
Scheduling of Users with
Markovian Time-Varying Transmission Rates∗

Fabio Cecchi
†

University of Pisa, Italy
BCAM — Basque Center for
Applied Mathematics, Spain
cecchi@mail.dm.unipi.it

Peter Jacko
‡

Lancaster University, UK
BCAM — Basque Center for
Applied Mathematics, Spain
p.jacko@lancaster.ac.uk

ABSTRACT
We address the problem of developing a well-performing and
implementable scheduler of users with wireless connection to
the base station. The main feature of such real-life systems
is that the quality conditions of the user channels are time-
varying, which turn into the time-varying transmission rate
due to different modulation and coding schemes. We assume
that this phenomenon follows a Markovian law and most of
the discussion is dedicated to the case of three quality con-
ditions of each user, for which we characterize an optimal in-
dex policy and show that threshold policies (of giving higher
priority to users with higher transmission rate) are not nec-
essarily optimal. For the general case of arbitrary number of
quality conditions we design a scheduler and propose its two
practical approximations, and illustrate the performance of
the proposed index-based schedulers and existing alterna-
tives in a variety of simulation scenarios.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Sequencing

∗The authors are grateful to U. Ayesta for many fruitful
discussions and the four anonymous referees for valuable
suggestions that helped to improve the presentation of the
paper. This research was mostly done during the stay of
F. Cecchi at BCAM during August-October 2012 funded by
the BCAM Internship program. This research was partially
supported by grant MTM2010-17405 (Ministerio de Ciencia
e Innovación, Spain).
†Full addresses: Dipartimento di Matematica, University of
Pisa, Largo Bruno Pontecorvo 5, 56127, Pisa, Italy; BCAM
- Basque Center for Applied Mathematics, Mazarredo 14,
48009 Bilbao (Basque Country), Spain.
‡P. Jacko is co-funded by the LANCS Initiative. Full
addresses: Department of Management Science, Lan-
caster University Management School, Lancaster, LA1 4YX,
UK; BCAM - Basque Center for Applied Mathematics,
Mazarredo 14, 48009 Bilbao (Basque Country), Spain.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’13, June 17-21, 2013, Pittsburgh, PA, USA.
Copyright 2013 ACM 978-1-4503-1900-3/13/06 ...$15.00.

and scheduling ; C.2.1 [Computer-Communication Net-
works]: Network Architecture and Design—Wireless com-
munication; C.4 [Performance of Systems]: Modeling
techniques; G.3 [Probability and Statistics]: Queueing
theory

General Terms
Theory, Algorithms, Performance

Keywords
wireless networks, opportunistic scheduling, performance eval-
uation, Markov decision processes, stochastic scheduling,
stability

1. INTRODUCTION
This paper is motivated by the necessity of designing an

appropriate scheduler for wireless systems such as Long Term
Evolution (4G LTE), heterogeneous networks (HetNet) or
vehicular communications systems. Such a scheduler must
be capable of exploiting the base station’s capacity to serve
the heterogeneous demands of the users that are within the
base station’s power range in order to optimize the system
performance and user experience. We model such a system
as the multi-class queueing system with multiple preemptive
servers, in which users of different classes randomly arrive
and depart once their job is completed. Different classes
may have different sets of accessible transmission rates asso-
ciated with the finite class-dependent number of quality con-
ditions of the channels, whose evolution is class-dependent
and Markovian. Further, the classes may have heteroge-
neous waiting costs and mean job sizes. The model covers
both the downlink and synchronized uplink wireless systems.

Several schedulers have been proposed recently for such a
flow-level scheduling problem based on ad-hoc arguments,
simulation outcomes or approximate optimization, e.g., in
[17, 9, 8, 1, 3, 15]. The pioneering work was done by [17],
who showed that the system capacity can be improved by
opportunistically serving users whose current transmission
rate is maximal. Such a scheduler, known as the MaxRate
scheduler in the wireless networks literature is thus naively
opportunistic: it is myopically throughput optimal (maxi-
mizing one-slot transmission rate) and simple to implement,
but it ignores the possible future evolution and was shown to
perform bad in the long-term. For instance, it may quickly
become unstable (i.e., the number of waiting users explodes)
as the load increases, while other schedulers may keep the

system stable [1, 3]. It may also be extremely unfair to users
whose highest accessible transmission rate is lower than the
transmission rates of others. This scheduler is also known
as the cµ-rule in the stochastic scheduling literature, and we
will adopt this name in this paper.

Gradient-based schedulers are the state-of-the-art in op-
portunistic scheduling, in particular the Proportionally Fair
(PF) scheduler, patented [11], was proposed to be imple-
mented in the CDMA 1xEV-DO system of 3G cellular net-
works [6]. PF maximizes the logarithmic throughput of the
network, providing thus an improved fairness over cµ-rule
[18]. [9] analyzed flow-level stability of PF by approximating
it by the Relatively Best (RB) scheduler, which gives priority
to users according to their ratio of the current transmission
rate to the mean transmission rate. This scheduler is thus
fairly opportunistic: it takes the possible future evolution
into account, it is not myopically throughput optimal, per-
forms well with respect to guaranteeing a minimal through-
put to the users with low accessible transmission rates, how-
ever, it is not maximally stable at flow-level [1].

The schedulers proposed in [8, 1, 3], called the Score Based
(SB) [7], Proportionally Best (PB) and Potential Improve-
ment (PI) [5] schedulers, respectively, belong to the family
of the best-condition schedulers. A best-condition scheduler
gives absolute priority to the users in their respective best
accessible quality condition over the others, hence ignoring
the transmission rate associated with such a best condition.
Such a policy is thus smartly opportunistic: this feature still
ignores the possible future evolution, but it is not myopic,
and turns out to perform well in the long-term and in heav-
ily loaded systems, for being maximally stable [4, 16]. Fair-
ness of best-condition schedulers has not been addressed ad-
equately yet, only [3] illustrated in one simulation scenario
that PI maintained the average number of uncompleted jobs
significantly more balanced than other schedulers.

It has been typically assumed in the previous work that
the channel evolution is independent and identically dis-
tributed (iid). Consideration of Markovian channel evolu-
tion (rather than the iid evolution) is however important,
because it is known that channels do have a memory, al-
though the precise evolution is usually unknown or diffi-
cult to estimate (and moreover can change over time). For
instance, random processes in signal processing are often
modeled by the autoregressive model of order 1, which is
Markovian (and not iid).

In this paper we give insights into answers to the funda-
mental questions about scheduling in the Markovian chan-
nels setting:

• What is the structure of an optimal policy?

• Why are there no optimality results available? (Only
maximal stability has been established.)

• How do the actions taken in the non-best states in-
fluence the performance? (Maximal stability only in-
dicates what to do in the channel condition with the
highest transmission rate.)

• (When) are the maximally stable policies preferable in
practice?

• How to resolve the trade-off between being naively
opportunistic, smartly opportunistic, and prioritizing
“short” jobs?

• Do the maximally stable policies perform well even in
case of classes with heterogeneous waiting costs?

• How fair are the maximally stable policies?

We are still far from providing definite answers, but we
believe that this paper can develop some intuition and point
to the main issues and avenues to focus on in future research
in this area.

In section 2 we formalize the system and the schedul-
ing problem. An MDP approach is described in section 3
in order to formulate a single-user optimization problem in
which a price must be paid for service. This problem is ad-
dressed in section 4, where we develop index policies and
study solvability by threshold policies. We solve the prob-
lem for channel evolution over three quality conditions and
partially characterize the optimal solution in general. It is
important to note that threshold policies (of giving higher
priority to users with higher transmission rate) are not nec-
essarily optimal. That is, when a single wireless user is com-
peting even with a non-time-varying user, it may be opti-
mal to serve the wireless user in channel conditions with the
highest and the lowest transmission rates, but to prefer the
other user if the wireless one is in channel condition with
the medium transmission rate. Based on these results, we
propose a new scheduler and two practical approximations
in section 5. Their performance is evaluated and contrasted
with schedulers proposed in previous literature in section 6.
Finally, section 7 concludes. The proofs are omitted due to
lack of space.

2. PROBLEM DESCRIPTION
We consider a time-slotted system, so that we study a

discrete-time job scheduling problem. The decisions are
taken in time epochs/instants t ∈ T := {0, 1, . . . }, and
are applied during the time slots t ∈ T of duration τ sec-
onds, where slot t corresponds to the interval between epochs
[t, t+ 1).

2.1 Job-Channel-User Classes
Suppose that there are K classes of users, labeled k ∈
K := {1, 2, . . . ,K}. Each user is uniquely associated with
the job it requests to download and with the dedicated wire-
less channel.

User Arrivals.
For each class k ∈ K, the number of class-k users arriving

to the system, Ak(t), at each time epoch t ∈ T , creates an
iid arrival process {Ak(t)}t∈T with generic element Ak and
mean λk := E0[Ak] < ∞, where E0[·] denotes the expecta-
tion conditional to information available at time epoch 0.
The arrivals are assumed to be mutually independent across
user classes.

Job Sizes.
The (integer-valued) job/flow size bk of class-k user is

measured in bits and has the geometric distribution with
E[bk] < ∞ for classes k ∈ K. This assumption is the main
limitation of existing models (including this paper), but to
the best of our knowledge there has not been any attempt
to analytically approach the case of non-geometric job sizes
in the literature.

Channel Conditions.
For each user, the quality of the channel (the channel con-

dition) is changing from slot to slot, independently of all

other users present in the system (including other users of
the same class) and, for each class-k user, takes values in
the finite set N ′k := {1, 2, . . . , Nk}. Moreover, the channel
condition an arriving class-k user finds the channel in, is
also independent of channel conditions of other users and
the slot it arrives at, and is n with probability qk,n ≥ 0,
which satisfies

∑
n∈N ′

k
qk,n = 1.

Channel Condition Transitions.
We assume that at each slot, for a class-k user, its channel

condition evolves according to a distribution which may de-
pend on k and on the channel condition in the current slot
(i.e., is Markovian). Thus, for each user of class k ∈ K, we
can define a (time-homogeneous) Markov chain with state

space N (k).
We denote by qk,n,m := P(Zk(t + 1) = m|Zk(t) = n) the

probability that the channel quality condition of a class-k
user moves from the state n to the state m in one slot. The
class k channel condition transition probability matrix is
thus

Qk :=

1 2 . . . Nk

1 qk,1,1 qk,1,2 . . . qk,1,Nk

2 qk,2,1 qk,2,2 . . . qk,2,Nk

...
...

...
. . .

...

Nk qk,Nk,1 qk,Nk,2 . . . qk,Nk,Nk

where

∑
m∈N ′

k
qk,n,m = 1 for every condition n ∈ N ′k. We

emphasize that channel condition transitions of users are
independent across users. In this paper we assume that Qk

is irreducible and aperiodic for every k.

Transmission Rates.
Different channel conditions correspond to different trans-

mission rates associated with the available modulation and
coding schemes (MCS). When a class-k user is in channel
condition n ∈ N ′k, she can receive data at transmission rate
sk,n bits per second. Without loss of generality we assume
that the higher the channel condition, the higher the trans-
mission rate, i.e., 0 ≤ sk,1 < sk,2 < · · · < sk,Nk .

To avoid trivial cases, we assume that each class k can be
served, i.e., sk,Nk > 0. We further restrict our attention to
the case in which at least one class k is time-varying, i.e.,
sk,1 < sk,Nk .

For each class k we define Bk := dbk/sk,Nke, the number of
slots in the best quality condition (Nk) needed to complete
the job. Thus, Bk is the minimum number of slots that a job
of size bk must spend in service in order to be completed. We
denote by E[Bk] (positive integer) the mean of this random
variable of class k. We further define the traffic intensity of
class k as %k := λk E[Bk].

Waiting Costs.
For every user of class k the operator accrues a waiting

cost ck > 0 for every slot while it is uncompleted.

2.2 Server
At the beginning of every slot t, the server (base station)

observes the actual state of all the users present in the sys-
tem, and decides which (up to its capacity constraint C) of
them to serve during the slot. We assume that the server is

preemptive, that is at every decision epoch it is permitted to
suspend the service of a user whose job is not yet concluded.
Moreover, the server is allowed to be allocated to an already
completed job, in this case no transmission occurs. Moti-
vated by practical implementation, the observations of the
processes defined below at epoch t always include arrivals at
epoch t, while during the time interval (t, t+ 1) only service
but no new arrivals occur.

2.3 Objectives
The aim is to identify scheduling policies that perform

well with respect to the following objectives (or their com-
bination):

• minimization of the expected time-average waiting cost
per user;

• minimization of the expected time-average number of
uncompleted jobs per slot;

• maximization of some time-average fairness function
across classes.

3. MDP APPROACH
In this section we set out to employ a Markov decision pro-

cess (MDP) approach to design a well-grounded scheduling
policy. Indeed, we extend the modeling framework intro-
duced for the scheduling problem with iid channel condition
evolution in [3] based on restless bandits [21]. Other schedul-
ing policies were designed in an ad hoc way ([8, 1]), or based
on solving an optimization problem under the time-scale sep-
aration assumption ([2]).

In order to employ the MDP framework, we simplify the
problem: we assume a fixed population of users present
in the system at the initial slot (i.e., ignore the arrivals).
That is, there is a single user of each class k. On the other
hand, in order to admit an analytical approach, we intro-
duce discounting of the waiting costs, with discount factor
0 ≤ β < 1. The results for the undiscounted case, which
corresponds to the time-average criterion, will be obtained
in the limit β → 1.

These twists are still not sufficient to solve the problem
optimally. Nevertheless, this approach was shown useful for
designing in the iid special case a scheduler [3] that is well-
performing, maximally stable and fluid-optimal under arbi-
trary arrivals [4]. The approach requires to analyze a single-
user problem in which one pays price ν for service. This
parameter appears from the Lagrangian relaxation (omitted
here) as the Lagrangian parameter.

Before defining the MDP elements, we will further need
to define the departure probabilities. We denote by µk,n
the probability that the job k in state n, if served, will be
completed in the current slot. Since we consider jobs with
geometric size, we can employ the results from [3, 15] that
µk,n = min{1, 1− (1−1/E0[bk])τsk,n} which can be approx-
imated, if τsk,n/E0[bk] ≈ 0 by

µk,n ≈ τsk,n/E0[bk]. (1)

Note that the departure probabilities are increasing: 0 ≤
µk,1 < · · · < µk,Nk ≤ 1.

3.1 Job-Channel-User MDP
At the beginning of every time slot, the generic user k can

be allocated zero capacity of the base station or be one of
the users served. We denote by Ak the action space relative

to user k. We have that Ak := {0, 1} where the action 0
means not serving, while action 1 means serving.

Every job-channel-user k is characterized by the tuple
(Nk, (W a

k)a∈A, (R
a
k)a∈A, (P

a
k)a∈A), where

• Nk := {0}∪N ′k is the state space, the state 0 indicates
that the job is completed, while the set N ′k represents
the possible channel quality conditions;

• W a
k := (W a

k,n)n∈Nk , where W a
k,n is the expected one-

slot capacity consumption, or work required by user
k at state n if action a is selected at a time epoch.
Specifically, for every state n ∈ Nk,

W 1
k,n := 1, W 0

k,n := 0;

• Ra
k := (Rak,n)n∈Nk , where Rak,n is the expected one-

slot reward earned by user k at state n if action a is
selected at a time epoch. Specifically, for every state
n ∈ N ′k,

Rak,0 := 0, R1
k,n := −ck(1− µk,n), R0

k,n := −ck;

• P a
k := (pak,n,m)n,m∈Nk , where pak,n,m is the probabil-

ity for user k of moving from state n to state m if
action a is chosen at a time epoch. These one-slot
state-transition probability matrices are

P 0
k =

1 0 0 0
0 qk,1,1 · · · qk,1,Nk

0 qk,2,1 · · · qk,2,Nk

...
...

. . .
...

0 qk,Nk,1 · · · qk,Nk,Nk

 ,

P 1
k =

1 0 0 0
µk,1 µ̃k,1qk,1,1 · · · µ̃k,1qk,1,Nk

µk,2 µ̃k,2qk,2,1 · · · µ̃k,2qk,2,Nk

...
...

. . .
...

µk,Nk µ̃k,Nkqk,Nk,1 · · · µ̃k,Nkqk,Nk,Nk

 ,

where we have denoted by µ̃k,n := 1− µk,n.
The dynamics of user k are thus captured by the state

process Xk(·) and the action process ak(·), which correspond
to state Xk(t) ∈ Nk and action ak(t) ∈ A at all time t ∈ T .
At time slot t the choice of action ak(t) for the user k in
state Xk(t) entails the consumption of the allocated capacity
(work), the gain of the reward and the evolution of the state
to Xk(t+ 1) ∈ Nk.

3.2 Optimization Problem
We present now the optimization problem we consider.

Let ΠXk,ak be the space of all randomized, history depen-
dent and non-anticipative policies, depending on the state-
process Xk(·) and deciding the action-process ak(·).

Let Eπ0 denote the expectation over the future state pro-
cess Xk(·) and the action process ak(·), conditioned on the
initial state Xk(0) and on the policy π ∈ ΠXk,ak . For the
given discount factor β and for every value of price ν, the
aim is to find a policy minimizing the expected waiting cost
over an infinite horizon under the discounted criterion,

max
π∈ΠXk,ak

∞∑
t=0

βt Eπ0
[
R
ak(t)

k,Xk(t) − νW
ak(t)

k,Xk(t)

]
. (2)

4. INDEX-BASED SOLUTION
In this section we focus on the single-user subproblem (2)

for a generic user k, and we will omit the subscript k to
simplify the notation.

4.1 Index Values and Threshold Policies
Let us adapt to our scenario the definition of index values

and indexability, following [14].

Definition 1 (Indexability). We say that the prob-
lem (2) is indexable if there exist values ν∗n ∈ R∪{−∞,∞}
for all n ∈ N such that

1. it is optimal to serve the user in state n if ν∗n ≥ ν, and

2. it is optimal not to serve the user in state n if ν∗n ≤ ν.

Such values ν∗n are called the (Whittle) index values, and
define an optimal index policy for the problem.

As described in [12, 21, 19] the optimal solution can some-
times be found by means of the index policies. The index
values represent, in certain way, the benefit which is ob-
tained by serving an user in a certain state. It has been
shown that for some non-trivial problems such index may
not exist.

From the point of view of intuition and implementability,
one is often interested in solving the problem by threshold
policies.

Definition 2 (Solvability by threshold policies).
We say that the problem (2) is solvable by threshold policies
if for any value of ν, there exists a threshold state n(ν) such
that

1. it is optimal to serve the user in state n if n ≥ n(ν),
and

2. it is optimal not to serve the user in state n if n <
n(ν).

Such policies are called threshold policies.

We can see that the indexability property is much more
general than solvability by threshold policies. Indeed, if the
problem is indexable and the index values are non-increasing
in n, then it is solvable by threshold policies. However, an
indexable problem is not be solvable by threshold policies
if the index values are not non-increasing in n; then the
optimal solution may look counter-intuitive.

The restless bandit problem and their index-based solu-
tion was introduced in [21], generalizing the so-called Gittins
index policy that was proved optimal for the multi-armed
bandit problem in [13]. [21] gave an intuitive definition
of indices. An algorithm for computing index values and
sufficient indexability conditions were introduced later; see
[19] for a survey. The algorithm is called Adaptive-Greedy,
shortly AG-algorithm. It was also shown that if a problem is
indexable then the AG-algorithm computes the index values.

4.2 Index Values Characterization
The arguments in this section are based on the conjecture

of indexability.

Conjecture 1. Problem (2) is indexable.

Establishing indexability by the currently known approaches
is likely to be technically extremely tedious. However, we
believe in its validity based on the computational testing
we have performed on many (including random) problem
instances. Also, indexability was proved and index values
were characterized in two important special cases in [3, 15].
We state it below for completeness.

Theorem 1 ([3]). If the channel condition evolves in
an iid fashion, i.e., qn,m = qm for each n ∈ N ′, then problem
(2) is indexable and the index values are

ν∗n =
cµn

1− β + β

N∑
m=n+1

qm(µm − µn)

.

Theorem 2 ([15]). If the channel evolves according to
the Gilbert-Elliot model, i.e., N = 2, then problem (2) is
indexable and the index values are

ν∗2 =
cµ2

1− β ν∗1 =
cµ1

1− β + βq∗1,2(µ2 − µ1)
,

where

q∗1,2 =
1

β(1−µ2)

qSS2
+ 1−β(1−µ2)

q1,2

.

We now continue with characterization of the index values
in our, general, model. The following theorem identifies the
highest index value in closed form.

Theorem 3. Under Conjecture 1, the index value ν∗N =
cµN
1− β and we have that ν∗N ≥ ν∗n for every n ∈ N ′.

This result is thus an extension to the Markovian setting of
the characterization of the highest index value in the iid and
2-state special cases stated above. What we see is that the
highest index value is always associated with the state with
the highest transmission rate, N , and, rather surprisingly,
it always has a simple expression, which grows to +∞ as
β → 1.

4.3 Index Values for 3-State Channel
Now we concentrate on problem (2) in the case N = 3.

If Conjecture 1 holds, we already know by Theorem 3 that
the highest index is the one associated with state 3. There
are therefore two possibilities: the index value of state 2 is
greater than that of state 1 (i.e., the problem is solvable by
threshold policies), or vice versa.

Theorem 4. Under Conjecture 1, if problem (2) with N =
3 is solvable by threshold policies, then

ν∗2 =
cµ2

q∗2(µ3 − µ2)
,

where

q∗2 :=
1

1−µ3

qSS3
+ µ3

q2

, q2 := q1,3p
(2)
1 + q2,3p

(2)
2 ,

where the weights p
(2)
1 = q21

1−q11+q21
and p

(2)
2 = 1−q11

1−q11+q21
are the elements of the steady state probability vector of the
2× 2 matrix created from Q by omitting row 3 and merging
column 3 with 2. If the problem is solvable by threshold poli-
cies after relabeling states 1 and 2, then these results hold as
well.

We can further characterize the index value of state 1. Let
us denote by

α = −q2,1q1,2 + q1,1q2,2 + q1,2q3,1 − q1,1q3,2 + q2,1q3,2

− q3,1q2,2 − q1,1 − q2,2 + q3,1 + q3,2 + 1,

U = (1− µ2)(1− µ3)α+ µ3(1− µ2)(1− q2,2 + q1,2)

+ µ2(1− µ3)(1− q3,3 + q1,3) + µ2µ3,

V = (µ2 − µ1)[(q1,2q3,1 − q1,1q3,2 + q3,2)(1− µ3) + q1,2µ3]

+ (µ3 − µ1)[(−q1,2q2,1 + q1,1q2,2 − q2,2
− q1,1 + 1)(1− µ2) + q1,3µ2].

Theorem 5. If Conjecture 1 holds for problem (2) with
N = 3 in the undiscounted case (β = 1) and it is solvable
by threshold policies, then the index value of state 1 is the
lowest and equals

ν∗1 =
cµ1U

V
. (3)

Unfortunately, we have not been able to write this formula
in a more readable form. However, an interesting approxi-
mation can be obtained for large jobs.

Theorem 6. Let us fix a bound M such that µ3 ≤M ≤ 1,
i.e., in view of (1) the expected job size is approximately at
least τsN/M bits. Then we have that the index value of state
1,

ν∗1 =
c
(
µ1 +O

(
M2
))∑

m=2,3

qSSm (µm − µ1) +O
(
M2) , (4)

and of state 2,

ν∗2 =

c

(
µ2

qSS3

+O
(
M2))

µ3 − µ2
. (5)

As a consequence, if M is small enough so that terms
O(M2) can be neglected, then we have the following ap-
proximation for the index value of state 1,

ν∗1 ≈
cµ1∑

m=2,3

qSS
m (µm − µ1)

, (6)

and of state 2,

ν∗2 ≈
cµ2

qSS
3 (µ3 − µ2)

. (7)

This characterization is nothing but the index value in the
iid setting (cf. Theorem 1), where the steady-state distri-
bution is employed while the underlying Markovian channel
evolution is irrelevant. The precision of this approximation
is excellent for large jobs, as showed in Table 1 for condition
1. Both the absolute error and the relative error increase
approximately linearly in M , i.e., decrease hyperbolically in
job size.

Note that the larger the job, the smaller the parameter
M , and the precision of this approximation could be inter-
preted as a sort of time-scale separation effect arising nat-
urally in the solution: the steady-state channel distribution
approximates well in which channel conditions the job will
be served, whereas for shorter jobs the Markovian channel

M Absolute Error Relative Error ε

1 0.3880 14.08% +∞
0.5 0.1854 7.424% 0.16667
0.3 0.1273 4.498% 0.04286
0.1 0.0399 1.571% 0.00370
0.05 0.0237 0.828% 0.00088
0.01 0.0051 0.176% 0.00003
0.001 0.0005 0.017% 0.00000

Table 1: Mean absolute and relative errors of the
approximation (6) in a sample of 2000 job-channel-
user instances for each upper bound M ≥ µ3.

evolution may be more important indicating which channel
condition is hit first if starting from the current condition.
However, note that this phenomenon differs from the time-
scale separation as often simplistically assumed in other lit-
erature, which implies that the jobs realize the time-average
throughput, see [2].

4.4 Solvability by Threshold Policies for 3-State
Channel

We have given in the previous subsection formulas for
computing the index values of a 3-state channel assuming
they are solvable by threshold policies in the undiscounted
case β = 1. We will give now two sufficient conditions for
having such property satisfied and we will observe that they
are satisfied in a large number of problem instances.

Theorem 7. If Conjecture 1 holds for problem (2) with
N = 3 in the undiscounted case (β = 1), then we have that
q13 ≥ q23 implies that the index value of state 2 is greater
than or equal to the index value of state 1, i.e., the problem
is solvable by threshold policies.

This fact seems quite evident, indeed q13 ≥ q23 means
that the one-slot probability to move to any better state
is surely higher if the user is in state 1 than in state 2.
Moreover we observe that the hypothesis is satisfied for the
iid special case, recovering again the the result of solvability
by threshold policies by [3].

Theorem 8. Let us denote by ∆ := min{µ3−µ2, µ2−µ1}
and 1 > M ≥ µ3. If Conjecture 1 holds for problem (2) with
N = 3 in the undiscounted case (β = 1), then we have that

∆ ≥ ε :=
M2

3(1−M)

implies that the index value of state 2 is greater than or equal
to the index value of state 1, i.e., the problem is solvable by
threshold policies.

In the last column of Table 1 we show how small could
be ∆ ≥ ε given a range of upper bounds M ≥ µ3. This
condition seems to be really strong if M is small, which is
the condition we required to employ the approximation of
ν∗1 in the previous subsection. We emphasize that this is still
quite a rough sufficient condition (see the proof). Finally, we
remark that the counter-intuitive case that the index value
of state 1 is greater than the index value of state 2 happens
with frequency of around 2.5% for β = 0.999.

Algorithm 1 Algorithmic scheme of PI* scheduler

At every slot t,
C′ ← Number of users with uncompleted jobs in their
condition Nk
if C′ ≥ C then

Serve C users from among the users in their condition
Nk (breaking ties randomly)
else

Serve C′ users in their condition Nk
Serve C − C′ users not in condition Nk with highest

index value ν∗k,Xk(t) (breaking ties randomly)
end if

5. PROPOSED SCHEDULERS
Now we come back to the original multi-class problem

with arrivals, as described in section 2. We set out to de-
sign feasible schedulers for the problem where it is allowed
to serve up to C users in every slot. We are interested in
the undiscounted case, which is essentially the case of op-
timization under the time-average criterion. We will do so
by deploying the results obtained in the previous section.
We thus define the Markovian Potential Improvement (PI*)
scheduler, which is written algorithmically in Algorithm 1.

However, as we have seen in the previous section, the index
values ν∗k,n are likely not to admit a simple closed-form char-
acterization in the general setting, except for ν∗k,Nk

= +∞.
We nevertheless gave a closed-form solution for Nk = 3.
Therefore, we propose two approximations for the index val-
ues, which give rise to additional two new schedulers for
general Nk.

First, we define the PIAG scheduler, which approximates
ν∗k,n for n ∈ N \ {N} by running the AG-algorithm with β
as close as possible to 1 while avoiding numerical instability
problems. Note that this algorithm performs O(N3

k) elemen-
tary operations, and requires the knowledge of the matrix
Qk. On the other hand, this algorithm is likely to identify
if the threshold policies are not optimal, and so these ap-
proximated index values may not necessarily be increasing
in n.

Second, we define the PISS scheduler, which approximates
ν∗k,n for n ∈ N \ {N} by the formula

ckµk,n∑
m>n

qSS
k,m(µk,m − µk,n)

. (8)

This approximation is based on conjecturing generalizabil-
ity of Theorem 6, which requires that µk,Nk ≤ M , where
M is small enough so that terms bounded by M2 can be
neglected. It is easy to prove that these approximated index
values are increasing in n and that their computation re-
quires O(Nk) elementary operations (once the steady-state
distribution is known). On the other hand, knowledge of
the matrix Qk is not required, since only the steady-state
distribution is used, which may be significantly easier and
more precise to estimate in practice.

We adopt the name of the potential improvement sched-
uler introduced in [3], since [15] for the 2-state channel and
the previous section for the 3-state channel show that the in-
dex value is the ratio of the one-slot holding cost saving and
the (weighted) potential improvement of the departure prob-
ability. This can be seen also as a way of optimally resolving
the trade-off between opportunistic scheduling and short-

jobs prioritization, but we note that yet another dimension
(the Markovian evolution) comes into play and shows that
it may be sometimes better to neither be opportunistic nor
give priority to (myopically) shorter job. We can summarize
the main features of this rule by saying that the priority is
given to users which cannot improve their actual condition
by much.

The PI* scheduler and both its approximations PIAG and
PISS reduce to a scheduler that is optimal if Nk = 1 for all k
and there is a single server (C = 1) under arbitrary arrivals
[10]. Also, they belong to the family of the best-condition
schedulers, which give always priority to users currently in
their best condition over users which are not, and which
have important stability properties in Markovian setting as
shown in [16].

Theorem 9. In the single server case C = 1, the PI*
scheduler and both its approximations PIAG and PISS are
maximally stable under arbitrary arrivals.

We believe that maximal stability is true even in the multi-
server case. In fact, it is easy to argue that the stability
region is upperbounded even in the case of generally dis-
tributed job sizes as follows.

Theorem 10. If % :=
∑
k∈K

%k > C, then there is no sched-

uler that stabilizes the system.

We are, unfortunately, unable to conclude anything with
respect to (asymptotic) optimality of the proposed sched-
ulers in systems with arrivals. In the next section we evalu-
ate the performance of PI* and compare it to existing sched-
ulers proposed for this problem by previous literature.

6. EXPERIMENTAL STUDY
In this section we investigate the behavior of the PI*

scheduler and its approximations that we have proposed. In
order to be able to evaluate the performance of these poli-
cies, we present several scenarios, in which we compare them
with the schedulers proposed in previous literature. These
policies are all priority-based, in the sense that the users
served are the ones with highest index values. We however
note that these alternative schedulers are based on indices
that are not Whittle indices, i.e., they have not been shown
optimal in the single-user subproblem.

For the sake of completeness we give their definitions, es-
pecially because we have modified them to incorporate the
waiting costs (originally equal to 1 for RB, PB and SB):

• the cµ rule, i.e. νcµk,n = ckµk,n;

• the Relatively Best rule, i.e. νRB
k,n =

ckµk,n

Nk∑
m=1

qSS
k,mµk,m

;

• the Proportionally Best rule, i.e. νPB
k,n =

ckµk,n

µk,Nk
;

• the Score Based rule, i.e. νSB
k,n = ck

∑n
m=1 q

SS
k,m.

We restrict our attention to the case with at most one
user served during each slot of time, i.e. C = 1 (if more
than one user has the highest index value, we break the ties
randomly), and we consider only 2 classes of users, in order
to be able to easily point out the differences in the per-
formance of the policies generated by the above scheduling
rules.

0

20

40

60

80

100

120

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
rho

0
1
2
3
4
5
6
7
8

0.5 0.55 0.6 0.65 0.7 0.75 0.8
rho

Ti
m

e
-a

v
e
ra

g
e
 c

o
st

Ti
m

e
-a

v
e
ra

g
e
 c

o
st

Figure 1: Scenario 1 - Time-average waiting cost of
PI*,SB,PB (red), RB (green), cµ (blue) as a function
of varying %, computed from simulation over 330 sec.

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700

N
u
m

b
e
r

o
f

u
se

rs
 i
n
 t

h
e
 s

y
st

e
m

Time in seconds

(a) % = 0.94, over 785 sec.

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600 700 800

N
u
m

b
e
r

o
f

u
se

rs
 i
n
 t

h
e
 s

y
st

e
m

Time in seconds

(b) % = 0.98, over 820 sec.

Figure 2: Scenario 1 - Evolution of the number of
users in the system during simulation of PI*,SB,PB
(red), RB (green), cµ (blue).

0
500

1000
1500
2000
2500
3000
3500

0 100 200 300 400 500 600 700 800

Class 1
Class 2

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800

Class 1
Class 2

0
10
20
30
40
50
60
70
80

0 100 200 300 400 500 600 700 800

Class 1
Class 2

P
I
-

N
u

m
.

u
se

rs
R

B
 -

 N
u

m
.

u
se

rs
C

U
 -

 N
u

m
.

u
se

rs

Time in seconds

Figure 3: Scenario 1 - Number of users of class 1
(blue) and class 2 (red) for % = 0.98, the values are
averaged over intervals of 10000 slots (16.7 seconds).

Each class k is characterized by a time independent value
λk ∈ [0, 1], representing the probability that during a slot
a new user belonging to class k enters the system. The
restriction to Bernoulli arrivals is justified by the shortness
of the slot considered, which is ε = 1.67msec.

In order to simulate scenarios as realistic as possible we
consider transmission rates sk,n employed in LTE networks,
see Table 2, which is adapted from [20]. Each class will be
identified by one of the following three types of files to be
downloaded, typical in a wireless data network:

• HTML web page (or e-mail) with expected job size
E0[bk] = 0.5Mb (64kB)

• PDF document (or image) with expected job size E0[bk] =
5Mb (640kB)

• MP3 audio (or short video) with expected job size
E0[bk] = 50Mb (6.25MB)

For every class of users we select some channel conditions
among the ones defined in Table 2, in this way, we determine
the departure probabilities using the formula (1).

Moreover in every simulation we vary the value of % be-
tween 0.5 and 1, but for simplicity it is always maintained
that %1 = %2. In this way it is possible to determine the
rate of arrivals of the specific class, which is given by the
formula λk = %kµk,Nk for k = 1, 2. The channel condition
possessed by a user at the moment of his arrival is supposed
to be determined by an equidistributed variable among her
states, i.e., qk,n = 1/Nk.

It is interesting to point out that the condition ck = c for
all k implies that SB and PB are best-condition schedulers.
Such a property is guaranteed for the cµ and RB rule un-
der the condition that respectively the values ckµk,Nk and
νRB
k,Nk

are the same for each user k. On the other hand PI*
rule generates a BR policy unconditionally. The property of
being a best-condition policy is important since it identifies
policies that are maximally stable. The parameters for all
the scenarios are summarized in Table 3.

6.1 Scenario 1
In this scenario the users are divided into two different

classes, each user requires a job of expected size 0.5Mb and
costs c1 = c2 = 1 for every slot of waiting. Therefore our
objective is to minimize the time-average number of users
(uncompleted flows) in the system. The channel condition
transition matrix for the two classes is a randomly gener-
ated matrix, see Table 3. We suppose that the first class of
users has the opportunity to be always served with a bet-
ter transmission rate than the second class, indeed it can be
seen in Table 2 and Table 3 that s1,1 = 53.76Mb/sec while
s2,3 = 33.6Mb/sec.

It can be checked that in this scenario the rules PI*, SB
and PB generate the same policy. Figure 1 shows the time-
average waiting cost accrued by employing the different poli-
cies for varying %. It appears that the behavior of all the
policies until % ≤ 0.84 is quite similar, even if the cµ and
the PI* rules seem to slightly outperform the RB rule. The
cµ rule seems to become unstable between % = 0.92 and
% = 0.94. Indeed in Figure 2 it can be seen that the average
increase of users in the system per slot is about 1.2 users per
second for % = 0.94 (note that the average number of arrivals
per second is 75.8 for class 1 and 31.5 for class 2). For such
a value of % the other rules are still stable, it appears that
RB and PI* rules cost on the average respectively about 60

0

20

40

60

80

100

120

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
rho

Tim
e-

av
er

ag
e

co
st

Figure 4: Scenario 2 - Time-average waiting cost
of PI* (red), cµ,SB,PB,RB (blue) as a function of
varying %, computed from simulation over 330 sec.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300 400 500 600 700
Time in seconds

PIOthers

Nu
m

be
r o

f u
se

rs
 in

 th
e

sy
ste

m

Figure 5: Scenario 2 - Evolution of the number of
users in the system with % = 0.88 during simulation
of PI* (red), cµ,SB,PB,RB (blue).

0

5000

10000

15000

20000

0 100 200 300 400 500 600 700 800
Time in seconds

10

20

30

40

50

0 100 200 300 400 500 600 700 800

Class 1
Class 2

PI
- N

um
. U

se
rs

Ot
he

rs
 -

Nu
m

. U
se

rs

Figure 6: Scenario 2 - Number of users of class 1
(blue) and class 2 (red) for % = 0.98, the values are
averaged over intervals of 10000 slots of time (16.7
seconds).

and 10 per slot. Raising % up to 0.98 (i.e., increasing the
average number of arrivals per second to 79 for class 1 and
32.9 for class 2), also the RB policy becomes unstable, and
the average increase in the number of users due to the em-
ployment of this policy is about 2.1 users per second. It is
still better than the average increase caused by the cµ rule
which is of about 4.2 users per second. However these poli-
cies are strongly outperformed by the PI* rule, indeed with
% = 0.98 this rule is still stable and time-average cost is less
than 60 per slot. In Figure 3 we display the evolution of the
number of users in the system per class. It can be observed
that the policies considered behave in a completely different
way. In fact, the PI* rule seems to be quite fair between the
two classes, the cµ rule gives priority to the first class users
(so that class-2 users accumulate) while on the contrary the
RB favors the second one (so that class-1 users accumulate).

6.2 Scenario 2
In this scenario we would like to observe the behavior of

the different rules when they have to deal with users that
are totally identical, except for their “importance”. Indeed
the users that characterize this scenario possess the same
parameters, reported in Table 3. The two classes differ from
each other only in the waiting cost, in particular c1 = 10
and c2 = 1. Thus, classes 1 and 2 may represent business vs
individual customers, or contracted vs prepaid customers,
or proper vs roamed ones.

It is important to notice that in such a scenario the rules
RB, SB, cµ and PB lead to the same policy, the PI* rule is
the only one that differs. It can be checked that the poli-
cies different from the PI* rules give absolute priority to the
users of the first class, so that a user of the second class
can be served only when no users of the first class are in
the system. Figure 4 displays the average cost per slot on
varying %, and it appears that the behavior of all the poli-
cies until % ≤ 0.8 is similar. To be more precise, the PI*
seems to behave a bit worse than the others. At the same
time it is possible to observe that for greater values of % the
situation reverses completely, indeed all the policies gener-
ated by rules different from PI* do not succeed in avoiding
the accumulation of the users (of second class, see Figure 6).
In Figure 5 we show the evolution of the number of users
in the system during a simulation of about 12 minutes and
% = 0.88. It can be observed that the average increase of
users in the system due to the employment of the rules dif-
ferent from PI* is about 6 users per second (out of 71 arrivals
per second for each class). Meanwhile, the policy generated
by the PI* rule leads to a stable system even for % = 0.98,
indeed the average cost is less than 180 per slot. In Figure 6
we show the evolution of the number of users of the different
classes in the system during a simulation of around 14 min-
utes under % = 0.98. We can see that the PI* rule does not
care so much about the difference of importance between the
two classes and keeps the number of users balanced across
classes.

6.3 Scenario 3
In this scenario the users belonging to the first class re-

quire a job (PDF) of expected size ten times bigger than the
second class ones (HTML), however, the users of the first
class have a better-quality channel (e.g., they are closer to
the base station). Moreover, the interesting thing is that the
users requiring a smaller service are almost unable to reach

0
200
400
600
800

1000
1200
1400

0.65 0.7 0.75 0.8 0.85 0.9
rho

0

10

20

30

40

50

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64
rho

Tim
e-

av
er

ag
e

co
st

Tim
e-

av
er

ag
e

co
st

Figure 7: Scenario 3 - Time-average cost of PI*
(red), PB (yellow), SB (blue), RB (green), cµ (black)
as a function of varying %, computed from simulation
over 330 sec.

0

200

400

600

800

1000

0 100 200 300 400 500 600

N
u
m

b
e
r

o
f

u
se

rs
 i
n
 t

h
e
 s

y
st

e
m

Time in seconds

(a) % = 0.74, over 618 sec.

0

1000

2000

3000

4000

5000

0 100 200 300 400 500 600 700

N
u
m

b
e
r

o
f

u
se

rs
 i
n
 t

h
e
 s

y
st

e
m

Time in seconds

(b) % = 0.94, over 785 sec.

Figure 8: Scenario 3 - Evolution of the number of
users in the system during simulation of PI* (red),
PB (yellow), SB (blue), RB (green), cµ (black).

their best channel condition. Particular parameters of the
two classes are reported in Table 3.

In Figure 7 we report the time-average cost obtained from
a 330 seconds simulation. It is possible to see that if the ar-
rivals are quite low, say % ≤ 0.64, the rules that work better
are the cµ and the RB. These policies become unstable when
we increase the probability of new arrivals. Indeed, the evo-
lution of the number of users in the system can be seen in
Figure 8, where we display the cases with % = 0.74 and
% = 0.94. The system managed by RB and cµ rule starts
to accumulate users, in particular the number of users in
the system increases by about 1.9 users per second already
with % = 0.74 (there are 6 and 49.7 arrivals per second in
each class, respectively). Meantime the other rules main-
tain stability also for high values of %, in Figure 8 it can
be seen that they behave quite similarly even for high val-
ues of %, though they are not equivalent. Moreover, notice
the interesting feature that the number of users fluctuates
around an equilibrium value of 1000, without growing much
nor emptying the system.

6.4 Scenario 4
In this scenario the users of the first class require the com-

pletion of a very big job b2 = 50Mb compared to the second
class of jobs which are one hundred times smaller. The jobs
required by the first class users are considered slightly more
important than the other, therefore c1 = 3 and c2 = 1.
The channel condition of the users belonging to the second

0

500

1000

1500

2000

0 100 200 300 400 500 600 700

N
u
m

b
e
r

o
f

u
se

rs
 i
n
 t

h
e
 s

y
st

e
m

Time in seconds

(a) % = 0.74, over 700 sec.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600 700

N
u
m

b
e
r

o
f

u
se

rs
 i
n
 t

h
e
 s

y
st

e
m

Time in seconds

CU

(b) % = 0.94, over 785 sec.

Figure 9: Scenario 4 - Evolution of the number of
user in the system during simulation of PI∗ (red),
SB (blue), RB,PB (green), cµ (black)

0

5

10

15

20

0 100 200 300 400 500 6000
200
400
600
800

1000
1200
1400
1600

0 100 200 300 400 500 600

0

200

400

600

800

1000

0 100 200 300 400 500 6000
200
400
600
800

1000
1200
1400

0 100 200 300 400 500 600

Class 1
Class 2

Time in seconds Time in seconds

PI
- N

um
. u

se
rs

RB
 -

Nu
m

. u
se

rs
CU

 -
Nu

m
. u

se
rs

SB
 -

Nu
m

. u
se

rs

Time in secondsTime in seconds

Figure 10: Scenario 4 - Number of users of class 1
(blue) and class 2 (red) for % = 0.84, the values are
averaged over intervals of 10000 slots of time (16.7
seconds).

class evolves in an almost iid way and their best condition
is almost never reached, as can be seen in Table 3.

With these data, it can be checked that the PB and the RB
rules lead to the same policy. This scenario is markedly in-
fluenced by the difference in size of the two classes, since for
such a reason the departure probabilities of the two classes
appear to be very unbalanced. It can be seen that as long
as the rate of arrivals (and %) is low, all the rules are sta-
ble. Nevertheless, there are differences: e.g., by focusing on
the case with % = 0.84 (with arrivals of 0.6 and 59.7 per
second for each respective class), see Figure 9, it is evident
that the cµ rule strongly outperforms the other rules. This
fact can be explained by observing that the cµ rule gives
priority to the second class, as it can be seen in Figure 10,
and as long as there are not too many arrivals it is also able
to serve the users of the other class. So, the cµ rule queues
the small number of large jobs, while the other schedulers
queue a big number of small jobs. It is interesting that also
for % = 0.94 case (with arrivals of 0.76 and 75.8 per sec-
ond for each respective class) that leads to instability of cµ
rule (see Figure 9), the average increase of users generated
by the employment of this rule is only about 0.15 users per
second. The other policies appear to be more stable, but it
can be checked that both SB and RB are not best-condition
(condition 2 of class 1 gets higher priority than condition 3
of class 2), i.e., not maximally stable. However the stability
of PI* does not lead to a considerably better performance
in practice, and the time-average cost of the policies PI*,
RB and SB remains quite high. Such a time-average cost is

0
2
4
6
8

10
12
14
16

0.5 0.55 0.6 0.65 0.7 0.75 0.8
rho

0

50

100

150

200

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
rho

Tim
e-

av
er

ag
e

co
st

Tim
e-

av
er

ag
e

co
st

Figure 11: Scenario 5 - Time-average cost of PI*
(red), SB (blue), RB,PB (green), cµ (black) as a
function of varying %, computed from simulation
over 330 sec.

0

500

1000

1500

2000

0 100 200 300 400 500 600 700
N

u
m

b
e
r

o
f

u
se

rs
 i
n
 t

h
e
 s

y
st

e
m

Time in seconds

(a) % = 0.94, over 785 sec.

0

2000

4000

6000

8000

10000

0 100 200 300 400 500 600 700 800

N
u
m

b
e
r

o
f

u
se

rs
 i
n
 t

h
e
 s

y
st

e
m

Time in seconds

(b) % = 0.98, over 820 sec.

Figure 12: Scenario 5 - Evolution of the number of
users in the system during simulation of PI* (red),
SB (blue), RB,PB (green), cµ (black).

actually reached (and overcome) by the cµ rule after about
2-3 hours of service in the system.

6.5 Scenario 5
This scenario is easier to analyze than the previous one

since the jobs are smaller. Still, we have that the first class
of users requires the completion of a job ten times bigger
than the second class, and the payment of only c1 = 2.
The other parameters are the same for the two classes and
are reported in Table 3. It is interesting to point out the
structure of the channel condition transition matrix which
in this case is diagonally dominant, i.e. the users are most
likely to maintain their channel condition from one slot to
the following with respect to change it.

In this scenario, like in the previous one, the PB and the
RB rules generate the same policy. As can be seen in Fig-
ure 11, it happens that for % ≤ 0.9 the policies generated by
rules cµ and PI* outperform the other policies. Every policy
considered is stable until % = 0.9, however, the average cost
per slot which arise by following the different rules is quite
different, indeed it is 10, 15, 60 and 90 respectively for the
rules PI*, cµ, SB and RB. It is possible to see in Figure 12
that for % = 0.94 (arrivals 7.6 and 75.8 per second) the cµ
rule starts to be unstable, indeed the average increase of
users is about 0.3 per second. The other policies are still
stable for such % even if RB queues about 1300 users per
slot. This cost is reached and overcome by the cµ rule only
after about 1 hour. For % = 0.98 (arrivals 8 and 79 per sec-
ond) also the policy generated by the RB rule starts to have

0
20
40
60
80

100

0 100 200 300 400 500 600 700

0
50

100
150
200
250

0 100 200 300 400 500 600 700

0
200
400
600
800

1000
1200
1400

0 100 200 300 400 500 600 700

0
2
4
6
8

10
12

0 100 200 300 400 500 600 700

Class 1

Time in seconds

PI
- N

. u
se

rs
RB

 -
N.

 u
se

rs
SB

 -
N.

 u
se

rs
CU

 -
N.

 u
se

rs
Class 2

Figure 13: Scenario 5 - Number of users of class 1
(blue) and class 2 (red) for % = 0.90, the values are
averaged over intervals of 10000 slots of time (16.7
seconds).

20
30
40
50
60
70
80
90

100

0.75 0.8 0.85 0.9 0.95
rho

0

5

10

15

20

0.5 0.55 0.6 0.65 0.7 0.75
rho

Tim
e-A

ve
rag

e c
os

t
Tim

e-A
ve

rag
e c

os
t

Figure 14: Scenario 6 - Time-average cost of PIAG

scheduler (red), PI*,SB,RB,PB,cµ (blue) as a func-
tion of varying %, computed from simulation over 330
sec.

an unstable behavior, see Figure 12, with the employment
of such a policy the number of users in the system increases
by almost 12 users per slot, much worse than the 0.95 users
per slot that results utilizing the cµ rule. The policies SB
and PI* are still stable for such a value of % even if they
queue respectively around 3000 and 200 users per slot. It is
really interesting to observe the way in which the different
policies treat the two classes. It can be seen in Figure 13
that while the rules SB and PB favor users of the first class
and the rule cµ gives priority to the second class users, the
PI* maintains a balance between the two classes.

6.6 Scenario 6
In this scenario µ and Q are chosen so that the problem

is not solvable by threshold policies. We create two iden-
tical classes, as can be seen in Table 3, so the system is
essentially single-class. We have attempted to simulate the
behavior of all the policies described above and the one in-
duced by the indices computed through the AG-algorithm,
i.e. PIAG scheduler rule. This scenario is quite simple and
it happens that the PISS, RB, SB, PB and cµ rules lead
to the same policy. Note that none of them assumes that
the non-intuitive order of states (non-optimality of threshold
policies) could exist. Only PIAG captures this phenomenon.

Figure 14 displays the time-average cost that is obtained
by averaging a 330 seconds simulation. As expected, PIAG

outperforms the other policies, but the differences between
various policies are not significant.

7. CONCLUSION
The scheduling problem we are investigating is an elabo-

rate problem and is far from being solved. The introduction
of more general and realistic elements, like the Markovian
evolution of the channel or the arbitrary number of channel
conditions prohibits the possibility to furnish closed, intu-
itive formulas for the PI* index values. Indeed, mostly due
to the Markovian property it is quite a hard job to carry
out the probability of moving to a better condition, q∗, that
we believe plays an important role in the computation of
such index values. The problem could be considered almost
solved in the 3-state case, where, if the jobs are sufficiently
large, the PISS scheduler seems to work as an efficient ap-
proximation. It should be investigated if such an approxi-
mation is still effective for the general case, in particular it
could be useful to identify sufficient conditions that guaran-
tee the problem (2) to be solvable by threshold policies.

Numerical simulations suggest that PI* rule works well
in a lot of different scenarios. In particular the maximal
stability property assures the system to be manageable even
under situations of high load. Moreover quite surprisingly
even though we have not included fairness optimization in
our MDP model, PI* shows to be very fair between classes,
and besides it does not depend on λ (and %).

On the other hand, even only the analysis of the few sce-
narios reported in the paper establish that in some cases it
could be convenient to employ other policies instead of the
PI* one. If the system is not loaded much, the cµ policy,
as long as it is stable, performs often better than the other
policies. It could be interesting to have knowledge of stabil-
ity limit of the cµ policy in order to be able to alternately
employ such a policy and the PI*.

The main theoretical limitation of this paper is the as-
sumption of geometric job sizes. However, we believe that
it is important first to understand this case, likely to be an-
alytically the simplest, and future research should address
the question of (in)sensitivity of our results to the job size
distribution. Note also that the existing maximal stability
results for best-condition schedulers [4, 16] also rely on the
geometric job size assumption.

8. REFERENCES
[1] S. Aalto and P. Lassila. Flow-level stability and

performance of channel-aware priority-based
schedulers. In Proceeding of NGI 2010 (6th EURO-NF
Conference on Next Generation Internet), 2010.

[2] S. Aalto, A. Penttinen, P. Lassila, and P. Osti. On the
optimal trade-off between SRPT and opportunistic
scheduling. In Proceedings of ACM Sigmetrics, 2011.

[3] U. Ayesta, M. Erausquin, and P. Jacko. A modeling
framework for optimizing the flow-level scheduling
with time-varying channels. Performance Evaluation,
67:1014–1029, 2010.

[4] U. Ayesta, M. Erausquin, M. Jonckheere, and I. M.
Verloop. Scheduling in a random environment:
Stability and asymptotic optimality. IEEE/ACM
Transactions on Networking, 21(1):258–271, 2013.

[5] U. Ayesta and P. Jacko. Method for selecting a
transmission channel within a time division multiple
access (TDMA) communications system, 2013. EU
Patent.

[6] P. Bender, P. Black, M. Grob, R. Padovani,

Mod. QPSK 16QAM 64QAM

MCS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rates 4.2 6.72 8.4 11.256 16.8 21.84 25.2 26.88 33.6 44.688 50.4 53.76 67.2 75.6 80.64

Table 2: Transmission rates in Mb/sec associated with LTE modulation and coding schemes (MCS).

MCS Cost Channel Condition Transition Matrix Expected Size

#1
{12, 13, 15},
{1, 8, 9} (1,1)

([
0.4 0.21 0.39
0.48 0.5 0.02
0.26 0.3 0.44

]
,

[
0.34 0.35 0.31
0.27 0.45 0.28
0.45 0.15 0.4

])
(HTML,HTML)

#2
{8, 12, 15},
{8, 12, 15} (10,1)

([
0.38 0.20 0.42
0.43 0.19 0.38
0.48 0.27 0.25

]
,

[
0.38 0.20 0.42
0.43 0.19 0.38
0.48 0.27 0.25

])
(HTML,HTML)

#3
{8, 12, 15},
{1, 9, 13} (1,1)

([
0.6 0.2 0.2
0.3 0.5 0.2
0.2 0.4 0.4

]
,

[
0.5 0.499 0.001
0.7 0.299 0.001
0.15 0.849 0.001

])
(PDF,HTML)

#4
{12, 13, 15},
{12, 13, 15} (3,1)

([
0.41 0.31 0.28
0.16 0.5 0.34
0.26 0.34 0.4

]
,

[
0.65 0.34999 0.00001
0.62 0.37999 0.00001
0.63 0.36999 0.00001

])
(MP3,HTML)

#5
{12, 13, 15},
{12, 13, 15} (2,1)

([
0.6 0.3 0.1
0.25 0.5 0.25
0.1 0.3 0.6

]
,

[
0.6 0.3 0.1
0.25 0.5 0.25
0.1 0.3 0.6

])
(PDF,HTML)

#6
{8, 9, 13},
{8, 9, 13} (1,1)

([
0.998 0.0015 0.0005
0.002 0.248 0.75
0.01 0.02 0.97

]
,

[
0.998 0.0015 0.0005
0.002 0.248 0.75
0.01 0.02 0.97

])
(HTML,HTML)

Table 3: Parameters set in the experimental study for (class 1, class 2).

N. Sindhushayana, and A. Viterbi. CDMA/HDR: a
bandwidth-efficient high-speed wireless data service
for nomadic users. IEEE Communications Magazine,
38(7):70–77, 2000.

[7] T. Bonald. Procédé de sélection de canal de
transmission dans un protocole d’accès multiple à
répartition dans le temps et système de
communication mettant en oeuvre un tel procédé,
2004. EU Patent.

[8] T. Bonald. A score-based opportunistic scheduler for
fading radio channels. In Proceedings of European
Wireless, pages 283–292, 2004.

[9] S. Borst. User-level performance of channel-aware
scheduling algorithms in wireless data networks.
IEEE/ACM Transactions on Networking,
13(3):636–647, 2005.

[10] C. Buyukkoc, P. Varaiya, and J. Walrand. The cµ rule
revisited. Advances in Applied Probability,
17(1):237–238, 1985.

[11] E. F. Chaponniere, P. J. Black, J. M. Holtzman, and
D. N. C. Tse. Transmitter directed code division
multiple access system using path diversity to
equitably maximize throughput, 2002. US Patent.

[12] J. C. Gittins. Bandit processes and dynamic allocation
indices. Journal of the Royal Statistical Society, Series
B, 41(2):148–177, 1979.

[13] J. C. Gittins and D. M. Jones. A dynamic allocation
index for the sequential design of experiments. In
J. Gani, editor, Progress in Statistics, pages 241–266.
North-Holland, Amsterdam, 1974.

[14] P. Jacko. Restless bandits approach to the job

scheduling problem and its extensions. In A. B.
Piunovskiy, editor, Modern Trends in Controlled
Stochastic Processes: Theory and Applications, pages
248–267. Luniver Press, United Kingdom, 2010.

[15] P. Jacko. Value of information in optimal flow-level
scheduling of users with Markovian time-varying
channels. Performance Evaluation, 68(11):1022–1036,
2011.

[16] J. Kim, B. Kim, J. Kim, and Y. H. Bae. Stability of
flow-level scheduling with Markovian time-varying
channels. Performance Evaluation, 70(2):148–159,
2013.

[17] R. Knopp and P. Humblet. Information capacity and
power control in single-cell multiuser communications.
In Proceedings of IEEE International Conference on
Communications, pages 331–335, 1995.

[18] H. Kushner and P. Whiting. Convergence of
proportional-fair sharing algorithms under general
conditions. IEEE Transactions on Wireless
Communications, 3:1250–1259, 2004.

[19] J. Niño-Mora. Dynamic priority allocation via restless
bandit marginal productivity indices. TOP,
15(2):161–198, 2007.

[20] S. Sesia, I. Toufik, and M. Baker. LTE-The UMTS
Long Term Evolution: From Theory to Practice.
Wiley, 2011.

[21] P. Whittle. Restless bandits: Activity allocation in a
changing world. A Celebration of Applied Probability,
J. Gani (Ed.), Journal of Applied Probability,
25A:287–298, 1988.

	1 Introduction
	2 Problem Description
	2.1 Job-Channel-User Classes
	2.2 Server
	2.3 Objectives

	3 MDP Approach
	3.1 Job-Channel-User MDP
	3.2 Optimization Problem

	4 Index-Based Solution
	4.1 Index Values and Threshold Policies
	4.2 Index Values Characterization
	4.3 Index Values for 3 -State Channel
	4.4 Solvability by Threshold Policies for 3 -State Channel

	5 Proposed Schedulers
	6 Experimental study
	6.1 Scenario 1
	6.2 Scenario 2
	6.3 Scenario 3
	6.4 Scenario 4
	6.5 Scenario 5
	6.6 Scenario 6

	7 Conclusion
	8 References

