≥ s} if it satisfies Properties (i)-(iii) in Definition 2 and
forwards exponentially attracts all bounded subsets of X: There exists a constant ω > 0 such
that

lim
s→∞

eωsdistH

(
U(t+ s, t)D,M(t+ s)

)
= 0,

for every bounded subset D ⊂ X and every t ∈ T.

We replace the hypothesis (H1) and (A2) by the following:
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(H1)′ There exists a family of bounded subsets B(t) ⊂ V , t ∈ T, that forwards absorbs all
bounded subsets of V : For every bounded set D ⊂ V and every t ∈ T there exists a
forwards absorbing time TD,t ∈ T+ such that

U(t+ s, t)D ⊂ B(t+ s) ∀ s ≥ TD,t.

(A2)′ For every bounded subset D ⊂ V and time t ∈ T the corresponding absorbing times
are bounded in the future: There exists TD,t ∈ T+ such that

U(s+ r, s)D ⊂ B(s+ r) ∀ s ≥ t, r ≥ TD,t.

Theorem 4. Let {U(t, s)| t ≥ s} be an evolution process in the Banach space V and the
assumptions (H0), (H1)′, (H2)–(H4), (A1) and (A2)′ be satisfied. Moreover, we assume that
the diameter of the family of absorbing sets {B(t)| t ∈ T} grows at most sub-exponentially
in the past. Then, for every ν ∈ (0, 1

2 − λ) there exists a forwards exponential attractor
{Mν(t)| t ∈ T} for the evolution process {U(t, s)| t ≥ s}, and the fractal dimension of its
sections is uniformly bounded by

dimV
f (Mν(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
∀t ∈ T.

For discrete evolution processes Hypothesis (H4) can be omitted.

Proof. Forwards exponential attractors can be constructed by slightly modifying the proof for
pullback exponential attractors in [5].

�

Remark 6. If the pullback absorbing time TD,t corresponding to a bounded subset D ⊂ X in
Hypothesis (H1) is independent of the time t ∈ T, the family {B(t)| t ∈ T} is also forwards
absorbing for the process. More precisely, the properties (H1) and (H1)′ are indeed equivalent
in this case, and the conditions (A2) and (A2)′ are automatically satisfied.

Consequently, in this case the pullback exponential attractor constructed in Theorem 2 co-
incides with the forwards exponential attractor in Theorem 4.

4. Applications

In this section we illustrate our results and prove the existence of pullback exponential
attractors for evolution processes generated by non-autonomous PDEs.

4.1. Non-Autonomous Chafee-Infante Equation. The following initial value problem for
the non-autonomous Chafee-Infante equation yields an example for a finite dimensional global
pullback attractor which is unbounded in the past.
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Let Ω ⊂ Rn, n ∈ N, be a bounded domain with smooth boundary ∂Ω and s ∈ R. We
consider the initial-/boundary value problem

∂

∂t
u(x, t) = 4u(x, t) + λu(x, t)− β(t)

(
u(x, t)

)3
x ∈ Ω, t > s,(1)

∂

∂ν
u(x, t) = 0 x ∈ ∂Ω, t ≥ s,

u(x, s) = us(x) x ∈ Ω, s ∈ R,

where the constant λ > 0, ∆ denotes the Laplace operator with respect to the spatial variable
x, ∂

∂ν the outward unit normal derivative on the boundary ∂Ω and ∂
∂t the partial derivative

with respect to time t > s. The initial data us is a uniformly continuous function on Ω,
us ∈ C(Ω). Moreover, we assume that the non-autonomous term β : R → R+ is strictly
positive, continuously differentiable and satisfies the properties

0 < sup
t∈R
{β(t)} ≤ β0,(2)

lim
t→−∞

β(t) = 0,(3)

sup
t∈R

{
|β′(t)|
β(t)

}
≤ β1,(4)

lim
t→−∞

eγt

β(t)
= 0 ∀ γ > 0,(5)

where the constants 0 < β0, β1 < ∞. We consider the evolution process generated by (1) in
the phase space W := C(Ω), where the norm in W is defined by

‖u‖W := max
x∈Ω
|u(x)| u ∈W.

To show the existence of a positively semi-invariant family of absorbing sets we use the method
of lower and upper solutions (see [21], Chapter 2).

Definition 5. A function u∗ ∈ C(Ω× [s,∞[) ∩ C2,1(Ω×]s,∞[) is called an upper solution

for Problem (1) if it satisfies the inequalities
∂

∂t
u∗(x, t)−4u∗(x, t) ≥ λu∗(x, t)− β(t)

(
u∗(x, t)

)3
x ∈ Ω, t > s,(6)

∂

∂ν
u∗(x, t) ≥ 0 x ∈ ∂Ω, t ≥ s,

u∗(x, s) ≥ us(x) x ∈ Ω, s ∈ R.

Analogously, the function u∗ ∈ C(Ω× [s,∞[)∩C2,1(Ω×]s,∞[) is a lower solution for (1) if
it satisfies the reversed inequalities in (6).

Lemma 1. There exist constants a, b ≥ 0 such that the function c∗ : [s,∞[→ R+,

c∗(t) :=
a√
β(t)

+ b, t > s,
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is an upper solution for (1) if the initial data satisfies us(x) ≤ c∗(s) for all x ∈ Ω.
If the initial function fulfils us(x) ≥ −c∗(s) for all x ∈ Ω, the function c∗ : [s,∞[→ R,

c∗(t) := −c∗(t), is a lower solution for (1).

Proof. Defining the function c∗(t) := a√
β(t)

+ b, where a > max
{√

λ
3 ,
√

β1
2 + λ

}
and b > 0

we obtain
∂

∂t
c∗(t)−4c∗(t)− λc∗(t) + β(t)

(
c∗(t)

)3
=

a√
β(t)

(
− β

′(t)

2β(t)
+ b
√
β(t)

(
3a− λ

a

)
+ (a2 − λ) +

b3

a

√
β(t)

3
+ 3b2β(t)

)
.

Since β vanishes slowly,

sup
t∈R

{
|β′(t)|
β(t)

}
≤ β1 <∞,

the choice of a and b implies
∂

∂t
c∗(t)−4c∗(t)− λc∗(t) + β(t)

(
c∗(t)

)3 ≥ 0 ∀t > s,

which proves that c∗ is an upper solution for Problem (1).
The non-linearity is odd with respect to u, and hence, we obtain

∂

∂t
c∗(t)−4c∗(t)− λc∗(t) + β(t)

(
c∗(t)

)3
= −

(
∂

∂t
c∗(t)−4c∗(t)− λc∗(t) + β(t)

(
c∗(t)

)3) ≤ 0.

Consequently, c∗ := −c∗ is a lower solution for (1) if the initial data satisfies us(x) ≥ c∗(s) for
all x ∈ Ω. �

The linear heat equation
∂

∂t
u(x, t) = 4u(x, t) x ∈ Ω, t > 0,(7)

∂

∂ν
u(x, t) = 0 x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x) x ∈ Ω,

generates an analytic semigroup {e∆t| t ∈ R+} in the Banach space W := (C(Ω), ‖ · ‖W ) (see
[20]). We denote the associated fractional power spaces by Xα, α ≥ 0. The operators e∆t are
linear and bounded from W to Xα and satisfy the estimates

(8) ‖e∆t‖L(W ;Xα) ≤
Cα
tα

∀ t > 0,

where the constant Cα ≥ 0 and ‖ · ‖L(W ;Xα) denotes the operator norm. The semi-linear
problem (1) generates an evolution process {U(t, s)| t ≥ s} in W , where

U(t, s)us := u( · , t;us, s) t ≥ s,
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and u( · , · ;us, s) : Ω × [s,∞[→ R denotes the unique solution of (1) corresponding to initial
data us ∈ C(Ω) and initial time s ∈ R. Moreover, {U(t, s)| t ≥ s} satisfies the variation of
constants formula

U(t, s)us = e∆(t−s)us +

∫ t

s
e∆(t−τ)f(τ, U(τ, s)us))dτ

(see [20] and [22]).
We apply Lemma 1 to show the existence of a semi-invariant family of pullback absorbing

sets.

Proposition 2. The family of subsets

B(t) :=
{
v ∈W | ‖v‖W ≤ c∗(t)

}
, t ∈ R,

is positively semi-invariant for the evolution process {U(t, s)| t ≥ s} generated by Problem (1)
and pullback absorbs all bounded sets of W .

Proof. Let s ∈ R and the initial data us ∈W satisfy ‖us‖W ≤ c∗(s). Lemma 1 implies that the
functions c∗ and c∗ are upper and lower solutions for Problem (1). From Theorem 4.1, Chapter
2, in [21] it follows that there exists a unique classical solution u( · , · ;us, s) : Ω × [s,∞[→ R
and

c∗(t) ≤ u(x, t;us, s) ≤ c∗(t) ∀x ∈ Ω, t ≥ s.

Consequently, the evolution process {U(t, s)| t ≥ s} satisfies

U(t, s)us ∈ B(t) ∀us ∈ B(s), t ≥ s,

which proves the semi-invariance of the absorbing sets {B(t)| t ∈ R}.
To show that the family is pullback absorbing, letD ⊂W be bounded and t ∈ R. We choose

R > 0 such that D ⊂ BW
R (0). By Assumption (3) there exists t0 ∈ R such that R ≤ a√

β(t)

for all t ≤ t0, and consequently, D ⊂ B(t) for all t ≤ t0. Finally, we observe that the pullback
absorbing time is bounded in the past, in particular, TD,s ≤ t− t0 for all s ≤ t. �

Next, we show that {U(t, s)| t ≥ s} satisfies the smoothing property with respect to the
Banach spaces

V := Ĉ1(Ω) :=

{
u ∈ C1(Ω)

∣∣ ∂
∂ν
u(x) = 0, x ∈ ∂Ω

}
and W , where the norm in V is defined by

‖u‖V := ‖u‖W +
n∑
j=1

‖ ∂u
∂xj
‖W , u ∈ V.
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Lemma 2. Let {U(t, s)| t ≥ s} be the evolution process generated by Problem (1). Then,
there exists a positive constant κ > 0 such that

‖U(t+ 1, t)u− U(t+ 1, t)v‖V ≤ κ‖u− v‖W ∀u, v ∈ B(t), t ∈ R.

Proof. Let s ∈ R and u, v ∈ B(s) be given initial data. We denote the corresponding solutions
of Problem (1) by u(t) := U(t, s)u and v(t) := U(t, s)v, t ≥ s. It was shown in [20], Theorem
2.4, that the continuous embedding Xα ↪→ V exists for all α > 1

2 . Using the variation of
constants formula we obtain∥∥u(t)− v(t)

∥∥
V
≤ c
∥∥u(t)− v(t)

∥∥
Xα

≤ c
(∥∥e∆(t−s)(u− v)

∥∥
Xα +

∫ t

s

∥∥e∆(t−τ)
(
f(τ, u(τ))− f(τ, v(τ))

)∥∥
Xαdτ

)
≤ c
∥∥e∆(t−s)∥∥

L(W ;Xα)

∥∥u− v∥∥
W

+ c

∫ t

s

∥∥e∆(t−τ)
∥∥
L(W ;Xα)

∥∥f(τ, u(τ))− f(τ, v(τ))
∥∥
W
dτ,

where c ≥ 0 denotes the embedding constant. By Proposition 2 it follows that∥∥f(τ, u(τ))− f(τ, v(τ))
∥∥
W

(9)

≤ λ
∥∥u(τ)− v(τ)

∥∥
W

+
∥∥β(τ)

(
u(τ)− v(τ)

)(
u(τ)2 + u(τ)v(τ) + v(τ)2

)∥∥
W

≤ λ
∥∥u(τ)− v(τ)

∥∥
W

+ 2
∥∥(u(τ)− v(τ)

)
β(τ)

(
u(τ)2 + v(τ)2

)∥∥
W

≤ λ
∥∥u(τ)− v(τ)

∥∥
W

+ 4
∥∥(u(τ)− v(τ)

)
β(τ)

( a√
β(τ)

+ b
)2∥∥

W

≤ (λ+ C)
∥∥u(τ)− v(τ)

∥∥
W
,

for some constant C ≥ 0, where we used Assumption (2) in the last estimate. The estimate
(8) and the embedding V ↪→W now imply∥∥u(t)− v(t)

∥∥
V
≤ cCα

( 1

(t− s)α
∥∥u− w∥∥

W
+ (λ+ C)

∫ t

s

1

(t− τ)α
∥∥u(τ)− v(τ)

∥∥
W
dτ
)

≤ cCα

( 1

(t− s)α
∥∥u− w∥∥

W
+ (λ+ C)µ

∫ t

s

1

(t− τ)α
∥∥u(τ)− v(τ)

∥∥
V
dτ
)
,

for some constant µ > 0. Finally, we set t = s+ 1 and

y(s+ 1) := ‖U(s+ 1, s)u− U(s+ 1, s)v‖V = ‖u(s+ 1)− v(s+ 1)‖V ,

and obtain the inequality

y(s+ 1) ≤ cCα
(
‖u− v‖W + (λ+ C)µ

∫ s+1

s

1

(s+ 1− τ)α
y(τ)dτ

)
.

Using the generalized Gronwall Lemma (Theorem 1.26 in [24]) we conclude

y(s+ 1) ≤ κ‖u− v‖W ,
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for some constant κ > 0. �

Theorem 2 now implies the existence of a pullback exponential attractor in V for the
evolution process {U(t, s)| t ≥ s}.

Remark 7. For evolution processes that satisfy the smoothing property it suffices to assume
that the pullback absorbing family is bounded in the metric of W and that the process satisfies
the Lipschitz continuity property (H4) in W .

Indeed, if the family of absorbing sets is bounded in the metric of W we define the sets

B̃(t) := U(t, t− t̃)B(t− t̃) t ∈ T,

which are pullback absorbing and bounded in the space V by the smoothing property (H2).
Moreover, the smoothing property (H2), the Lipschitz continuity in W and the continuous
embedding (H0) imply

‖U(t+ t̃+ s, t)u− U(t+ t̃+ s, t)v‖V ≤ κ‖U(t+ s, t)u− U(t+ s, t)v‖W
≤ κLt,s‖u− v‖W ≤ κLt,sµ‖u− v‖V ,

for all u, v ∈ B(t), t ∈ R and s ∈ [0, t̃]. This proves the Lipschitz continuity of the evolution
process in the space V and the result remains valid.

Theorem 5. Let {U(t, s)| t ≥ s} be the evolution process in W = C(Ω) generated by Problem
(1) and the function β satisfy Properties (2)–(5). Then, for every ν ∈ (0, 1

2) there exists
a pullback exponential attractor {Mν(t)| t ∈ R} in V = Ĉ1(Ω) for the evolution process
{U(t, s)| t ≥ s}, and the fractal dimension of its sections is uniformly bounded by

dimV
f (Mν(t)) ≤ log 1

2ν

(
NW

ν
κ

(BV
1 (0))

)
∀t ∈ R,

where κ > 0 denotes the smoothing constant in Lemma 2. Furthermore, the global pullback
attractor exists and is unbounded in the past,

lim
t→−∞

diam(A(t))→∞.

It is contained in the pullback exponential attractor, A(t) ⊂Mν(t), and

dimV
f (A(t)) ≤ inf

ν∈(0, 1
2

)

{
log 1

2ν

(
NW

ν
κ

(BV
1 (0))

)}
∀ t ∈ R.

Proof. The family of pullback absorbing sets {B(t)| t ∈ R} defined in Lemma 2 satisfies the
hypothesis (A1) and (A2). Since the diameter of the absorbing sets is bounded by

‖B(t)‖W ≤ 2
( a√

β(t)
+ b
)

t ∈ R,

and the non-autonomous term satisfies Property (5), the absorbing sets grow at most sub-
exponentially in the past. Moreover, the embedding V ↪→↪→W is compact, and the smoothing
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property with respect to the spaces V andW was shown in Lemma 2. To deduce the existence
of a pullback exponential attractor from Theorem 2 it remains to verify the Lipschitz continuity
of the evolution process. Let s ∈ R and u, v ∈ B(s) be given initial data. Using the variation
of constants formula we obtain∥∥U(t, s)u− U(t, s)v

∥∥
W

≤
∥∥e∆(t−s)(u− v)

∥∥
W

+

∫ t

s

∥∥e∆(t−τ)
(
f(τ, U(τ, s)u)− f(τ, U(τ, s)v)

)∥∥
W
dτ

≤ C0

∥∥u− v∥∥
W

+ C0

∫ t

s

∥∥f(τ, U(τ, s)u)− f(τ, U(τ, s)v)
∥∥
W
dτ

≤ C0

∥∥u− v∥∥
W

+ C0(λ+ C)

∫ t

s

∥∥U(τ, s)u− U(τ, s)v
∥∥
W
dτ,

for some constant C0 ≥ 0, where we used the estimate (9) in the proof of Lemma 2. By
Gronwalls Lemma follows the Lipschitz continuity of {U(t, s)| t ≥ s} in W .

The global pullback attractor exists by Theorem 2, it is contained in the pullback expo-
nential attractor and its sections are finite dimensional. The bound on the fractal dimension
follows from Theorem 3, and it remains to show that the global pullback attractor is un-
bounded in the past. Due to the homogeneous Neumann boundary conditions, solutions of
the ODE

d

dt
y(t) = λy(t)− β(t)(y(t))3 t > s,(10)

y(s) = y0 s ∈ R, y0 ∈ R,

also solve Problem (1) with initial data us(x) = y0, x ∈ Ω. As shown in [17], Proposition 3.1,
for initial data y0 6= 0 the explicit solution of (10) is given by

y(t; s, y0)2 =
e2λt

e2λsy−2
0 + 2

∫ t
s e

2λτβ(τ)dτ
, t > s.

Taking the limit s→ −∞ we obtain two complete trajectories ±ξ, where

ξ2(t) =
e2λt

2
∫ t
−∞ e

2λτβ(τ)dτ
, t ∈ R,

that are unbounded when t tends to −∞ by Assumption (5).
If ζ(t), t ∈ R, is a complete trajectory of (10) above of ξ(t), t ∈ R, the explicit solution

formula implies

ζ(t)2 =
e2λt

e2λsζ(s)−2 + 2
∫ t
s e

2λτβ(τ)dτ
> ξ(t)2, t > s.

It follows that

ζ(t)2 >
e2λt

2
∫ t
−∞ e

2λτβ(τ)dτ
= ξ(t)2, t ∈ R,
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which shows that solutions starting above of the complete trajectory ξ blow-up backwards in
finite time and cannot be emanating from a bounded subset of R.

We observe that y(t) = 0, t ∈ R, is an equilibrium solution of (10), ξ(t) pullback attracts
at time t all solutions emanating from initial data y0 > 0 and −ξ(t) all solutions emanating
from y0 < 0. Moreover, the family of compact subsets

{[−ξ(t), ξ(t)] | t ∈ R}

is strictly invariant for the evolution process generated by (10). By the connectedness of its
sections it follows that the global pullback attractor Aode of the ODE (10) is given by

Aode(t) = [−ξ(t), ξ(t)], t ∈ R.

When restricted to the subspace of constant functions, the evolution process {U(t, s)| t ≥ s}
generated by Problem (1) coincides with the evolution process generated by the ODE (10),
which implies that{

u(·, t) ∈ C(Ω) | u(x, t) = y(t) ∀ x ∈ Ω, y(t) ∈ [−ξ(t), ξ(t)]
}
⊂ A(t), t ∈ R,

and concludes the proof of the theorem. �

4.2. Non-Autonomous Damped Wave Equation. We consider the following initial value
problem for the non-autonomous damped wave equation,

∂2

∂t2
u(x, t) + β(t)

∂

∂t
u(x, t) = ∆u(x, t) + f(u(x, t)) x ∈ Ω, t > s,(11)

u(x, t) = 0 x ∈ ∂Ω, t ≥ s,

u(x, s) = us(x) x ∈ Ω, s ∈ R,
∂

∂t
u(x, s) = vs(x) x ∈ Ω, s ∈ R,

where s ∈ R and Ω ⊂ Rn, n ∈ N, n ≥ 3, is a bounded domain with smooth boundary ∂Ω. We
assume that the non-linearity f : R→ R is continuously differentiable and satisfies

|f ′(z)| ≤ c(1 + |z|p), z ∈ R,(12)

lim sup
|z|→∞

f(z)

z
≤ 0,(13)

for some constant c > 0 and 0 < p < 2
n−2 . Furthermore, the function β : R → R+ is Hölder

continuous and bounded from above and below by positive constants 0 < β0 ≤ β1 <∞,

β0 ≤ β(t) ≤ β1 ∀ t ∈ R.(14)

We apply Theorem 2 to show that the evolution process generated by (11) possesses a

pullback exponential attractor. Setting v := ∂
∂tu and w :=

( u
v

)
we rewrite Problem (11) in
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the abstract form
∂

∂t
w = Aβ(t)w + F (w) t > s,(15)

w|t=s = ws ws ∈ V, s ∈ R,

where the initial data ws =
( us
vs

)
, and the phase space is V := H1

0 (Ω) × L2(Ω). The norm

in V is given by

‖w‖V :=
(
‖u‖2H1

0 (Ω) + ‖v‖2L2(Ω)

) 1
2 , w =

( u
v

)
∈ V.

Furthermore, the operators are defined by Aβ(t) = A1 +A2(t),

A1 :=

(
0 Id
−A 0

)
, A2(t) :=

(
0 0
0 −β(t)Id

)
, F (w) :=

(
0

F̃ (u)

)
,

where A = −∆ denotes the Laplace operator with homogeneous Dirichlet boundary conditions
and domain D(A) = H1

0 (Ω) ∩ H2(Ω) in L2(Ω). The domain of the operator A1 in V is
D(A1) = (H1

0 (Ω) ∩H2(Ω))×H1
0 (Ω), and F̃ denotes the Nemytskii operator

F̃ : H1
0 (Ω)→ L2(Ω), u 7→ F̃ (u) := f(u(·)).

The initial value problem (15) generates an evolution process {U(t, s)| t ≥ s} in the Banach
space V , which is asymptotically compact and pullback strongly bounded dissipative. For
details we refer to [4], Chapter 4 in [14], Section VI.4 in [6], [2] and [3].

We denote the evolution process generated by the linear homogeneous problem
∂

∂t
w = Aβ(t)w t > s,(16)

w|t=s = ws ws ∈ V, s ∈ R,

by {C(t, s)| t ≥ s}. The following lemma was proved in [3] and yields the exponential decay
of solutions of the linear homogeneous equation.

Lemma 3. Let {C(t, s)| t ≥ s} be the evolution process in V associated to the linear problem
(16). Then, there exist constants C ≥ 0 and ω > 0 such that the norm of the operators is
bounded by

‖C(t, s)‖L(V ;V ) ≤ Ce−ω(t−s) ∀t ≥ s, t, s ∈ R.

The process {U(t, s)| t ≥ s} satisfies the integral equation

U(t, s)ws = C(t, s)ws +

∫ t

s
C(t, τ)F (U(τ, s)ws)dτ

= C(t, s)ws + S(t, s)ws

(see [3] and [14]). Moreover, {U(t, s)| t ≥ s} is pullback strongly bounded dissipative and the
pullback absorbing time corresponding to a bounded subset is independent of the time instant
t ∈ R. For the proof of the following lemma we refer to [3].
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Lemma 4. Let {U(t, s)| t ≥ s} be the evolution process in V generated by the initial value
problem (15). Then, there exists a bounded uniformly pullback absorbing subset B ⊂ V , i.e.,
for every bounded set D ⊂ V there exists TD ≥ 0 such that

U(t, t− s)D ⊂ B ∀s ≥ TD, t ∈ R.

To show that the family of operators {S(t, s)| t ≥ s} satisfies the smoothing property we
establish several auxiliary results. We denote by Xα, α ∈ R, the fractional power spaces
associated to the operator A with domain D(A) = X1 = H1

0 (Ω) ∩H2(Ω) in X := L2(Ω) (see
[23] or [22]). Furthermore, let Hs(Ω), s ∈ R+, be the fractional Sobolev spaces obtained by
interpolation between the spaces Hm(Ω) and L2(Ω), m ∈ N (see [1] or Section II.1.3 in [23]).
Since the domain Ω is bounded we have the following continuous embeddings

Hs
0(Ω) ↪→ Hs(Ω) ↪→ Lp

′
(Ω) ↪→ L2(Ω) if

1

2
≥ 1

p′
≥ 1

2
− s

n
> 0,(17)

where Hs
0(Ω) denotes the closure of C∞0 (Ω) in Hs(Ω) (see [1] or Theorem 1.1, Chapter 2, in

[6]). If 1
2 ≥

1
p′ >

1
2 −

s
n > 0 the embedding Hs(Ω) ↪→ Lp

′
(Ω) is compact. Moreover, Theorem

16.1 in [24] implies the continuous embeddings

Hs
0(Ω) ↪→ X

s
2 ↪→ Hs(Ω) ∀s ∈ R.

By duality we conclude

L2(Ω) ↪→ Lq
′
(Ω) ↪→ X−

s
2 if

1

p′
+

1

q′
= 1,

1

2
≥ 1

p′
≥ 1

2
− s

n
> 0,(18)

and the embedding Lq′(Ω) ↪→ X−
s
2 (Ω) is compact if 1

2 ≥
1
p′ >

1
2 −

s
n > 0.

The solution theory of the linear homogeneous problem can be extended to the fractional
power spaces Xα ×Xα− 1

2 , α ∈ (0, 1
2) (see [23], Section IV.1.1).

Lemma 5. Let 0 < ε < 1 and the space V ε := X
1−ε
2 × X−

ε
2 . Then, for every initial data

ws =
( us
vs

)
∈ V ε, s ∈ R, there exists a unique solution w ∈ C([s, s + T ];V ε) of the linear

problem

∂

∂t
w = Aβ(t)w s+ T > t > s,

w|t=s = ws ws ∈ V ε, s ∈ R,

where T > 0 is arbitrary. Moreover, the generated evolution process is uniformly bounded in
the space V ε,

‖C(t, s)‖L(V ε;V ε) < d ∀ t ≥ s, t, s ∈ R,

for some constant d ≥ 0.
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Proof. We consider the operator

Aβ(t) = A1 +A2(t) =

(
0 Id
−A 0

)
+

(
0 0
0 −β(t)Id

)
,

in V ε, where the operators A2(t) : V ε → V ε are linear and uniformly bounded in t by
Assumption (14) and A is considered as an operator in X−

ε
2 with domain D(A) = X1− ε

2 .

Since A is self-adjoint, the operator A1 is dissipative in V ε. Indeed, let w =
( u
v

)
∈ D(A1) =

D(A)×X
1−ε
2 , then〈

w,A1w
〉
V ε

=
〈( u

v

)
,
( v
−Au

)〉
V ε

=
〈
A

1−ε
2 u,A

1−ε
2 v
〉
X

+
〈
A−

ε
2 v,A−

ε
2 (−Au)

〉
X

=
〈
A

1−ε
2 u,A

1−ε
2 v
〉
X
−
〈
A

1−ε
2 v,A

1−ε
2 u
〉
X

= 0.

By Corollary 4.4, Chapter 1, in [22] the operator A1 generates a strongly continuous semigroup
of contractions in V ε. The lemma now follows from Theorem 1.2, Chapter 6, in [22]. �

Lemma 6. There exists 0 < ε < 1 such that the Nemytskii operator F̃ is uniformly Lipschitz
continuous from H1−ε(Ω) to L2(Ω) within bounded subsets of H1

0 (Ω) : Let D be a bounded
subset of H1

0 (Ω), then

‖F̃ (u)− F̃ (v)‖L2(Ω) ≤ c‖u− v‖H1−ε(Ω) ∀u, v ∈ D,

for some constant c ≥ 0.

Proof. Let D be a bounded subset of H1
0 (Ω), u, v ∈ D and R > 0 such that D ⊂ BR, where

BR := B
H1

0 (Ω)
R (0). The assumption p < 2

n−2 implies p = (1− ε) 2
n−2 for some 0 < ε < 1. Using

the growth restriction (12) and Hölder’s inequality with p′ = n
2−2ε and q

′ = n
n−2+2ε we obtain

‖F (u)− F (v)‖L2(Ω) ≤ c‖(1 + |ζ|p)(u− v)‖L2(Ω)

≤ c
(
‖u− v‖L2(Ω) + ‖|ζ|p‖L2p′ (Ω)‖u− v‖L2q′ (Ω)

)
≤ c
(
c1‖u− v‖H1−ε(Ω) + c2‖ζ‖pL2pp′ (Ω)

‖u− v‖H1−ε(Ω)

)
,

for some ζ ∈ BR. In this estimate we used the continuous embeddings H1−ε(Ω) ↪→ L2(Ω) and
H1−ε(Ω) ↪→ L2q′(Ω) in (17), and c1, c2 ≥ 0 are the corresponding embedding constants. Since
the set D ⊂ BR ⊂ H1

0 (Ω) is bounded, the embedding H1
0 (Ω) ↪→ L2pp′(Ω) = L

2n
n−2 (Ω) in (17)

yields the uniform bound on the norm ‖ζ‖p
L2pp′ (Ω)

and concludes the proof of the lemma.
�

Next, we show that the evolution process {U(t, s)| t ≥ s} restricted to the bounded pullback
absorbing set B is uniformly Lipschitz continuous in V ε = X

1−ε
2 ×X−

ε
2 , where ε = 1− p

2(n−2)

was defined in the proof of Lemma 6.
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Lemma 7. Let ε := 1 − p
2(n − 2) and the initial data ws =

( us
vs

)
∈ B, s ∈ R, where

B ⊂ V denotes the uniformly pullback absorbing set in Lemma 4. Then, the evolution process
{U(t, s)| t ≥ s} generated by the initial value problem (15) is Lipschitz continuous in V ε.

Proof. By Lemma 6 the Nemytskii operator F̃ is uniformly Lipschitz continuous from H1−ε(Ω)

to L2(Ω) in bounded subsets of H1
0 (Ω). Let B ⊂ H1

0 (Ω) be bounded and u, v ∈ B. Using the
continuous embeddings L2(Ω) = X ↪→ X−

ε
2 and X

1−ε
2 ↪→ H1−ε(Ω) we obtain

‖F̃ (u)− F̃ (v)‖
X−

ε
2
≤ c1‖F̃ (u)− F̃ (v)‖X ≤ cc1‖u− v‖H1−ε(Ω) ≤ c2‖u− v‖

X
1−ε
2
,(19)

for some constants c1, c2 ≥ 0, which shows that F̃ is uniformly Lipschitz continuous from
X

1−ε
2 to X−

ε
2 in bounded subsets of H1

0 (Ω).

Let now ws, zs ∈ B, s ∈ R, be given initial data and w(t) =
( w1(t)
w2(t)

)
= U(t, s)ws and

z(t) =
( z1(t)
z2(t)

)
= U(t, s)zs be the corresponding solutions of the semi-linear problem (15).

The evolution process {U(t, s)| t ≥ s} is bounded in V by Lemma 4, and using the variation
of constants formula we obtain

‖w(t)− z(t)‖V ε ≤ ‖C(t, s)‖L(V ε;V ε)‖ws − zs‖V ε+

+

∫ t

s
‖C(t, τ)‖L(V ε;V ε)‖F (U(τ, s)ws)− F (U(τ, s)zs)‖V εdτ

≤ d
(
‖ws − zs‖V ε +

∫ t

s
‖F̃ (w1(τ))− F̃ (z1(τ))‖

X−
ε
2
dτ
)

≤ d
(
‖ws − zs‖V ε +

∫ t

s
c2‖w1(τ)− z1(τ)‖

X
1−ε
2
dτ
)

≤ d
(
‖ws − zs‖V ε +

∫ t

s
c2‖w(τ)− z(τ)‖V εdτ

)
,

where we used the estimate (19). The Lipschitz continuity now follows by Gronwall’s Lemma,

‖U(t, s)ws − U(t, s)zs‖V ε = ‖w(t)− z(t)‖V ε ≤ d‖ws − zs‖V εedc2(t−s).(20)

�

Combining the previous results we prove the smoothing property for the family of operators
{S(t, s)| t ≥ s} with respect to the spaces V = X

1
2 ×X and W := V ε = X

1−ε
2 ×X−

ε
2 .

Lemma 8. Let ε = 1− p
2(n− 2) and W := V ε. Then, the embedding V ↪→↪→W is compact,

and for every t0 > 0 there exists a positive constant κt0 > 0 such that

‖S(t+ t0, t)w − S(t+ t0, t)z‖V ≤ κt0‖w − z‖W ∀w, z ∈ B, t ∈ R,

where B denotes the uniformly pullback absorbing set defined in Lemma 4.
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Proof. Let s ∈ R, t0 > 0 and w, z ∈ B be given initial data. We denote the corresponding

solutions of (15) by U(t, s)w =
( U1(t, s)w
U2(t, s)w

)
and U(t, s)z =

( U1(t, s)z
U2(t, s)z

)
, t ≥ s. By Lemma

3 and Lemma 7 follows

‖S(s+ t0, s)w − S(s+ t0, s)z‖V ≤
∫ s+t0

s
‖C(s+ t0, τ)

(
F (U(τ, s)w)− F (U(τ, s)z))

)
‖V dτ

≤ C
∫ s+t0

s
e−ω(s+t0−τ)‖F̃ (U1(τ, s)w − F̃ (U1(τ, s)z)‖Xdτ

≤ Cc
∫ s+t0

s
‖U1(τ, s)w − U1(τ, s)z‖H1−ε(Ω)dτ ≤ c1

∫ s+t0

s
‖U1(τ, s)w − U1(τ, s)z‖

X
1−ε
2
dτ

≤ c1

∫ s+t0

s
‖U(τ, s)w − U(τ, s)z‖V εdτ ≤ c1d

∫ s+t0

s
ec2(τ−s)‖w − z‖V εdτ

≤ κt0‖w − z‖W ,

for some constants c1, c2 ≥ 0 and κt0 > 0. In this estimate we used the continuous embedding
X

1−ε
2 ↪→ H1−ε(Ω) and the Lipschitz continuity (20) of the process {U(t, s)| t ≥ s} in V ε. The

compactness of the embedding V ↪→↪→W follows by (18). �

Finally, we show the existence of a pullback exponential attractor.

Theorem 6. We set ε = 1− p
2(n−2). Let {U(t, s)| t ≥ s} be the evolution process in the Hilbert

space V = H1
0 (Ω)×L2(Ω) generated by the initial value problem (15) and W = X

1−ε
2 ×X−

ε
2 .

Moreover, for arbitrary λ < 1
2 we define t0 := 1

ω ln C
λ , where C ≥ 0 and ω > 0 denote the

constants in Lemma 3.
Then, for every ν ∈ (0, 1

2 − λ) there exists a pullback exponential attractor {Mν(t)| t ∈ R},
which is also a forwards exponential attractor for the evolution process {U(t, s)| t ≥ s}, and
the fractal dimension of its sections is uniformly bounded by

dimV
f (Mν(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
∀t ∈ R,

where κ = κt0 > 0 denotes the smoothing constant in Lemma 8. Furthermore, the global
pullback attractor exists, is contained in the pullback exponential attractor {Mν(t)| t ∈ R}
and

dimV
f (A(t)) ≤ inf

ν∈(0, 1
2
−λ)

{
log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)}
∀t ∈ R.

Proof. By Lemma 4 there exists a fixed bounded uniformly pullback absorbing set B ⊂ V ,
and the pullback and forwards absorbing assumptions (H1), (H1)′, (A1), (A2) and (A2)′ are
satisfied. If λ ∈ (0, 1

2) and t0 = 1
ω ln C

λ , Lemma 3 implies that the linear operators C(t+ t0, t),
t ∈ R, are contractions in V with contraction constant λ < 1

2 , which verifies Hypothesis (H3)

with t̃ = t0. Moreover, we proved in Lemma 8 that the smoothing property (H2) of the
family of operators {S(t, s)| t ≥ s} is valid within the absorbing set B. To show the Lipschitz



28 ALEXANDRE N. CARVALHO(1) AND STEFANIE SONNER(2),(3)

continuity (H4) of the evolution process we recall that the Nemytskii operator F̃ is locally
Lipschitz continuous from H1−ε(Ω) to L2(Ω) (see Lemma 6). If the subset D ⊂ H1

0 (Ω) is
bounded the continuous embedding H1

0 (Ω) ↪→ H1−ε(Ω) implies

‖F̃ (u)− F̃ (v)‖L2(Ω) ≤ c‖u− v‖H1−ε(Ω) ≤ cc1‖u− v‖H1
0 (Ω) ∀u, v ∈ D,(21)

for some constant c1 ≥ 0. We can now show the Lipschitz continuity of {U(t, s)| t ≥ s} in V
as in the proof of Lemma 7 if we replace the space V ε by V and use the estimate (21) and
Lemma 3 instead of the estimate (19) and Lemma 5, respectively.

Consequently, all required hypothesis are verified and the existence of the pullback expo-
nential attractor and the uniform estimates for the fractal dimension of its sections follow
from Theorem 2. Theorem 4 implies that the pullback exponential attractor is also a forwards
exponential attractor for the evolution process. Moreover, the global pullback attractor of the
evolution process exists, is contained in the pullback exponential attractor, and Theorem 3
yields the bound for the fractal dimension of its sections, which concludes the proof. �
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