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Abstract. This paper is devoted to study the cost of the null controllability for the Stokes
system. Using the control transmutation method we show that the cost of driving the Stokes
system to rest at time T is of order eC/T , as in the case of the heat equation. For this to be
possible, we are led to study the exact controllability of one hyperbolic system with a resistance
term, which will be done under assumptions on the control region.

1. Introduction

Let Ω ⊂ RN (N ≥ 1) be a bounded connected open set, whose boundary ∂Ω is regular enough.
Let T > 0 and let ω be a nonempty subsets of Ω which will usually be referred to as a control
domain. We will use the notation Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ) and we will denote by
ν(x) the outward normal to Ω at the point x ∈ ∂Ω.

Given u0 ∈ L2(Ω), it is well-known (see [12], [13]) that there exists f ∈ L2(ω × (0, T )) such
that the associated solution v to the heat equation∣∣∣∣∣∣

vt −∆v = f1ω in Q,
v = 0 on Σ,
v(0) = v0 in Ω

(1.1)

satisfies:

v(T ) = 0. (1.2)

In other words, the heat equation is null controllable for any control domain and any initial data
v0 ∈ L2(Ω). Moreover, one also has the following estimate:

||f1ω||L2(Q) ≤ Ch||v0||L2(Ω), (1.3)

for a constant Ch, the cost of controllability for the heat equation, of the form eC(Ω,ω)(1+1/T ),
i.e., the heat equation has a cost of controllability of order eC/T .

As pointed out in [6] (see also [7], [21], [22], [27]), the main reason for the form of the constant
Ch in (1.3) is due to the fact that the fundamental solution of the heat equation in RN is given
by

Φ(x, t) =
1

(4πt)N/2
e−
|x|2
4t . (1.4)
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As in the case of the heat equation, if one now considers the Stokes system∣∣∣∣∣∣∣∣
yt −∆y +∇p = g1ω in Q,
div y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω,

(1.5)

it is also well-known (see, for instance, [9]) that, given y0 ∈ L2(Ω) with div y0 = 0, there exists
g ∈ L2(ω × (0, T )) such that the associated solution y0 to (1.5) satisfies:

y(T ) = 0.

Nevertheless, unlike the case of the heat equation, for the Stokes system, the known results in
the literature (for instance [9]) gives

||g1ω||L2(Q) ≤ CS ||y0||L2(Ω), (1.6)

for a constant CS , the cost of controllability for the Stokes equation, of the form eC(Ω,ω)(1+1/T 4),

i.e., a cost of order eC/T
4
.

Since the fundamental solutions of the heat and the Stokes system have, at least for N = 2, 3,
the same behavior in time (see [16], [17], [25]), looking to (1.3) and (1.6), the following natural
question arises:

Question 1.1. Do the cost of the controllability for the heat equation and the Stokes system
have the same order in time?

When trying to answer Question 1.1, the first attempt is to analyze the different ways one
can prove (1.3) and (1.6). In fact, there exist at least two different ways one can prove (1.3), the
first one is based on spectral decompositions, the so-called Lebeau-Robbiano strategy (see [18]),
the second is based on the use of Carleman inequalities (see [12], [13]). For the Stokes system,
it seems that a Lebeau-Robbiano strategy is very difficult to prove, since one must deal with
the pressure, and the most known method used to prove (1.6) is based on Carleman inequalities
(see [9]).

The main difference when proving (1.3) and (1.6) by mean of Carleman inequalities are the
weights one must use. Indeed, for the heat equation the weights used are of the form

ρ(t) =
eC/(t(T−t))

t(T − t)
, (1.7)

while for the Stokes system the weights are of the form

ρ(t) =
eC/(t

4(T−t)4)

t4(T − t)4
. (1.8)

The reason why one has different weights for the Stokes system than for the heat equation is
due to the fact that one must deal with the pressure term in the first equation. If we were able
to use weights like (1.7) for the Stokes system then these two equations would have costs of
controllability of same order. However, a careful analysis of both proofs indicates that this is
not the case, but also gives hope, since the obstruction one has when dealing with the pressure
seems to be just technical.
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The main objective of this paper is to show that heat and the Stokes system have costs of
controllability of same order. Our strategy will not be based on the use of Carleman inequalities
but rather on the application of the Control Transmutation Method, shortly CTM. This method
is based on the idea that when faced with a new problem, one good strategy is try to reduce it
to a previously solved problem, or at least to a simpler one.

In order to use the CTM, we are led to study the null controllability of the following hyperbolic
system with a pressure term: ∣∣∣∣∣∣∣∣

u′′ −∆u+∇p = h1ω in Q,
div u = 0 in Q,
u = 0 on Σ,
u(0) = u0, u′(0) = u1 in Ω.

(1.9)

The idea then is as follows. If one can show that system (1.9) is null controllable, then the
CTM can be applied in order to guarantee the null controllability for the Stokes system (1.5).
Moreover, if one knows the cost of controlling (1.9) then the cost of the controllability for (1.5)
is also known (see Theorem 4.2).

Concerning the controllability of (1.9), as far as we know, the only result available in the
literature is [24]. In her thesis, the author shows the exact controllability of (1.9) when the
control is acting on a part of the boundary. However, it seems that no controllability results
are known when the control is acting internally, i.e., acting on a part of the domain. The main
reason for this seems to be the fact that system (1.9) is not of Cauchy-Kowalewski type, which
makes impossible the use of Holgrem’s Theorem as in the case of the wave equation.

This paper is organized as follows. In section 2 we prove the internal null controllability of
(1.9), under geometrical restrictions on the control domain. In section 5, using the CTM, we
prove that system (1.5) has the same cost of controllability if the initial data is regular enough.
Finally, in section 6, we prove that we can take initial data less regular and still have the same
order of controllability for the Stokes system as for the heat equation.

2. A Hyperbolic system with a pressure term

This section is devoted to prove a null controllability result for the hyperbolic system (1.9).
This result will allow us to show, in the next section, the null controllability of the Stokes system
(1.5) and also get a precise estimate on the cost of this controllability.

During this paper, we assume that Ω is star-shaped with respect to the origin, i.e., there
exists γ > 0 such that

x · ν(x) ≥ γ > 0 on ∀x ∈ ∂Ω.

Given a point x0 ∈ RN , we divide the boundary ∂Ω into two pieces

∂Ω0 = {x ∈ ∂Ω;m(x) · ν > 0} and ∂Ω∗ = ∂Ω \ ∂Ω0,

where m(x) = x− x0. We also define

R(x0) = max
x∈Ω̄
|m(x)|. (2.1)

Our control region ω will be a nonempty subset of Ω satisfying:

∃O ⊂ RN ,O is a neighborhood of ∂Ω0 and ω = Ω ∩ O. (2.2)
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We introduce

V = {v ∈ C∞0 (Ω); div v = 0}
and consider the following Banach spaces (provided with the topology of H1

0 (Ω)N , L2(Ω)N ,
L2(Σ)N and H−1(Ω)N , respectively):

V = {u ∈ H1
0 (Ω)N ; div u = 0},

H = {u ∈ L2(Ω)N ; div u = 0, u · ν = 0 on ∂Ω},

Z = {v ∈ L2(Σ)N ;

∫∫
Σ
v · νdΣ = 0},

W = closure of V in H−1(Ω)N .

Note that

W ⊂ {f ∈ H−1(Ω)N ; div f = 0 in D′(Ω)}.
Given u0 ∈ V and u1 ∈ H, we want to find h such that the solution u of∣∣∣∣∣∣∣∣

u′′ −∆u+∇p = h1ω in Q,
div u = 0 in Q,
u = 0 on Σ,
u(0) = u0, u′(0) = u1 in Ω

(2.3)

satisfies:

u(T ) = u′(T ) = 0.

Systems like (2.3) are simple models of dynamical elasticity for incompressible materials.
They also appear in coupled elasto-thermicity problems where one of the coupling parameter
(related to compressibility properties) tends to infinity (see [20]).

Concerning the existence and uniqueness of solution to (2.3), we have:

Theorem 2.1. Let (u0, u1, h) ∈ V ×H ×L1(0, T ;H). Then there exists a unique weak solution
u of the problem (2.3) such that

u ∈ C([0, T ];V ) ∩ C1([0, T ];H)

and u satisfies:

1

2
|u′(t)|2H +

1

2
||u(t)||2V =

1

2
|u1|2H +

1

2
||u0||2V +

∫ t

0
(h(s), u′(s))Hds, ∀t ∈ [0, T ].

Moreover, the linear mapping

V ×H × L1(0, T ;H) −→ C([0, T ];V ) ∩ C1([0, T ];H)

(u0, u1, f) 7→ u

is continuous.

Proof. Since the proof is performed using the standard Galerkin method and energy inequalities,
it will not be reproduced here. �
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Now, we focus on the null controllability problem for (2.3). As we will see (Theorem 4.2), the
null controllability for (2.3) is equivalent to a observability inequality its adjoint system∣∣∣∣∣∣∣∣

φ′′ −∆φ+∇q = 0 in Q,
div φ = 0 in Q,
φ = 0 on Σ,
φ(0) = φ0, φ′(0) = φ1 in Ω,

(2.4)

where φ0 ∈ H and φ1 ∈W .
In other words, to prove the null controllability of (2.3), it is sufficient to prove the existence

of a positive constant C such that

|φ0|2H + ||φ1||2W ≤ C
∫∫

ω×(0,T )
|φ|2dxdt, (2.5)

for all solutions of (2.4).

Remark 2.2. The solution φ of (2.4) is defined by transposition. More precisely, φ ∈ L2(0, T ;H)
is an ultra weak solution of (2.4) if∫ T

0
(φ(t), h(t))Hdt =< φ1, u(0) >H−1(Ω),H1

0 (Ω) −(φ0, u′(0))H ,

for all h ∈ L2(0, T : H), where u is the weak solution of∣∣∣∣∣∣∣∣
u′′ −∆u+∇p = h in Q,
div u = 0 in Q,
u = 0 on Σ,
u(T ) = 0, u′(T ) = 0 in Ω.

As in the case of the wave equation, in order to show an observability inequality with internal
observation for (2.4), first we show a boundary observability inequality for this system. The
result is as follows.

Theorem 2.3. If we take T > 2R(x0) then, for every solution of (2.4) with initial data (φ0, φ1) ∈
V ×H, the following estimates holds:

|φ1|2H + ||φ0||2V ≤
R(x0)

2(T − 2R(x0))

∫∫
Σ0

(
∂φ

∂ν

)2

dΣ. (2.6)

Proof. Using Lemma A.1 in Appendix, with q being the vector field m(x) = x− x0, we have:

1

2

∫∫
Σ
m · ν

(
∂φ

∂ν

)2

dΣ = (φ′(t),m(x)∇φ(t))

∣∣∣∣T
0

+

∫∫
Q
|∇φ|2dxdt+

n

2

∫∫
Q

(
|φ′|2 − |∇φ|2

)
dxdt.

Next, multiplying (2.4)1 by φ and integrate by parts, we easily see that

(φ′(t), φ(t))

∣∣∣∣T
0

=

∫∫
Q
|φ′|2dxdt−

∫∫
Q
|∇φ|2dxdt.

Then, using this last identity and the fact that

|φ′(t)|2H + ||φ(t)||2V = |φ1|2H + ||φ0||2V ∀t ∈ [0, T ],
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we obtain

(φ′(t),m∇u(t) +
n− 1

2
u(t))

∣∣∣∣T
0

+T
(
|φ1|2H + ||φ0||2V

)
=

1

2

∫∫
Σ
m · ν

(
∂φ

∂ν

)2

dΣ.

We also have ∣∣m∇u(t) +
n− 1

2
u(t)

∣∣2≤ R(x0)|∇φ(t)|2 ∀t ∈ [0, T ],

wich implies, by Gronwall inequality,∣∣∣∣(φ′(t),m∇φ+
n− 1

2
φ
)T

0

∣∣∣∣≤ 2R(x0)
(
|φ1|2H + ||φ0||2V

)
.

Finally, combining all the above estimates, we conclude that(
T − 2R(x0)

)(
|φ1|2H + ||φ0||2V

)
≤ R(x0)

2

∫∫
Σ0

(
∂φ

∂ν

)2

dΣ

and the result follows.
�

Concerning Theorem 2.3, it is important to mention that this result was already obtained in
[24]. Nevertheless, in this paper we go a step further and use this result in order to show the
internal observability inequality (2.5).

Now we prove a very interesting result, which says that a proof of (2.5) can be obtained if
one is able to prove a special kind of observability inequality for system (2.4).

Theorem 2.4. Assume that there exists a constant C > 0 such that, for every (φ0, φ1) ∈ V ×H,
the weak solution φ of (2.4) satisfies

||φ0||2V + |φ1|2H ≤ C
∫∫

ω×(0,T )
|φ′|2dxdt, (2.7)

then inequality (2.5) holds for all solutions of (2.4) with initial data (φ0, φ1) in H ×W .

Proof. In fact, given (φ0, φ1) ∈ H ×W , we take ξ ∈ V such that ξ solution, together with some
π ∈ L2

0(Ω), of −∆ξ +∇π = φ1. We define

ψ(x, t) = −ξ(x) +

∫ t

0
φ(x, s)ds,

where φ = φ(x, t) is the solution of (2.4) associated to the initial data (φ0, φ1).
Integrating system (2.4) in time, we obtain

φ(t)′ − φ′(0)−∆

∫ t

0
φ(x, s)ds+∇(

∫ t

0
q(x, s)ds) = 0

and it follows that

ψ′′(x, t)− φ1 −∆(ψ(x, t) + ξ(x)) +∇(

∫ t

0
q(x, s)ds) = 0.
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Using the definition of ξ, we see that ψ solves the following hyperbolic system:∣∣∣∣∣∣∣∣
ψ′′ −∆ψ +∇q̂ = 0 in Q,
div ψ = 0 in Q,
ψ = 0 on Σ,
ψ(0) = −ξ, ψ′(0) = φ0 in Ω.

(2.8)

Now, if inequality (2.7) is true, using energy inequality for (2.8), we have

||ξ||2V + |φ0|2H ≤ C
∫∫

ω×(0,T )
|φ|2dxdt. (2.9)

The proof is then finished observing that (2.9) implies (2.5). �

3. A first observability inequality

In this section we prove a variant of the observability inequality (2.7), which will be useful
for our purposes in the next section. Indeed, we prove the following result.

Proposition 3.1. Assume ω satisfies (2.2) and let T > 2R(x0). Then, there exists a constant
C > 0 such that, for every (φ0, φ1) ∈ V ×H, the weak solution φ of (2.4) satisfies:

||ξ||2V + |φ0|2H ≤ C
∫∫

ω×(0,T )

(
|φ′|2 + |φ|2

)
dxdt. (3.1)

Before proving Proposition 3.1, we first prove the following lemma.

Lemma 3.2. Let m ∈ C1(Ω)N . Then, for all regular solutions of (2.4), the following identity
holds

〈∇q,m · ∇φ〉L2(Q) = −〈∇q, φ · ∇m〉L2(Q) + 〈∇q, φ(div m)〉L2(Q)N . (3.2)

Proof. Let us set

X = −
∫∫

Q

∂q

∂xi
mk

∂φi

∂xk
dxdt.

Integrating by parts with respect to xk, and using the fact that φ = 0 on Σ, we get

X =

∫∫
Q

∂

∂xk

(
∂q

∂xi
mk

)
φidxdt =

∫∫
Q

∂2p

∂xk∂xi
mkφ

idxdt+

∫∫
Q

∂q

∂xi

∂mk

∂xk
φidxdt.

We integrate by parts again the first integral, this time with respect to xi, we obtain∫∫
Q

∂q

∂xk

∂

∂xi

(
mkφ

i

)
dxdt = −

∫∫
Q
∇pφ · ∇mdxdt.

Hence, we conclude that

X = −
∫∫

Q
∇qφ · ∇mdxdt+

∫∫
Q
∇qφ(div m)dxdt.

�

Let us now prove Proposition 3.1.
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Proof of Proposition 3.1. We will use the following notation:

E(t) = |φ′(t)|2H + ||φ(t)||2V , ∀t ∈ [0, T ].

Let us consider first the case where φ is regular, for instance, we can take φ0 ∈ V ∩H4(Ω) and
φ1 ∈ V ∩H2(Ω).

Using the change of variables Tτ = (T − 2ε)t + Tε, wich implies ε ≤ τ ≤ T − ε, we rewrite
the inequality (2.6) in Theorem 2.3 as

E(0) ≤ C
∫ T−ε

ε

∫
Γ0

(
∂φ

∂ν

)2

dΣ.

Next, we consider a vector field h ∈ C2(Ω)n such that h · ν ≥ 0 for all x ∈ Γ, h = ν on Γ0 and
h = 0 on Ω \ ω and let η ∈ C2([0, T ]) such that η(0) = η(T ) = 0 and η(t) = 1 in (ε, T − ε). We
define θ(x, t) = η(t)h(x) wich belongs to W 2,∞(Q) and satisfies:∣∣∣∣∣∣∣∣

θ(x, t) = ν(x) for all (x, t) ∈ Γ0 × (ε, T − ε),
θ(x, t) · ν(x) ≥ 0, for all (x, t) ∈ Γ× (0, T ),
θ(x, 0) = θ(x, T ) = 0, for all x ∈ Ω,
θ(x, t) = 0 in

(
Ω \ ω

)
×(0, T ).

Then, we consider the multiplier θ · ∇φ and, as in the Lemma A.1, we obtain the following
identity for all weak solution φ of (2.4):

1

2

∫∫
Σ
θk(x, t)νk(x)

(
∂φ

∂ν

)2

dΣ = (φ′(.), θ(x, .) · ∇φ(.))

∣∣∣∣T
0

+

∫∫
Q

∂θk
∂xj

∂φi

∂xk

∂φi

∂xj
dxdt (3.3)

+
1

2

∫∫
Q

∂θk
∂xk

(
|φ′|2 − |∇φ|2

)
dxdt+

∫∫
Q

∂q

∂xi
θk
∂φi

∂xk
dxdt.

To θ as above we obtain:

1

2

∫ T−ε

ε

∫
Γ0

(
∂φ

∂ν

)2

dΣdt ≤ 1

2

∫∫
Σ
θk(x, t)νk(x)

(
∂φ

∂ν

)2

dΣ,

since θ(x, t) = ν(x) on Γ0 × (ε, T − ε) and

(φ′(.), θ(x, .) · ∇φ(.))

∣∣∣∣T
0

= 0.

Since θ ∈ C1(Ω× (0, T )), we have∣∣∣∣∫∫
Q

∂θk
∂xj

∂φi

∂xk

∂φi

∂xj
dxdt

∣∣∣∣≤ C ∫∫
ω×(0,T )

|∇φ|2dxdt.

For the pressure, we use Remark 3.2 to see that∫∫
Q

∂q

∂xi
θk
∂φi

∂xk
dxdt = −

∫∫
Q
∇qφ·∇θdxdt+

∫∫
Q
∇qφ(div θ)dxdt = 〈∇q,−φ · ∇θ + φ(div θ)〉H−1(Q),H1

0 (Q)
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Consequently∣∣∣∣∫∫
Q

∂q

∂xi
θk
∂φi

∂xk
dxdt

∣∣∣∣ ≤ δ ‖∇q‖2H−1(Q) + Cδ

∫∫
ω×(0,T )

(|φ|2 + |φ′|2 + |∇φ|2)dxdt. (3.4)

Thus,

1

2

∫∫
Σ
θk(x, t)νk(x)

(
∂φ

∂ν

)2

dΣ ≤ C
∫∫

ω×(0,T )

(
|φ|2 + |φ′|2 + |∇φ|2

)
dxdt+ δ ‖∇q‖2H−1(Q) .

Using the fact that

‖∇q‖2H−1(Q) ≤ CE(0),

we conclude, choosing δ small enough, that

E(0) ≤ Ĉ
∫ T−ε

ε

∫
Γ0

(
∂φ

∂ν

)2

dΣ ≤ C
∫∫

ω×(0,T )

(
|φ′|2 + |φ|2 + |∇φ|2

)
dxdt.

Finally, by change of variables, we have

E(0) ≤ C
∫ T−ε

ε

∫
ω

(
|φ|2 + |φ′|2 + |∇φ|2

)
dxdt. (3.5)

Now let ω0 be a neighborhood of Γ0 such that Ω∩ω0 ⊂ ω. And we observe that the inequality
(3.5) is true for each neighborhood of Γ0, the in particular for ω0, that is:

E(0) ≤ C
∫ T−ε

ε

∫
ω0

(
|φ|2 + |φ′|2 + |∇φ|2

)
dxdt

Now we consider ρ ∈W 1,∞(Ω), ρ ≥ 0 such that

ρ = 1 in ω0, and ρ = 0 in Ω \ ω.

We define h(x, t) ∈ Q by h(x, t) = η(t)ρ2(x), where η is defined above. We have∣∣∣∣∣∣∣∣
h(x, t) = 1 for all (x, t) ∈ ω0 × (ε, T − ε),
h(x, t) = 0, for all (x, t) ∈

(
Ω \ ω

)
×(0, T ),

h(x, 0) = h(x, T ) = 0, for all x ∈ Ω,
|∇h|
h ∈ L

∞(Q).

Multiplying both sides of (2.4)1 by hφ and integrate by parts in Q, we obtain∫∫
Q
hφ · φ′′dxdt−

∫∫
Q
hφ ·∆φdxdt+

∫∫
Q
h∇q · φdxdt = 0.

We have ∫ T

0

∫
Ω
φ′′hφdxdt = −

∫ T

0

∫
Ω
h|φ′|2dt−

∫ T

0

∫
Ω
h′φφ′dt.

For the second, since φ = 0 on Σ, we have

−
∫∫

Q
h∆φ · φ =

∫∫
Q
∇φ∇(hφ)dxdt =

∫∫
Q
h|∇φ|2dxdt+

∫∫
Q
φ ·
(
∇φ · ∇h

)
dxdt.
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Consequently∫∫
Q
h|∇φ|2dtdt =

∫∫
Q
h|φ′|2dt+

∫∫
Q
h′φ · φ′dt−

∫∫
Q
φ ·
(
∇φ · ∇h

)
dxdt−

∫∫
Q
h∇q · φdxdt.

It is immediate that∣∣∣∣∫∫
Q
φ ·
(
∇φ · ∇h

)
dxdt

∣∣∣∣≤ 1

2

∫∫
Q
h|∇φ|2dxdt+

1

2

∫∫
Q

|∇h|2

h
|φ|2dxdt.

Hence ∫∫
Q
h|∇φ|2dtdt ≤ C

∫∫
ω×(0,T )

(
|φ′|2 + |φ|2

)
dxdt+ 2

∣∣∣∣∫∫
Q
h∇q · φdxdt

∣∣∣∣.
Next, we observe that∫∫

Q
h∇q·φdxdt = 〈q, φ · ∇h〉H−1(0,T ;L2(Ω)N ),H1

0 (0,T ;L2(Ω)N ) ≤ δ||q||
2
H−1(0,T ;L2(Ω)N )+Cδ||hφ||

2
H1

0 (0,T ;L2(Ω)N ),

for all δ > 0.
Therefore,∫ T−ε

ε

∫
ω0

|∇φ|2dxdt ≤ C
∫∫

ω×(0,T )

(
|φ′|2 + |φ|2

)
dxdt+ δ||q||2H−1(0,T ;L2(Ω)N ),

which gives

E(0) ≤ C
∫∫

ω×(0,T )

(
|φ′|2 + |φ|2

)
dxdt+ δ||q||2H−1(0,T ;L2(Ω)N ).

Finally, since ||q||2
H−1(0,T ;L2(Ω)N )

≤ CE(0), we obtain, for δ small enough,

E(0) ≤ C
∫∫

ω×(0,T )

(
|φ′|2 + |φ|2

)
dxdt. (3.6)

Using density arguments, we can prove that (3.6) holds for all weak solutions of (2.4). �

4. Internal Observability Inequality

This section is devoted to prove inequality (2.7). Indeed, we have:

Theorem 4.1. Assume ω satisfies (2.2) and let T > 2R(x0). Then, there exists a constant
C > 0 such that, for every (φ0, φ1) ∈ V ×H, the weak solution φ of (2.4) satisfies (2.7).

Proof. Let us suppose that (2.7) is not true. Then, given a natural number n, there exists an

initial data (φ̃0
n, φ̃

1
n) such that φ̃n, the solution of (2.4) corresponding to this initial data, satisfies

||φ̃0
n||2V + |φ̃1

n|2H ≥ n||φ̃′n||L2(ω×(0,T ))).

We set

K =

(
||φ̃0

n||2V + |φ̃1
n|2H
)1/2

,

and

φ0
n =

φ̃0
n

K
, φ1

n =
φ̃1
n

K
, φn =

φ̃n
K
.
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We have

||φ′n||2L2(ω×(0,T ))) ≤
1

n
(4.1)

and

||φ0
n||2V + |φ1

n|2H = 1. (4.2)

From (4.1), there exist subsequences, denoted by the same index, such that

lim inf
n−→∞

∫∫
ω×(0,T )

|φ′n|2dxdt = 0, (4.3)

φ0
n ⇀ φ0 in V (4.4)

and

φ1
n ⇀ φ1 in H. (4.5)

Since φN is the solution of (2.4) associated to the initial data (φ0
n, φ

1
n), we have:∣∣∣∣ φn is bounded in L∞(0, T ;V ),

φ′n is bounded in L∞(0, T ;H).
(4.6)

Then, there exists a sebsequence φN such that∣∣∣∣ φn −→ φ weak star in L∞(0, T ;V ),
φ′n −→ φ′ weak star in L∞(0, T ;H).

(4.7)

From (4.7), it is not difficult to show that φ is the weak solution of (2.4) corresponding to the
initial data (φ0, φ1).

Next, since V ↪→ H compactly, estimate (4.7) and the Aubin-Lions compactness theorem give
us

φn −→ φ in L2(0, T ;H). (4.8)

Hence, it follows from (4.3) and 4.7 that

φ′ ≡ 0 in ω × (0, T ) (4.9)

and φ is independent of t in ω.
Let us now consider the system∣∣∣∣∣∣∣∣

ξ′′ −∆ξ +∇q = 0 in Q,
div ξ = 0 in Q,
ξ = 0 on Σ,
ξ(0) = φ1 ∈ H, ξ′(0) = ∆φ0 ∈W.

(4.10)

Taking ψ(x, t) = φ0(x) +
∫ t

0 ξ(x, s)ds, it is not difficult to see that ψ solves (2.4), with (φ0, φ1)
as initial data. Therefore, from the uniqueness of solutions to (2.4), we have that ψ ≡ φ and
thanks to (4.9) we have that ξ ≡ 0 in ω × (0, T ).

Let us now show that ξ ≡ 0. Applying the curl operator in (4.10), we see that v = curl ξ
satisfies ∣∣∣∣ v′′ −∆v = 0 in Q,

v ≡ 0 in ω × (0, T ).
(4.11)



12 F. W. CHAVES-SILVA

Then, by Holmgren’s Uniqueness Theorem (see [19]), we deduce that v ≡ 0. Therefore, there
exists a scalar function Φ = Φ(x, t) such that

ξ = ∇Φ in Q.

In view of (4.10)2, we have
∆Φ = 0 in Q.

Since ξ = 0 in ω × (0, T ), we also have

Φ = f(t) in ω × (0, T ).

and from the unique continuation for the Laplace equation, we deduce that

Φ = f(t) in Q,

Hence, we see that
ξ = ∇Φ = 0 in Q. (4.12)

As a consequence of (4.12), we obtain

φ1 = φ0 = 0. (4.13)

From (3.1), (4.8) and (4.13), we get a contradiction, and the proof is finished. �

Since we have shown that the observability inequality (2.5) holds for all solutions of (2.4), we
are able to prove the internal null controllability for the hyperbolic system with a pressure term
(2.3).

Theorem 4.2. Assume ω satisfies (2.2) and let T > 2R(x0). Given (u0, u1) ∈ V × H, there
exists a control h ∈ L2(ω × (0, T )) such that the associated solution u of (2.3) satisfies

u(T ) = u′(T ) = 0.

Moreover, there exists a positive constant C, such that the following holds∫∫
ω×(0,T )

|h|2dxdt ≤ C
(
||u0||2V + |u1|2H

)
. (4.14)

Proof. Since the proof is similar to the one for the wave equation, we will just give a sketch of
the proof.

We consider the functional
J : H ×W −→ R (4.15)

given by

J(φ0, φ1) =
1

2

∫∫
ω×(0,T )

|φ|2dxdt+ < ϕ1, u0 >H−1(Ω),H1
0 (Ω) −(φ0, u1)H ,

where ϕ is the solution of (2.4) corresponding to the initial data (φ0, φ1).
Using the observability inequality (2.5) and energy estimates, we can show that the functional

J is continuous, strictly convex and coercive. Therefore, the J has a unique minimizer (φ̂0, φ̂1).

Using the Euler-Lagrange equation of the functional, we conclude that φ̂, the solution of (2.4)

associated to (φ̂0, φ̂1), is a control which drives u to zero in time T . Inequality (4.14) then

follows from the observability inequality (2.5) and the fact that J(φ̂0, φ̂1) ≤ 0. This finishes the
proof of Theorem 4.2.
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�

5. The Stokes system with regular data

In this section we prove that the Stokes system with regular initial data is null controllable
with a cost of order eC/T . For this, we will use the Control Transmutation Method and the
results of the previous section.

In order to make things clear, we introduce two different time intervals (0, T ) and (0, L) and
consider the Stokes system∣∣∣∣∣∣∣∣

yt −∆y +∇p = g1ω in Qt := Ω× (0, T ),
div y = 0 in Qt,
y = 0 on Σt := ∂Ω× (0, T ),
y(0) = y0 in Ω

(5.1)

and the associated hyperbolic system with a pressure term∣∣∣∣∣∣∣∣
ull −∆u+∇q = h1ω in Ql := Ω× (0, L),
div u = 0 in Ql,
u = 0 on Σl := ∂Ω× (0, L),
u(0) = y0, u

′(0) = 0 in Ω

(5.2)

in Ω× (0, T ) and Ω× (0, L), respectively.

We take y0 ∈ V , L > 2R(x0), Ω and ω as in section 2. It follows from Theorem 4.2 that
system (5.2) is null controllable with a control h ∈ L2(ω × (0, L)) satisfying (4.14).

For what follows, the following theorem will be very useful.

Theorem 5.1. There exists a positive constant α∗ such that, for all α > α∗, there exists γ > 0
having the property that, for all L > 0 and T ∈ (0, inf(π/2, L)2], there exists a distribution
k ∈ C([0, T ];M(−L,L))) satisfying∣∣∣∣∣∣∣∣

kt = ∂2
sk in D′((0, T )× (−L,L)),

k(0, x) = δ(0),
k(T, x) = 0,

||k||2L2((0,T )×(−L,L)) ≤ γe
αL2/T .

(5.3)

Proof. See [21]. �

We have:

Theorem 5.2. Assume ω satisfies (2.2), y0 ∈ V and T > 0. Then, there exists a control
g ∈ L2(ω × (0, T ) such that the solution y of (5.1) satisfies

y(T ) = 0

and ∫∫
ω×(0,T )

|y|2dxdt ≤ CγeαL2/T ||y0||2V , (5.4)

for a constant C > 0.
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Proof. We start the proof extending k by zero outside [0, T ] × (−L,L) and extend u and h by
reflection to [−L, 0] and by zero outside [−L,L].

We set

y(t) =

∫
k(t, s)u(s)ds

and

g(t) =

∫
k(t, s)h(s)ds.

We must prove that (y, g) solves, together with some p, the stokes system (5.1). Indeed, the
following two properties are easy to check

divy = 0 in Q and y = 0 on Σ.

Next, taking ϕ ∈ V , we have

< y(t), ϕ >D′(Ω),D(Ω)=<

∫
k(t, s)u(s)ds, ϕ >D′(Ω),D(Ω),

wich implies

< yt(t), ϕ >D′(Ω),D(Ω)=<

∫
kt(t, s)u(s)ds, ϕ >D′(Ω),D(Ω) .

Using the properties of k, we see that

< yt(t), ϕ >D′(Ω),D(Ω)=<

∫
kss(t, s)u(s)ds, ϕ >D′(Ω),D(Ω) .

Integrating by parts, and using the fact that u(−L) = u(L) = u′(−L) = u′(L) = 0, we obtain

< yt(t), ϕ >D′(Ω),D(Ω)=<

∫
k(t, s)uss(s)ds, ϕ >D′(Ω),D(Ω),

i.e.,

< yt(t), ϕ >D′(Ω),D(Ω)=

∫
k(t, s) < uss(s), ϕ >D′(Ω),D(Ω) ds.

Since u is, together with some q, the solution of (5.2), we have

< yt(t), ϕ >D′(Ω),D(Ω)=

∫
k(t, s) < ∆u(s) + h1ω, ϕ >D′(Ω),D(Ω) ds.

Therefore,

< yt(t), ϕ >V ′,V =<

∫
k(t, s)∆u(s)ds, ϕ >D′(Ω),D(Ω) + <

∫
k(t, s)h1ωds, ϕ >D′(Ω),D(Ω) .

This last identity gives

< yt(t)−∆y(t), ϕ >D′(Ω),D(Ω)=< g(t)1ω, ϕ >D′(Ω),D(Ω) . (5.5)

Since k is a controlled solution of the heat equation, with a Dirac mass at the origin, we conclude
that y(0) = y0 and y(T ) = 0.

Therefore, we have shown the existence of control g such that the solution y of (5.1), together
with some p, associated to y0 is driven to rest at time T .
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Let us now prove estimate (6.1). From the transmutation formula for the control g, it is
immediate that ∫∫

ω×(0,T )
|g|2dxdt ≤ ||k||2L2((0,T )×(−L,L))||h||

2
L2(ω×(0,T )).

Finally, using the properties of k and Theorem 4.2, inequality (6.1) follows.
�

6. The Stokes system with less regular data

In this section we improve the result obtained in the previous section. We prove that we can
take less regular initial data and still have null controllability with a cost of order eC/T . In order
to show the result, we combine Theorem 5.2, energy inequalities and the smoothing effect for
the Stokes system.

The result is as follows.

Theorem 6.1. Assume ω satisfies (2.2), y0 ∈ H, T > 0 and 0 < ε < T . Then, there exists a
control g ∈ L2(ω × (0, T ) such that the solution y of (5.1) satisfies

y(T ) = 0

and ∫∫
ω×(0,T )

|y|2dxdt ≤ εγCe
2
ε eαL

2/T |y0|2H , (6.1)

for a constant C > 0.

Proof. Fist, we let system (5.1) evolve freely in the interval (0, ε). Using the smoothing effect of
the Stokes system we have that y(ε) = yε belongs to V . We also have, thanks to Theorem 5.2,
that there exists g ∈ L2(ω × (0, T − ε)) such that the associated solution y to the problem∣∣∣∣∣∣∣∣

yt −∆y +∇p = gχω in (0, T − ε)× Ω,
div y = 0 in (0, T − ε)× Ω,
y = 0 on (0, T − ε)× ∂Ω,
y(0) = yε in Ω,

(6.2)

satisfies:

y(T − ε) = 0.

Moreover, ∫ T−ε

0

∫
ω
|g|2dxdt ≤ CγeαL2/T ||yε||2V . (6.3)

Let us now define functions y and g by y(t+ ε) = y(t), g(t+ ε) = g(t) for 0 < t < T − ε.The
functions y and g are defined in (ε, T ) and satisfy∣∣∣∣∣∣∣∣

yt −∆y +∇q = gχω in (ε, T )× Ω,
div y = 0 in (ε, T )× Ω,
y = 0 on (ε, T )× ∂Ω,
y(ε) = yε in Ω.

(6.4)
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Inequality (6.3) then becomes ∫ T

ε

∫
ω
|g|2dxdt ≤ CγeαL2/T ||yε||2V . (6.5)

Next, we set

g(t) =

{
0; if 0 < t < ε,

g(t); if ε ≤ t < T.

It is not difficult to see that the solution y to (5.1), with g as a control, satisfies y(T ) = 0.
From (6.5), and the definition of g, we have the following estimate, which we call “pseudo-cost”
of the controllability: ∫ T

0

∫
ω
|y|2dxdt ≤ CγeαL2/T ||yε||2V . (6.6)

Let us now consider system (5.1) in the interval [0, ε], i.e., we consider the system∣∣∣∣∣∣∣∣
yt −∆y +∇p = 0 in (0, ε)× Ω,
div y = 0 in (0, ε)× Ω,
y = 0 on (0, ε)× ∂Ω,
y(0) = y0 in Ω,

(6.7)

with y0 ∈ H.

We make the change of variable z(t) = e−
1
t y(t). This new function z solves∣∣∣∣∣∣∣∣

zt −∆z +∇p = 1
t2
e−

1
t y in (0, ε)× Ω,

div z = 0 in (0, ε)× Ω,
z = 0 on (0, ε)× Σ,
u(0) = 0 in Ω.

(6.8)

Using the fact that 1
t2
e−

1
t y ∈ L2(0, ε;H) and the regularity of the Stokes system, we conclude

that z ∈ L2(0, ε;H2(Ω)) and zt ∈ L2(0, ε;H).
Multiplying (6.8) by zt and integrating by parts, we get

2|zt(t)|2H +
d

dt
||z(t)||2V = 2(

1

t2
e−

1
t y(t), zt)H . (6.9)

Integrating (6.9) from 0 to ε and using Young’s inequality, we obtain∫ ε

0
|zt(t)|2Hdt+ ||z(ε)||2V ≤ C

∫ ε

0
| 1
t2
e−

1
t y(t)|2Hdt+ δ

∫ ε

0
|zt|2Hdt,

for all δ > 0.
Taking δ small enough, we have

||z(ε)||2V ≤ C
∫ ε

0
| 1
t2
e−

1
t y(t)|2Hdt (6.10)

and, since for ε sufficiently small, we have 1
t4
e−

2
t ≤ e

1
ε for 0 < t < ε, it follows that

||z(ε)||2V ≤ e
1
ε

∫ ε

0
|y(t)|2Hdt.
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Finally, using the fact that ||y||2L2(0,ε;H) ≤ ε|y0|2H , we get from (6.10) that

||z(ε)||2V ≤ εe
1
ε |y0|2H ,

and, in particular, using the fact that z(t) = e−
1
t y(t), we conclude that

||y(ε)||2V ≤ εe
2
ε |y0|2H . (6.11)

From (6.6) and (6.11), the result then follows. �

Remark 6.2. Since yε −→ y0 in H, the norm of yε is not bounded in V . Hence, we can not
pass to the limit in (6.6) when ε −→ 0.

Appendix A. Some auxiliary lemmas

In what concerns the proof of Theorem 2.3, the following Lemmas are in order.

Lemma A.1. Let q = q(x) be in C1(Ω̄)n, then for every regular solution u of (2.3), the following
identity holds:

1

2

∫∫
Σ
qk(x)νk(x)

(
∂u

∂ν

)2

dΣ = (u′(t), q(x)∇u(t))

∣∣∣∣T
0

+

∫∫
Q

∂qk
∂xj

∂ui

∂xk

∂ui

∂xj
dxdt

+
1

2

∫∫
Q

∂qk
∂xk

(
|u′|2 − |∇u|2

)
dxdt

+

∫∫
Q

∂p

∂xi
qk
∂ui

∂xk
dxdt+

∫∫
Q
hiqk

∂ui

∂xk
dxdt. (A.1)

Proof. The proof is the same as in the case of a single wave equation, the difference is that here
see the pressure as a force term in the right-hand side. �

Lemma A.2. Let ν = (ν1, . . . , νn) the vector field of exterior normal to ∂Ω. Then, there exists
a vector field k = (k1 . . . , kn) ∈ C1(Ω̄)n such that

ki = νi on ∂Ω for i = 1, . . . , n.

Proof. We consider the trace bijection operator γ0 : Hm(Ω) → Hm− 1
2 (∂Ω). Then, if νj ∈

Hm− 1
2 (∂Ω), there exists kj ∈ Hm(Ω) such that γ0kj = νj . From Sobolev’s embedding theorem,

we know that for m > 1 + n
2 we have Hm(Ω) ⊂ C1(Ω) continuously, and the results follows.

�

Lemma A.3. Let (u0, u1, h) ∈ V ×H × L2(0, T ;H), then the weak solution of (2.3) satisfies:∫∫
Σ

(
∂u

∂ν

)2

dΣ ≤ C
(
|u1|2H + ||u0||2V + ||h||2L2(0,T ;H)

)
.

Proof. The proof is performed as the equivalent one for the wave equation, first showing the
result for regular solutions. Indeed, in this case we must take the vector field q in Lemma A.1
to be the vector field q(x) = x and use the fact that∫∫

Q

∂p

∂xi
qk
∂ui

∂xk
dxdt = 0.



18 F. W. CHAVES-SILVA

�

References

[1] G. O. Antunes, R. S. Busse, H. R. Cripa, Hidden regularity for a nonlinear hyperbolic equation with a
resistance Term, International Mathematical Forum, 4 (11)(2009), 511–520.

[2] G. O. Antunes, F. D. Araruna, L. A. Medeiros, Simultaneous controllability for a system with resistance
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