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Abstract

Aboveground biomass estimation in short-rotation forestry plantations is an
essential step in the development of crop management strategies as well as
allowing the economic viability of the crop to be determined prior to har-
vesting. Hence, it is important to develop new methodologies that improve
the accuracy of predictions, using only a minimum set of easily obtainable
information i.e. diameter and height. Many existing models base their pre-
dictions only on diameter (mainly due to the complexity of including further
covariates), or rely on complicated equations to obtain biomass predictions.
However, in tree species, it is important to include height when estimating
aboveground biomass because this will vary from one genotype to another.
This work proposes the use of a more flexible and easy to implement model
for predicting aboveground biomass (stem, branches and total) as a smooth
function of height and diameter using smooth additive mixed models which
preserve the additive property necessary to model the relationship within
wood fractions, and allows the inclusion of random e↵ects and interaction
terms. The model is applied to the analysis of three trials carried out in
Spain, where nine clones at three di↵erent sites are compared. Also, an anal-
ysis of slash pine data is carried out in order to compared with the approach
proposed by Parresol (2001)

Keywords: Populus hybrids; additivity; tree biomass; penalized splines;
mixed models
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1 Introduction

The importance of short rotation forest (SRF) plantations to obtain biomass
for renewable energy production has become widely accepted in recent years
(Christeson, 2010). The Populus genus is considered one of the most suitable
woody perennial crops for this purposes, due to its high productivity, ease of
establishment from cuttings, high tolerance to coppicing and the abundance
of clonal supply. Additionally, the quality of the biomass produced is highly
suitable for energy proposes (Dickmann et al., 2001) in comparison with
herbaceous crops (Guidi et al., 2008). All these factors contribute to making
Populus the most interesting woody species in the short term for use in short
rotation and high density plantations.

In southern Europe, the market for biomass, particularly from crops, is
emerging strongly. The development of this market requires, among other
factors, an improved ability to predict the aboveground biomass production
in order to calculate economic gains or to decide on the timing of harvests
versus continued management. For these reasons, developing suitable above-
ground biomass equations may be considered one of the most important
elements in short rotation coppice modeling.

The content in bark is a feature that can a↵ect the woody biomass qual-
ity (Guidi et al., 2008). Therefore, a single aboveground biomass equation
that estimates total biomass without taking into account the di↵erent wood
fractions (stem and branches) is not appropriate for plantation manage-
ment. When more than one component is considered, it is desirable that
the biomass equations have the property of additivity, that is, that the pre-
dictions for the tree components (stem and branches) sum to the prediction
for the total tree (Parresol, 1999). However, many published biomass equa-
tions of poplar short-rotation coppice were not additive (see for example
Dillen et al., 2007; Dowell et al., 2009; Zabek and Prescott, 2006). The tra-
ditional methods for forcing additivity of component biomass equations to
sum to total tree mass can be grouped into three categories, according to
the form of the prediction equations: linear (with additive error), non-linear
(with additive error) and non-linear (with multiplicative error). These ap-
proaches are commonly used, although some of them may lead to singular
covariance matrices that will not ensure a unique solution for the param-
eters. Some solutions have been proposed based on Non-linear Seemingly

Unrelated Regression (Parresol, 2001). However, they rely on a complicated
selection procedure among a large set of non-linear equations (Ruiz-Peinado
et al., 2011). Furthermore, data for estimating biomass are generally taken
from trees growing in plots that are located in di↵erent sites. Such clustered

3



data are characterized by a lack of independence between observations which
come from the same sampling cluster (Fox et al., 2001). Satisfying the ad-
ditivity property in the presence of random e↵ects is not a straightforward
task, some authors use a nonlinear mixed e↵ects model, but no constraints
are imposed for additivity (Wutzler T. et al., 2008), and others, such as
Parresol (2001) or Carvalho and Parresol (2003), use weighted or non-linear
seemingly unrelated regression, that can deal with additivity, but no ran-
dom e↵ects are included, and rely on complicated non-linear equations that
need to be chosen among a large number of possible options. Hence, it is
necessary to find a model that is capable of providing accurate aboveground
biomass predictions, satisfies the additivity property, and includes random
e↵ects to account for the di↵erent sources of variability in the data.

We propose the use of smooth additive mixed e↵ects models (Lee et al.,
2013; Wood et al., 2013) for the estimation and prediction of aboveground
biomass data. This is a novel application of this family of models, and a
simpler alternative to traditional approaches based on complex nonlinear
biomass equations that have to be chosen ad-hoc for each data set. Fur-
thermore, our proposal is more flexible, it can deal with all issues specified
above, and can be applied in many di↵erent situations (di↵erent experimen-
tal designs, models with several covariates, trials carried out along time,
etc.). A further advantage of this approach is that is easily implemented R

(using the lme procedure or the gam function in the mgcv package), but also
in other packages, such as SAS, by means of the PROC MIXED function.

Smooth additive models are widely used in many areas of research. How-
ever, until now, smoothing models have scarcely been used in forestry appli-
cations. Guan et al. (2006) used semiparametric mixed e↵ects smoothing-
spline models to analyze microclimate-monitoring data from a thinning ex-
periment, and Jordan et al. (2008) used this approach to model the rela-
tionship between wood specific gravity and time for loblolly pine plantations
in the United States. More recently, Goicoa et al. (2011) proved that these
models satisfied the additivity property. This approach o↵ers the flexibility
to model non-linear relationships within components without including bi-
ases related to data transformation. However, from a management point of
view, it is also important to be able to predict biomass with accuracy us-
ing only a minimum set of easily measurable information, i.e., diameter and
height. Hence, the main reason for using this approach is that it is the best
option when the same explanatory variables are considered for modeling all
the components including total biomass. Goicoa et al. (2011) used diameter
as an explanatory variable to compare alternative methods for obtaining
biomass predictions which satisfy the additivity property, but they did not
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approach the problem of having some sort of clustering and di↵erent geno-
types in the data. Also, it is important to include height when estimating
aboveground biomass in the Populus genus because di↵erences exist between
genotypes. Genotypes with greater development allocate more stem biomass
to radial growth than to height growth, whereas the smaller size genotypes
tend to exhibit greater height growth at the cost of diameter growth in order
to gain access to light (Wu and Stettler, 1996). The inclusion of another
explanatory variable implies that a smooth additive mixed model based on
penalized splines (P-splines) by Eilers and Marx (1996) could be used, with
the consequent di�culty involved in dealing with height-diameter interac-
tion. An additional factor to consider is that Poplar hybrids present di↵er-
ences in growth strategies, which might result in significant di↵erences in
biomass production rates (Telenius and Verwijst, 1995). Biomass allocation
patterns (stem and branches) di↵er among genotypes, but the environment
also has a notable e↵ect. Some authors (Dillen et al., 2007; Pontailler et al.,
1997) have reported that the genotype e↵ect is dominant over the environ-
mental e↵ect with regard to biomass production so, clone-specific models
are more suitable for biomass estimations (in this study, we take this into
account by using factor-by-surface interactions).

The rest of this paper is organized as follows: Section 2 describes P-
splines and their representation as mixed models, and introduced several
smooth additive mixed models for biomass prediction. The models proposed
are illustrated in Section 3 with the analysis of data from three trials in
Spain. We also analyze the dataset in Parresol (2001) in order to compare
di↵erent methods. Finally, the paper concludes with a discussion in Section
5. Some technical details are available in the Supplementary Material.

2 Additive smooth mixed models for aboveground

biomass data

We give first, a brief introduction to the mixed model representation of
penalized splines, and them we introduced several smooth additive mixed
models for prediction of biomass data

2.1 Penalized splines as mixed models

Suppose the variable y = (y1, . . . , yn) depends smoothly on a single vari-
able x = (x1, . . . , xn), then the nonparametric model for y can be written
y = f(x) + ✏ where f(·) is a smoothly varying function and ✏ is the vector
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of errors that could be assumed independent, or with variance �2W�1, and
W = diag(w1, . . . , wn

) is a diagonal matrix of weights to account for het-
eroscedasticity. We use the approach proposed by Eilers and Marx (1996),
based on two assumptions: (i) E(y) = B✓ where B is a matrix of B-splines,
and ✓ is the vector of regression coe�cients; (ii) modify the likelihood func-
tion by adding a penalty term over the adjacent coe�cients to control the
smoothness of the fit (details of this representation can be found in the
Supplementary Material). Therefore, the model becomes:

y = B✓ + ✏, ✏ ⇠ N(O,�2W�1), (1)

and the coe�cients ✓ are chosen to minimize

S(✓) = (y �B✓)0W (y �B✓) + ✓0P✓,

where P is the penalty matrix. We will use second order di↵erence penalties
between adjacent coe�cients as the penalty, i.e. P = �D0D (D is the
matrix of second order di↵erences), and � is the smoothing parameter that
controls the influence of the penalty on the fit. Other basis/penalties could
also be considered. We choose to reparameterize model in Equation (1)
using the representation of a penalized spline model as a mixed model, as
introduced by Durbán et al. (2003) (see further details in the Supplementary
Material). The use of this representation is not always necessary, although
as we shall see in the analysis of the data set, its use is crucial in this case
since we need to include random e↵ects in the model (site and block), and
therefore, need a unified approach for the estimation of the fixed and random
e↵ects in the model. Then, model (1) becomes:

y = X� +Z↵+ ✏, ✏ ⇠ N (0,�2W�1) ↵ ⇠ N (0,G), (2)

The reparametrization is based on the singular value decomposition
(SVD) of the penalty matrix D0D (Currie et al., 2006; Lee, 2010), which
yields.

X = [1
n

: x : x2 : ... : xq�1], (3)

where 1

n

is a column vector of ones, and q is the order of the penalty. For
the random part, the random e↵ects matrix Z is defined as:

Z = BU r
e
⌃

�1/2
, (4)

where e
⌃

�1/2
are the non-zero eigenvalues of the singular value decompo-

sition (SVD) of the penalty, and U r are the corresponding eigenvectors.
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With this transformation G becomes �2
↵

I
c�q

, and the smoothing parameter
� = �2/�2

↵

. Estimation of variance components is carried out by the Re-
stricted Maximum Likelihood (REML) approach proposed by Patterson and
Thompson (1971), and the vector of parameters � and the random e↵ects
coe�cients ↵ are determined by the best linear unbiased prediction:

�̂ = (X 0V �1X)�1X 0V �1y

↵̂ = �2
↵

Z 0V �1(y �X�̂),

where V = W�1 +ZGZ 0.

2.2 Smooth models for aboveground biomass data

The use of P-splines for predicting aboveground biomass was first introduced
by Goicoa et al. (2011), although the model used there only allowed for a
single covariate (diameter of the tree). In this study, we propose the use
of the model introduced in Lee et al. (2013) which allows the use of several
covariates covariates (in this case diameter and height) and its interactions.
The model is flexible enough to estimate the main e↵ect of these two vari-
ables, and the interaction between the two, while preserving the additivity
property, and also allowing the estimation of random e↵ects. The model is
based on the P-spline ANOVA mixed model of Lee and Durbán (2011):

y = f(x1) + f(x2) + f1,2(x1,x2) + ✏, (5)

where f(x1) and f(x2) are functions that represent the main e↵ects of diam-
eter and height, and f1,2 is a smooth function for the interactions between
them. The regression matrix is then defined by blocks as:

B = [B1|B2|B[1,2]], (6)

with marginal bases of the covariates, B1 (for diameter), and B2 (for
height), with dimensions n ⇥ c1 and n ⇥ c2 respectively. The methodol-
ogy proposed above can be extended to include any number of covariates by
defining a new basis and penalty. In this case the basis is constructed from
the tensor product of the marginal B-splines basis defined in Eilers et al.
(2006):

B[1,2] = B1⇤B2 = (B1 ⌦ 1

0
c1
)� (10

c2
⌦B2), (7)

where the operator � is the element-wise matrix product, and 1 is a column
vector of ones. The operation in expression (7) is such that each row of
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B[1,2] is the Kronecker product for the corresponding rows of B2 and B1.
The penalty matrix associated with model (5) has a block-diagonal form:

P = blockdiag(P 1,P 2,P [1,2]), (8)

where P
i

= �
i

D0
i

D
i

, (i = 1, 2) are the marginal di↵erence penalties for
height and diameter defined previously, and

P [1,2] = �3D
0
1D1 ⌦ I

c2 + �4Ic1 ⌦D0
2D2. (9)

However, the interaction term f1,2(x1,x2) may be not flexible enough, for
example when the interaction between covariates also includes a varying co-
e�cient component. Also, fitting model (5) might be computationally very
demanding since there are four smoothing parameters to be chosen. We
take the approach described in Lee et al. (2013) and model the interaction
f[1,2](x1,x2) as the sum of three components: two linear-by-smooth inter-
actions, g1(x1)x2 and x1g2(x2) (which allow smooth functions of clone and
height to vary smoothly along the other covariate) and a smooth-by-smooth
interaction, i.e,

f[1,2](x1,x2) = g1(x1)x2 + x1g2(x2) + h(x1,x2). (10)

Then, model (5), called PS-ANOVA (for P-splines Smooth ANOVA) be-
comes

y = f(x1) + f(x2) + g1(x1)x2 + x1g2(x2) + h(x1,x2) + ✏, (11)

with associated B-spline basis:

B = [B1|B2|B3|B4|B5], (12)

where B1 and B2 are the marginal basis functions for diameter and height,
and

B3 = B1⇤x2, B4 = x1⇤B2, and B5 = B1⇤B2,

The penalty matrix becomes:

P = blockdiag(P 1,P 2,P 3,P 4,P 5), (13)

where, P
i

= �
i

D0
i

D
i

, (i = 1, 2) (corresponding to the main e↵ects), P 3 =
�3D

0
1D1 and P 4 = �4D

0
2D2 penalize the varying coe�cient terms g1(x1)x2

and x1g2(x2), and P 5 = �5(D
0
1D1 ⌦ I

c2 + I
c1 ⌦ D0

2D2) penalizes the
interaction term (but with a single smoothing parameter). The fact that
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the smoothing parameters are independent of each other greatly improves
the computational time (even though 5 smoothing parameters are used).
However, model (11) is not identifiable, since matrix B in Equation (12) is
not of full rank. The mixed model representation of this model will solve
easily the identifiability problem. After appropriate transformation (details
are given in the Supplementary Material), model (11) can be expressed as
(2), where the fixed and random e↵ects matrices are:

X = [1
n

|x1⇤1

n

|1
n

⇤x2|x1⇤x2] (14)

Z = [Z1⇤1

n

|1
n

⇤Z2|Z1⇤x2|x1⇤Z2|Z1⇤Z2]. (15)

The vector of random e↵ects ↵ ⇠ N(O,G) can be expressed as ↵ =
(↵1,↵2, . . . ,↵5)0, where ↵

k

⇠ N(O,G
k

) with covariance matrices:

G1 = �2
1Ic1�2,G1 = �2

2Ic2�2,G3 = �2
3Ic1�2,G4 = �2

4Ic2�2, and G5 = �2
5I(c1�2)(c2�2),

then, G = blockdiag(G1, . . . ,G5).
Confidence intervals for the fitted smooth terms in model (11) can be

calculated using the covariance matrix associated with each of the compo-
nents:

Var(f̂
j

|↵) = �2H
j

,

where H
j

is part of the hat matrix of the model, H, for the j-th smooth
term:

H
j

= C
j

H H = M(M 0M +R)�1M ,

where M = [X : Z] and R is the matrix �2G�1 augmented with 4 zero
in the diagonal corresponding to the unpenalized coe�cients of X. C

j

is
a diagonal matrix with ones in the diagonal positions corresponding to the
j-th smooth term. Also, H

j

can be used to give a measure of the complexity
of the smooth curve/surface (in a similar way to a linear model) by defining
the e↵ective dimension of a smooth term as:

e.d.(f̂
j

) = trace(H
j

).

Lee et al. (2013) showed through simulations and with real data sets,
that model in Equation (11) presents better results in terms of computation
and AIC than model in Equation (5) in most situations when interaction
between covariates is present.
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Additivity property

Using a separate P-spline model for the di↵erent tree components, i.e. for
stem (ws), branches (wb), and total aboveground biomass (wt = ws+wb),
will not give estimates that satisfy the additivity property. To satisfy this
requirement, Goicoa et al. (2011) proposed the use of the same B-spline basis
and the same smoothing parameter for all the components (in the context
of mixed models this would mean using the same variance of the random
e↵ects for all components). Firstly, the P-spline model is fitted for the total
aboveground biomass of the tree, and estimates of the smoothing parameters
are obtained. The fact that the choice of the amount of smoothness is done
using the total biomass is not a problem, since, in most cases, the other
measurements present similar optimal smoothing parameters. The P-spline
model is then fitted for the tree components setting the smoothing parameter
to the value previously obtained. Given matrices B and P given in (12) and
(13) respectively (or their mixed model equivalent):

ŵt = B(B0B + P )�1B0wt = B(B0B + P )�1B0(ws+wb) = ŵs+ ŵb.(16)

It is worth noticing that, although the smoothing parameters used in
the estimation of each component must remain fixed, this does not mean
that the parameters of the model or the functional form of the curve are
the same, is only amount of smoothness that is fixed. Also, if other random
e↵ects are included in the model (site and block) their variance parameters
should also be fixed in order to ensure additivity.

3 Application

Three trials were established in three di↵erent Mediterranean thermotypes
(Rivas Mart́ınez et al., 2002), using similar design and maintenance proce-
dures. Nine clones belonging to the European Catalog of Basic Materials
for the Populus genus, and used in southern Europe were included in the
trials. These clones belong to di↵erent inter-specific hybrids of Populus :
five of P. deltoides March. x P. nigra L. (AF2, Guardi, I214, MC and 2000
verde); two P. trichocarpa T. & G. x P. deltoides (Unal and USA 49-177)
and two (P. deltoides x P. trichocarpa) x P. nigra (Monviso and Pegaso).
Clone I214 is considered a control clone because of its widespread cultivation
in the study area. A multi-environment trial in a four randomized block de-
sign was employed at each site. Site (tree levels) was the main factor, with
four blocks and three replications per block at each site (12 subplots); clone
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was the secondary factor (nine levels), hence 324 plots were measured in
total. Each subplot comprised a total of 25 ramets per clone and site but
only 9 were evaluated in order to avoid the border e↵ect. Hence, a total
of 2916 trees were evaluated (the model proposed in the previous section is
particularly suitable for large data sets as it happens in this case). Several
variables were measured outside the vegetative period and at the end of the
rotation (third year of the rotation) in order to assess the performance of
the clone at each site. These variables were diameter (in mm) at 1.30 m
(dbh), measured using a digital calliper, and total height (in cm) measured
using a pole (h). Production was measured by recording total aboveground
dry biomass (Mg DM ha�1 - BT), estimating the dry weight of a subsam-
ple (oven-dried to constant weight at 100 oC) taken from the nine plants
contained in 12 subplots per clone and site. Stem and branch biomass were
weighted separately and the stem/branch biomass ratio (S/B ratio) was used
to assess the biomass distribution in the di↵erent clones. Figure 1 shows the
relationship between diameter, height and the three measurements (total,
stem and branch weight). The total aboveground dry biomass for all the
genotypes and environments tested was 40.45 Mg.ha-1 for the whole rota-
tion (3 years). The production ranged from 48.77 Mg.ha�1 for the most
productive site (S2) and 27.86 Mg.h�1 for the least productive one (S3). At
clonal level, production ranged from 53.31 Mg.ha-1 (AF2) to 22.34 Mg.ha�1

(Pegaso). Regarding the proportion of stem biomass, this was 84.72% for
all the genotypes and environments tested. At clonal level, this proportion
ranged from 80.56% (Monviso) to 86.27% (Pegaso), while at site level it
ranged from 87.37% (S1) to 83.12% (S3).

[Figure 1 about here.]

We fitted and compared the following models:

Model 1:

The basic model, corresponding to Goicoa et al. (2011), but adding random
e↵ects for site and block:

wt
ijk

= � · clone+ f(d
ijk

) + u
i

+ v
ij

+ ✏
ijk

, (17)

wt
ijk

is total above-ground biomass measured at the i-th site within the j-th
block on the k-th tree, � is the clone fixed-e↵ects parameter vector, f(d

ijk

)
is a smooth function of the diameter, u

i

and v
ij

are random components
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common to the observations taken from the same site and within-site block
respectively, and ✏

ijk

is the residual error term. This model fits a common
smooth trend for all clones, which means that the relationship between di-
ameter and total weight is a curve that only di↵ers from one clone to another
by a quantity given by the corresponding clone-parameter (�

l

, l = 1, . . . 9).

Model 2:

The simplest way to include another covariate in the model would be by
using and an additive mixed model for diameter and height:

wt
ijk

= � · clone+ f(d
ijk

) + f(h
ijk

) + u
i

+ v
ij

+ ✏
ijk

, (18)

Figure 2 shows the smooth fitted trend for diameter and height (plots are
done using partial residuals, i.e. after taking into account the other terms
in the model). As expected, the e↵ect of diameter is much stronger than
height, but both smooth terms are significantly di↵erent from zero, and the
e↵ective dimensions (e.d.) for each term are 6.7 (for diameter) and 4.3 (for
height). This also means that they are far from being a straight line (this
would correspond to an e.d. of 2) which highlights the need for a flexible
non-parametric model.

[Figure 2 about here.]

This model (like the previous one) assumes that the total weight will
increase with height (or diameter) in a similar way for each clone. This is
unrealistic, since the individual characteristics of each clone would modify
the way in which the weight changes with respect to each covariate.

Model 3:

Model 2 is extended to fit a separate curve for each clone, by using a factor-
by-curve interaction model (Durbán et al., 2005), in which a categorical
variable (clone) interacts with a continuous predictor (diameter and height),
i.e.:

12



wt
ijk

= � · clone+ f
clone

(d
ijk

) + f
clone

(h
ijk

) + u
i

+ v
ij

+ ✏
ijk

, (19)

f
clone

(d
ijk

) and f
clone

(h
ijk

) are nine di↵erent smooth functions for di-
ameter and height, respectively, depending on the value of the clone. For
simplicity, we have assumed a common variance parameter for all nine curves
of each variable. This means that all curves of each covariate have equiva-
lent smoothness. However, the random e↵ects are di↵erent from function to
function, i.e., the curves are di↵erent but have the same amount of smooth-
ing.

[Figure 3 about here.]

We give an example in Figure 3, where we plot the smooth trend for
diameter obtained after fitting models 2 and 3, for clone 2000 verde; note
that the trend obtained from model 2 does not fit the data very well, this is
due to the fact that we are imposing the same curve on all clones, while with
model 3, the curve is adapted to the specific characteristics of each clone.

Figure 4 shows the fitted surfaces for the additive model in Equation (11)
for total, stem and branch biomass for Unal clone.

[Figure 4 about here.]

Model 4:

An additive model for height and diameter assumes that there is no interac-
tion between both variables. However, this is not the case since the e↵ect of
diameter on total biomass is not the same for all values of height; therefore,
we need to include an interaction term in model (19) :

wt
ijk

= � ·clone+f
clone

(d
ijk

)+f
clone

(h
ijk

)+f
clone

(d
ijk

, h
ijk

)+u
i

+v
ij

+✏
ijk

,
(20)

where f
clone

(d
ijk

, h
ijk

) is a smooth function of the diameter-height interac-
tion vector for tree k within block j in site i. This interaction function is
expressed as in Equation (10):

f
clone

(d
ijk

, h
ijk

) = g1
clone

(d
ijk

)h
ijk

+d
ijk

g2
clone

(h
ijk

)+t
clone

(d
ijk

, h
ijk

). (21)
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We have chosen the more complex expression for the interaction given above
instead of a simpler interaction term (without the varying coe�cients terms,
g1

clone

(d
ijk

)h
ijk

and d
ijk

g2
clone

(h
ijk

), based preliminary empirical results.
We have analyzed the data (for total biomass) and compared models (11)
and (5). The value of AIC for model (11) was -1216.15 compared with -
1178.10 for model (5). Similar results were obtained when the models were
fitted to each clone separately (further details on these results and sample
code can be found in the Supplementary Material). Indeed, the varying co-
e�cient terms accounts for the smooth-by-linear interaction e↵ects between
diameter and height.

It is worth mentioning the problem of identifiability present in all models
presented in this paper. In particular, smooth additive models are not iden-
tifiable due the fact that the intercept is confounded with the main e↵ects
(f1(d

ijk

)and f2(h
ijk

)) and main e↵ects are confounded with the two-way
interactions (f1,2(d

ijk

, h
ijk

). Some authors (Wood, 2006) identify and im-
pose the constraints numerically, but this is di�cult to extend to the case
of more than 2-way interactions. We take a simpler approach, and use the
mixed model representation of P-splines to remove the linearly dependent
columns from the basis (Lee and Durbán, 2011; Wood et al., 2013). When
there are interaction between factors and curves or surfaces (as in models
(19) to (21)) further identifiability constraints need to be imposed. Several
options are available, depending on the type of contrast of interest: sum of
e↵ects equal to zero, e↵ects corresponding to first level of the factor equal
to zero, etc. In this case, the identifiability problem is solved modifying the
fixed and random e↵ects matrices as follows:

fX = C⇤X eZ = C⇤Z,

where C is the usual constraint matrix for the clone e↵ect in an ANOVA
model, and ⇤ is the row-wise Kronecker product defined in Equation (7)
Then,

fX =

2

6664

X1 O . . . O
X2 X2 . . . O
...

...
. . .

...
X9 O . . . X9

3

7775
, eZ =

2

6664

Z1 O . . . O
Z2 Z2 . . . O
...

...
. . .

...
Z9 O . . . Z9

3

7775
,

and X
i

and Z
i

are defined in (14) and (15) respectively (for each clone).
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All models presented in this paper can be implemented in standard mixed
model software (using lme() function in R, or PROC MIXED macro in SAS),
or using the library mgcv (versions 1.7.28 onward) in R. In particular, the
function gamm() fits smooth additive mixed models. The constraints needed
for models (20) and (21) are obtained specifying the smooth terms by the
function ti().

The models were fitted using B-splines of degree 3, and second order
penalties, 20 knots were used to construct the basis in models 1 to 3, and
basis of 10 knots were used for the interaction term in model 4, due to com-
putational restrictions. The variance of biomass may increase with tree age
and size, leading to heteroscedasticity. These models can easily be adapted
to cope with this by including the appropriate weight matrix in the error
term. However, as our data are from three years old trees, most of which
have a diameter under 5cm, there were no trends in residuals as a function
of fitted values or explicative variables in any of the tested models.

Comparison of the proposed models (models 2 to 4), was done using the
Akaike Information Criterion Akaike (1973), and the adjusted R2, defined as
the proportion of variance explained, where original variance and residual
variance are both estimated using unbiased estimators. As we can see in
Table 1, the surface by factor model (model 4) gives the best results for all
variables: total, branch and stem weight, although it has a larger e↵ective
dimension (this could be expected since it is the most complex model).

[Table 1 about here.]

In Table 2 we show the e↵ective dimension of each smooth component of
the tested models. When the diameter and height interaction is not taken
into account, the main e↵ect of diameter is much greater than that of height.
Once the interaction was included, the height smooth term has an e↵ective
dimension of zero and the smooth interaction e↵ect of diameter and height
was the most important. The linear-by-smooth interaction e↵ects of diam-
eter and height and the main diameter e↵ect have similar values of e↵ective
dimension. This means that the smooth e↵ect of height is only significant
through the interaction with diameter.

[Table 2 about here.]
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Figure 5 plots predicted versus observed values for the total aboveground,
stem and branch biomass for the AF2 clone, derived from the four tested
models. Model 1 tends to overestimate biomass, while model 2 underesti-
mates it, specially in the case of stem biomass. The predictions were very
similar for models 3 and 4 in the three cases, although model 4 performed
better in terms of AIC and R2.

[Figure 5 about here.]

Figure 6 shows the fitted surfaces of model in (20) for total, stem and
branch biomass for Unal and I214 clones. Notice that compared to the addi-
tive surfaces shown in Figure 4, now the interaction terms in Equation (21)
allows for clone by diameter and height e↵ects simultaneously. This fact
could be expected due to genotype di↵erences. Figure 7 shows the pre-
dictions (given by Model 4) for the tree components (stem and branches)
and the total biomass for one of the clones, while models 1 and 2 tend to
underestimate biomass, especially in the case of branch weight. To ensure
additivity, the smoothing/variance parameters were chosen from the fit of
total biomass, and they were used to predict the stem and branch weight.
Variance components for site and block within site were significant for all
models, but their value decreased as the model became more complex.

[Figure 6 about here.]

[Figure 7 about here.]

Analysis of slash pine data in Parresol (2001)

In order to compare our methodology with other existing approaches, we
analyze the data in Parresol (2001), which correspond to a sample of 40
slash pine trees in the state of Louisiana, U.S.A. Several measurements were
taken, including diameter, height, live grown length and age, but only di-
ameter and height were used. Parresol (2001) used two di↵erent procedures
depending on how the separate components of the model are aggregated:
i) The total biomass function is the sum of the separate regression func-
tion of each component of the model, and ii) Each component has its own
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independent variables, and additivity is ensure by imposing constraints on
the coe�cients. We compare our results with method ii), which is the one
that performs better in most cases. The system of equations used was (see
equation 18 in Parresol (2001)):

ŷ
wood

= b11
�
D2H

�
b12

ŷ
bark

= b21D
b12

ŷ
crown

= b31D
b32Hb33

ŷ
total

= b11
�
D2H

�
b12 + b21D

b12 + b31D
b32Hb33 .

The parameters were estimated by non-linear seemingly unrelated regres-
sion, and weights we included in the model fitting to account for het-
eroscedasticity. We used a multidimensional P-spline for height and di-
ameter (see Equation (5)) for each of the of the components of the models,
and the weights used were the reciprocal of the smoothed squared residuals,
as in Currie and Durbán (2002). In Table 3, we compare the models using
the same measures of goodness of fit that appear in Parresol (2001): the Fit
Index (pseudo R2) and the Root Mean Square Error (RMSE).

[Table 3 about here.]

The P-spline mixed model approach improves the fitting in all cases, and
specially in the case of the total biomass, where the RMSE is 20% smaller,
with the advantage that no functional form needs to be imposed in the tree
component of the total biomass.

4 Discussion

In this paper we present a novel application of multidimensional P-spline
mixed models to obtain biomass equations in the presence of more than
one predictor variable and random e↵ects. The additivity property is auto-
matically satisfied if the same smoothing/variance parameters are used for
all components of the tree, and this estimation approach involves no added
di�culty. Furthermore, it provides us with the possibility of estimating a
nonlinear relationship between the response and the explanatory variables
using linear mixed model theory. In comparison with other procedures that
satisfy the additivity property, such as non-linear regression, these mod-
els are easily implemented and provide good results, while the non-linear
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models can produce singular covariance matrices that do not guarantee a
unique solution (Goicoa et al., 2011). The only drawback of using penalized
spline models to satisfy the additivity property is the fact that the same ex-
planatory variables are considered for modelling all the components of the
tree.

The approach presented in this paper is based on penalized regression,
therefore, the models only need to specify the type of basis and penalties.
Other possible options would be the use of wavelets with a ridge penalty, as
described in Angelini (2003). This approach yields directly a mixed model
representation, as it does, for example, the use of truncated power functions
(Ruppert et al., 2003), in which there is no need for reparametrization. How-
ever, wavelets are more suitable for cases where the true signal in the data
is not so smooth. Although the reparametrization of the model might seem
inconvenient, it is a standard procedure implemented in statistical packages
that deal with penalized regression model. Also, it does not only yields
the mixed model representation, but also allows for an easy implementation
of the necessary constraints when dealing with additive and/or factor-by-
function terms in the model. Furthermore, all models used in the paper can
be fitted in R (using the lme function, or gam, in the mgcv package), but also
in other packages, such as SAS, by means of the PROC MIXED function.

In this study, the variables measured were height and diameter. These
variables have a relatively high predictive power, diameter being the most
common variable used to estimate tree biomass or its components, whereas
height is often used to di↵erentiate growth conditions at di↵erent sites and
commonly serves as a basis for expressing site index for the purpose of forest
management planning. Branch biomass generally displays greater variabil-
ity than stem and total aboveground biomass; hence some authors suggest
that other variables besides diameter and height should be included in the
branch biomass model in order to improve its accuracy. These variables
might be related to the architecture or geometry of the tree. However, the
possible improvement in estimation accuracy could not justify the added
cost involved in measuring such variables in poplar short rotation coppice.

The models used in this study comprise two steps in order to satisfy the
additivity property. Firstly, estimates of the smoothing/variance parame-
ters are obtained by fitting the P-spline model for the total aboveground
biomass of the tree. This gives the best fit, and also puts greater em-
phasis on total aboveground biomass, as recommended by Cienciala et al.
(2006). The P-spline model is then fitted for the tree components, set-
ting the parameters to the value previously obtained. When the results of
fitting di↵erent curves/surfaces to the data for each clone were compared,
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highly significant di↵erences were found between clones. Furthermore, the
estimates of variance parameters in the models were reduced when clone-
specific curves/surfaces where included in the model. Our results confirm the
necessity to use clone-specific models to estimate biomass in short-rotation
plantations, as previously stated by Telenius and Verwijst (1995). Accord-
ing to our data, the models di↵er even for genotypes belonging to the same
taxonomic group such as Unal and USA 49-177 (P.x generosa) or AF2 and
I214 (P.x canadensis) for example. The additive plus interactions model
(Model 4) gave the best fit to the data, indicating that the interaction of
diameter and height has a significant influence on biomass production, and
that this interaction is di↵erent among clones. This result is consistent with
the genetic variability found by Wu and Stettler (1996) in the height and
diameter growth patterns of poplars.

Finally, the models presented are very flexible and can be easily extended
to more general cases, for example, for discrete response variables by the use
of generalized linear mixed models.

Acknowledgments

The study was carried out within the framework of INIA funded project
RTA2005-00182-C02-01 and RTA2008-00025-C02-00, co-financed with funds
from FEDER. The work Maria Durban and Dae-Jin Lee was funded by
the Spanish Ministry of Economy and Competitiveness grant MTM2014-
52184-P. The research by Dae-Jin Lee was supported by the Basque Gov-
ernment through the BERC 360 2014-2017 and the Department of Educa-
tion, Language Policy and Culture of the Basque Government IT-620-13
programs and Basque Government Industry Department under the ELKA-
RTEK Program, and by the Spanish Ministry of Economy and Competitive-
ness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013-
0323.

References

Akaike, H. (1973). Information theory and an extension of the maximum
likelihood principle. In Petrof, B. and Csàki, editors, Second International
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Figure 1: Plot of weight (total, stem and branches) versus diameter and
height
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(a) Smooth diameter ef-
fect.
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(b) Smooth height e↵ect.

Figure 2: Additive smooths terms for diameter and height by model 2.
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Figure 3: Fitted smooth curves for diameter using Model 3 (solid line) and
Model 2 (dashed line) for clone 2000 verde.
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Figure 4: Fitted additive surface by model 3 for Unal (top) and I214 clones
(bottom).
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Figure 5: Plot of predicted versus observed values for all models (AF2 clone).
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Total Biomass Stem Branches
AIC ED Adj. R2 AIC Adj. R2 AIC Adj. R2

Model 1 -395,2 37,5 94,1% -350,7 93,6% -299,1 75,8%
Model 2 -413,4 40,3 95,5% -397,2 95,8% -355,8 82,0%
Model 3 -678,1 116,6 96,5% -615,3 96,4% -572,2 85,8%
Model 4 -761,3 166,2 96,8% -738,9 96,7% -674,4 86,4%

Table 1: Values of Akaike Information Criterion (AIC), e↵ective dimension
(ED), and adjusted R2 of models 1 to 4.
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Smooth Component Model 2 Model 3 Model 4
ED1 (diameter) 14,67 55,44 28,11
ED2 (height) 4,66 24,17
ED3 (diameter by height) 29,17
ED4 (height by diameter) 27,87
ED5 (diameter*height) 35,04

Table 2: E↵ective dimensions (ED
j

) associated with each smooth component
of models 2 to 4. The interactions expressed with “by” correspond to the
linear by non-linear interaction term in model 4.
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NSUR P-spline
Model FI RMSE FI RMSE
Wood 0,984 27,1 0,989 21,8
Bark 0,961 5 0,966 4,6

Crown 0,909 13 0,899 13,29
Tree 0,988 31,2 0,993 25,22

Table 3: Non-linear seemingly unrelated regression and P-spline mixed
model results for the slash pine biomass data
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Smooth additive mixed models for predicting

aboveground biomass
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Appendix A: Mixed model representation of penal-
ized splines

The mixed model representation is motivated because it allows us to include
smoothing in large class of models (from correlated data to longitudinal
studies and survival analysis), and the use of the methodology and software
already developed for mixed models for estimation and inference. More-
over, this representation allows the smoothing parameter to be determined
as the ratio between the variance of the error terms and the variance of the
random e↵ects, that is, � = �

2
/�

2
↵. Both variance components can be esti-

mated through REML procedure, and, therefore, it is not longer necessary
to estimate � via a cross-validation method or an information criterion. The
reformulation of a P-spline into a mixed model can be viewed as a reparam-
eterization of the original non-parametric model, for which we transform
the model B-spline basis into a new model basis, i.e., B ! [X : Z], and
coe�cients ✓ ! (�,↵)0. Hence, this representation decomposes the fitted
values as the sum of a polynomial (unpenalized) part (X�) and a non-linear
(penalized) (Z↵) smooth term. There are several alternatives depending
on the bases and the penalty used. Here, we use the B-spline basis and
the penalty defined in section 2 to reparameterize the original model into
a mixed model and, then, the aim is to find a transformation matrix T to
achieve this reparameterization.

We consider the singular value decomposition of the di↵erence penalty
matrix P = D

0
D, that is:

D

0
D = U⌃U

0,

where ⌃ is a diagonal matrix that contains the eigenvalues of D0
D with d

zero eigenvalues, and U is the corresponding matrix of eigenvectors that can
be decompose into two parts: Un of dimension c⇥d containing the null-part
eigenvectors and Us of dimension c⇥(c�d) (where c is the rank of the basis
and d, the order of the penalty) with non-null-part eigenvectors. Note that

we can write ⌃ has ⌃ = blockdiag

⇣
0d, ⌃̃

⌘
, where ⌃̃ is a diagonal matrix

that contains the non-zero eigenvalues of D0
D and 0d is a d ⇥ d matrix of

zeroes. Therefore, we can define a suitable transformation matrix T as:

T = [Un : Us⌃̃
�1/2

],

where the fixed and random e↵ect matrices are X = BUn, and Z = BUs,
respectively. Also, given this transformation matrix, the new coe�cients are
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� = U

0
n✓ and ↵ = U

0
s⌃̃

�1/2
✓. The fixed e↵ect matrix X may be replaced

by any sub-matrix such that [X : Z] has full rank and X

0
Z = 0 (that is,

X and Z are orthogonal). This is possible since the fixed parameters are
unpenalized. So, if we assume a second order penalty (d = 2), the fixed e↵ect
matrix can be taken as X = [1 : x], where 1 is a vector of ones and x is the
explanatory variable. Also, the penalty term ✓0

P✓ becomes ↵0F↵, where
F = �I. This fact follows since T is orthogonal and (�,↵)0 = T

0✓. Hence,
given the new basis and the new penalty, the penalized sum of squares,

S(✓) = (y �B✓)0W (y �B✓) + ✓0P✓,

becomes:

S (�,↵,�) = (y �X� � Z↵)0W (y �X� � Z↵) + �

2
�↵0

Ic�p↵,

This corresponds to the likelihood of a linear mixed model with ✏ ⇠ N(O,�

2W�1)
and ↵ ⇠ N (O,G) with G = �

2
↵Ic�p and � = �

2
/�

2
↵. Di↵erentiating the

equation above with respect to � and ↵, it is straightforward to obtain the
standard mixed model equations given in section 2.

Appendix B: Derivation of the PS-ANOVA mixed
model formulation

In this Appendix, we show how to obtain the mixed model formulation of
the model given by:

y = f1(x1) + f2(x2) + g1(x1)x2 + x1g2(x2) + h(x1,x2) + ✏, with ✏ ⇠ N (0,�2). (1)

This model is known as PS-ANOVA mixed model introduced in Lee et. al
(2013), where the interaction between the covariates is decomposed as a sum
of three components:

• g1(x1)x2 is a smooth-by-linear interaction between x1 and x2,

• x1g2(x2) is a linear-by-smooth interaction between x1 and x2 and

• h(x1,x2) is a smooth-by-smooth interaction between x1 and x2.

where fi and gi are smooth functions of the covariates xi for i = 1, 2 and h

a smooth function for the interaction.
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In order to show the mixed model formulation of model in Eq. (1), firstly,
let us consider a bivariate smooth additive with interaction model given by:

y = f1(x1) + f2(x2) + f1,2(x1,x2) + ✏, with ✏ ⇠ N (0,�2), (2)

where f1 and f2 are additive smooth terms of x1 and x2 respectively and
f1,2(x1,x2) is a bivariate interaction term. Model in Eq. (2) was proposed by
Gu (2002) in the context of smoothing splines as Smoothing-splines ANOVA
(SS-ANOVA) models. In the context of low-rank smoothers such as P -
splines, the model in Eq. (2) is constructed as follows:

Given E[y] = B✓, where the B-spline regression basis B is defined
block-wise as:

B = (B1|B2|B1⇤B2), (3)

where each Bi is a B-spline basis of dimension n ⇥ ci, i = 1, 2. The sym-
bol ⇤ denotes the row-tensor product of two matrices. Hence, the size
of B is n⇥ (c1 + c2 + c1c2). The vector of regression coe�cients ✓0 =
(✓1,✓2,✓[1,2])

0, where ✓1 and ✓2 are the c1 ⇥ 1 and c2 ⇥ 1, vector of co-
e�cients for the main (additive) e↵ects and ✓[1,2], of length c1c2⇥ 1, for the
interaction. Then, model in Eq. (2) can be written as:

E[y] = B1 ✓1 +B2 ✓2 + (B2⇤B1) ✓[1,2].

The penalty would have a block-diagonal structure of the form:

P =

0

@
�1D

0
1D1

�2D
0
2D2

�3D
0
2D2 ⌦ Ic1 + �4Ic2 ⌦D0

1D1

1

A
, (4)

of dimension (c1+c2+c1c2)⇥(c1+c2+c1c2), where each block corresponds to
the penalty over each of the coe�cients of the model. The penalty matrix
(4) includes one-dimensional penalties of the additive smooth terms with
smoothing parameters �1 and �2, and a two-dimensional penalty for the
interaction term with �3 and �4. However, the regression matrix (3) is
not of full rank, (in fact rank(B) = c1c2), so there are (c1 + c2) linearly
dependent columns. In other words, some elements of the basis B1 and
B2 and are included in the basis for the interaction B2⇤B1. Hence, model
in Eq. (2) should be modified in order to preserve the identifiability. The
identifiability problem is also reflected in the fact that the penalty matrix in
(4) is rank deficient (i.e. rank(D0

iDi) = ci � pord, where pord is the order
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of the penalty, usually pord = 2). Hence, matrix P in Eq. (4) has rank
(c1 + c2 + c1c2 � 8).

A simple and elegant way to avoid identifiability problems is to re-
formulate the model as a mixed model as shown in Appendix A. The
mixed model representation of model (2) allows us to find out that some
terms are repeated in the model matrices Xi and Zi, i = 1, 2 and solve
the identifiability problem. Consider a second order penalty pord = 2,
for each Bi there exists a transformation matrix T i = [T in|T is] such that
BiT i = [BiT in|BiT is] = [Xi|Zi] of size n ⇥ ci. for the interaction term
B1⇤B2 the transformation matrix is given by the tensor product of two
transformation matrices T 1 ⌦ T 2. For second order penalties, pord = 2, let

be the T in = [u(1)
in : u(2)

in ] are the null-part eigenvectors of D0
iDi and is of

size ci ⇥ 2 and T is = [U is] of dimensions ci ⇥ (ci � 2) contains the non-null
part eigenvectors. Then, it is straightforward to see that by removing the
column vector of 1’s in the fixed e↵ects matrices, the identifiability problem
is easily solved. Hence, the model matrices for model in Eq. (2) are:

X = [1n|x1|x2|x2⇤x1]

Z = [Z1|Z2|x2⇤Z1|Z2⇤x1|Z2⇤Z1]

Removing the column vector of ones also implies to remove the corre-
sponding column vector of the transformation matrix T . Finally, the matrix
T required to obtain the fixed and random e↵ects matrices in X and Z is:

T n =

2

6664

1 · · · 0
... u

(2)
1n

u
(2)
2n

0 u
(2)
2n ⌦ u

(2)
1n

3

7775
and (5)

T s =

2

6664

0 · · ·
U1s
... U2s

u
(2)
2n ⌦U1s : U2s ⌦ u

(2)
1n : U2s ⌦U1s

3

7775
, (6)

where u
(2)
in are the second columns of U in, and U in and U is are the matri-

ces of eigenvectors corresponding to the null and non-null eigenvalues of the
singular value decompositions of matrices D0

iDi for i = 1, 2.

Given this transformation, the mixed model penalty for model in Eq. (2) is
the block-diagonal matrix defined by:

F = T 0
sPT s = blockdiag(F (1),F (2),F (1,2)), (7)
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where

F (1) = �1
e
⌃1 ,

F (2) = �2
e
⌃2 , and

F (1,2) = blockdiag(�3
e
⌃1,�4

e
⌃2,�3Ic2�2 ⌦ e

⌃1 + �4
e
⌃2 ⌦ Ic1�2) ,

and e
⌃i are the non-zero eigenvalues of the marginal penaltiesD0

iDi, i = 1, 2.
Then, the covariance of the random e↵ects is given by �

2F�1. Notice that,
for �1 = �2 and �3 = �4, the model is equivalent to the bivariate anisotropic
tensor product smooth.

Looking at the composition of X and Z above, it is almost immediate
to think of a model with 5 smooth perms instead of 3, one per component
of those matrices. This is equivalent to model the interaction f[1,2](x1,x2)
as:

f[1,2](x1,x2) = g1(x1)x2 + x1g2(x2) + h(x1,x2). (8)

This yields model (1), with associated B-spline basis:

B = [B1|B2|B3|B4|B5], (9)

where B1 and B2 are the marginal basis functions for diameter and height,
and

B3 = B1⇤x2, B4 = x1⇤B2, and B5 = B1⇤B2,

The penalty matrix becomes:

P = blockdiag(P 1,P 2,P 3,P 4,P 5), (10)

where, P i = �iD
0
iDi, (i = 1, 2) (corresponding to the main e↵ects), P 3 =

�3D
0
1D1 and P 4 = �4D

0
2D2 penalize the varying coe�cient terms g1(x1)x2

and x1g2(x2), and P 5 = �5(D
0
1D1 ⌦ Ic2 + Ic1 ⌦ D0

2D2) penalizes the
interaction term (but with a single smoothing parameter).

In this case, the transformation matrices required a as follows: T n is
given by (5), and T s is a modified version of (6) given by:

T s =

2

6666666664

0 · · ·
U1s

e
⌃

�1/2
1

... U2s
e
⌃

�1/2
2

u
(2)
2n ⌦U1s

e
⌃

�1/2
1

U2s
e
⌃

�1/2
2 ⌦ u

(2)
1n

U2s
e
⌃

�1/2
2 ⌦U1s

e
⌃

�1/2
1 .

3

7777777775

(11)
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Again:
F = T 0

sPT s = blockdiag(F 1, . . . ,F 5),

where
F 1 = �1Ic12, F 2 = �2Ic22,

F 3 = �3Ic12, F 4 = �4Ic22

F 5 = �5I(c1�2)(c2�2)

using the fact that G = �

2F�1, we obtain that the vector of random e↵ects
↵ ⇠ N(O,G) can be expressed as ↵ = (↵1,↵2, . . . ,↵5)0, where ↵k ⇠
N(O,Gk) with covariance matrices:

G1 = �

2
1Ic1�2,G1 = �

2
2Ic2�2,G3 = �

2
3Ic1�2,G4 = �

2
4Ic2�2, and G5 = �

2
5I(c1�2)(c2�2),

then, G = blockdiag(G1, . . . , G5).

Appendix C: Comparison of models for each clone

Simulations results given in Lee et al. 2013 show that a model with an
a more complex interaction is superior to a model using the function f1,2

(which is a sub-model of the previous one). In the paper, we showed that
The analysis of the data confirm this result (looking at the AIC values). In
order to reinforce this finding we fit the two models to the total biomass
data to each clone separately:

• (a) PS-ANOVA model with one interaction term:

wtijk = f(dijk) + f(hijk) + t(dijk, hijk) + ui + vij + ✏ijk

• (b) PS-ANOVA model, with 3 interaction terms:

wtijk = f(dijk)+f(hijk)+g1(dijk)hijk+dijkg2(hijk)+t(dijk, hijk)+ui+vij+✏ijk

The following table gives the results for the fitting of each clone:

Clone

Model AF2 Guardi I214 MC Monviso Pegaso Unal USA verde
(a) -839.87 -978.62 -941.69 -752.11 -808.52 -1200.95 -915.30 -1012.49 -969.90
(b) -903.75⇤ -978.73⇤ -948.26⇤ -753.25⇤ -832.40⇤ -1217.06 ⇤ -934.80⇤ -1012.92⇤ -1016.71⇤

Table 1: Akaike information Criterion (AIC) for models (a) and (b) fitted
for each clone. Symbol ⇤ indicates the best model.

In all cases, again model (b) outperformed model (a).
Bellow, we give an example of the code needed to fit model (a) and (b)

using gamm function in R for one of the clones:
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# Model (a) (Clone="Unal")

model4Unal <- gamm(wt ~ gamm(wt ~ ti(diameter,m=2,bs="ps",k=10)+

ti(height,m=2,bs="ps",k=10)+

t(diameter,m=2,bs="ps",k=c(10,10)),

random=list(site=~1, sitbl=~1),

data = biomass[Clone=="Unal",],method="REML")

# Model (b) (Clon="Unal")

model5Unal <- gamm(wt ~ ti(diameter,m=2,bs="ps", k=10)+ti(height,m=2,bs="ps",k=10)+

ti(diameter,by=height,m=2,bs="ps",k=10)+

ti(height,by=diameter,m=2,bs="ps",k=10)+

ti(diameter,height,bs="ps",m=2,k=c(10,10)),

random=list(site=~1, sitbl=~1),

data = biomass[Clone=="Unal",],method="REML")

wt is the total weight and site and sitbl, are variables corresponding to
the site and block within site design. We have used B-spline basis of size
10 (k=10) and di↵erence penalties (bs=’’ps’’), of order 2 (m=2). All terms
are specified using ti() to produce tensor product interactions, appropriate
when the main e↵ects (and any lower interactions) are also present. In
this case we have not specified the smoothing parameter, which are selected
using REML. However, if the additive property needs to be satisfied, the
smoothing parameters would be the same for each component of the tree
(as explained at the end of section 2). If the fit is done for all clones, a
further argument by=Clone would be included in each smooth component
of the formula.
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