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Abstract

Studies into the impact of vaccination against the varicella zoster virus (VZV) have increasingly focused on

herpes zoster (HZ), which is believed to be increasing temporally in vaccinated populations with decreasing

infection pressure. This idea can be traced back to Hope-Simpson’s hypothesis, in which a person’s immune

status determines the likelihood that he/she will develop HZ. Immunity decreases over time, and can be

boosted by contact with a person experiencing varicella (exogenous boosting) or by a reactivation attempt

of the virus (endogenous boosting). Here we use transmission models to estimate age-specific rates of

reactivation and immune boosting, exogenous as well as endogenous, using zoster incidence data from the

Netherlands (2002-2011, n = 7, 026). The boosting and reactivation rates are estimated with splines,

enabling these quantities to be optimally informed by the data. The analyses show that models with high

levels of exogenous boosting and estimated or zero endogenous boosting, constant rate of loss of immunity,

and reactivation rate increasing with age (to more than 5% per year in the elderly) give the best fit to

the data. Estimates of the rates of immune boosting and reactivation are strongly correlated. This has

important implications as these parameters determine the fraction of the population with waned immunity.

We conclude that independent evidence on rates of immune boosting and reactivation in persons with waned

immunity are needed to robustly predict the impact of varicella vaccination on the incidence of HZ.

Highlights

• We estimate age-specific rates of VZV reactivation and immune boosting using HZ incidence data

• We find high rates of exogenous and lower rates of endogenous immune boosting, while reactivation

rates increase strongly with age

• A substantial part of the adult population is expected to be unavailable for reactivation leading to HZ

• High estimated rates of exogenous immune boosting lend credibility to the idea that HZ incidence

depends on VZV circulation
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Introduction

Varicella zoster virus (VZV) is a herpes virus causing a disease known as chickenpox or varicella. After

resolving of the systemic primary infection, the virus remains latently present in the host. The virus can

reactivate later in life, resulting in a disease known as herpes zoster (HZ) or shingles. Dating back to the work

of Hope-Simpson [12], it has been hypothesized that boosting of the immune system of a latently infected

person by contact with a person experiencing chickenpox could lower the probability of HZ developing at

some point later in life [3, 10, 20, 19, 29]. If true, such exogenous immune boosting could have profound

implications for vaccination programs aimed at reducing chickenpox, as these are expected to reduce virus

transmission and exogenous immune boosting. Over the years this has become a popular hypothesis to

explain and predict the dynamics of HZ in unvaccinated and vaccinated populations, and an important

reserve for countries to introduce VZV vaccination [2, 3, 10, 25].

While earlier studies focused exclusively on the implications of exogenous boosting [1, 3, 10, 11, 21, 25, 31],

Hope-Simpson’s original hypothesis states that both exogenous and endogenous boosting, by reactivation

attempts of the virus that are successfully countered by the immune system of the host, contribute to the

maintenance of immunity. Although data are scarce, some studies indeed show subclinical reactivation in

specific populations, most likely in response to stress [5, 14, 16, 24, 33]. It is therefore of particular interest

to evaluate the joint ability of endogenous and exogenous boosting to explain the available HZ incidence

data, and to obtain insight in the relative strength of endogenous versus exogenous immune boosting. Here

we build on earlier studies [1, 3, 10, 11, 25, 21, 31] to obtain estimates of key parameters determining the

dynamics of VZV in unvaccinated and vaccinated populations. Specifically, we use long-term HZ incidence

data from the Netherlands (2002-2011, n = 7, 026 cases [31]) to estimate age-specific rates of immune

boosting, loss of immunity, and reactivation in a population without VZV vaccination. Our approach

extends earlier analyses by i) including the possibility of endogenous next to exogenous immune boosting,

and ii) allowing the age-specific rates of reactivation and immune boosting to have flexible shapes, using

natural cubic splines. In this manner, the shapes and values of the rate functions are optimally informed

by the data, in contrast to previous studies that have made restrictive assumptions from the onset (e.g.,

[10, 31]).

The analyses reveal that rates of loss of immunity are high (0.048 − 0.10 per year), that reactivation

rates are low up to 40 years, increase strongly to 0.03− 0.10 per year at old age, and that the fraction of the

population with waned immunity that is prone to HZ decreases from 45%− 55% at age 25 to 10%− 40% at

age 80, and depends sensitively on whether or not endogenous boosting is taken into account. Our analyses

show that exogenous boosting is stronger than endogenous immune boosting in children and adults with

young children, and that it is conceivable that endogenous boosting exceeds exogenous boosting in other

age strata. We discuss the implications for vaccination programs aiming to reduce chickenpox, and possible

future avenues to obtain further quantitative information on the magnitude of the Hope-Simpson effect.
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Figure 1: Overview of varicella zoster virus (VZV) seroprevalence (i.e. fraction of the population infected) (left-hand panel)
and estimated force of infection (right-hand panel)[31]. The shaded area represents the 95% confidence band of the force of
infection.

Methods

Varicella prevalence

The prevalence of VZV by age is based on Dutch serological data, derived from the second cross-

sectional serosurveillance study (PIENTER2), conducted among people aged 0-79 years in the Netherlands

in 2006/2007 [30]. The seroprevalence of VZV in the PIENTER2 study is quantitatively very similar to the

seroprevalence in the earlier PIENTER1 study (conducted in 1995/1996), indicating little change of the age

at infection with VZV over the period 1996-2006 [7, 32]. To avoid the interference of maternal antibodies

we only include the 6,251 samples of participants aged 6 months or older. The VZV seroprevalence data

provide the basis for estimation of the basic reproduction number of VZV using the so-called social contact

hypothesis [31]. Here we use the earlier estimates of the force of infection as input for estimation of the

rates of reactivation and immune boosting. The data and earlier model fit are shown in Figure 1, and can

be downloaded in the data supplement of an earlier publication [31].

Herpes zoster incidence

Sentinel data on the incidence of general practitioner (GP) consultations due to HZ by age in the period

2002-2011 (based on 7,026 cases) are provided by NIVEL, the Netherlands Institute for Health Services

Research [31]. The majority of HZ patients consult their GP because it is a painful condition. Because HZ

complaints are highly specific and accompanied by typical lesions, with a positive predictive value of clinical

judgment of 90.8% (95%CI: 87.3% − 94.3%), we expect that misclassification of the diagnosis by the GP

is rare [22]. Hence, we use the sentinel GP data as a proxy for the total incidence of HZ in the catchment

population. The HZ data can be downloaded in the data supplement of an earlier publication [31], and

shows no increase or decrease of incidence over time, and no relative increase or decrease in any age group

in the study period. The HZ data are the main source of information on which estimates of the rates of

reactivation and boosting are based.
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Figure 2: Schematic of the model under the short-disease approximation. S(a) denotes the age-specific prevalence of uninfected
persons, V (a) the age-specific prevalence of latently infected persons with sufficient immunity to prevent reactivation, W (a)
the prevalence of latently infected persons with waned immunity, and R(a) the prevalence of persons who have experienced HZ.
The force of infection and rate of exogenous immune boosting are given by λ(a) and zλ(a), and the rates of loss of immunity,
endogenous immune boosting, and reactivation are given by η(a), γ(a), and ρ(a).

Model structure and analysis

The mathematical model to describe progression to HZ is based on earlier studies [10, 25, 31]. We

extend these models by i) including endogenous next to exogenous immune boosting, as in Hope-Simpson’s

original hypothesis [12], and ii) allowing for the rates of reactivation and immune boosting to be relatively

unconstrained, using natural cubic splines.

The population is assumed to be in demographic equilibrium, and infectious contacts (i.e. contacts suffi-

cient for transmission) between persons of different ages are made according to the social contact hypothesis.

This implies that the probability of an infectious contact is proportional to observed contact patterns in the

Netherlands [17, 31]. We also assume, as in earlier studies and backed by empirical evidence, that primary

varicella is infectious and that infectiousness of HZ is negligible [10, 28, 31]. Next, we assume in our main

analyses that reactivation can occur at most once during a lifetime [12, 23]. We have also considered an

extension of the main model in which multiple reactivations are possible, and obtained similar results (Ap-

pendix E). For this reason, we focus here on the model with at most one reactivation in a person’s lifetime

(Figure 2).

Further, the duration of varicella and HZ episodes (weeks to months) are short compared with the human

lifespan (decades), and we may therefore use the short-disease approximation in which the varicella and HZ

states are not explicitly modeled [9]. Finally, as in earlier studies [10, 25] but contrasting with others [15],

we model the distribution of persons over classes by age with a fixed contact structure, with demographic

composition as in the Netherlands during collection of the contact data.

Figure 2 shows a schematic of the model, and Equations (1)-(2) give a mathematical description. Indi-

viduals are born susceptible to VZV infection (in the S class). From the S compartment individuals are

infected at an age-specific rate λ(a) (the force of infection), after which they enter the V compartment

(latently infected with immunity to reactivation). Immunity to reactivation is lost at a rate η(a), and gained

at rates zλ(a) and γ(a) by exogenous and endogenous boosting respectively. Reactivation from the latently

infected compartment with waned immunity W occurs at a rate ρ(a), and individuals who have experienced

HZ after reactivation enter the R compartment.
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Mathematically, the model dynamics are specified by the following set of ordinary differential equations

dS(a)

da
= −λ(a)S(a),

dV (a)

da
= λ(a)S(a)− η(a)V (a) + (zλ(a) + γ(a))W (a),

dW (a)

da
= η(a)V (a)− (zλ(a) + γ(a) + ρ(a))W (a),

dR(a)

da
= ρ(a)W (a) ,

(1)

with force of infection λ(a) given by

λ(a) = q

∫ M

0

c(a, s)λ(s)S(s)ds , (2)

and initial conditions S(0) = 1, V (0) = 0, W (0) = 0, and R(0) = 0. In the above, M = 100 (yr) is

the maximum age, c(a, s) is the contact rate between individuals of age s and those of age a, and q is

the proportionality parameter that has been estimated from seroprevalence data. Specifically, with proper

scaling of the contact function the proportionality parameter q can be equated with the basic reproduction

number R0. Throughout we take R̂0 = 8.7 (95%CI: 8.1− 9.3), as estimated using seroprevalence data [31].

Notice that this implies that in the Netherlands infection of infants and children occurs at a relatively young

age [18, 32]. Notice furthermore that the above implicitly implies that we do not use the explicit Equation (2)

in the estimation procedure, but rather insert the estimate of force of infection λ̂(a) in Equation (1) (Figure 1)

as obtained earlier [31]. In this manner, all other estimates of transition rates are fully compatible with the

serological data (Figure 1), at the (slight) cost that the force of infection may not be optimally informed by

the HZ incidence data [31].

Discretization

Statistical inference of transition rates is based on a discretized approximation of the expanded state

space [9, 10, 31]. First, we extend the state space by keeping track not only of whether individuals are

latently infected with or without immunity to reactivation (i.e. in compartments V and W ), but also by

counting the number of times that individuals have passed through the V and W compartments. Hence,

Vi and Wi refer to individuals who are in the V and W compartments for the i-th time. We can then

solve Equation (1) recursively for all Vi and Wi (i = 1, 2, . . .) in terms of the force of infection λ(a). Next

we approximate the system by assuming that individuals can only cycle through the Vi and Wi states for

a certain number of times. Backed by preliminary analyses we take this number to be 5, as the error so

introduced remains small when compared to results with higher maximal number of cycles (not shown).

Finally, we discretize the solutions for Vi and Wi to be able to tie the modeled to the observed incidence of

HZ. Since the HZ incidence data are available in age groups of 1 year, we also take age groups of 1 year in

the discretization. Details are given in Appendix A.

Natural cubic splines

Flexible estimation of the transition rates η(a), γ(a), and ρ(a) is ensured by using natural cubic splines

[6]. A cubic spline is a smooth function that is constructed from cubic polynomial pieces that are joined

5



at certain knots, and that have continuous first and second derivatives [6]. For cubic splines the number of

polynomial basis functions (pieces) is m = n+ 3, where n is the number of age intervals. For simplicity, we

assume throughout that the intervals are of the same length.

Next, each rate f(a) can be written as a linear combination of elements of a B-spline basis {Bj}mj=1

f(a) =

m∑
j=1

βjBj(a) ,

where βT = (β1, ...,βm) are the coefficients of the basis functions that need to be estimated. Based on the

above, the discretized age-specific rates fT = (f(a1), ...f(a100)) are given by

f = Bβ,

where B = (bij) = Bj(ai). We evaluate the performance of models for a range of values for n using Akaike

information criterion (AIC) and Bayesian information criterion (BIC) to select the optimal number of age

intervals [4]. Appendix B shows results for n = 4, . . . , 7. The analyses suggest that n = 6 is optimal (i.e.

knots at xi = 100i
6 years, with i = 0, 1, ..., 6), and we will use this value throughout. Hence, m = 9 and B is

a 100× 9 matrix.

Estimation and model selection

Estimates of the parameters are obtained by maximization of the likelihood of the HZ incidence. As the

number of cases is small compared to the number of person-years, both with regard to the total number of

cases and total number of person-years (7, 026 and 2, 049, 362) and the numbers per age group, we use a

Poisson likelihood with parameter ρiWiNi, where ρiWi is the expected (modeled) incidence rate of HZ in

age group i, and Ni is the number of person-years. Confidence intervals of parameters (η, ρ, γ, and z) are

calculated by direct resampling of the data. Here, 200 resampled data sets are generated assuming that the

number of HZ cases in each of the age-classes follows a Binomial distribution with binomial totals Ni and

parameter Ii/Ni), where Ni and Ii are the reported number of individuals and reported number of cases

in age-class i, respectively. Throughout we use age classes of one year, so that with the exception of the

youngest age classes (< 4 years) each age class contains more than 50 cases. For each of the resampled data

sets the parameters are re-estimated, and percentile bootstrap confidence intervals are calculated. Model

selection is based on AIC and BIC differences [4]. All analyses are performed using R 3.2 [26].

Scenarios

We consider a suite of scenarios to estimate the rate of loss of immunity to reactivation (η(a)), the

rate of endogenous immune boosting (γ(a)), the relative susceptibility of latently infected individuals to

exogenous immune boosting (z), and the reactivation rate (ρ(a)). The scenarios differ by whether the rates

are assumed constant or estimated with age-dependent splines. In the baseline scenario (Scenario 1) all

rates are estimated with splines. In Scenarios 2-4 one rate parameter is assumed constant at a time, in

Scenarios 5-7 two rates are assumed constant, and in Scenario 8 all three rates are constant. Finally, based

on preliminary analyses we also include a Scenario (Scenario 6*) in which the exogenous reactivation rate is
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Scenario Constant rates Label log(Lmax) ∆AIC ∆BIC df

1 - -347.5 16.0 60.2 28

2 γ -348.0 0.8 24.2 20

3 ρ -352.7 10.4 33.7 20

4 η -351.9 8.7 32.1 20

5 γ, ρ -360.2 9.2 11.8 12

6 γ, η Model with endogenous boosting -354.8 -1.6 0.98 12

6* γ ≡ 0, η Model without endogenous boosting -356.6 0 0 11

7 ρ, η -383.7 56.3 58.9 12

8 all rates -1363.7 2000.3 1982.1 4

Table 1: Overview of model fits. A suite of simplifications of the baseline model (Scenario 1) are considered in which one or more
of the parameters are constant instead of being modeled with splines. Shown are the maximized log-likelihood (log(Lmax)),
the associated AIC and BIC differences with the best-fitting model Scenario 6∗ in the main text, and the degrees of freedom
(df). The best-fitting model does not include endogenous immune boosting (γ ≡ 0), and has a constant rate of loss of immunity
(η̂ = 0.076 (yr−1)). See Table 2 for an overview of parameter estimates.

assumed to be zero (γ ≡ 0). All these scenarios include exogenous boosting. To validate this choice, we also

consider a similar suite of scenarios that do not include exogenous boosting (see Appendix C). As expected,

these models give a worse fit to the data.

Results

Table 1 gives an overview of fits of the different Scenarios based on AIC and BIC differences. Scenarios

with all rates assumed constant (Scenario 8) or with constant rates of reactivation and loss of immunity

(Scenario 7) do not perform well (∆AIC and ∆BIC with the best fitting model are well over 50 in both

cases). Better fits are obtained with models in which all parameters are estimated with splines (Scenario 1),

in which one of the rate parameters is assumed constant (Scenarios 2-4), or in which both the rate of

endogenous boosting (γ) and the reactivation rate (ρ) are constant (Scenario 5). Overall, the best-fitting

models have a constant or zero rate of endogenous immune boosting, constant rate of loss of immunity, and

age-specific rate of reactivation. We henceforth focus on these two models, which we will label the model

with (Scenarios 6) and without (Scenarios 6*) endogenous boosting.

Parameter estimates of the best-fitting models with and without endogenous boosting are given in Table

2 and Figure 3. Both scenarios produce good and similar fits to the HZ incidence data (Figure 3). Waning

of immunity occurs on a time scale that varies from 20 years (η̂ = 0.048 per year (95%CI : 0.033− 0.068))

in the model with endogenous boosting to 13 years (η̂ = 0.076 per year (95%CI : 0.063 − 0.087)) in the

model without endogenous boosting. Further, while the endogenous reactivation rate is 0 in the model

without endogenous boosting, it is estimated at γ̂ = 0.093 per year (95%CI : 0.069 − 0.11) in the model

with endogenous boosting. Susceptibility of latently infected individuals relative to the susceptibility of

uninfected persons per infectious contact is estimated to be approximately 1 (ẑ = 1 (95%CI : 0.0.998−1) in

the model with endogenous boosting and ẑ = 0.987 (95%CI : 0.986−0.990) in the model without endogenous

boosting), this indicates that an infectious contact that would lead to infection of an uninfected person is
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Scenario Parameter

η (year−1) (95%CI) γ (year−1) (95%CI) z (95%CI)

6 0.048 (0.033− 0.068) 0.093 (0.069− 0.114) 1 (0.998− 1)

6∗ 0.076 (0.063− 0.087) - 0.987 (0.986− 0.990)

Table 2: Parameter estimates of the scenarios with and without endogenous immune boosting (cf. Table 1). Shown are
maximum likelihood estimates with 95% confidence bounds for parameters that are assumed constant. See Figure 2 for
parameters estimated with splines.

also sufficient to lead to immune boosting. As a consequence, exogenous immune boosting almost equals the

force of infection (Figure 1), and in children and in the age group of adults with young children (≈ 30− 40

years) exogenous immune boosting exceeds endogenous boosting (if present). In older adults (> 40 years)

and older children and young adults (< 30 years) who have a low estimated force of infection, exogenous

immune boosting is expected to be less prominent, and endogenous boosting exceeds exogenous boosting in

the model with immune boosting, perhaps with exception of grandparents with young grandchildren (≈ 65

years).

Estimated reactivation rates are age-dependent in both scenarios with high statistical support, increasing

with age from, say, 40 years onwards. Specifically, estimates are approximately 0.10 per year in elderly in

the model with endogenous immune boosting and over 0.02 per year in the model without endogenous

immune boosting (Figure 3). Interestingly, the reactivation rates are substantially higher in the model with

endogenous boosting than in the model without endogenous boosting from the age of 60 years onwards,

while the estimated fraction that is available for reactivation (Ŵ (a)) is substantially higher in the model

without endogenous immune boosting (Figure 3). Hence, both scenarios make different interpretations on

the fraction of the population that is available for reactivation in older adults and elderly. Hence, while the

models provide similar fits to the HZ incidence data, there are significant underlying differences with regard

to the rates of endogenous immune boosting, reactivation, and fraction of the population that is available

for reactivation.

Although it is expected that the majority of cases of HZ is reported to a GP [22], some degree of under-

ascertainment is conceivable. Additionally, even though HZ symptoms are highly specific, it is possible that

some reported cases of HZ may have been misdiagnosed. To investigate the robustness of the above results

to under- and over-ascertainment, we have have reanalyzed the data assuming 10% under-ascertainment

and 10% over-ascertainment. The results of the analyses are laid down in Appendix D (see Table 5 and

Figure 5 for details) and show that the results with either under- or over-ascertainment are quantitatively

close to the results obtained in Tables 1-2 and Figure 3.

Discussion

Our analyses provide support for the hypothesis of Hope-Simpson [12] that immune boosting affects

the incidence of HZ. Our results add to earlier studies [1, 10, 11, 25, 31] by showing that immune boost-

ing is a potent force in a model that includes both endogenous and exogenous boosting, and that allows
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Figure 3: HZ incidence data and overview of the best-fitting models (left-hand panels: with endogenous immune boosting,
right-hand panels: without endogenous immune boosting). Shown are the observed and predicted incidence of HZ in both
scenarios (top panels; dots: data; lines: prediction), the fraction of the population with waned immunity (W (a)) (middle
panels), and the estimated reactivation rates (ρ(a))(bottom panels). Lines correspond to maximum likelihood estimates and
shaded areas to bootstrapped 95% confidence ranges. Also shown are the reactivation rates as estimated for Italy, Finland, the
UK, and Germany in more restrictive analyses [3, 25].
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the reactivation rate to take flexible shapes. Our quantitative estimations further show that in most age

groups the rate of exogenous immune boosting is substantially higher than the rate of endogenous immune

boosting, but also underline that even low estimated rates of endogenous immune boosting significantly

affect the distribution of latently infected individuals with and without waned immunity. More generally,

the distribution of latently infected individuals with and without immunity to reactivation is shaped by an

intricate interplay between the age-specific rates at which immunity is lost and gained (see also [1, 11]),

and even small rates of endogenous boosting could affect this distribution significantly. The main reason

is that there is no direct information underpinning which part of the adult population is latently infected

with and without waned immunity. The implication is that not all individuals who are latently infected may

be available for developing HZ, but that the exact fraction cannot be estimated with precision. Hence, for

public health considerable uncertainty remains about the potential effectiveness of HZ vaccination of elderly.

Waning of immunity and, to a lesser extent, immune boosting are well documented, and have been

included in an agent-based transmission model to anticipate the impact of varicella vaccination of HZ

incidence [21]. In this model, immunity is a continuous quantity, and each individual is equipped with

his/her own level of (cellular) immunity. This contrasts with our model in which immunity to reactivation

is either complete (compartment V ) or completely absent (compartment W ). From a biological perspective,

the earlier model [21] is biologically more plausible, while our current model is simpler and more amenable

to formal statistical inference. In both models, much of the remaining variation and uncertainty derives from

the fact that there is very little data to pinpoint exactly which fraction of the adult population is available

for reactivation.

A number of assumptions need scrutiny. First, we have assumed, as in earlier studies (e.g., [10, 25]),

that the force of infection is known. Here we have taken the force of infection as estimated from Dutch

seroprevalence data [31]. Ideally, all parameters of interest would be estimated in one go, taking into account

both the seroprevalence and HZ incidence data. This is, however, computationally demanding. Further,

it has been argued that the basic reproduction number and force of infection are strongly identified by

serological data, thereby diminishing the need to include all data in one synthesizing analysis [31]. Earlier

studies have taken a similar approach in which the force of infection is estimated first, and then in a second

step the transition rates are estimated from HZ incidence [10, 25, 31].

Second, our analyses are based on the arbitrary assumption that the splines have five interior knots.

This seems to produce reasonably flexible shapes of the reactivation rate without grossly overparameterizing

the model. It should be noted, however, that whether or not models with constant or flexible rates of

boosting, loss of immunity, and reactivation are preferred by information criteria such as AIC or BIC

depends not only on the data but also on the number of additional parameters (and hence the number

of knots). A computationally more involved alternative could for instance make use of penalized splines

in which a penalty is used to avoid excessive fluctuations of the rate functions [8]. This, however, would

also necessitate estimation of the effective number of parameters, and cannot address the question whether

it is likely or not that certain parameters are constant, as is invariably assumed in modeling studies. In a

sensitivity analysis we have decreased and increased the number of knots and obtained quantitatively similar
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results, showing that our results do not depend sensitively on the degree of freedom of the rate functions

(Appendix B).

Figure 3 shows the reactivation rates as estimated using our model from Dutch HZ incidence data together

with estimates of the reactivation rates as estimated earlier using HZ incidence data from Germany, Finland,

Italy, and the UK [3, 25]. Interestingly, our estimates are close to earlier estimates by Brisson and colleagues

up to the age of 60 [3]. In older age groups our estimates of the reactivation rates are substantially higher

in the scenario with endogenous immune boosting. This can be attributed to the fact that in this scenario

more older persons have functional immunity due to endogenous boosting, and higher reactivation rates

are required to explain the HZ incidence data. Also interesting is the finding in our study and the earlier

studies by Brisson and colleagues and Poletti and colleagues that the estimated reactivation rate decreases

in childhood until the age of 23 years. In the earlier studies one could have argued that this is a consequence

of the relative inflexibility of the function describing the reactivation rate. This explanation, however, does

not hold in our analyses, and suggests that the high estimated reactivation rates in children may reflect a

true biological phenomenon. A reasonable explanation might be that for some reason the immune system

of children has not (yet) acquired full control of the virus.

Our results have potential implications for large-scale varicella and combined varicella and zoster vacci-

nation programs. Our two main scenarios (Figure 3) make different explanations on how the observed zoster

cases are produced. In the model with endogenous boosting the fraction of persons with waned immunity is

small while the reactivation rate is high, while in the model without endogenous boosting the fraction with

waned immunity is higher but the reactivation rate is lower. Indiscriminate zoster vaccination is expected

to prevent similar number of cases of HZ in both cases. However, this expectation may not hold anymore

if large-scale varicella vaccination is added to the mix. In this case, the force of infection is expected to be

reduced to a similar extent in both scenarios as estimates of the exogenous boosting parameter z are very

close in both scenarios (Table 2). As a result, the impact of exogenous boosting is expected to be reduced

to a similar extent after the introduction of varicella vaccination. However, immune boosting is still a factor

in the model with endogenous boosting (cf. Table 2). As a consequence, one would expect that persons

that are exogenously boosted in the absence of varicella vaccination could still be boosted endogenously in

the presence of varicella vaccination. This could potentially lead to a less dramatic transient increase in the

incidence of HZ after the introduction of varicella vaccination than predicted earlier [3, 10, 11, 13, 27, 31].

The downside would be that the added value of zoster vaccination would also be diminished. Of course, in

an ideal scenario it would be possible to target zoster vaccination specifically to those persons with waned

immunity who are at risk of developing zoster.
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Appendix A. Model Solution and Discretization

We base our estimation procedures on the ODEs specified by Equations (1)-(2). In the analyses we

use earlier estimates of the force of infection λ(a) [31], and obtain maximum likelihood estimates of other

parameters using the discretized solution of Equation (1). Specifically, the population is split into J = 100

age classes of 1 year.

As a first step we expand the state space by keeping track of the number of times that an individual has

been in the V and W compartments [10]. Hence, Vi(a) represents the fraction of the population of age a

who are in the V compartment for the i-th time (i = 1, 2, . . .). See Figure 4 for a schematic of the model

with expanded state space (see also [10]). The ODEs of Equation 1 for V (a) and W (a) are replaced in the

expanded model by

dV1(a)

da
= λ(a)S(a)− η(a)V1(a)

dW1(a)

da
= η(a)V1(a)− (zλ(a) + γ(a) + ρ(a))W1(a)

. . .

dVi(a)

da
= (zλ(a) + γ(a))Wi−1(a)− η(a)Vi(a)

dWi(a)

da
= η(a)Vi(a)− (zλ(a) + γ(a) + ρ(a))Wi(a) ,

(3)

with i = 2, 3, . . . and appropriate initial conditions. In the above, the (total) fractions V (a) and W (a) in

the latently infected compartments are given by infinite sums V (a) =
∑∞
i=1 Vi(a) and W (a) =

∑∞
i=1Wi(a).

Reasonable approximations for these sums can be obtained by assuming that there is a finite but sufficiently

large number of times n that an individual can pass through the V and W compartments during its lifetime.

Hence, Vi(a) and Wi(a) are approximated by

V (a) ≈
n∑
i=1

Vi(a) and W (a) ≈
n∑
i=1

Wi(a) ,

with n ∈ Z+. In practice, these approximations work well already for small n [10]. Here we take n = 5,

which gives results that quantitatively close to those obtained when taking n = 10 (results not shown).

The ODEs with expanded state space can be solved recursively, starting with S(a), V1(a), and W1(a).

The solution is given by

S(a) = e−
∫ a
0
λ(s)ds

V1(a) =

∫ a

0

λ(s)S(s)e−
∫ a
s
η(r)drds

W1(a) =

∫ a

0

η(s)V1(s)e−
∫ a
s

[zλ(r)+γ(r)+ρ(r)]drds

Vi(a) =

∫ a

0

(zλ(s) + γ(s))Wi−1(s)e−
∫ a
s
η(r)drds

Wi(a) =

∫ a

0

η(s)Vi(s)e
−

∫ a
s

[zλ(r)+γ(r)+ρ(r)]drds

(4)
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λ(a)
V1(a)

η(a) ... zλ(a) + γ(a)
Vi(a)

η(a)
Wi(a)

ρ(a)

zλ(a) + γ(a)

Figure 4: Schematic of the model with expanded state space (cf. Figure 2).

with i ≥ 2 and S(0) = 1 the only non-zero initial condition. It follows that V (a) and W (a) can be

approximated by

V (a) ≈ V1(a) +

n∑
i=2

φ1(Wi−1)(a)

W (a) ≈W1(a) +

n∑
i=2

(φ1 ◦ φ2)(Wi−1)(a) ,

where

φ1(f) =

∫ a

0

(zλ(s) + γ(s))f(s)e−
∫ a
s
η(τ)dτds

φ2(f) =

∫ a

0

η(s)f(s)e−
∫ a
s

[zλ(τ)+γ(τ)+ρ(τ)]dτds .

Next, we discretize Equation (4) as follows. If the limits of the J = 100 age classes are defined by the

vector a = (0, 1, ..., J), then the jth class contains all persons with age in the interval [a[j], a[j+1]), where a[j]

denotes the j-th element of a. Using this notation, the force of infection λ(a) and the rates η(a), ρ(a), and

γ(a) are replaced by their discretized counterpart λj , ηj , ρj , and γj , and Vi and Wi (i,= 1, ..., n, j = 1, ..., J)

in the j-th age-class are given by

(V1)j =

j∑
k=1

λk
λk − ηk

exp
(
−
k−1∑
i=1

λi(ai+1 − ai)
)

exp
(
−

j∑
i=k+1

ηi(ai+1 − ai)
)

×
[
exp

(
−ηk(ak+1 − ak)

)
− exp

(
−λk(ak+1 − ak)

)]
(W1)j =

j∑
k=1

ηk
zλk + γk + ρk

(V1)k exp
(
−

j∑
i=k+1

(zλi + γi + ρi)(ai+1 − ai)
)

×
[
1− exp

(
−(zλk + γk + ρk)(ak+1 − ak)

)]
(Vi)j =

j∑
k=1

zλk + γk
ηk

(Wi−1)k exp
(
−

j∑
i=k+1

ηi(ai+1 − ai)
)

×
[
1− exp

(
−ηk(ak+1 − ak)

)]
(Wi)j =

j∑
k=1

ηk
zλk + γk + ρk

(Vi)k exp
(
−

j∑
i=k+1

(zλi + γi + ρi)(ai+1 − ai)
)

×
[
1− exp

(
−(zλk + γk + ρk)(ak+1 − ak)

)]
.
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Appendix B. Optimal Number of Age Intervals

To determine the optimal number of age intervals we have re-analyzed the data using the scenarios of

Table 1, while varying the number of age intervals from n = 4 to n = 7 (5 to 8 knots). The results are

shown in Table 3 below.

Number of age intervals Scenario Rates assumed constant log(Lmax) ∆AIC ∆BIC df

4

1 - -355.4 19.7 48.2 22

2 γ -357.2 11.3 24.3 16

3 ρ -359.5 15.9 28.8 16

4 η -356.8 10.6 23.5 16

5 γ, ρ -370.3 25.5 22.9 10

6 γ, η -362.2 13.3 15.9 10

6* γ ≡ 0, η -382.3 51.5 51.5 9

7 ρ, η -413.9 112.7 110.0 10

5

1 - -354.9 24.7 61.1 25

2 γ -353.7 8.4 26.6 18

3 ρ -357.9 16.7 35.0 18

4 η -355.5 12.0 30.2 18

5 γ, ρ -370.9 28.8 28.7 11

6 γ, η -369.0 26.9 29.4 11

6* γ ≡ 0, η -380.0 46.9 46.9 10

7 ρ, η -395.4 77.8 77.7 11

6

1 - -347.5 16.0 60.2 28

2 γ -348.0 0.8 24.2 20

3 ρ -352.7 10.4 33.7 20

4 η -351.9 8.7 32.1 20

5 γ, ρ -360.2 9.2 11.8 12

6 γ, η -354.8 -1.6 0.98 12

6* γ ≡ 0, η -356.6 0 0 11

7 ρ, η -383.7 56.3 58.9 12

7

1 - -352.9 32.8 84.9 31

2 γ -346.9 2.7 31.3 22

3 ρ -353.8 16.5 45.1 22

4 η -353.3 15.6 44.2 22

5 γ, ρ -356.0 2.8 8.0 13

6 γ, η -358.7 8.3 13.5 13

6* γ ≡ 0, η -403.5 95.8 98.4 12

7 ρ, η -373.4 37.7 42.8 13

Table 3: Overview of analyses with varying number of age intervals. See main text for details.
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Appendix C. A Model Without Exogenous Boosting

In the main text we focus on model scenarios with exogenous immune boosting, as put forward by

Hope-Simpson [12]. Here we provide a sensitivity analysis showing that model scenarios without exogenous

boosting have low empirical support compared to scenarios with exogenous boosting. In Table 4 we present

log(Lmax), and AIC and BIC differences of these models with the best-fitting model Scenario 6* in the main

text.

Scenario Rates assumed constant log(Lmax) ∆AIC ∆BIC df

1 - -360.5 40.0 81.7 27

2 γ -351.9 6.76 27.6 19

3 ρ -358.9 20.6 41.5 19

4 η -358.8 20.4 41.2 19

5 γ, ρ -373.8 34.5 34.5 11

6 γ, η -366.7 20.2 20.2 11

6∗ γ ≡ 0, η -379.5 44.0 41.4 10

7 ρ, η -387.5 61.8 61.8 11

8 all rates -2996.8 5266.5 5248.3 3

Table 4: Overview of fits of model scenarios without exogenous boosting (cf. Table 1). A suite of simplifications of the
baseline model (Scenario 1) are considered in which one or more of the parameters are constant instead of being modeled with
splines. Shown are the maximized log-likelihood (log(Lmax)), the associated AIC and BIC differences with the best-fitting
model Scenario 6∗ in the main text, and the degrees of freedom (df).

Appendix D. Under- and Over-Ascertainment

To further investigate the robustness of our estimates, we analyze two additional scenarios assuming

10% under-ascertainment and 10% over-ascertainment. Specifically, we increase or decrease the observed

number of HZ infections by 10%, and re-estimate the parameters. Table 5 and Figure 5 show results of the

best-fitting Scenarios 6 and 6∗.

Scenario Assumption Parameter

η (year−1) γ (year−1) z

6 10% over-ascertainment 0.048 0.11 1

6 10% under-ascertainment 0.053 0.080 1

6* 10% over-ascertainment 0.076 - 0.981

6* 10% under-ascertainment 0.078 - 0.987

Table 5: Parameter estimates of model scenarios with under- or over-ascertainment and with or without endogenous immune
boosting (cf. Table 1). Shown are maximum likelihood estimates with 95% confidence bounds for parameters that are assumed
constant. See also Figure 5.
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Figure 5: Model fits in the presence of under- and over-ascertainment(left-hand panels: with endogenous immune boosting;
right-hand panels: without endogenous immune boosting). Shown are the observed and predicted incidence of HZ in both
scenarios (top panels), the fraction of the population with waned immunity (W (a)) (middle panels), and the estimated reac-
tivation rates (ρ(a))(bottom panels). Dashed lines correspond to maximum likelihood estimates presented in the main text
(Figure 3) for the scenarios. Continuous lines refer to maximum likelihood estimates assuming 10% under-ascertainment (blue)
and 10% over-ascertainment (green).
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Appendix E. A Model with Multiple Reactivations

The model in the main text assumes that only one reactivation can take place in a person’s life. Here

we investigate whether the results so obtained still hold in a model with multiple reactivations. The model

structure is shown in Figure 6. In order not to overcomplicate the model we assume that reactivation leads

to immune boosting, and that immunity wanes at an age-specific rate η(a) that does not depend on the

number of reactivation events that a person has already gone through. The results of the analyses are given

in Tables 6-7 and Figure 7 (cf. Tables 1-2 and Figure 3). Overall, these analyses give similar fits to the data

as analyses with models that do not include multiple reactivation (Table 7), and mainly differ with respect

to the estimated (unobserved) fraction of the population in the W compartment (Figure 7).

S(a)
λ(a)

V (a)
η(a)

zλ(a)+γ(a)+ρ(a)
W (a)

Figure 6: Schematic of the model with multiple reactivations. S(a) denotes the age-specific prevalence of uninfected persons,
V (a) the age-specific prevalence of latently infected persons with sufficient immunity to prevent reactivation, and W (a) the
prevalence of latently infected persons with waned immunity. The force of infection and rate of exogenous immune boosting
are given by λ(a) and zλ(a), and the rates of loss of immunity, endogenous immune boosting, and reactivation are given by
η(a), γ(a), and ρ(a). The age-specific incidence of reactivation is given by ρ(a)W (a)

The set of ordinary differential equations of this dynamical system is given by

dS(a)

da
= −λ(a)S(a),

dV (a)

da
= λ(a)S(a)− η(a)V (a) + (zλ(a) + γ(a) + ρ(a))W (a),

dW (a)

da
= η(a)V (a)− (zλ(a) + γ(a) + ρ(a))W (a) .

Following the same reasoning as in Appendix A, we arrive at the following set of discretized equations

(V1)j =

j∑
k=1

λk
λk − ηk

exp
(
−
k−1∑
i=1

λi(ai+1 − ai)
)

exp
(
−

j∑
i=k+1

ηi(ai+1 − ai)
)

×
[
exp

(
−ηk(ak+1 − ak)

)
− exp

(
−λk(ak+1 − ak)

)]
(W1)j =

j∑
k=1

ηk
zλk + γk + ρk

(V1)k exp
(
−

j∑
i=k+1

(zλi + γi + ρi)(ai+1 − ai)
)

×
[
1− exp

(
−(zλk + γk + ρk)(ak+1 − ak)

)]
(Vi)j =

j∑
k=1

zλk + γk + ρk
ηk

(Wi−1)k exp
(
−

j∑
i=k+1

ηi(ai+1 − ai)
)

×
[
1− exp

(
−ηk(ak+1 − ak)

)]
(Wi)j =

j∑
k=1

ηk
zλk + γk + ρk

(Vi)k exp
(
−

j∑
i=k+1

(zλi + γi + ρi)(ai+1 − ai)
)

×
[
1− exp

(
−(zλk + γk + ρk)(ak+1 − ak)

)]
.
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Scenario Parameter

η (year−1) (95%CI) γ (year−1) (95%CI) z (95%CI)

6 0.084 (0.073− 0.100) 0.10 (0.093− 0.13) 0.978 (0.977− 0.984)

6∗ 0.042 (0.025− 0.044) - 0.990 (0.989− 0.994)

Table 6: Parameter estimates of the scenarios with and without endogenous immune boosting and multiple reactions (cf.
Table 2). Shown are maximum likelihood estimates with 95% confidence bounds for parameters that are assumed constant.

Scenario Rates assumed constant log(Lmax) ∆AIC ∆BIC df

1 - -347.7 16.3 60.6 28

2 γ -353.1 11.1 34.5 20

3 ρ -352.7 10.4 33.8 20

4 η -351.2 7.4 30.8 20

5 γ, ρ -360.6 10.1 12.7 12

6 γ, η -354.8 -1.4 1.2 12

6∗ γ ≡ 0, η -356.6 0.2 0.2 11

7 ρ, η -383.0 54.9 57.5 12

8 all rates -1176.0 1626.0 1607.7 4

Table 7: Overview of fits of model scenarios with multiple reactivations (cf. Table 1). A suite of simplifications of the baseline
model (Scenario 1) are considered in which one or more of the parameters are constant instead of being modeled with splines.
Shown are the maximized log-likelihood (log(Lmax)), the associated AIC and BIC differences with the best-fitting model
Scenario 6∗ in the main text, and the degrees of freedom (df).
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Figure 7: HZ incidence data and overview of the best-fitting models (left-hand panels: with endogenous immune boosting,
right-hand panels: without endogenous immune boosting). Shown are the observed and predicted incidence of HZ in both
scenarios (top panels; dots: data; lines: prediction), the fraction of the population with waned immunity (W (a)) (middle
panels), and the estimated reactivation rates (ρ(a))(bottom panels). Lines correspond to maximum likelihood estimates and
shaded areas to bootstrapped 95% confidence ranges. Also shown are the corresponding estimates in the model without multiple
reactivation (Figure 3).
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