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Abstract. We consider degenerate parabolic and damped hyperbolic equa-

tions involving an operator L, that is X-elliptic with respect to a family of

locally Lipschitz continuous vector fields X = {X1, . . . , Xm}. The local well-
posedness is established under subcritical growth restrictions on the nonlinear-

ity f , which are determined by the geometry and functional setting naturally

associated to the family of vector fields X. Assuming additionally that f is
dissipative, the global existence of solutions follows, and we can characterize

their longtime behavior using methods from the theory of infinite dimensional

dynamical systems.

1. Introduction

Our aim is to show that the theory of semigroups and global attractors extends
to a large class of semilinear evolution equations involving degenerate elliptic op-
erators. To this end we consider as sample problems the semilinear heat and the
semilinear damped wave equation, where the classical Laplace operator is replaced
by the second order partial differential operator in divergence form

Lu :=

N∑
i,j=1

∂xi(aij∂xju),

that is X-elliptic with respect to the family of vector fields X = {X1, . . . , Xm}.
The notion of X-elliptic operators, which will be recalled in Subsection 1.1, was
first introduced in 2000 in the paper [26]. However, several families of operators
that fall into this class were already present in literature; see, e.g., [13], [32], [33],
[36], [24] and [25]. More recently, X-elliptic operators were widely studied in [15],
where a maximum principle, a non-homogeneous Harnack inequality and a Liou-
ville theorem were obtained, and in [21], where a one-sided Liouville-type property
was proved, which extends the previous result by Gutierrez and Lanconelli in [15]
and a celebrated Liouville-type theorem by Colding and Minicozzi in [11].

We analyze degenerate parabolic problems

∂tu(x, t) = Lu(x, t) + f(u(x, t)) x ∈ Ω, t > 0,

u(x, t) = 0 x ∈ ∂Ω, t ≥ 0,(1.1)

u(x, 0) = u0(x) x ∈ Ω,
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and damped hyperbolic problems of the form

∂ttu(x, t) + βut(x, t) = Lu(x, t) + f(u(x, t)) x ∈ Ω, t > 0,

u(x, t) = 0 x ∈ ∂Ω, t ≥ 0,(1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω,

in a bounded domain Ω ⊂ RN , where ∂Ω denotes the boundary of Ω and the con-
stant β is positive.

We study the local and global well-posedness of Problem (1.1) and Problem (1.2)
and characterize the longtime behavior of solutions. In particular, we show that
the operator L generates an analytic semigroup in L2(Ω) and that the local well-
posedness of solutions can be obtained under appropriate growth conditions on the
nonlinearity. The growth conditions are determined by the geometry and functional
setting naturally associated to the family of vector fields X. If we additionally as-
sume certain sign conditions for the nonlinearity, the global existence of solutions
follows similarly to the classical cases of the semilinear heat and damped wave equa-
tion. Finally, we show existence and finite fractal dimension of the global attractor
for the generated semigroup and prove convergence of solutions to an equilibrium
solution as time tends to infinity. We formulate proofs, that are valid for a large
class of operators and immediately yield estimates for the fractal dimension of the
global attractor.

1.1. Hypotheses and functional setting.
We consider the operator

Lu :=

N∑
i,j=1

∂xi(aij∂xju)

where the functions aij are measurable in RN and aij = aji.
We assume that there exists a family X := {X1, . . . , Xm} of vector fields in RN ,

Xj = (αj1, . . . , αjN ), j = 1, . . . ,m, where the functions αjk are locally Lipschitz
continuous in RN . As usual, we identify the vector-valued function Xj with the
linear first order partial differential operator

Xj =

N∑
k=1

αjk∂xk , j = 1, . . . ,m.

The operator L is uniformly X-elliptic in RN if there exists a constant C > 0
such that

1

C

m∑
j=1

〈Xj(x), ξ〉2 ≤
N∑

i,j=1

aij(x)ξiξj ≤ C
m∑
j=1

〈Xj(x), ξ〉2 ∀x, ξ ∈ RN ,(1.3)

where 〈 ·, ·〉 denotes the usual inner product in RN and

〈Xj(x), ξ〉 =

N∑
k=1

αjk(x)ξk, j = 1, . . . ,m.
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We define the Hilbert space H as the closure of C1
0 (Ω) with respect to the norm

‖u‖H :=
( m∑
j=1

‖Xju‖2L2(Ω)

) 1
2

, u ∈ C1
0 (Ω),

and the bilinear form

a(u, v) :=

ˆ
Ω

N∑
i,j=1

aij(x)∂xiu(x)∂xjv(x) dx, u, v ∈ H.

We observe that the operator L is self-adjoint in L2(Ω) with domain

D(L) =
{
u ∈ H : ∃ c ≥ 0 such that |a(u, v)| ≤ c‖v‖L2(Ω) ∀v ∈ H

}
,

〈−Lu, v〉L2(Ω) = a(u, v) ∀u ∈ D(L), v ∈ H.

Assuming that the following Poincaré-type inequality is valid,

(P) ‖u‖2L2(Ω) ≤ c a(u, u) ∀u ∈ H,

for some constant c ≥ 0, the operator −L is positive sectorial and generates an
analytic semigroup in L2(Ω), which we denote by eLt, t ≥ 0 (see Subsection 3.1).

To solve the semilinear problems we require a Sobolev-type embedding result: We
assume that there exists q > 2 such that the embedding

(S) H ↪→ Lp(Ω)

is continuous for p ∈ [1, q] and compact for every p ∈ [1, q).

Remark 1. The X-ellipticity of the operator L implies that the Poincaré inequality
(P ) is in fact a particular case of the Sobolev embeddings (S).

The local well-posedness of Problem (1.1) and Problem (1.2) follows by classical
techniques from the theory of analytic semigroups, if the nonlinearity is locally
Lipschitz continuous and satisfies the sub-critical growth restrictions

|f(u)− f(v)| ≤ c|u− v|(1 + |u|γ + |v|γ), u, v ∈ R,

for some constant c ≥ 0, where we assume that

0 ≤ γ < q − 2 for Problem (1.1),(F1)

0 ≤ γ < q − 2

2
for Problem (1.2)(F1’)

(see Subsections 3.2, 4.1 and 5.1).
Furthermore, the following sign conditions ensure the global existence of solu-

tions and allow to characterize their longtime behavior:

lim sup
|u|→∞

f(u)

u
< µ1, u ∈ R,(F2)

where µ1 > 0 denotes the first eigenvalue of the operator −L with homogeneous
Dirichlet boundary conditions.
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1.2. Main results.
To formulate our main results we recall some notions from the theory of infinite
dimensional dynamical systems (e.g., see [5], [34] or [31]):

Let S(t) : V → V, t ≥ 0, be continuous operators in a Banach space (V, ‖ · ‖V ).
We call the family S(t), t ≥ 0, a semigroup if it satisfies the properties

S(t) ◦ S(s) = S(t+ s) ∀t, s ≥ 0,

S(0) = Id,

(t, v) 7→ S(t)v is continuous from [0,∞)× V → V,

where ◦ denotes the composition, and Id the identity operator in V .
A non-empty, compact subset A ⊂ V is called the global attractor of the semi-

group S(t), t ≥ 0, if A is invariant,

S(t)A = A ∀t ≥ 0,

and A attracts every bounded subset B ⊂ V under the action of the semigroup,
i.e.,

lim
t→∞

distH(S(t)B,A) = 0.

Here, distH(·, ·) denotes the Hausdorff semi-distance in V ,

distH(B,A) := sup
b∈B

inf
a∈A
‖a− b‖V for subsets A,B ⊂ V.

We denote the set of equilibrium points of the semigroup S(t), t ≥ 0, by

E :=
{
v ∈ V : S(t)v = v ∀t ≥ 0

}
,

and the unstable set of E by

Wu(E) =
{
v ∈ V : S(t)v is defined ∀ t ∈ R,distH(S(−t)v, E)→ 0 as t→∞

}
.

Furthermore, the ω-limit set of an element v ∈ V is

ω(v) =
{
y ∈ V : ∃ (tn)n∈N, tn ≥ 0, lim

n→∞
tn =∞, such that lim

n→∞
S(tn)v → y

}
.

Under our hypotheses we obtain the following result, which states the global
existence of solutions of Problem (1.1) and characterizes their longtime behavior:

Theorem 1. We assume the operator L is X-elliptic with respect to the family of
vector fields X = {X1, . . . , Xm}, and the properties (S), (F1) and (F2) are satisfied.
Then, for every initial data u0 ∈ H there exists a unique global solution of Problem
(1.1) and

u ∈ C([0,∞);H) ∩ C1((0,∞);H).

The semigroup S(t), t ≥ 0, in H generated by Problem (1.1) possesses a global
attractor A of finite fractal dimension, which is connected and

A =Wu(E),

where E = {u ∈ H | Lu+ f(u) = 0}. Furthermore, for every initial data u0 ∈ H we
have ω(u0) ⊂ E and, in particular,

lim
t→∞

distH(S(t)u0, E) = 0.
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This generalizes our previous result in [23], where we studied Problem (1.1) for
the particular class of ∆λ-Laplacians (see Subsection 2.1.2).

Similar results can be obtained for Problem (1.2). Setting v := ∂tu and w :=
(u, v) we reformulate it as the first order system

∂tw
T = ÂwT + f̂(w), wT =

( u
v

)
,(1.4)

w|t=0 = w0,

where the initial data w0 = (u0, u1) ∈ V, and V := H × L2(Ω) with

‖w‖V :=
(
a(u, u) + ‖v‖2L2(Ω)

) 1
2 , w = (u, v) ∈ V.

Furthermore, Â and f̂ are defined by

Â :=

(
0 Id
−A −β

)
, f̂(w) :=

(
0

f(u)

)
,

where A denotes the operator −L in L2(Ω) with homogeneous Dirichlet boundary
conditions.

Theorem 2. We assume the operator L is X-elliptic with respect to the family
of vector fields X = {X1, . . . , Xm}, and the properties (S), (F1’) and (F2) are
satisfied. Then, for every initial data w0 ∈ V there exists a unique global solution
of Problem (1.4) and

w ∈ C([0,∞);V ).

The semigroup U(t), t ≥ 0, in V generated by Problem (1.4) possesses a global
attractor A of finite fractal dimension, which is connected and

A =Wu(E),

where E = {(u, 0) ∈ V | Lu+f(u) = 0}. Furthermore, for every initial data w0 ∈ V
we have ω(u0) ⊂ E and, in particular,

lim
t→∞

distV (U(t)w0, E) = 0.

The aim of this article is to show that our previous result in [23] extends to a large
class of parabolic equations involving degenerate elliptic operators and that similar
results can be obtained for damped hyperbolic equations. Moreover, we formulate
for the different classes of X-elliptic operators the admissible growth restrictions
on the nonlinearity, which are determined by Sobolev type embedding theorems.

In Section 2 we give an overview of the different classes of operators to which
our results apply. In Section 3 we collect some notions and results from the theory
of semigroups and infinite dimensional dynamical systems that are used in the
subsequent sections. Theorem 1 can be shown by following the arguments in [23].
For convenience of the reader we give a sketch of the proof in Section 4 and indicate
the main ideas. In Section 5 we consider the degenerate damped hyperbolic problem
(1.4), show its well-posedness and prove Theorem 2. In the Appendix we derive
a Poincaré type inequality and an auxiliary result, which yields estimates for the
fractal dimension of global attractors.
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2. Classes of operators satisfying our hypotheses

2.1. X-elliptic operators in homogeneous metric spaces.
We recall the definition of control distance or Carnot-Caratheodory distance d = dX
related to the family of vector fields X. A piecewise regular path γ : [0, 1] −→ RN
is called X-subunit curve in [0, T ], if there exist measurable functions c1, . . . , cN :
[0, T ] −→ R such that

γ̇(t) =

m∑
j=1

cj(t)Xj(γ(t)),

m∑
j=1

c2j ≤ 1 a.e. in [0, 1].

We call RN X-connected if for every x, y ∈ RN there exists a X-subunit curve
such that γ(0) = x and γ(T ) = y and define

d(x, y) := inf{T > 0 : ∃ γ subunit curve s.t. γ(0) = x, γ(T ) = y}.

We further assume that the following properties are satisfied:

• RN is X-connected, the control distance is continuous with respect to the
Euclidean topology and there exists A > 1 such that the doubling condition
holds

(D) 0 < |B2R| ≤ A|BR|,

for every d-ball BR of radius R, such that BR ⊂ B2R0 , where Ω ⊂ BR0 .
Here, |E| denotes the Lebesgue measure of a set E ⊆ RN .
• There exist positive constants C and ν ≥ 1 such that the following Poincaré

inequality holds

(P̃ )

 
BR

|u(x)− uR| dx ≤ CR
 
BνR

|Xu(x)| dx

for every Lipschitz continuous function u in BνR and any d-ball BR, such
that BR ⊂ B2R0 . Here, we denote by uR =

ffl
BR

u := 1
|BR|

´
BR

u the mean

value and by Xu the X-gradient of u, i.e.,

Xu = (X1u, . . . ,Xmu).

These properties imply the Sobolev embeddings (S) and have been verified for
wide classes of operators that we discuss in Subsections 2.1.1 and 2.1.2.

The real number Q := log2(A) is called the homogeneous dimension of (RN , d).

Remark 2. The homogeneous dimension is not unique, but taking

A0 := inf{A : property (D) holds}

leads to the largest exponent in the Sobolev type embeddings (S) and the weakest
growth restrictions on the nonlinearities in Problem (1.1) and Problem (1.2).

In the particular case that the vector fields Xj are homogeneous of degree one
with respect a group of dilations (δr)r>0 in RN ,

δr : RN −→ RN , δr(x) = δr(x1, . . . , xN ) = (rσ1x1, . . . , r
σNxN ),

σ1 = 1 ≤ σ2 ≤ · · · ≤ σN , the doubling property can be easily verified. We have
0 < |B2R| = 2Q|BR| and A = 2Q is clearly the optimal constant in (D). In this
case the homogeneous dimension of RN is defined as Q := σ1 + · · ·+ σN .
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Under the assumptions (D) and (P̃ ) the Poincaré-Sobolev inequality

‖u‖Lq(Ω) ≤ c‖Xu‖L2(Ω) ∀u ∈ C1
0 (Ω),

for some constant c ≥ 0, with q = 2Q
Q−2 was proved in Remark 9 in [21]. Since the

domain Ω is bounded, the inequalities are satisfied if Lq(Ω) is replaced by Lp(Ω)
for any p ∈ [1, q], and the Poincaré inequality (P ) follows by the X-ellipticity of
the operator L.

Furthermore, (RN , d) is a Carnot-Carathéodory space in the sense of [17], Section
11, and by Corollary 9.5 in [17] every ball in RN is a John’s domain. Theorem 1.28
in [16]1, states that the embedding

H1
X(Ω) ↪→ Lp(Ω)

is compact if 1 ≤ p < 2Q
Q−2 , where

H1
X(Ω) = {u ∈ L2(Ω) : Xju ∈ L2(Ω), j = 1, . . . ,m}

with inner product

〈u, v〉H1
X(Ω) =

ˆ
Ω

(uv +Xu ·Xv), u, v ∈ H1
X(Ω).

This shows that the assumptions (D) and (P̃ ) imply our hypotheses (P ) and (S),
where H is the closure of C1

0 (Ω) with respect to the norm ‖ · ‖H1
X(Ω). For our

problems (1.1) and (1.2) this leads to the subcritical growth restrictions (F1) with
0 < ρ < 4

Q−2 and (F1’) with 0 < ρ < 2
Q−2 .

We observe that the homogeneous dimension Q plays the same role as the di-
mension N in the classical Sobolev embedding H1

0 (Ω) ↪→ Lq(Ω), where q ∈ [1, q∗]
and q∗ = 2N

N−2 , N ≥ 3, which determines the critical exponents in the growth re-

strictions on the nonlinearity 4
N−2 and 2

N−2 for the classical semilinear heat and
damped wave equation.

The properties (D) and (P̃ ) are well known for two wide classes of operators,
which we describe in Subsections 2.1.1 and 2.1.2: Operators that are X-elliptic with
respect to a family of smooth vector fields satisfying the Hörmander rank condition,
and Lipschitz continuous vector fields of diagonal type.

2.1.1. Vector fields satisfying the Hörmander rank condition.
Let X = {X1, . . . , Xm} be a family of smooth vector fields satisfying the Hörmander
rank condition

rank (Lie{X1, . . . , Xm}) (x) = N ∀x ∈ RN ,

where Lie{X1, . . . , Xm} denotes the Lie-algebra generated by the family of vector
fields X. Then, the doubling condition (D) was proved by Nagel, Stein and Weinger

in [29] and the Poincaré inequality (P̃ ) by Jerison in [19].

1The hypotheses of the theorem are satisfied since every ball BR is a John’s domain and

John’s domains are X-PS domains in the sense of [16] (see p. 1093). Moreover, using the doubling

property (D) and the inequality

‖u‖L1(Ω) ≥ λ|{x ∈ BR : |u(x)− uBR | ≥ λ}| ∀ λ > 0,

we can deduce Hypothesis (H.2) in [16] from our assumption (P̃ ).
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Our results apply to operators L which are X-elliptic with respect to the family
X = {X1, . . . , Xm} and, in particular, to sub-Laplacians on Carnot groups:

Let (RN , ◦) be a Lie group in RN . We assume that RN can be split as follows

RN = RN1 × · · · × RNn ,
and that there exists a group of dilations δr : RN −→ RN ,

δr(x) = δr(x
(N1), . . . , x(Nn)) := (rx(N1), . . . , rnx(Nn)), r > 0,

x(Ni) ∈ RNi , i = 1, . . . , n,

which are automorphisms of (RN , ◦).
We assume that

rank (Lie{X1, . . . , XN1
}) (x) = N ∀x ∈ RN ,

where the vector fields Xj are left invariant on (RN , ◦) and

Xj(0) =
∂

∂x
(N1)
j

, j = 1, . . . , N1.

Then, G = (RN , ◦, δλ) is a Carnot group, and the homogeneous dimension is
Q = N1 + 2N2 + · · ·+ nNn. Our results apply to the sub-Laplacian

L = ∆G =

N1∑
j=1

X2
j ,

where the vector fields X1, . . . , XN1
are the generators of G. We remark that every

sub-Laplacian can be written in divergence form (see p. 64 in [6]).

Example 1. The Kohn-Laplacian on the Heisenberg group.
The Heisenberg group HN , whose elements we denote by ζ = (x, y, z), is the Lie

group (R2N+1, ◦) with the composition law

ζ ◦ ζ ′ = (x+ x′, y + y′, z + z′ + 2(〈x′, y〉 − 〈x, y′〉)) ,
where 〈·, ·〉 denotes the inner product in RN . The Kohn Laplacian is the operator

∆HN =
∑N
j=1(X2

j + Y 2
j ), where

Xj = ∂xj + 2yj∂z, Yj = ∂yj − 2xj∂z.

A natural group of dilations is given by

δr(ζ) = δr(x, y, z) = (rx, ry, r2z), r > 0,

and the homogeneous dimension is Q = 2N + 2.

For further examples we refer to [6].

2.1.2. The ∆λ-Laplacian.
As in [22], we consider operators of the form

∆λ :=

N∑
i=1

∂xi(λ
2
i ∂xi),

where ∂xi = ∂
∂xi

, i = 1, . . . , N . The functions λi : RN → R are continuous, strictly

positive and of class C1 outside the coordinate hyperplanes2 and satisfy the follow-
ing properties:

2λi > 0 in RN\Π, where Π =
{

(x1, . . . , xN ) ∈ RN :
∏N
i=1 xi = 0

}
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(i) λ1(x) ≡ 1, λi(x) = λi(x1, . . . , xi−1), i = 2, . . . , N .
(ii) For every x ∈ RN the function λi(x) = λi(x

∗), i = 1, . . . , N, where

x∗ = (|x1|, . . . , |xN |) if x = (x1, . . . , xN ).

(iii) There exists a constant ρ ≥ 0 such that

0 ≤ xk∂xkλi(x) ≤ ρλi(x) ∀k ∈ {1, . . . , i− 1}, i = 2, . . . , N,

for every x ∈ RN+ :=
{

(x1, . . . , xN ) ∈ RN : xi ≥ 0 ∀i = 1, . . . , N
}
.

(iv) There exists a group of dilations (δr)r>0,

δr : RN → RN , δr(x) = δr(x1, . . . , xN ) = (rσ1x1, . . . , r
σNxN ),

where 1 ≤ σ1 ≤ σ2 ≤ · · · ≤ σN , such that λi is δr-homogeneous of degree
σi − 1, i.e.,

λi(δr(x)) = rσi−1λi(x), ∀x ∈ RN , r > 0, i = 1, . . . , N.

This implies that the operator ∆λ is δr-homogeneous of degree two, i.e.,

∆λ(u(δr(x))) = r2(∆λu)(δr(x)) ∀u ∈ C∞(RN ).

We assumed in our definition of X-elliptic operators that the coefficient functions
are Lipschitz continuous. The assumptions (i)-(iv) do not necessarily imply the
Lipschitz continuity of the functions λi, but the hypotheses we need to prove our
main results can still be verified for ∆λ-Laplacians.

The doubling property (D) is certainly satisfied, the homogeneous dimension is

Q = σ1 + · · ·+σN , and the Poincaré inequality (P̃ ) was obtained in [14]. However,
for the ∆λ-Laplacian the Poincaré inequality (P ) can also be directly verified as
in A, and the Sobolev embeddings (S) were proved in [22] and [14]. If we apply
Theorem 1 to the ∆λ-Laplacian we recover our previous result in [23].

Example 2. We split RN into RN = RN1 × RN2 × RN3 and write

x = (x(1), x(2), x(3)), x(i) ∈ RNi , i = 1, 2, 3.

Let α, β and γ be nonnegative real constants. For the operator

∆λ = ∆x(1) + |x(1)|2α∆x(2) + |x(1)|2β |x(2)|2γ∆x(3) ,

where λ = (λ(1), λ(2), λ(3)) with

λ
(1)
j (x) ≡ 1, j = 1, . . . , N1,

λ
(2)
j (x) = |x(1)|α, j = 1, . . . , N2,

λ
(3)
j (x) = |x(1)|β |x(2)|γ , j = 1, . . . , N3,

we find the group of dilations

δr

(
x(1), x(2), x(3)

)
=
(
rx(1), rα+1x(2), rβ+(α+1)γ+1x(3)

)
.

Similarly, for operators of the form

∆λ = ∆x(1) + |x(1)|2α1,1∆x(2) + |x(1)|2α2,1 |x(2)|2α2,2∆x(3) + · · ·

+

(
k−1∏
i=1

|x(i)|2αk−1,i

)
∆x(k) ,
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where αi,j ≥ 0, i = 1, . . . , k − 1, j = 1, . . . , i, are real constants, the group of
dilations is given by

δr

(
x(1), . . . , x(k)

)
=
(
rσ1x(1), . . . , rσkx(k)

)
with σ1 = 1 and σj = 1 +

∑j−1
i=1 αj−1,iσi, for i = 2, . . . , k.

In particular, if α1,1 = · · · = αk−1,k−1 = α, the dilations become

δr

(
x(1), . . . , x(k)

)
=
(
rx(1), rα+1x(2), . . . , r(α+1)k−1

x(k)
)
.

A particular case of ∆λ-Laplacians are operators that are commonly called of
Grushin type,

∆x + |x|2α∆y, (x, y) ∈ RN1 × RN2 , α > 0.

The global well-posedness and existence of the global attractor for semilinear par-
abolic problems involving Grushin-type operators was proved in [4] and the result
slightly extended in [35].

2.1.3. Further examples.
We close this subsection with examples of X-elliptic operators that do not fall into
the classes of operators discussed in Subsections 2.1.1 and 2.1.2.

Example 3. We consider in R3 the family of vector fields X = {X1, X2} with

X1 = ∂x and X2 = |x|m∂y + ∂z,

where m is a real constant, m ≥ 1.
As observed in [15], Section 6.1, the doubling condition (D) and the Poincaré

inequality (P̃ ) are satisfied. Consequently, our results apply to the operator

L = X2
1 +X2

2 = ∂2
x + |x|2m∂2

y + ∂2
z + 2|x|m∂yz.

In this case, it can be easily verified that the fields X1 and X2 are invariant with
respect to the group of dilations

δr(x, y, z) = (rx, rm+1y, rz), r > 0,

and the homogeneous dimension is Q = 3 +m.

Example 4. Another operator for which Properties (D) and (P̃ ) hold was consid-
ered in Example 4.6 in [26]:

In R3 we consider the family of vector fields X = {X1, X2}, where

X1 = ∂x + a∂z and X2 = ∂y + b∂z.

The functions a, b ∈ C1(R3,R) and X1a−X2b > 0 at any point in R3.
We consider the operator

Lu :=

N∑
i,j=1

∂xi(aij∂xju),

where the matrix A = (aij)1≤i,j≤3 is given by

A =

 1 0 a
0 1 b
a b a2 + b2

(X1 X2

)
·
(
X1

X2

)
=

1 0
0 1
a b

 · ( 1 0 a
0 1 b

)
.
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Since

〈Aξ, ξ〉 = 〈X1, ξ〉2 + 〈X2, ξ〉2

the operator L is X-elliptic. It takes the form

L = ∂2
x + ∂2

y + (a2 + b2)∂2
z + ∂x(a∂z) + ∂y(b∂z)

+ ∂z(a∂x + b∂y) + ∂z(a
2 + b2)∂z.

Such operators arise when studying the Levi-curvature equation in C2(see [10]).

The doubling property (D) and Poincaré inequality (P̃ ) were proved in [27], the
homogeneous dimension is Q = 4 and can be computed as in [28].

2.2. A more general class of X-elliptic operators.

The doubling property (D) and the Poincaré inequality (P̃ ) are generally difficult
to verify. They are known for the classes of operators in Subsection 2.1. In certain
cases, we can verify the Poincaré inequality (P ) and the Sobolev embeddings (S)
directly under weaker assumptions and without using the fact that hypotheses (D)

and (P̃ ) imply properties (P ) and (S).
As in [20] we assume that the operator L is X-elliptic with respect to the family

of vector fields

X = {X1, . . . , XN} = {η1∂x1 , . . . , ηN∂xN },

where the ηj ’s are non-negative functions on Ω such that

η1(x) ≥ 1 and ηj(x) ≥ c|x1|α1 · · · |xj−1|αj−1 ∀x ∈ Ω,

for suitable positive constants c and α1, . . . , αj−1.
The Poincaré inequality (P ) can be verified by slightly modifying the classical

proof in [1] (see A). Furthermore, from Proposition 3.1 in [20] we obtain that there
exists q ∈ (2,∞) such that the embedding H ↪→ Lp(Ω) is continuous for all p ∈ [1, q]
and compact for p ∈ [1, q), which shows that (S) is satisfied. Here, the space H is
the closure of C1

0 (Ω) with respect to the norm

‖u‖H :=
(ˆ

Ω

|Xu|2
) 1

2

, u ∈ C1
0 (Ω).

Consequently, our results also apply to this class of X-elliptic operators, which
were studied in [20].

Remark 3. For simplicity and to avoid introducing new notation we have discussed
in this subsection a particular class of the X-elliptic operators in [20]. However,
the results can be verified for a larger class of operators studied in the cited article.

3. Semigroups and infinite dimensional dynamical systems: some
well-known properties

For the convenience of the reader we collect in this section well-known notions
and results from the theory of semigroups and infinite dimensional dynamical sys-
tems that we apply in the subsequent sections to prove our main results. For details
we refer to [5], [9], [18], [30], [31] and [34].
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3.1. Analytic semigroups and fractional power spaces. Let L be a uniformly
X-elliptic operator as defined in Section 1 and H be the corresponding Hilbert
space. We consider L in L2(Ω) with domain

D(L) =
{
u ∈ H | ∃ c ≥ 0 such that |a(u, v)| ≤ c‖v‖L2(Ω) ∀v ∈ H

}
,

〈−Lu, v〉L2(Ω) = a(u, v) ∀u ∈ D(L), v ∈ H.

Proposition 3. The operator A := −L generates an analytic semigroup e−At, t ≥
0, in L2(Ω).

Proof. We observe that L is densely defined and self-adjoint in L2(Ω). Furthermore,
the Poincaré type inequality (P) implies

−
ˆ

Ω

Lu(x)u(x)dx = a(u, u) ≥ 1

c
‖u‖2L2(Ω) ∀u ∈ D(L),

which shows that −L is bounded from below by a positive constant. We conclude
that A = −L is sectorial (see [18], p.19) and generates an analytic semigroup
e−At, t ≥ 0, in L2(Ω) by Theorem 1.3.4 in [18]. �

The operator A is positive,

〈−Lu, u〉L2(Ω) = a(u, u) ≥ 0 ∀u ∈ D(L),

and self-adjoint in L2(Ω), and the Sobolev type embedding (S) implies that A
has compact inverse. Consequently, there exists an orthonormal basis of L2(Ω) of
eigenfunctions ψj ∈ H, j ∈ N, of A with eigenvalues

0 < µ1 ≤ µ2 ≤ . . . , µj →∞ as j →∞.

We denote the fractional power spaces associated to A by Xα =
(
D(Aα

)
, 〈·, ·〉Xα),

α ∈ R. The inner product in Xα is given by 〈u, v〉Xα = 〈Aαu,Aαv〉X0 , u, v ∈
D(Aα), where

D(Aα) =
{
ψ =

∑
j∈N

cjψj , cj ∈ R
∣∣∣ ∑
j∈N

µ2α
j c2j <∞

}
and

Aαψ = Aα
∑
j∈N

cjψj =
∑
j∈N

µαj cjψj .

In this notation,

X1 = D(A), X
1
2 = H, X0 = L2(Ω), X−

1
2 = H ′,

where H ′ denotes the dual space of H. Moreover, for α > β the embedding Xα ↪→
Xβ is compact.

The operator A in X0 can be extended to a positive sectorial operator in Xα with
domain Xα+1 for α ∈ [−1, 0] and restricted to a positive sectorial operator in Xα

with domain Xα+1 for α ∈ [0,∞) (see [3] and Section 6 in [2]). The corresponding
semigroups e−At, t ≥ 0, in Xα and Xβ for −1 ≤ β < α < ∞ are obtained from
each other by natural restrictions and extensions. Moreover, if β ≤ α we have
e−At(Xβ) ⊂ Xα and ∥∥e−At∥∥

L(Xβ ;Xα)
≤ Cα,β

tα−β
, t > 0,(3.5)

for some constant Cα,β ≥ 0, where ‖ ·‖L(V ;W ) denotes the norm of a linear operator
between the normed spaces V and W (e.g., see Theorem 2.4 in [3]).
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3.2. Local well-posedness of semi-linear problems. Let V be a Banach space.
We consider the abstract semi-linear problem

d

dt
u(t) = Bu(t) + F (u(t)) t > 0,(3.6)

u|t=0 = u0, u0 ∈ V,
where B is the infinitesimal generator of a strongly continuous semigroup S(t), t ≥
0, and the nonlinearity F : V → V is Lipschitz continuous on bounded subsets of
V, i.e., there exists a non-decreasing function L : [0,∞)→ [0,∞) such that

‖F (u)− F (v)‖V ≤ L(r)‖u− v‖V ∀u, v ∈ Br(0),

where Br(0) denotes the ball of radius r > 0 and center 0 in V.

Definition 4. We call u a local mild solution of the initial value problem (3.6), if
there exists T > 0 such that u ∈ C([0, T );V ), u(0) = 0 and u satisfies the integral
equation

u(t) = S(t)u0 +

ˆ t

0

S(t− s)F (u(s))ds, t ∈ [0, T ).

For the proof of the following result we refer to Theorem 1.4, Chapter 6, in [30].

Theorem 5. Under the hypotheses above, for every initial data u0 ∈ V there exists
a unique local mild solution of the initial value problem (3.6), which is defined on
the maximal interval of existence [0, T ), T > 0, and either T = ∞, or, if T < ∞,
then

lim
t→T
‖u(t)‖V =∞.

If the operator B is positive sectorial, i.e., the generated semigroup is analytic,
the solutions have stronger regularity properties (see Theorem 2.1.1 and Corollary
2.3.1 in [9]).

Theorem 6. Let the operator B be positive sectorial and the nonlinearity F : Xα →
X be Lipschitz continuous on bounded subsets of Xα, for some α ∈ [0, 1). Then,
for every u0 ∈ Xα there exists a unique local mild solution u ∈ C([0, T );Xα) ∩
C1((0, T );X) of (3.6) defined on the maximal interval of existence [0, T ), T > 0.
Moreover, either T =∞, or, if T <∞, then

lim
t→T
‖u(t)‖Xα =∞,

and u satisfies

u ∈ C((0, T );X1), u̇ ∈ C((0, T );Xγ) ∀γ ∈ [0, 1).

3.3. Global attractors of infinite dimensional dynamical systems. Let S(t), t ≥
0, be a semigroup in the Banach space (V, ‖ · ‖V ). For a subset B ⊂ V we define
the positive orbit of B by

γ+(B) :=
⋃
t≥0

S(t)B,

and more generally, for τ ≥ 0 we define the orbit of B after time τ by

γ+
τ (B) := γ+(S(τ)B).

The semigroup S(t), t ≥ 0, is asymptotically compact if for every bounded subset
B ⊂ V such that γ+

τ (B) is bounded for some τ ≥ 0, the set

{S(tn + τ)vn, n ∈ N}
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is relatively compact for all sequences vn in B and tn ≥ 0 such that tn → ∞ as
n→∞.

A Lyapunov functional for the semigroup S(t), t ≥ 0, is a continuous function
Φ : V → R such that

Φ(S(t)v) ≤ Φ(v) ∀t ≥ 0,∀v ∈ V,
Φ(S(t)v) = Φ(v) ∀t ≥ 0 implies that v is an equilibrium point.

If S(t), t ≥ 0, possesses a Lyapunov functional we call it a gradient semigroup.

For the proof of the following theorem about the existence of global attractors
for gradient semigroups we refer to Theorem 4.6 and Proposition 2.19, [31].

Theorem 7. Let S(t), t ≥ 0, be an asymptotically compact gradient semigroup such
that for every bounded subset B ⊂ V there exists τ ≥ 0 such that the orbit γ+

τ (B)
is bounded. If the set of equilibrium points E is bounded, then the global attractor
exists, is connected and A =Wu(E).

The invariance principle of LaSalle (see Proposition 4.2, [31]) characterizes the
longtime behavior of trajectories.

Proposition 8. Let S(t), t ≥ 0, be a gradient semigroup in V with Lyapunov
functional Φ : V → R and let u ∈ V . If the orbit γ+

τ (u) is relatively compact in V
for some τ ≥ 0, then the limit limt→∞Φ(S(t)u) = a exists and Φ(v) = a for all
v ∈ ω(u). Moreover, ω(u) ⊂ E, E 6= ∅ and

lim
t→∞

distH
(
S(t)u, E

)
= 0.

4. Semilinear degenerate parabolic problems

The local well-posedness of Problem (1.1) and Theorem 1 can be shown by
slightly extending the arguments in [23]; for convenience of the reader we present
a sketch of the proof and summarize the main ideas.

4.1. Local well-posedness.

Definition 9. We call u a local weak solution of (1.1) if there exists T > 0 such
that

u ∈ C
(
[0, T );H

)
, u(0) = u0, u ∈ C1

(
(0, T );H ′

)
,

and u satisfies the equation

d

dt
〈u(t), v〉L2(Ω) = a(u(t), v) + 〈f(u), v〉L2(Ω) ∀v ∈ H, t ∈ (0, T ).

Theorem 10. We assume the operator L is X-elliptic with respect to the family
of vector fields X = {X1, . . . , Xm}, and the properties (S) and (F1) are satisfied.
Then, for every initial data u0 ∈ H there exists a unique local solution defined on
the maximal interval of existence [0, T ), T > 0, and

u ∈ C([0, T );H) ∩ C1((0, T );H).

Furthermore, either T =∞, or if T <∞, then

lim
t→T
‖u(t)‖H =∞,
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and the solution satisfies the variation of constants formula,

u(t) = eLtu0 +

ˆ t

0

eL(t−s)f(u(s))ds t ∈ [0, T ),

where u(t) := u(·, t;u0) denotes the solution of (1.1) corresponding to initial data
u0 ∈ H.

Sketch of the proof. Applying Young’s inequality if necessary, we can assume that
f satisfies Hypothesis (F1) with exponent q−2

2 < ρ < q − 2. It then follows from

complex interpolation, as in Lemma 1 in [23], that there exists α ∈ (0, 1
2 ) such that

the mapping f is locally Lipschitz continuous on bounded subsets from H = X
1
2

to X−α. The operator A = −L can be extended to a positive sectorial operator in
X−α with domain X1−α (see Subsection 3.2), and we observe that X1−α ↪→ X

1
2 ↪→

X−α. The local existence, uniqueness and regularity of solutions then follows by
considering the problem

∂tu = −Au+ f(u) t > 0,

u|t=0 = u0, u0 ∈ X
1
2 ,

in X−α and applying Theorem 6 (see also the proof of Theorem 2 in [23]). �

Remark 4. If the non-linearity satisfies the growth restriction (F1) with exponent
0 ≤ ρ < q−2

2 , the proof of Theorem 10 simplifies. It follows from Hölder’s inequality
and the Sobolev embeddings (S) that f is Lipschitz continuous on bounded subsets

from X
1
2 to X0. In this case, the local well-posedness of Problem (1.1) and the

regularity of solutions is an immediate consequence of Theorem 6.

4.2. Global existence and longtime behavior of solutions. The global ex-
istence of solutions is a consequence of the hypothesis (F2) and can be shown by

considering the Lyapunov functional Φ : X
1
2 → R,

Φ(u) :=

ˆ
Ω

(
1

2
|Ou(x)|2 − F (u(x))

)
dx,

where F (u) :=
´ u

0
f(s)ds denotes the primitive of f . If u is a weak solution of (1.1),

then Φ(u(·)) ∈ C
(
[0, T );R

)
∩ C1

(
(0, T );R

)
by Theorem 10, and

d

dt
Φ(u(t)) = −‖ut(t)‖2L2(Ω) <∞, t ∈ (0, T ).

Using the growth restriction (F1), the sign condition (F2) and Young’s inequality
we obtain an estimate of the form

C1

(
1 + ‖u(t)‖2

X
1
2

)
≤ Φ(u(t)) ≤ Φ(u0) ≤ C2

(
1 + ‖u0‖2

X
1
2

+ ‖u0‖ρ+2
Lρ+2(Ω)

)
,

for some constants C1, C2 ≥ 0 (see [23]). The Sobolev embeddings (S) now imply

that solutions are uniformly bounded in H = X
1
2 for t > 0 and therefore exist

globally.

We denote by S(t), t ≥ 0, the semigroup in H generated by Problem (1.1),

S(t)u0 := u(t;u0), t ≥ 0,

where u ∈ C
(
[0,∞);H

)
∩ C1

(
(0,∞);H

)
denotes the global weak solution corre-

sponding to initial data u0 ∈ H.
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Sketch of the proof of Theorem 1. We only give a sketch of the proof, for all details
we refer to the proof of Theorem 3 in [23].

We observed that solutions of Problem (1.1) exist globally, that the generated
semigroup S(t), t ≥ 0, in H possesses a Lyapunov functional and orbits of bounded
sets are bounded. The sign condition (F2) implies that the set of equilibrium points

E = {u ∈ H : Lu+ f(u) = 0}

is bounded in H. Moreover, it can be shown as in Lemma 2 in [23], that the
semigroup S(t), t ≥ 0, satisfies the smoothing property in bounded subsets D ⊂ H:
For every t∗ > 0 there exists a constant κ∗ > 0 such that

‖S(t∗)u0 − S(t∗)v0‖H ≤ κ∗‖u0 − v0‖L2(Ω) ∀u0, v0 ∈ D.(4.7)

This estimate implies that the semigroup is asymptotically compact in H. The
existence of the global attractor, its connectedness and structure, A =Wu(E), now
follow by Theorem 7.

The finite fractal dimension of the global attractor is a consequence of the
smoothing property (4.7) and Lemma 3 in [23], which is a special case of the result
we prove in B. In particular, for every ν ∈ (0, 1

2 ) the fractal dimension is bounded
by

dimf (A) ≤ log 1
2ν

(
N
L2(Ω)
ν
κ∗

(
BH1 (0)

))
.

The convergence of trajectories to equilibrium solutions can be deduced from the
smoothing property and by applying the invariance principle of LaSalle (Proposition
8).

�

5. Semilinear degenerate hyperbolic problem

5.1. Local well-posedness.

Definition 11. We call u a local weak solution of (1.2) if there exists T > 0 such
that

u ∈ C
(
[0, T );H

)
∩ C1((0, T );L2(Ω)) ∩ C2((0, T );H ′),

u(0) = u0, ut(0) = u1,

and u satisfies the equation

d2

dt2
〈u(t), v〉L2(Ω) + β

d

dt
〈u(t), v〉L2(Ω) = a(u(t), v) + 〈f(u), v〉L2(Ω),

for all v ∈ H, t ∈ (0, T ).

Problem (1.2) is equivalent to the first order system (1.4), which is locally well-
posed in V = H × L2(Ω) if f satisfies the growth restrictions (F1’).

Theorem 12. We assume the operator L is X-elliptic with respect to the fam-
ily of vector fields X = {X1, . . . , Xm}, and the properties (S) and (F1’) are sat-
isfied. Then, for every initial data w0 ∈ V there exists a unique local solution
of Problem (1.4) defined on the maximal interval of existence [0, T ), T > 0, and
w ∈ C([0, T );V ). Furthermore, either T =∞, or if T <∞, then

lim
t→T
‖w(t)‖V =∞,
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and the solution satisfies the variation of constants formula,

w(t) = eÂtw0 +

ˆ t

0

eÂ(t−s)(f̂(w(s)))ds, t ∈ [0, T ),

where w(t) := w(·, t;w0) denotes the solution of (1.4) corresponding to initial data
w0 ∈ V.

Proof. The domain of the operator Â in V is D(Â) = D(L)×H. We define A1 and
A2 by

Â = A1 +A2 =

(
0 Id
−A 0

)
+

(
0 0
0 −β

)
,

where the operator A2 : V → V is linear and bounded. Since A is self-adjojnt, the
operator A1 is dissipative. Indeed, if w = (u, v) ∈ D(A1) = D(Â), then〈

wT , A1w
T
〉
V

=
〈( u

v

)
,
( v
−Au

)〉
V

= a(u, v) +
〈
v,−Au

〉
L2(Ω)

= 0.

By Corollary 4.4, Chapter 1, in [30] the operator A1 generates a strongly continuous
semigroup of contractions in V. Moreover, Hölder’s inequality and the embedding
H ↪→ Lq(Ω) imply that f is Lipschitz continuous on bounded subsets from H to

L2(Ω), and therefore, the mapping f̂ : V → V is Lipschitz continuous on bounded
subsets. The local well-posedness of Problem (1.4) now follows from Theorem 5. �

5.2. Global existence and longtime behavior. We first show the exponential
decay of solutions of the linear homogeneous problem

∂tw = Âw t > 0,(5.8)

w|t=0 = w0, w0 ∈ V.

Lemma 13. Let C(t) = eÂt, t ≥ 0, be the semigroup in V generated by Problem
(5.8). Then, there exist constants C ≥ 0 and ω > 0 such that

‖C(t)‖L(V ;V ) ≤ Ce−ωt for all t ≥ 0.

Proof. We define the functional F : V → R by

F(φ, ψ) :=
1

2
a(φ, φ) +

1

2
‖ψ‖2L2(Ω) + 2b〈φ, ψ〉L2(Ω),

where the constant b > 0 will be chosen below. If (φ, ψ) ∈ V and if we take
b < 1

4 min{1, µ1}, Poincaré’s inequality and the X-ellipticity of L imply that

F(φ, ψ) ≤ 1

2
a(φ, φ) +

1

2
‖ψ‖2L2(Ω) + b(‖φ‖2L2(Ω) + ‖ψ‖2L2(Ω))(5.9)

≤ (
1

2
+

b

µ1
)a(φ, φ) + (

1

2
+ b)‖ψ‖2L2(Ω) ≤

3

4
‖(φ, ψ)‖2V ,

and, on the other hand,

F(φ, ψ) ≥ 1

2
a(φ, φ) +

1

2
‖ψ‖2L2(Ω) − b(‖φ‖

2
L2(Ω) + ‖ψ‖2L2(Ω))(5.10)

≥ (
1

2
− b

µ1
)a(φ, φ) + (

1

2
− b)‖ψ‖2L2(Ω) ≥

1

4
‖(φ, ψ)‖2V .

Here, µ1 denotes the first eigenvalue of the operator A and 1
µ1

is the optimal

constant in the Poincaré inequality (P). These estimates show that F defines an
equivalent norm on V.
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If w(t) = (u(t), v(t)) is a solution of (5.8) we observe that

0 = 〈v, vt〉L2(Ω) + a(u, v) + β‖v‖2L2(Ω),

0 = 〈u, vt〉L2(Ω) + a(u, u) + β〈u, v〉L2(Ω).

Using these identities it follows by Poincaré’s and Young’s inequality that

d

dt
F(u, v) = a(u, v) + 〈v, vt〉L2(Ω) + 2b〈ut, v〉L2(Ω) + 2b〈u, vt〉L2(Ω)

= −2ba(u, u)−
(
β − 2b

)
‖v‖2L2(Ω) − 2bβ〈u, v〉L2(Ω)

≤ −2ba(u, u)−
(
β − 2b

)
‖v‖2L2(Ω) + bβ

(µ1

β
‖u‖2L2(Ω) +

β

µ1
‖v‖2L2(Ω)

)
≤ −2ba(u, u)−

(
β − 2b

)
‖v‖2L2(Ω) + bβ

( 1

β
a(u, u) +

β

µ1
‖v‖2L2(Ω)

)
≤ −ba(u, u)− (β − 2b− bβ2

µ1
)‖v‖2L2(Ω) ≤ −b‖(u, v)‖2V ,

where we chose b ≤ µ1β
3µ1+β2 . Setting α = min{ 1

4 ,
µ1

4 ,
µ1β

3µ1+β2 } we obtain

d

dt
F(u, v) ≤ −α‖(u, v)‖2V ≤ −

4

3
αF(u, v).

Gronwall’s Lemma now implies that

F(u, v) ≤ F(u0, v0)e−α
4
3 t, t ≥ 0,

and the norm equivalence yields the exponential decay of solutions. �

The sign conditions (F2) ensure the global existence of solutions. We define the
functional Φ : V → R by

Φ(w) = Φ((u, v)) =
1

2
a(u, u) +

ˆ
Ω

(
1

2
(v(x))2 − F (u(x))

)
dx,

where F denotes the primitive of f . If w = (u, v) ∈ C([0, T );V ) is a solution of
Problem (1.4), then Φ(w(·)) ∈ C1((0, T );R) and

d

dt
Φ(w(t)) = −β‖v(t)‖2L2(Ω), t > 0.

Using the growth restriction (F1’), the sign condition (F2) and Young’s inequality
we obtain an estimate of the form

C1

(
1 + ‖(u(t), v(t))‖2V

)
≤ Φ(w(t))

≤ Φ(w0) ≤ C2

(
1 + ‖(u0, v0)‖2V + ‖u0‖γ+2

Lγ+2(Ω)

)
,

for some constants C1, C2 ≥ 0 (see Section 4.2 in [23] and Section 5.2). The Sobolev
embeddings (S) and the X-ellipticity of the operator L now imply that solutions
are uniformly bounded in V for t > 0 and therefore exist globally.

We denote by U(t), t ≥ 0, the semigroup in V generated by Problem (1.4),

U(t)w0 := w(t;w0), t ≥ 0,

where w ∈ C([0,∞);V ) denotes the unique global solution corresponding to initial
data w0 ∈ V. Using the variation of constants formula U can be represented as sum
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U = C+S, where the semigroup C corresponds to the linear homogeneous problem
(5.8) and decays exponentially, and the family of operators S is defined by

U(t)w0 = C(t)w0 +

ˆ t

0

C(t− s)f̂(U(s)w0)ds = C(t)w0 + S(t)w0, t ≥ 0.

To show the asymptotic compactness of U and to establish a bound for the frac-
tal dimension of the global attractor we prove in several steps that S satisfies the
smoothing property. The proof is based on the method applied in [8].

As in Subsection 3.1, we denote by Xα, α ∈ [−1,∞), the fractional power spaces
associated to the operator A = −L with domain D(A) = X1 in L2(Ω) = X0. The
solution theory for Problem (1.4) can be extended to the fractional power space

Xα ×Xα− 1
2 , for some α ∈ (0, 1

2 ].

Lemma 14. There exists ε ∈ (0, 1) such that f is Lipschitz continuous from X
1−ε

2

to L2(Ω) on bounded subsets of D ⊂ H :

‖f(u)− f(v)‖L2(Ω) ≤ cD‖u− v‖
X

1−ε
2

∀ u, v ∈ D,

for some constant cD ≥ 0.

Proof. Let u, v ∈ D. The growth restrictions (F1’) and Hölder’s inequality with
p′ = q

2γ and q′ = q
q−2γ imply

‖f(u)− f(v)‖L2(Ω) ≤ c‖(1 + |u|γ + |v|γ)(u− v)‖L2(Ω)

≤ c
(
‖u− v‖L2(Ω) + (‖u‖γ

L2γp′ (Ω)
+ ‖v‖γ

L2γp′ (Ω)
)‖u− v‖L2q′ (Ω)

)
≤ c‖u− v‖L2q′(Ω) ,

where we used the embeddings H ↪→ L2γp′(Ω) = Lq(Ω) and L2q′(Ω) ↪→ L2(Ω) in
the last inequality. Here, c denotes a non-negative constant that may vary from
line to line.

If we define ε := 1− 2γ
q−2 , then ε ∈ (0, 1). Moreover, the identity E is a bounded

linear operator from X0 = L2(Ω) to L2(Ω) and from X
1
2 to Lq(Ω) by our assump-

tion (S) and the X-ellipticity of the operator L. Using complex interpolation we
conclude that

E : [X0, X
1
2 ]1−ε = X

1−ε
2 → [L2(Ω), Lq(Ω)]1−ε = L2q′(Ω),

1

2q′
=
ε

2
+

1− ε
q

,

is linear and bounded (see Section II.2.1. in [34], Example 7.56 in [1] and Proposi-
tion 1.3.9 in [9]). Using this embedding in the above inequality follows the statement
of the lemma. �

Lemma 15. Let ε := 1 − 2γ
q−2 be as in Lemma 14 and V ε := X

1−ε
2 × X−

ε
2 .

Then, for every initial data w0 = (u0, v0) ∈ V ε there exists a unique local solution
w ∈ C([0, T );V ε) of Problem (1.4).

In particular, the semigroup Cε generated by the linear homogeneous problem
(5.8) in V ε is the extension of the semigroup C and uniformly bounded in V ε,

‖Cε(t)‖L(V ε;V ε) ≤ d t ≥ 0,

for some constant d ≥ 0.
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Proof. We consider the operator

Â = A1 +A2 =

(
0 Id
−A 0

)
+

(
0 0
0 −β

)
,

in V ε, where A2 : V ε → V ε is linear and bounded and A is considered as an operator

in X−
ε
2 with domain X

1−ε
2 (see Subsection 3.1). Since A is selfadjoint in X−

ε
2 the

operator A1 is dissipative in V ε. Indeed, if w = (u, v) ∈ D(A1) = X
2−ε

2 × X 1−ε
2 ,

then 〈
wT , A1w

T
〉
V ε

=
〈( u

v

)
,
( v
−Au

)〉
V ε

=
〈
A

1−ε
2 u,A

1−ε
2 v
〉
X0 +

〈
A−

ε
2 v,A−

ε
2 (−Au)

〉
X0

=
〈
A

1−ε
2 u,A

1−ε
2 v
〉
X0 −

〈
A

1−ε
2 v,A

1−ε
2 u
〉
X0 = 0.

By Corollary 4.4, Chapter 1, in [30] the operator A1 generates a strongly continuous

semigroup of contractions in V ε. Moreover, if B ⊂ X
1−ε

2 is bounded, Lemma 14
implies that

‖f(u)− f(v)‖
X−

ε
2
≤ C1‖f(u)− f(v)‖X0 ≤ C2‖u− v‖

X
1−ε

2
, ∀u, v ∈ B,

for some constants C1, C2 ≥ 0. Consequently, f̂ is Lipschitz continuous on bounded
subsets in V ε, and the lemma follows from Theorem 5. �

Lemma 16. Let ε = 1− 2γ
q−2 and V ε = X

1−ε
2 ×X− ε2 . Then, the embedding V ↪→ V ε

is compact and S satisfies the smoothing property in bounded subsets D ⊂ V : For
every t∗ > 0 there exists a constant κ∗ > 0 such that

‖S(t∗)w − S(t∗)z‖V ≤ κ∗‖w − z‖V ε ∀w, z ∈ D.

Proof. Using Lemma 15 we first prove the Lipschitz continuity of the semigroup U
in V ε. For initial data w, z ∈ D we denote the corresponding solutions of (1.4) by

U(t)w =
(
U1(t)w,U2(t)w), U(t)z =

(
U1(t)z, U2(t)z

)
, t ≥ 0.

The variation of constants formula implies

‖U(t)w − U(t)z‖V ε ≤ ‖C(t)‖L(V ε;V ε)‖w − z‖V ε

+

ˆ t

0

‖C(t− s)‖L(V ε;V ε)‖f̂(U(s)w)− f̂(U(s)z)‖V εds

≤ d
(
‖w − z‖V ε +

ˆ t

0

‖f(U1(s)w)− f(U1(s)z)‖
X−

ε
2
ds
)

≤ d
(
‖w − z‖V ε +

ˆ t

0

C‖U1(s)w − U1(s)z‖
X

1−ε
2
ds
)

≤ d
(
‖w − z‖V ε +

ˆ t

0

C‖U(s)w − U(s)z‖V εds
)
,

for some constant C ≥ 0, and the Lipschitz continuity follows by Gronwall’s Lemma,

‖U(t)w − U(t)z‖V ε ≤ d‖w − z‖V εedCt, t > 0.
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Let now t∗ > 0. In the following, c will denote a non-negative constant that may
vary from line to line. We obtain

‖S(t∗)w − S(t∗)z‖V ≤
ˆ t∗

0

‖C(t∗ − s)
(
f̂(U(s)w)− f̂(U(s)z))

)
‖V ds

≤ c
ˆ t∗

0

e−ω(t∗−s)‖f(U1(s)w − f(U1(s)z)‖L2(Ω)ds

≤ c
ˆ t∗

0

‖U1(s)w − U1(s)z‖
X

1−ε
2
ds

≤ c
ˆ t∗

0

‖U(s)w − U(s)z‖V εds

≤ c
ˆ t∗

0

dedCs‖w − z‖V εds = κ∗‖w − z‖V ε ,

for some constant κ∗ > 0, where we used Lemma 14 in the third estimate. �

Finally, we formulate the proof of Theorem 2, where we essentially use the fol-
lowing observation. Let B ⊂ V be a bounded subset. By Lemma 16 and Lemma
13 we conclude that there exists T∗ > 0 and constants λ ∈ [0, 1

2 ) and κ ≥ 0 such
that

‖U(T∗)w − U(T∗)z‖V ≤ ‖S(T∗)w − S(T∗)z‖V + ‖C(T∗)w − C(T∗)z‖V(5.11)

≤ κ‖w − z‖V ε + λ‖w − z‖V ,

for all w, z ∈ B.

Proof of Theorem 2. Existence of the global attractor: We proved that the semi-
group U(t), t ≥ 0, possesses a Lyapunov functional and orbits of bounded sets are
bounded. It remains to show that the set of equilibria is bounded in V and that
U(t), t ≥ 0, is asymptotically compact (see Theorem 7).

We observe that the sign condition (F2) implies that there exist constants 0 ≤
c0 < µ1 and c1 ∈ R such that

uf(u) ≤ c1|u|+ c0u
2, u ∈ R.

Let u ∈ E = {u ∈ H : Lu + f(u) = 0}. Multiplying the equation by u and using
Young’s and Poincaré’s inequality we obtain

0 = −a(u, u) +

ˆ
Ω

f(u(x))u(x)dx ≤ −a(u, u) +

ˆ
Ω

(
c1|u(x)|+ c0|u(x)|2

)
dx

≤ −a(u, u)

(
1− c0 + ε

µ1

)
+ Cε,

for ε > 0 and some constant Cε ≥ 0. Since c0 < µ1 this estimate implies that the
set E is bounded in V .

To prove the asymptotic compactness of U(t), t ≥ 0, we assume that B ⊂ V is
a bounded subset. Let (xn)n∈N ⊂ B and (tn)n∈N ⊂ [0,∞) be sequences such
that tn → ∞ as n → ∞. Since orbits of bounded sets are bounded, the set
{U(tn)xn|n ∈ N} is bounded in V and consequently, there exists a subsequence
(U(tnk)xnk)k∈N converging weakly in V and strongly in V ε. Let m ∈ N and T∗ > 0
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be as in (5.11). Then, there exists N0 ∈ N such that tnl , tnk ≥ mT∗ for all k, l ≥ N0.
Moreover, we obtain

‖U(tnk)xnk − U(tnl)xnl‖V
≤ κ‖U(tnk − T∗)xnk − U(tnl − T∗)xnl‖V ε

+ λ‖U(tnk − T∗)xnk − U(tnl − T∗)xnl‖V
≤ κC(1 + λ+ · · ·+ λm−1)‖xnk − xnl‖V ε + Cλm‖xnk − xnl‖V ,

for some constant C ≥ 0, where we used (5.11) and the Lipschitz continuity of U in
V and V ε. This implies that (U(tnk)xnk)k∈N is a Cauchy sequence in V and shows
the asymptotic compactness of the semigroup U(t), t ≥ 0.
Fractal dimension of the global attractor: The global attractor A is compact and
invariant, and the semigroup U(t), t ≥ 0, can be decomposed as U = S + C, where
the operators S satisfy the smoothing property in A and the semigroup C is a
contraction in V . Proposition 18 applied to the semigroup U(t), t ≥ 0, with V
and W = V ε implies the finite fractal dimension of A. In particular, for every
ν ∈ (0, 1

2 − λ), the fractal dimension of the global attractor is bounded by

dimf (A) ≤ log 1
2(ν+λ)

(
NV ε

ν
κ

(BV1 (0))
)
,

where κ > 0 and λ ∈ [0, 1
2 ) denote the constants in (5.11).

Convergence to stationary states: We deduce the last statement of the theorem
from the invariance principle of LaSalle (Proposition 8). Let w0 ∈ V . It suffices to
show that the orbit

γ+(w0) =
⋃
t≥0

U(t)w0

is relatively compact in V . If (xn)n∈N is a sequence in γ+(w0), then without loss
of generality xn = U(tn)w0, where tn → ∞ as n → ∞. Since the orbit γ+(w0) is
bounded in V there exists a subsequence (xnk)k∈N that weakly converges in V and
strongly in V ε. We iteratively apply the decomposition (5.11) and conclude as above
that the sequence (U(tnk)w0)k∈N is Cauchy in V, which proves the precompactness
of the orbit γ+(w0) and concludes the proof of the theorem. �

Appendix A. Poincaré type inequality

In this appendix we prove the Poincaré inequality (P ) for operators that are
X-elliptic with respect to the family of vector fields

X = {X1, . . . , XN} = {η1∂x1
, . . . , ηN∂xN }

in Subsection 2.2. In particular, the inequality follows from the X-ellipticity of the
operator L and the following proposition:

Proposition 17. Let Ω ⊂ RN be a domain, which is bounded in the x1-direction,
and p ∈ (1,∞). Then, there exists a constant c ≥ 0 such that

‖u‖pLp(Ω) ≤ c
ˆ

Ω

|Xu|p ∀u ∈ C1
0 (Ω).

Proof. Let u ∈ C1
0 (Ω). Without loss of generality we can assume that the support

of u is contained in
(
−M2 ,

M
2

)
× RN−1, for some M > 0. Let e1 = (1, 0, . . . , 0) and



ATTRACTORS MET X-ELLIPTIC OPERATORS 23

x ∈ Ω. Then,

u(x) = u(x)− u(x+Me1) = −
ˆ 1

0

d

dt
(u(x+ tMe1)) dt

= −
ˆ 1

0

M∂x1
u(x+ tMe1)dt,

and Hölder’s inequality yields

|u(x)| ≤M
(ˆ 1

0

|∂x1
u(x+ tMe1)|pdt

) 1
p

.

Consequently, we obtain

‖u‖pLp(Ω) ≤M
p

ˆ
RN

(ˆ 1

0

|∂x1u(x+ tMe1)|pdt
)
dx

= Mp

ˆ 1

0

(ˆ
RN
|∂x1

u(x+ tMe1)|pdx
)
dt

= Mp

ˆ 1

0

(ˆ
RN
|∂y1

u(y)|pdy
)
dt = Mp

ˆ 1

0

(ˆ
Ω

|∂y1
u(y)|pdy

)
dt

≤Mp

ˆ 1

0

(ˆ
Ω

|η1∂y1u(y)|pdy
)
dt ≤Mp

ˆ
Ω

|Xu|p,

where we applied the change of variables x 7→ y = x + tMe1 and used that the
function η1 ≥ 1. �

Appendix B. Fractal dimension of compact invariant sets

In this appendix we prove an auxiliary result that allows to estimate the fractal
dimension of global attractors. It can be deduced from the method applied in [7]
for the construction of exponential attractors, which is based on the article [12].
We recall that the fractal dimension of a compact subset A of a metric space V is
defined as

dimf (A) := lim
ε→0

ln(NV
ε (A))

− ln(ε)
,

where NV
ε (A) denotes the minimal number of balls in V with radius ε > 0 and

centers in A needed to cover the set A.

We assume that U(t), t ≥ 0, is a semigroup in the Banach space V, and V is
dense and compactly embedded into an auxiliary normed space W. Moreover, it
exists a compact invariant set A ⊂ V, and the semigroup can be represented as
U = S + C, where the families of operators S(t), t ≥ 0, and C(t), t ≥ 0, satisfy the
following properties:

(H1) There exists T ∗ > 0 and a constant κ ≥ 0 such that

‖S(T ∗)u− S(T ∗)v‖V ≤ κ‖u− v‖W ∀u, v ∈ A.
(H2) There exists a constant λ ∈ [0, 1

2 ) such that

‖C(T ∗)u− C(T ∗)v‖V ≤ λ‖u− v‖V ∀u, v ∈ A.
In the sequel, we denote by BVr (v) the ball in a Banach space V with radius

r > 0 and center v ∈ V.
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Proposition 18. Let the semigroup U , the spaces V,W and the set A be as above
and hypotheses (H1) and (H2) be satisfied. Then, for every ν ∈ (0, 1

2−λ) the fractal
dimension of A in V is bounded by

dimf (A) ≤ log 1
2(ν+λ)

(NW
ν
κ

(BV1 (0))),

where BV1 (0) denotes the unit ball in V and NW
ε (A) the minimal number of ε-balls

in W needed to cover the set A ⊂ V .

Proof. Without loss of generality we can assume T ∗ = 1. Let ν ∈ (0, 1
2 − λ), R > 0

and a ∈ A be such that A ⊂ BVR (a). Moreover, let v1, . . . , vM ∈ V be such that

BV1 (0) ⊂
M⋃
i=1

BWν
κ

(vi),

where M denotes the minimal number of balls with radius ν
κ in W needed to cover

the unit ball BV1 (0). First, we construct by induction the family of sets V n, n ∈ N,
with the following properties:

V n ⊂ U(n)A = A, ]V n ≤Mn, U(n)A = A ⊂
⋃
u∈V n

BV(2(ν+λ))nR(u),

where ]A denotes the cardinality of the set A.
We define V 0 := {v0} and assume the sets V l ⊂ A have already been constructed

for l ≤ n, which yields the covering

A = U(n)A ⊂
⋃
u∈V n

BV(2(ν+λ))nR(u).

To construct a covering of the iterate

U(n+ 1)A = U(1)U(n)A = U(1)
⋃
u∈V n

(
BV(2(ν+λ))nR(u) ∩ A

)
,

let u ∈ V n. We use the covering of the unit ball BV1 (0) by balls with radius ν
κ in

the space W and obtain

A ∩BV(2(ν+λ))nR(u) ⊂
M⋃
i=1

(
BW(2(ν+λ))nR ν

κ

(
(2(ν + λ))nRvi + u

)
∩ A

)
=:

M⋃
i=1

Ai,

where we can assume that the sets Ai, i = 1, . . . , N, are non-empty. For elements

v, w in the set
⋃M
i=1Ai ⊂ A the smoothing property implies

‖S(1)v − S(1)w‖V ≤ κ‖v − w‖W < 2ν(2(ν + λ))nR,

and we obtain

S(1)
(
A ∩BV(2(ν+λ))nR(u)

)
⊂ S(1)

M⋃
i=1

Ai ⊂
M⋃
i=1

BV2ν(2(ν+λ))nR(yi),

for some y1, . . . , yM ∈ S(1)
(
A∩BV(2(ν+λ))nR(u)

)
. In particular, there exist z1, . . . , zM ∈

A such that yi = S(1)zi, i = 1, . . . ,M. The contraction property (H2) implies

C(1)
(
A ∩BV(2(ν+λ))nR(u)

)
⊂ BV2λ(2(ν+λ))nR(C(1)zi) ∀i = 1, . . . ,M,
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and we obtain the covering

U(1)
(
A ∩BV(2(ν+λ))nR(u)

)
= (S(1) + C(1))

(
A ∩BV(2(ν+λ))nR(u)

)
⊂

M⋃
i=1

BV(2(ν+λ))n+1R(U(1)zi),

with centers U(1)zi ∈ A.
Constructing in this way for every u ∈ V n such a covering of the set

U(1)
(
A ∩BV(2(ν+λ))nR(u)

)
by balls of radius (2(ν + λ))n+1R in V and centers in A, yields a covering of the
image U(n+ 1)A = A. We denote the new set of centers by V n+1 and observe that

]V n+1 ≤M]V n ≤Mn+1.

Moreover, by construction, the set of centers satisfies V n+1 ⊂ U(n+ 1)A = A, and

A = U(n+ 1)A ⊂
⋃

u∈V n+1

BV(2(ν+λ))n+1R(u).

Finally, to prove the finite fractal dimension of A let ε > 0. If we choose m
sufficiently large such that

(2(ν + λ))mR ≤ ε < (2(ν + λ))m−1R

holds, we can estimate the number of ε-balls needed to cover the set A by

NV
ε (A) ≤ ]V m ≤Mm.

Furthermore, we have

m <
ln 1

ε

ln 1
2(ν+λ)

+ C,

for some constant C ≥ 0 depending on R and ν, and we obtain for the fractal
dimension of A

dimf (A) = lim sup
ε→0

ln(NV
ε (A)

− ln ε
≤ lim sup

ε→0

m ln(M)

− ln ε

≤ lim sup
ε→0

( − ln ε
ln 1

2(ν+λ)

+ C
)

ln(M)

− ln ε
≤ log 1

2(ν+λ)
(M).

�
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