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Abstract

We study mixed weighted weak-type inequalities for families of functions, which can be
applied to study classical operators in harmonic analysis Our main theorem extends the
key result from [CMP2].

1. Introduction and main results

In this work we consider mixed weighted weak-type inequalities of the form

uv

({
x ∈ Rn :

|T (fv)(x)|
v(x)

> t

})
≤ C

t

∫
Rn
|f(x)|Mu(x)v(x) dx, (1.1)

where T is either the Hardy-Littlewood maximal operator or any Calderón-Zygmund
operator. Similar inequalities were studied by Sawyer in [Sa] motivated by the work of
Muckenhoupt and Wheeden [MW] (see also the works [AM] and [MOS]).

E. Sawyer proved that inequality (1.1) holds in R when T = M is the Hardy-
Littlewood maximal operator assuming that the weights u and v belong to the class
A1. This result can be seen as a very delicate extension of the classical weak type (1, 1)
estimate. However, the reason why E. Sawyer considered (1.1) is due to the follow-
ing interesting observation. Indeed, inequality (1.1) yields a new proof of the classical
Muckenhoupt’s theorem for M assuming that the Ap weights can be factored (P. Jones’s
theorem). This means that if w ∈ Ap then w = uv1−p for some u, v ∈ A1. Now, define

the operator f → M(fv)
v which is bounded on L∞(uv) and it is of weak type (1, 1) with

respect to the measure uvdx by (1.1). Hence by the Marcinkiewicz interpolation theorem
we recover Muckenhoupt’s theorem.

Email addresses: carlos.perezmo@ehu.es (Carlos Pérez), sombrosi@uns.edu.ar (Sheldy Ombrosi)
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In the same paper, Sawyer conjectured that if T is instead the Hilbert transform the
inequality also holds with the same hypotheses on the weights u and v. This conjecture
was proved in [CMP2]. In fact, it is proved in this paper that the inequality (1.1) holds for
both the Hardy-Littlewood maximal operator and for any Calderón-Zygmund Operator
in any dimension if either the weights u and v both belong to A1 or u belongs to A1 and
uv ∈ A∞. The method of proof is quite different from that in [Sa] (also from [MW])
and it is based on certain ideas from extrapolation that go back to the work of Rubio
de Francia (see [CMP2] and also the expository paper [CMP3]). Applications of these
results can be found in [LOPTT]. The authors conjectured in [CMP2] that their results
may hold under weaker hypotheses on the weights. To be more precise, they proposed
that inequality (1.1) is true if u ∈ A1 and v ∈ A∞. Very recently, some quantitative
estimates in terms of the relevant constants of the weights have been obtained in [OPR]
and some new conjectures have been formulated.

Inequalities like (1.1), when T is the Hardy-Littlewood maximal operator, can also
be seen as generalizations of the classical Fefferman-Stein inequality

‖M(f)‖L1,∞(u) ≤ c ‖f‖L1(Mu),

where c is a dimensional constant. However, in Section 3, we will see that (1.1) does not
hold in general even for weights satisfying strong conditions like v ∈ RH∞ ⊂ A∞.

In this work we generalize the extrapolation result in [CMP3] for a larger class of
weights (see Theorem 1.5 below). This method of extrapolation is flexible enough with
scope reaching beyond the classical linear operators. Indeed, it can be applied to square
functions, vector valued operators as well as multilinear singular integral operators. See
Section 2 for some of these applications. In fact, the best way to state the extrapolation
theorem is without considering operators and the result can be seen as a property of
families of functions. Hereafter, F will denote a family of ordered pairs of non-negative,
measurable functions (f, g). Also we are going to assume that this family F of functions,
satisfies the following property: for some p0, 0 < p0 <∞, and every w ∈ A∞,∫

Rn
f(x)p0w(x) dx ≤ C

∫
Rn
g(x)p0w(x) dx, (1.2)

for all (f, g) ∈ F such that the left-hand side is finite, and where C depends only on the
A∞ constant of w. By the main theorem in [CMP1], this assumption turns out to be
true for any exponent p ∈ (0,∞) and every w ∈ A∞,∫

Rn
f(x)pw(x) dx ≤ C

∫
Rn
g(x)pw(x) dx, (1.3)

for all (f, g) ∈ F such that the left-hand side is finite, and where C depends only on the
A∞ constant of w. See the papers [CMP1], [CGMP] and [CMP3] for more information
and applications and the book [CMP4] for a general account. It is also interesting
that both (1.2) and (1.3) are equivalent to the following vector-valued version: for all
0 < p, q <∞ and for all w ∈ A∞ we have∥∥∥(∑

j

(fj)
q
) 1
q
∥∥∥
Lp(w)

≤ C
∥∥∥(∑

j

(gj)
q
) 1
q
∥∥∥
Lp(w)

, (1.4)
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for any {(fj , gj)}j ⊂ F , where these estimates hold whenever the left-hand sides are
finite.

Next theorem improves the corresponding Theorem from [CMP2].

Theorem 1.5. Let F be a family of functions satisfying (1.2) and let θ ≥ 1. Suppose
that u ∈ A1 and that v is a weight such that for some δ > 0, vδ ∈ A∞.

Then, there is a constant C such that∥∥∥ f
vθ

∥∥∥
L1/θ,∞(uv)

≤ C
∥∥∥ g
vθ

∥∥∥
L1/θ,∞(uv)

, (f, g) ∈ F . (1.6)

Similarly, the following vector-valued extension holds: if 0 < q <∞,

∥∥∥∑j(fj)
q
) 1
q

vθ

∥∥∥
L1/θ,∞(uv)

≤ C
∥∥∥∑j(gj)

q
) 1
q

vθ

∥∥∥
L1/θ,∞(uv)

, (1.7)

for any {(fj , gj)}j ⊂ F .

Observe that the singular class of weights v(x) = |x|−nr, r ≥ 1, is covered by the
hypothesis of the Theorem but not in the corresponding Theorem from [CMP2].

The proof of (1.7) is immediate since we can extrapolate using as initial hypothesis
(1.4) and then applying (1.6).

Corollary 1.8. Let F , u and θ ≥ 1 as in the Theorem. Suppose now that vi, i =
1, · · · ,m, are weights such that for some δi > 0, vδii ∈ A∞, i = 1, · · · ,m.

Then, if we denote v =
∏m
i=1 vi∥∥∥ f

vθ

∥∥∥
L1/θ,∞(uv)

≤ C
∥∥∥ g
vθ

∥∥∥
L1/θ,∞(uv)

, (f, g) ∈ F .

and similarly for 0 < q <∞,

∥∥∥∑j(fj)
q
) 1
q

vθ

∥∥∥
L1/θ,∞(uv)

≤ C
∥∥∥∑j(gj)

q
) 1
q

vθ

∥∥∥
L1/θ,∞(uv)

,

for any {(fj , gj)}j ⊂ F .

The proof reduces to the Theorem by choosing δ > 0 small enough such that vδ =∏m
i=1 v

δ
i ∈ A∞ which follows by convexity since vδii ∈ A∞, i = 1, · · · ,m.

To apply Theorem 1.5 above to some of the classical operators we need a mixed weak
type estimate for the Hardy-Littlewood maximal operator. This is the content of next
Theorem which was obtained in dimension one by Andersen and Muckenhoupt in [AM]
and by Mart́ın-Reyes, Ortega Salvador and Sarrión Gavián [MOS] in higher dimensions.
In each case the proof follows as a consequence of a more general result with the additional
hypothesis that u ∈ A1. For completeness we will give an independent and direct proof
with the advantage that no condition on the weight u is assumed.

Theorem 1.9. Let u ≥ 0 and v(x) = |x|−nr for some r > 1. Then there is a constant
C such that for all t > 0,

uv

({
x ∈ Rn :

M(fv)(x)

v(x)
> t

})
≤ C

t

∫
Rn
|f(x)|Mu(x)v(x) dx. (1.10)
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Remark 1.11. We remark that the theorem could be false when r = 1 even in the case
u = 1, see [AM]. However, we already mentioned that the singular weight v(x) = |x|−n
is included in the extrapolation Theorem 1.5.

Acknowledgement. The authors are grateful to F. J. Mart́ın-Reyes and P. Ortega-
Salvador to point out reference [MOS].

2. Some applications

In this section we show the flexibility of the method by giving two applications.

2.1. The vector-valued case

Let T be any singular integral operator with standard kernel and let M be the Hardy-
Littlewood maximal function. We are going to show that starting from the following
inequality due to Coifman [Coi]: for 0 < p <∞ and w ∈ A∞,∫

Rn
|Tf(x)|p w(x) dx ≤ C

∫
Rn
Mf(x)p w(x) dx, (2.1)

combined with the extrapolation Theorem 1.5 together with Theorem 1.9 yields the
following corollary.

Corollary 2.2. Let u ∈ A1 and v(x) = |x|−nr for some r > 1. Also let 1 < q < ∞.
Then, there is a constant C such that for all t > 0,

uv

({
x ∈ Rn :

(∑
jM(fjv)(x)q

) 1
q

v(x)
> t

})
≤ C

t

∫
Rn

(∑
j

|fj(x)|q
) 1
q

u(x)v(x) dx,

uv

({
x ∈ Rn :

(∑
j |T (fjv)(x)|q

) 1
q

v(x)
> t

})
≤ C

t

∫
Rn

(∑
j

|fj(x)|q
) 1
q

u(x)v(x) dx.

Observe that in particular we have the following scalar version,

uv

({
x ∈ Rn :

|T (fv)(x)|
v(x)

> t

})
≤ C

t

∫
Rn
|f(x)|u(x)v(x) dx.

This scalar version was proved in [MOS].
The second inequality of the corollary follows from the first one by applying inequality

(1.7) in Theorem 1.5 with initial hypothesis (2.1):

sup
t>0

tuv

({
x ∈ Rn :

(∑
j |T (fj)(x)|q

) 1
q

v(x)
> t

})
≤

C sup
t>0

tuv

({
x ∈ Rn :

(∑
jM(fj)(x)q

) 1
q

v(x)
> t

})
.
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To prove the first inequality in Corollary 2.2 we first note that in [CGMP] it was
shown for 1 < q <∞ and for all 0 < p <∞ and w ∈ A∞,∥∥∥(∑

j

(M(fj))
q
) 1
q
∥∥∥
Lp(w)

≤ C
∥∥∥M((∑

j

|fj |q
) 1
q

)∥∥∥
Lp(w)

.

To conclude we apply Theorem 1.5 combined with Theorem 1.9.

2.2. Multilinear Calderón-Zygmund operators:

We now apply our main results to multilinear Calderón-Zygmund operator. We follow
here the theory developed by Grafakos and Torres in [GT1], that is, T is an m-linear
operator such that T : Lq1 × · · · × Lqm −→ Lq, where 1 < q1, . . . , qm < ∞, 0 < q < ∞
and

1

q
=

1

q1
+ · · ·+ 1

qm
. (2.3)

The operator T is associated with a Calderón-Zygmund kernel K in the usual way:

T (f1, . . . , fm)(x) =

∫
Rn
· · ·
∫
Rn
K(x, y1, . . . , ym) f1(y1) . . . fm(ym) dy1 . . . dym,

whenever f1, . . . , fm are in C∞0 and x /∈
⋂m
j=1 supp fj . We assume that K satisfies the ap-

propriate decay and smoothness conditions (see [GT1] for complete details). Such an op-
erator T is bounded on any product of Lebesgue spaces with exponents 1 < q1, . . . , qm <
∞, 0 < q < ∞ satisfying (2.3). Further, it also satisfies weak endpoint estimates when
some of the qi’s are equal to one. There are also weighted norm inequalities for multi-
linear Calderón-Zygmund operators; these were first proved in [GT2] using a good-λ
inequality and fully characterized in [LOPTT] using the sharp maximal functionM and
a new maximal type function which plays a central role in the theory,

M(f1, . . . , fm)(x) = sup
Q3x
Q cube

m∏
i=1

1

|Q|

∫
Q

|fi(z)| dz,

where the supremum is taken over cubes with sides parallel to the axes. Indeed, one of
the main results from [LOPTT] is that for any 0 < p <∞ and for any w ∈ A∞,∥∥∥T (f1, . . . , fm)

∥∥∥
Lp(w)

≤ C
∥∥∥M(f1, . . . , fm)

∥∥∥
Lp(w)

.

Beginning with these inequalities, we can apply Theorem 1.5 to the family

F
(
T (f1, . . . , fm),M(f1, . . . , fm)

)
. Hence, if u ∈ A1 and v(x) = |x|−nr for some r > 1.∥∥∥T (f1, . . . , fm)

vm

∥∥∥
L1/m,∞(uv)

≤ C
∥∥∥M(f1, . . . , fm)

vm

∥∥∥
L1/m,∞(uv)

(2.4)

Corollary 2.5. Let T be a multilinear Calderón-Zygmund operator as above. Let u ∈ A1

and v(x) = |x|−nr for some r > 1. Then∥∥∥T (f1, . . . , fm)

vm

∥∥∥
L1/m,∞(uv)

≤ C
m∏
j=1

∫
Rn
|fj |u dx, .
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To prove this corollary we will use the following version of the generalized Holder’s
inequality: for 1 ≤ q1, . . . , qm <∞ with

1

q1
+ · · ·+ 1

qm
=

1

q
,

there is a constant C such that

‖
m∏
j=1

hj‖Lq,∞(w) ≤ C
m∏
j=1

‖hj‖Lqj,∞(w).

The proof of this inequality follows in a similar way that the proof of the classic gener-
alized Holder’s inequality in Lp theory.

Now, if we combine this with (2.4) and with the trivial observation that

M(f1, . . . , fm)(x) ≤
m∏
i=1

M(fi) ,

we have ∥∥∥T (f1, . . . , fm)

vm

∥∥∥
L1/m,∞(uv)

≤ C
m∏
j=1

∥∥∥Mfj
v

∥∥∥
L1,∞(uv)

,

Finally, an application of Theorem 1.9 concludes the proof of the corollary.

3. counterexamples

An interesting point from Theorem 1.9 is that if v(x) = |x|−nr, r > 1, the estimate

uv

({
x ∈ Rn :

M(fv)(x)

v(x)
> t

})
≤ C

t

∫
Rn
|f(x)|Mu(x)v(x) dx, (3.1)

holds for any u ≥ 0. On the other hand we have already mentioned that the same
inequality holds if u ∈ A1 and v ∈ A1 or uv ∈ A∞ [CMP2]. In particular, this is the case if
u ∈ A1 and v ∈ RH∞. Assuming that v ∈ RH∞, a natural question is whether inequality
(3.1) holds with no assumption on u. This would improve the classical Fefferman-Stein
inequality. However, we will show in the next example that this is false in general.

Example 3.2. On the real line we let v(x) =
∑
k∈Z |x− k|χIk (x), where Ik denotes

the interval |x− k| ≤ 1/2. It is not difficult to see that v ∈ RH∞. If we choose

u(x) =
∑
k∈N
k>10

k

log(k)
χJk (x) ,

where Jk =
[
k + 1

4k , k + 1
k

]
, and f = χ[−1,1], then there is no finite constant C such that

the inequality

uv({x : Mf (x) > v(x)}) ≤ C
∫
|f |M2u (3.3)

holds. To prove this we will make use of the following observation:
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There is a geometric constant such that

M2w(x) ≈ML logLw(x) x ∈ Rn

where
ML logLf(x) = sup

Q3x
‖f‖L logL,Q

and

‖f‖L logL,Q = inf{λ > 0 :
1

|Q|

∫
Q

Φ(
|f |
λ

) dx ≤ 1}.

with Φ(t) = t log(e + t), see [PW] or [G]. Now, it is a computation to see that if
x ∈ [−1, 1], M2u(x) ≈ML logLu(x) ≤ C then the right hand side of (3.3) is finite, while
the left hand side is infinite. Let us check that. For |x| > 2 we have that Mf (x) ≥ 1

|x| and

if x ∈ Jk ⊂ Ik for k > 10 1
|x| >

1
2k , then it is easy to see that (k+ 1

4k , k+ 1
2k ) ⊂ {x ∈ Jk :

Mf(x) > v(x)} and therefore we obtain that

uv({x : Mf (x) > v(x)}) >
∑
k∈N
k>10

k

log(k)

∫ k+ 1
2k

k+ 1
4k

(x− k) dx >

>
∑
k∈N
k>10

1

8k log(k)
=∞.

4. Proof of Theorem 1.5

The following Lemmas will be useful:

Lemma 4.1. If u ∈ A1, w ∈ A1, then there exists 0 < ε0 < 1 depending only on [u]A1

such that uwε ∈ A1 for all 0 < ε < ε0.

Proof. Since u ∈ A1, u ∈ RHs0 for some s0 > 1 depending on [u]A1 . Let ε0 = 1/s0
′ and

0 < ε < ε0. This implies that u ∈ RHs with s = (1/ε)′.
Then since u, v ∈ A1, for any cube Q and almost every x ∈ Q,

1

|Q|

∫
Q

u(y)w(y)ε dy ≤
(

1

|Q|

∫
Q

u(y)s dy

)1/s(
1

|Q|

∫
Q

w(y) dy

)1/s′

≤ [u]RHs
|Q|

∫
Q

u(y) dy

(
1

|Q|

∫
Q

w(y) dy

)1/s′

≤ [u]RHs [u]A1
[w]εA1

u(x)w(x)ε.

Hence uwε ∈ A1 with [uwε]A1
≤ [u]RHs [u]A1

[w]εA1
.

We also need the following version of the Marcinkiewicz interpolation theorem in the
scale of Lorentz spaces. In fact we need a version of this theorem with precise constants.
The proof can be found in [CMP2].
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Proposition 4.2. Given p0, 1 < p0 <∞, let T be a sublinear operator such that

‖Tf‖Lp0,∞ ≤ C0 ‖f‖Lp0,1 and ‖Tf‖L∞ ≤ C1 ‖f‖L∞ .

Then for all p0 < p <∞,

‖Tf‖Lp,1 ≤ 21/p
(
C0 (1/p0 − 1/p)−1 + C1

)
‖f‖Lp,1 .

Fix u ∈ A1 and v such that vδ ∈ A∞ for some δ > 0. Then by the factorization
theorem vδ = v1v2 for some v1 ∈ A1 and v2 ∈ RH∞. Define the operator Sλ by

Sλf(x) =
M(fuv

1/λδ
1 )

uv
1/λδ
1

for some large enough constant λ > 1 that will be chosen soon.
By Lemma 4.1, there exists 0 < ε0 < 1 (that depends only on [u]A1

) such that
uwε ∈ A1 for all w ∈ A1 and 0 < ε < ε0.

Choose λ > 1
δε0

such that uv
1/λδ
1 ∈ A1. Hence, Sλ is bounded on L∞(uv) with

constant C1 = [u]A1 . We will now show that for some larger λ, Sλ is bounded on
Lm(uv). Observe that∫

Rn
Sf(x)λ u(x) v(x) dx =

∫
Rn
M(fuv

1/λδ
1 )(x)λ u(x)1−λ v2(x)1/δ dx.

Since v2 = ṽ1−t2 for some ṽ2 ∈ A1 and t > 1 we have

u1−λ v
1/δ
2 = u1−λ ṽ

1−t
δ

2 =
(
u ṽ

t−1
δ(λ−1)

2

)1−λ
.

By Lemma 4.1 there exists λ sufficiently large (λ > 1 + t−1
δε0

) such that u ṽ
t−1

δ(λ−1)

2 ∈ A1

and hence u1−λ v
1/δ
2 ∈ Aλ. By Muckenhoupt’s theorem, M is bounded on Lλ(u1−λv

1/δ
2 )

and therefore S is bounded on Lλ(uv) with some constant C0. Observe that λ depends
on the A1 constant of u. We fix one such λ from now on.

By Proposition 4.2 above we have that S is bounded on Lq,1(uv), q > λ. Hence,

‖Sf‖Lq,1(uv) ≤ 21/q
(
C0 (1/λ− 1/q)−1 + C1) ‖f‖Lq,1(uv).

Thus, for all q ≥ 2λ we have that ‖Sf‖Lq,1(uv) ≤ K0 ‖f‖Lq,1(uv) with K0 = 4λ (C0 +C1).
We emphasize that the constant K0 is valid for every q ≥ 2λ.

Fix (f, g) ∈ F such that the left-hand side of (1.6) is finite. We let r be such that
θ < r < θ(2λ)′, to be chosen soon. Now, by the duality of Lr,∞ and Lr

′,1,∥∥f v−θ∥∥ 1
r

L1/θ,∞(uv)
=
∥∥(f v−θ)

1
r

∥∥
Lr/θ,∞(uv)

= sup

∫
Rn
f(x)

1
r h(x)u(x) v(x)1−θ/r dx,

where the supremum is taken over all non-negative h ∈ L( rθ )
′,1(uv) with ‖h‖

L( r
θ
)′,1(uv)

=

1. Fix such a function h. We are going to build a larger function Rh using the Rubio de
Francia‘s method such Rhuv1−θ/r ∈ A∞. Hence we will use the hypothesis (1.3) with
p = θ/r (recall that is equivalent to (1.2)) with the weight Rhuv1−θ/r ∈ A∞
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We let r be such that ( rθ )′ > 2λ and hence S( rθ )
′ is bounded on L( rθ )

′,1(uv) with
constant bounded by K0. Now apply the Rubio de Francia algorithm (see [GCRdF]) to
define the operator R on h ∈ L( rθ )

′,1(uv), h ≥ 0, by

Rh(x) =

∞∑
j=0

Sj( rθ )′
h(x)

2j Kj
0

,

Recall that the operator S( rθ )
′ is defined by

S( rθ )
′f(x) =

M(fuv
1/( rθ )

′δ
1 )

uv
1/( rθ )

′δ
1

.

Also, recall that by the choice of r uv
1/( rθ )

′δ
1 ∈ A1.

It follows immediately from this definition that:

(a) h(x) ≤ Rh(x);

(b) ‖Rh‖
L( r

θ
)′,1(uv)

≤ 2 ‖h‖
L( r

θ
)′,1(uv)

;

(c) S( rθ )
′(Rh)(x) ≤ 2K0 Rh(x).

In particular, it follows from (c) and the definition of S that Rhuv1/(
r
θ )
′δ

1 ∈ A1 and

therefore Rhuv1/( rθ )′ = Rhuv1/δ(
r
θ )
′

1 v
1/δ( rθ )

′

2 ∈ A∞.
To apply the hypothesis (1.3) we must first check that the left-hand side is finite, but

this follows at once from Hölder’s inequality and (b):∫
Rn
f(x)

1
r Rh(x)u(x) v(x)1−

θ
r dx ≤

∥∥(f v−θ)
1
r

∥∥
Lr/θ,∞(uv)

‖Rh‖L(r/θ)′,1(uv)

≤ 2
∥∥f v−θ∥∥ 1

r

L1/θ,∞(uv)
‖h‖

L( r
θ
)′,1(uv)

<∞.

Thus since Rhuv1/( rθ )′ ∈ A∞ by (1.3)∫
Rn
f(x)

1
r h(x)u(x) v(x)1−

θ
r dx ≤

∫
Rn
f(x)

1
r Rh(x)u(x) v(x)1−

θ
r dx

≤ C
∫
Rn
g(x)

1
r Rh(x)u(x) v(x)1−

θ
r dx

≤ C
∥∥(g v−θ)

1
r

∥∥
Lr/θ,∞(uv)

‖Rh‖
L( r

θ
)′,1(uv)

≤ 2C
∥∥g v−θ∥∥ 1

r

L1/θ,∞(uv)
.

Since C is independent of h, inequality (1.6) follows finishing the proof of the theorem.

5. Proof of Theorem 1.9

5.1. Proof of (1.10)

The following lemma is important in the proof.
9



Lemma 5.1. Let f be a positive and locally integrable function. Then for r > 1 there
exists a positive real number a depending on f and λ such that the inequality(∫

|y|≤a
1
r−1

f(y)dy

)
an = λ

holds.

Proof. Consider the function

g(a) =

(∫
|y|≤a

1
r−1

f(y)dy

)
an, for a ≥ 0,

then by the hypothesis we have that g is a continuous and non decreasing function.
Furthermore, g(0) = 0, and g(+∞) = +∞, and therefore by the mean value theorem
there exists a which satisfies the conditions of lemma.

Let u ≥ 0 and v(x) = |x|−nr with r > 1. By homogeneity we can assume that
λ = 1. Also, for simplicity we denote g = fv. Now, for each integer k we denote Gk ={

2k < |x| ≤ 2k+1
}

, Ik =
{

2k−1 < |x| ≤ 2k+2
}

, Lk =
{

2k+2 < |x|
}

, Ck =
{
|x| ≤ 2k−1

}
.

It will be enough to prove the following estimates∑
k∈Z

uv

{
x ∈ Gk : M(gχIk)(x) >

1

|x|nr
}
≤ Cr,n

∫
gMu, (5.2)

∑
k∈Z

uv

{
x ∈ Gk : M(gχLk)(x) >

1

|x|nr
}
≤ Cr,n

∫
gMu, (5.3)

∑
k∈Z

uv

{
x ∈ Gk : M(gχCk)(x) >

1

|x|nr
}
≤ Cr,n

∫
gMu. (5.4)

Taking into account that in Gk, v(x) = 1
|x|nr ∼ 2−knr, using the (1, 1) weak type

inequality of M with respect to the pair of weights (u,Mu) and since the subsets Ik
overlap at most three times we obtain (5.2).

To prove inequality (5.3) we will estimate M(gχLk)(x). Observe that if x belongs to

Gk and y ∈ Lk =
{

2k+2 < |y|
}
, and if |y − x| ≤ ρ, we have that |y|2 ≤ ρ,

1

ρn

∫
|y−x|≤ρ

g(y)χLk (y) dy ≤ Cn
∫
2k+2<|y|

g(y)

|y|n
dy ≤ Cn

∫
|x|<|y|

g(y)

|y|n
dy.

If we denote F (x) =
∫
|x|<|y|

g(y)
|y|n dy the left hand side of (5.3) is bounded by

∑
k∈Z

2−krnu
{
x ∈ Rn : F (x) > C 2−knr

}
≈
∫ ∞
0

tu {x ∈ Rn : F (x) > t} dt
t

=

∫
Rn
F (x)u(x)dx =

∫
Rn

∫
|x|<|y|

g(y)

|y|n
dy u(x)dx
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=

∫
Rn
g(y)

1

|y|n
∫
|x|<|y|

u(x)dx dy ≤ C
∫
Rn
g(y)Mu(y)dy.

To prove (5.4) we estimate M(gχCk)(x) for x ∈ Gk. Indeed, if y ∈ Ck, 2 |y| < |x| and
since M(gχCk)(x) ≤ cn

|x|n
∫
Ck
g(y)dy, we obtain

M(gχCk)(x) ≤ C

|x|n
∫
Ck

g ≤ C

|x|n
∫
|y|≤ |x|2

g,

Thus, since the subsets Gk are disjoint, the left hand side in (5.4) is bounded by

uv

{
x ∈ Rn :

C

|x|n
∫
|y|≤ |x|2

g >
1

|x|nr

}
.

Now, if a denotes the positive real number that appears in Lemma 5.1 (i.e., a satisfies

1 =

(∫
|y|≤a

1
r−1

g

)
an, we express the last integral in the following way:

uv

({
x :

C

|x|n
∫
|y|≤ |x|2

g >
1

|x|nr

})
= uv

({
|x| ≤ a

1
r−1 :

C

|x|n
∫
|y|≤ |x|2

g >
1

|x|nr

})
+

(5.5)

+

∞∑
k=0

uv

({
x : 2ka

1
r−1 < |x| ≤ 2k+1a

1
r−1 and

C

|x|n
∫
|y|≤ |x|2

g >
1

|x|nr

})

If |x| ≤ a
1
r−1 , since |y| ≤ |x|2 we have that |y| ≤ a

1
r−1 , thus the set

{
|x| ≤ a

1
r−1 :

C

|x|n
∫
|y|≤ |x|2

g >
1

|x|nr

}
⊂

|x| ≤ a 1
r−1 : |x|n(r−1) > C

(∫
|y|≤a

1
r−1

g

)−1 .

Taking into account the last inclusion and since

(∫
|y|≤a

1
r−1

g

)−1
= an, the first

summand in the second term in (5.5) is bounded by

uv({|x|r−1 > Ca}) = uv({|x| > car
′−1}).

Using again Lemma 5.1, the last term can be estimated by∫
|x|>C ar′−1

uv dx ≤ C
∞∑
k=1

1

(2kar′−1)nr

∫
c2k−1ar′−1≤|x|<c2kar′−1

u(x) dx ≤

≤ C
∞∑
k=1

1

2k(r−1)n
1

an
1

(c2kar′−1)n

∫
|x|≤c2kar′−1

u(x) dx

= C

∞∑
k=1

1

2k(r−1)n

∫
|y|≤ar′−1

g(y) dy
1

(c2kar′−1)n

∫
|x|≤c2kar′−1

u(x) dx,
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and this is bounded by

≤ C
∞∑
k=1

1

2k(r−1)n

∫
|y|≤ar′−1

g(y)Mu(y) dy ≤ C
∫
gMu.

To finish, we must estimate the series in (5.5). It is clear that sum is bounded by

∞∑
k=0

uv
({
x ∈ 2kar

′−1 < |x| ≤ 2k+1ar
′−1
})
≤ C

∞∑
k=0

1

(2kar′−1)nr

∫
2k−1ar′−1≤|x|<2kar′−1

u dx

and arguing as before we conclude the proof of (5.4).

Remark 5.6. We observe that the proof only uses the following conditions for a sublinear
operator T : a) T is of weak type (1, 1) with respect to the pair of weights (u,Mu) and
b) T is a convolution type operator such that the associated kernel satisfies the usual
standard condition:

|K(x)| ≤ c

|x|n
.

In particular if u ∈ A1, this observation can be applied to the usual Calderón-Zygmund
singular integral operators and moreover to the strongly singular integral operators (see
[Ch] and [F]).
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[PW] C. Pérez and R. Wheeden, Uncertaitny principle estimates for vector fields, Journal of Functional
Analysis 181 (2001), 146–188.

[Sa] E.T. Sawyer, A weighted weak type inequality for the maximal function, Proc. Amer. Math. Soc.
93 (1985), 610–614.

13


