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Abstract

In this paper, we establish the global asymptotic stability of a disease-free equi-
librium and an endemic equilibrium of an SIRS epidemic model with a class of
nonlinear incidence rates and distributed delays. By using strict monotonicity
of the incidence function and constructing a Lyapunov functional, we obtain
sufficient conditions under which the endemic equilibrium is globally asymptot-
ically stable. When the nonlinear incidence rate is a saturated incidence rate,
our result provides a new global stability condition for a small rate of immunity
loss.
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1. Introduction

Mathematical models which describe the dynamics of infectious diseases have
played a crucial role in the disease control in epidemiological aspects. In order to
understand the mechanism of disease transmission, many authors have proposed
various kinds of epidemic models (see [1]-[19] and the references therein).

Much attention has been paid to the analysis of the stability of the disease-
free equilibrium and the endemic equilibrium of the epidemic models. Mena-
Lorca and Hethcote [15] considered several SIRS epidemic models with a bilinear
incidence rate which takes the form βS(t)I(t) and a standard incidence rate
which takes the form βS(t)I(t)/N(t), where N(t) = S(t) + I(t) + R(t). A
threshold parameter of the models was also found in Mena-Lorca and Hethcote
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[15] to determine whether the disease dies out or approaches to an endemic
equilibrium. Later, in order to investigate the effect of an immunity loss of
diseases, various kinds of SIRS epidemic models and a significant body of work
concerning the stability analysis of the steady states of the models have been
carried out (see, for example, [7, 8, 9, 10, 11, 12, 16, 17, 19] and the references
therein).

In modeling of those communicable diseases, an incidence rate has played
a vital role in ensuring that the model can give a reasonable qualitative de-
scription for the disease dynamics. A bilinear incidence rate and a standard
incidence rate were frequently used in the literature of mathematical modeling.
On the other hand, many authors have suggested that transmission of the in-
fection shall have a nonlinear incidence rate. For example, Capasso and Serio
[2] studied the cholera epidemic spread in Bari in 1973 and have given an as-

sumption that the incidence rate takes the nonlinear form βS(t)I(t)
1+αI(t) , which has

been interpreted as a saturated incidence rate. The saturation effect has been
originally introduced for the Holling functional response of the predator in a
prey-predator system. This incidence rate includes the behavioral change and
crowding effect of the infective individuals and prevents the unboundedness of
the contact rate. Korobeinikov and Maini [9] thereafter formulated a variety
of models with an incidence rate of the form F (S(t))G(I(t)) and Korobeinikov
[10, 11] obtained the global properties of basic SIR and SIRS epidemic models
with a more general framework of the incidence rate F (S(t), I(t)) but no delays.

Recently, Xu and Ma [18] investigated the spread of an infectious disease
transmitted by a vector (e.g. mosquitoes, rats, etc.) after an incubation time τ
denoting the time during which the infectious agents develop in the vector, that
is, they incorporated time delay effects and formulated an SIRS epidemic model

with the saturated incidence rate βS(t) I(t−h)
1+αI(t−h) (see also Section 6). More

authors have now proposed several reasons for the nonlinearity of the incidence
rates and introduced various nonlinear incidence functions with delays (see also
[7, 19]).

In this paper, in order to study the impact of nonlinearity of those incidence
rates and time delay effects, we consider the global dynamics of the following
SIRS epidemic model with a class of nonlinear incidence rates and distributed
delays:

dS(t)

dt
= B − µS(t)− βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ + δR(t),

dI(t)

dt
= βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ+ γ)I(t),

dR(t)

dt
= γI(t)− (µ+ δ)R(t).

(1.1)

S(t), I(t) and R(t) denote the numbers of susceptible, infective and recov-
ered individuals at time t, respectively. B > 0 is the recruitment rate of the
population, µ > 0 is the natural death rate of the population, β > 0 is the
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proportionality constant, γ > 0 is the natural recovery rate of the infective in-
dividuals, δ ≥ 0 is the rate at which recovered individuals lose immunity and
return to the susceptible class. h > 0 is a maximum time taken to become
infectious and the transmission of the infection is governed by an incidence rate

βS(t)
∫ h

0
f(τ)G(I(t − τ))dτ . f(τ) denotes the fraction of vector population in

which the time taken to become infectious is τ . Here, f : [0, h] → [0,+∞) is

continuous on [0, h] satisfying
∫ h

0
f(τ)dτ = 1. The initial conditions for system

(1.1) take the form

S(θ) = φ1(θ), I(θ) = φ2(θ), R(θ) = φ3(θ), −h ≤ θ ≤ 0, (1.2)

where φ = (φ1, φ2, φ3)
T ∈ C such that φi(θ) = φi(0) ≥ 0 (−h ≤ θ ≤ 0, i =

1, 3), φ2(θ) ≥ 0 (−h ≤ θ ≤ 0). C denotes the Banach space C([−h, 0],R3
+0) of

continuous functions mapping the interval [−h, 0] into R3
+0 with the supremum

norm, where Rn
+0 = {(x1, · · · , xn)|xi ≥ 0, i = 1, · · · , n} for n ≥ 1. From a

biological meaning, we assume that φi(0) > 0 for i = 1, 2, 3.
Throughout the paper, we further assume that

(H1) G(I) is continuous and monotone increasing on [0,+∞) with G(0) = 0.

(H2) I/G(I) is monotone increasing on (0,+∞) with lim
I→+0

(I/G(I)) = 1.

We here note that G is a Lipschitz continuous function on [0,+∞).
We define the basic reproduction number of system (1.1) by

R0 =
Bβ

µ(µ+ γ)
. (1.3)

R0 denotes the expected number of secondary infectious cases generated by one
typical primary case in an entirely susceptible and sufficiently large population.

It is well known by the fundamental theory of functional differential equa-
tions that the solution (S(t), I(t), R(t)) of system (1.1) is unique and positive for
all t ≥ 0. System (1.1) always has a disease-free equilibrium E0 = (B/µ, 0, 0)
and if R0 > 1, then system (1.1) allows a unique endemic equilibrium E∗ =
(S∗, I∗, R∗), S∗ > 0, I∗ > 0 and R∗ > 0 (see Lemma 4.1).

In the present paper, applying a Lyapunov functional technique for a delayed
SIR epidemic model in McCluskey [13] and the property that the total popu-
lation N(t) of system (1.1) converges to a positive constant B/µ, we obtain a
sufficient condition which ensures the global asymptotic stability of the endemic
equilibrium E∗ of system (1.1) for R0 > 1 (see Lemma 5.1). The main results
are as follows.

Theorem 1.1 If R0 < 1, then the disease-free equilibrium E0 of system (1.1)
is globally asymptotically stable.

Theorem 1.2 If R0 > 1, then the endemic equilibrium E∗ of system (1.1) exists
uniquely and system (1.1) is permanent. Moreover, assume that the following
conditions hold.
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(I) There exist positive constants C1 and C2 such that

inf
0≤I≤B/µ

G(I)−G(I∗)

I − I∗
≥ C1 > 0 and inf

0<I≤B/µ

I
G(I) −

I∗

G(I∗)

I − I∗
≥ C2 > 0,

(II) δ2 − 4C1C2(µ+ γ)(µ+ δ)
B

µ+ βG(B/µ)
< 0.

Then the endemic equilibrium E∗ of system (1.1) is globally asymptotically sta-
ble.

We show the global asymptotic stability of the endemic equilibrium for a
small rate of immunity loss δ as long as the infection rate has suitable properties
concerning the concavity of function G(I) characterized by the hypotheses (H1)
and (H2).

The organization of this paper is the following. In Section 2, we offer a
basic result for system (1.1). In Section 3, we prove Theorem 1.1. In Section
4, we establish the permanence and global asymptotic stability of the endemic
equilibrium E∗ of system (1.1) for R0 > 1. In Section 5, we prove Theorem 1.2
by means of Lyapunov functionals on a reduced system which is derived from
system (1.1) with a key lemma (see Lemma 5.1). To show the feasibility of
our global stability conditions of the endemic equilibrium for R0 > 1, we offer
numerical examples in Section 6. Finally, a discussion is offered in Section 7.

2. A basic result

We now state a basic result of system (1.1). The following lemma will be
used in the proofs of Theorem 1.1, Theorem 1.2 and Lemma 4.2.

Lemma 2.1 The plane S(t) + I(t) + R(t) = B/µ is an invariant manifold of
system (1.1), which is globally attractive in the first octant of R3, that is,

lim
t→+∞

(S(t) + I(t) +R(t)) =
B

µ
. (2.1)

Proof. Let N(t) = S(t) + I(t) +R(t). Then it follows from system (1.1) that

dN(t)

dt
= B − µS(t)− µI(t)− µR(t)

= B − µN(t).

Hence, we obtain that limt→+∞ N(t) = B/µ. This completes the proof. □

3. Stability of the disease-free equilibrium E0 for R0 < 1

3.1. Local stability of the disease-free equilibrium E0

We now give the following theorem concerning the local asymptotic stability
of the disease-free equilibrium E0 of system (1.1).
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Lemma 3.1 If R0 < 1, then the disease free equilibrium E0 of system (1.1)
is locally asymptotically stable. Furthermore, the disease-free equilibrium E0 of
system (1.1) is unstable if R0 > 1.

Proof. By the hypothesis (H2), the characteristic equation of system (1.1) at
the disease-free equilibrium E0 is of the form

(λ+ µ)

{
λ+ (µ+ γ)

(
1−R0

∫ h

0

f(τ)e−λτdτ

)}
(λ+ µ+ δ) = 0. (3.1)

Clearly, λ = −µ,−(µ+ δ) are always roots of (3.1). All other roots of (3.1) are
determined by the following equation:

λ+ (µ+ γ)

(
1−R0

∫ h

0

f(τ)e−λτdτ

)
= 0. (3.2)

For the case R0 < 1, we suppose to the contrary that the disease-free equilibrium
E0 is not locally asymptotically stable. Then, there exists a root λ = λ̃ such
that Reλ̃ ≥ 0. However, from (3.2), we obtain

Reλ̃ = (µ+ γ)

{
R0 exp (−Reλ̃τ)

∫ h

0

f(τ) cos(Imλ̃τ)dτ − 1

}
≤ (µ+ γ)(R0 − 1) < 0,

which is a contradiction. Hence, if R0 < 1, then the disease-free equilibrium E0

of system (1.1) is locally asymptotically stable. Now, we put

T (λ) := λ+ (µ+ γ)

(
1−R0

∫ h

0

f(τ)e−λτdτ

)
. (3.3)

For the case R0 > 1, it is directly seen from (3.3) that, for λ ∈ R,

T (0) = (µ+ γ)(1−R0) < 0, lim
λ→+∞

T (λ) = +∞.

Therefore, (3.1) has at least one positive real root. Hence, if R0 > 1, then the
disease-free equilibrium E0 is unstable. This completes the proof. □

3.2. Global stability of the disease-free equilibrium E0

In this subsection, by constructing a Lyapunov functional, we prove Theorem
1.1.

Proof of Theorem 1.1. First, by (1.3) and R0 < 1, we choose εs > 0
sufficiently small such that

β

(
B

µ
+ εs

)
< µ+ γ. (3.4)
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We consider the following Lyapunov functional:

W (t) = I(t) + (µ+ γ)

∫ h

0

f(τ)

∫ t

t−τ

I(u)dudτ.

From Lemma 2.1, one can see that for εs > 0, there is a T > 0 such that
S(t) ≤ B

µ + εs, for t > T . Then we obtain

dW (t)

dt
= βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ+ γ)I(t)

+(µ+ γ)

∫ h

0

f(τ) (I(t)− I(t− τ)) dτ

≤ β

(
B

µ
+ εs

)∫ h

0

f(τ)G(I(t− τ))dτ − (µ+ γ)

∫ h

0

f(τ)I(t− τ)dτ

= β

(
B

µ
+ εs

)∫ h

0

f(τ)I(t− τ)dτ − (µ+ γ)

∫ h

0

f(τ)I(t− τ)dτ

=

∫ h

0

f(τ)

{
β

(
B

µ
+ εs

)
− (µ+ γ)

}
I(t− τ)dτ,

for t > T + h. From (3.4) and arbitrarity of εs > 0, we obtain that dW (t)
dt ≤ 0

holds for t > T + h. Thus, it holds that limt→+∞ W (t) = 0, which implies that
limt→+∞ I(t) = 0. It follows that limt→+∞ R(t) = 0 and limt→+∞ S(t) = B/µ
hold. By Lemma 3.1 and Lyapunov-LaSalle asymptotic stability theorem, the
disease-free equilibrium E0 of system (1.1) is globally asymptotically stable.
This completes the proof. □

Remark 3.1 To establish the global asymptotic stability of the disease-free
equilibrium E0 of system (1.1) for R0 < 1, the hypothesis of the monotonicity
of G(I) of I ≥ 0 in (H1) is not necessary for our analysis.

4. Permanence for R0 > 1

4.1. Existence and uniqueness of the endemic equilibrium E∗

In this subsection, by the hypothesis (H2), we give a lemma of the unique
existence of the endemic equilibrium E∗ of system (1.1) for R0 > 1:

Lemma 4.1 If R0 > 1, then system (1.1) has a unique endemic equilibrium E∗
satisfying  B − µS∗ − βS∗G(I∗) + δR∗ = 0,

βS∗G(I∗)− (µ+ γ)I∗ = 0,
γI∗ − (µ+ δ)R∗ = 0.

(4.1)
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Proof. Assume that R0 > 1. From the second and the third equations of (4.1),
it holds that

S∗ =
(µ+ γ)I∗

βG(I∗)
(4.2)

and

R∗ =
γI∗

µ+ δ
. (4.3)

After substituting (4.2) into the first equation of (4.1), we consider the following
equation:

H(I) := B − µ(µ+ γ)I

βG(I)
− µ(µ+ γ + δ)

µ+ δ
I = 0.

By the hypothesis (H2), one can see that H(I) is a strictly monotone decreasing
function of I ∈ (0,+∞) satisfying

lim
I→+0

H(I) = B − µ(µ+ γ)

β
= B

(
1− 1

R0

)
> 0

and H(I) < 0 holds for any I > B(µ+δ)
µ(µ+γ+δ) . Hence, there exists a unique positive

I∗ > 0 such that H(I∗) = 0. By (4.2) and (4.3), there exists a unique endemic
equilibrium E∗ = (S∗, I∗, R∗). Hence, the proof is complete. □

4.2. Permanence for R0 > 1

In this subsection, we show the permanence of system (1.1). The following
lemma indicates that the disease eventually persists in the host population if
R0 > 1.

Lemma 4.2 If R0 > 1, then for any solutions of system (1.1), it holds that

lim inf
t→+∞

S(t) ≥ v1 :=
B

µ+ βG(B/µ)
,

lim inf
t→+∞

I(t) ≥ v2 := qI∗e−(µ+γ)(h+ρh),

lim inf
t→+∞

R(t) ≥ v3 :=
γv2
µ+ δ

,

where q > 0 and ρ > 0 satisfy S∗ < S△ := B
k (1− e−kρh), k = µ+ βG(qI∗).

Proof. Let (S(t), I(t), R(t)) be a solution of system (1.1) with initial condition
(1.2). By Lemma 2.1, it holds that lim supt→+∞ I(t) ≤ B

µ . For εI > 0 suffi-

ciently small, there is a T1 > 0 such that I(t) ≤ B
µ + εI for t > T1. From the

hypothesis (H1), we therefore derive from the first equation of system (1.1)

dS(t)

dt
≥ B −

{
µ+ βG

(
B

µ
+ εI

)}
S(t),
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which implies that

lim inf
t→+∞

S(t) ≥ B

µ+ βG(B/µ+ εI)
.

Since the above inequality holds for arbitrary εI > 0 sufficiently small, it follows
that lim inft→+∞ S(t) ≥ v1.

We now show that lim inft→+∞ I(t) ≥ v2. First, we prove that it is impos-
sible that I(t) ≤ qI∗ for all t ≥ ρh. Suppose to the contrary that I(t) ≤ qI∗ for
all t ≥ ρh. From the first equation of system (1.1), one can obtain that

dS(t)

dt
≥ B − (µ+ βG(qI∗))S(t), for t ≥ ρh+ h,

which yields

S(t) ≥ e−k(t−ρh−h)

{
S(ρh+ h) +B

∫ t

ρh+h

ek(θ−ρh−h)dθ

}
>

B

k
(1− e−k(t−ρh−h)), for t ≥ ρh+ h. (4.4)

Hence it follows from (4.4) that

S(t) >
B

k
(1− e−kρh) = S△ > S∗, for t ≥ 2ρh+ h. (4.5)

For t ≥ 0, we define

V (t) = I(t) + βS∗
∫ h

0

f(τ)

∫ t

t−τ

G(I(u))dudτ. (4.6)

Noting that I(t) ≤ qI∗ < I∗, calculating the derivative of V (t) along solutions
of system (1.1) gives as follows.

dV (t)

dt

= β

∫ h

0

f(τ)G(I(t− τ))(S(t)− S∗)dτ + βS∗G(I(t))− (µ+ γ)I(t)

= β

∫ h

0

f(τ)G(I(t− τ))(S(t)− S∗)dτ +

{
βS∗G(I(t))

I(t)
− (µ+ γ)

}
I(t)

≥ β

∫ h

0

f(τ)G(I(t− τ))(S(t)− S∗)dτ +

{
βS∗G(I∗)

I∗
− (µ+ γ)

}
I(t)

= β

∫ h

0

f(τ)G(I(t− τ))(S(t)− S∗)dτ

> β

∫ h

0

f(τ)G(I(t− τ))(S△ − S∗)dτ, for t ≥ 2ρh+ h. (4.7)
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Setting i = minθ∈[−h,0] I(θ+2ρh+2h), we claim that I(t) ≥ i for all t ≥ 2ρh+h.
Otherwise, if there is a T ≥ 0 such that I(t) ≥ i for 2ρh+h ≤ t ≤ 2ρh+2h+T ,
I(2ρh+ 2h+ T ) = i and d

dtI(t)|t=2ρh+2h+T ≤ 0, then it follows from (4.5), the
second equation of (4.1) that

dI(t)

dt

∣∣∣
t=2ρh+2h+T

= βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ+ γ)I(t)

≥ βS(t)G(I(t))− (µ+ γ)I(t)

≥
{
βS(t)

G(I∗)

I∗
− (µ+ γ)

}
i

>

{
βS△G(I∗)

I∗
− (µ+ γ)

}
i

>

{
βS∗G(I∗)

I∗
− (µ+ γ)

}
i = 0.

This is a contradiction. Therefore I(t) ≥ i for all t ≥ 2ρh+h. By the hypothesis
(H1), it follows from (4.7) that

dV (t)

dt
> βG(i)(S△ − S∗) > 0, for t ≥ 2ρh+ 2h,

which implies that limt→+∞ V (t) = +∞. However, from Lemma 2.1, it holds
that lim supt→+∞ V (t) ≤ B

µ + βS∗G(Bµ ) < +∞. This leads to a contradiction.
Hence the claim is proved.

Second, since the above claim holds, we are left to consider two possibilities:{
(i) I(t) ≥ qI∗ for all t sufficiently large,
(ii) I(t) oscillates about qI∗ for all t sufficiently large.

If the first case holds, then we immediately get the conclusion. If the second
case holds, we show that I(t) ≥ v2 for all t sufficiently large. Let t1 < t2 be
sufficiently large such that

I(t1) = I(t2) = qI∗, I(t) < qI∗, t1 < t < t2.

If t2− t1 ≤ h+ρh, then it follows from the second equation of system (1.1) that

dI(t)

dt
≥ −(µ+ γ)I(t),

that is,

I(t) ≥ I(t1)e
−(µ+γ)(t−t1) = qI∗e−(µ+γ)(h+ρh) = v2.

If t2− t1 > h+ρh, we similarly obtain from the second equation of system (1.1)
that I(t) ≥ v2 for t1 ≤ t ≤ t1 + h + ρh. We now claim that I(t) ≥ v2 for all
t1 + h + ρh ≤ t ≤ t2. Otherwise, there is a T ∗ > 0 such that I(t) ≥ v2 for
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t1 ≤ t ≤ t1 +h+ ρh+T ∗, I(t1 +h+ ρh+T ∗) = v2 and dI(t)
dt |t=t1+h+ρh+T∗ ≤ 0.

On the other hand, it follows from the second equation of system (1.1) that

dI(t)

dt

∣∣∣
t=t1+h+ρh+T∗

= βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ+ γ)I(t)

≥ βS△G(I(t))− (µ+ γ)I(t)

≥
{
βS△ − (µ+ γ)

v2
G(v2)

}
G(v2).

By (4.1), (4.5) and the hypothesis (H2), it holds that

dI(t)

dt

∣∣∣
t=t1+h+ρh+T∗

≥
{
βS△ − (µ+ γ)

I∗

G(I∗)

}
G(v2) > 0,

which is a contradiction. Hence I(t) ≥ v2 for t1 ≤ t ≤ t2. Since the interval
[t1, t2] is arbitrarily chosen, we conclude that I(t) ≥ v2 holds for all t sufficiently
large for the second case. Thus, we obtain lim inft→+∞ I(t) ≥ v2, from which
we have lim inft→+∞ R(t) ≥ v3. Hence, this completes the proof. □

5. Global stability of the endemic equilibrium E∗ for R0 > 1

From Lemma 2.1, we see that the limit set of system (1.1) in the first octant
of R3 locates on the plane S + I + R = B/µ. Hence, the dynamics of system
(1.1) in the first octant of R3 is equivalent to the following system:

dS(t)

dt
=

B(µ+ δ)

µ
− (µ+ δ)S(t)− βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − δI(t),

dI(t)

dt
= βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ+ γ)I(t).

(5.1)

We now discuss the global asymptotic stability of the endemic equilibrium
Ẽ∗ of system (5.1) for R0 > 1. By Lemma 4.1, we recall that the existence of
the endemic equilibrium Ẽ∗ := (S∗, I∗) of system (5.1) is guaranteed for the
case R0 > 1. Put

xt =
S(t)

S∗ , yt =
I(t)

I∗
, ỹt =

G(I(t))

G(I∗)
. (5.2)

The following key lemma plays an important role to obtain Theorem 1.2.

Lemma 5.1 For all t ≥ 0, under the condition (I), it holds that

g(yt)− g(ỹt) ≥ C1C2I
∗(yt − 1)2, (5.3)

where g(x) = x− 1− lnx ≥ g(1) = 0 defined for all x > 0.

10



Proof. First, we obtain that

ỹt − 1 =
G(I(t))−G(I∗)

G(I∗)

and

yt − ỹt =
I(t)

I∗
− G(I(t))

G(I∗)
=

G(I(t))

I∗

(
I(t)

G(I(t))
− I∗

G(I∗)

)
.

Then it follows from the condition (I) that

(ỹt − 1)(yt − ỹt) =
G(I(t))

I∗G(I∗)
(G(I(t))−G(I∗))

(
I(t)

G(I(t))
− I∗

G(I∗)

)
≥ C1C2G(I(t))

I∗G(I∗)
(I(t)− I∗)2

=
C1C2I

∗G(I(t))

G(I∗)
(yt − 1)2

= C1C2I
∗ỹt(yt − 1)2. (5.4)

By g′′(x) = 1
x2 > 0 for x > 0 and (5.4), we obtain that

g(yt)− g(ỹt) ≥ g′(ỹt)(yt − ỹt)

=

(
1− 1

ỹt

)
(yt − ỹt)

=
1

ỹt
(ỹt − 1)(yt − ỹt)

≥ C1C2I
∗(yt − 1)2.

Hence, we get the conclusion of this lemma. □

Now, we are in a position to prove the global asymptotic stability of the
endemic equilibrium Ẽ∗ for R0 > 1 by applying techniques in McCluskey [13,
Proof of Theorem 4.1].

Theorem 5.1 If R0 > 1 and the conditions (I) and (II) hold, then the endemic
equilibrium Ẽ∗ of system (5.1) is globally asymptotically stable.

Proof. Let us consider the following Lyapunov functional (see McCluskey [13,
Proof of Theorem 4.1]):

U(t) =
1

βG(I∗)
US(t) +

I∗

βS∗G(I∗)
UI(t) + U+(t), (5.5)

where

US(t) = g

(
S(t)

S∗

)
, UI(t) = g

(
I(t)

I∗

)
, U+(t) =

∫ h

0

f(τ)

∫ t

t−τ

g

(
G(I(s))

G(I∗)

)
dsdτ.

(5.6)
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We now show that dU(t)
dt ≤ 0. First, we calculate dUS(t)

dt .

dUS(t)

dt
=

S(t)− S∗

S∗S(t)

{
B(µ+ δ)

µ
− (µ+ δ)S(t)− βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − δI(t)

}
.

By the relation B(µ+δ)
µ = (µ+ δ)S∗ + βS∗G(I∗) + δI∗, we have

dUS(t)

dt

=
S(t)− S∗

S∗S(t)

{
(µ+ δ)S∗ + βS∗G(I∗) + δI∗

−(µ+ δ)S(t)− βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − δI(t)

}
=

S(t)− S∗

S∗S(t)

[
−(µ+ δ)(S(t)− S∗)

+β

∫ h

0

f(τ) {S∗G(I∗)− S(t)G(I(t− τ))}dτ − δ(I(t)− I∗)

]
= − (µ+ δ)(S(t)− S∗)2

S∗S(t)
+ βG(I∗)

∫ h

0

f(τ)

(
1− S∗

S(t)

)(
1− S(t)

S∗
G(I(t− τ))

G(I∗)

)
dτ

−δ(S(t)− S∗)(I(t)− I∗)

S∗S(t)

= −S∗(µ+ δ)(xt − 1)2

S(t)
+ βG(I∗)

∫ h

0

f(τ)

(
1− 1

xt

)
(1− xtỹt−τ )dτ

− δI∗

S(t)
(xt − 1)(yt − 1)

= −S∗(µ+ δ)(xt − 1)2

S(t)
+ βG(I∗)

∫ h

0

f(τ)

(
1− 1

xt
− xtỹt−τ + ỹt−τ

)
dτ

− δI∗

S(t)
(xt − 1)(yt − 1). (5.7)

We secondly calculate dUI(t)
dt .

dUI(t)

dt
=

I(t)− I∗

I∗I(t)

{
βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − (µ+ γ)I(t)

}
.
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By the relation (µ+ γ)I∗ = βS∗G(I∗), we have

dUI(t)

dt
=

I(t)− I∗

I∗I(t)

(
βS(t)

∫ h

0

f(τ)G(I(t− τ))dτ − βS∗G(I∗)

I∗
I(t)

)
= βS∗G(I∗)

I∗

∫ h

0

f(τ)

(
1− I∗

I(t)

)(
S(t)

S∗
G(I(t− τ))

G(I∗)
− I(t)

I∗

)
dτ

= βS∗G(I∗)

I∗

∫ h

0

f(τ)

(
1− 1

yt

)
(xtỹt−τ − yt)dτ

= βS∗G(I∗)

I∗

∫ h

0

f(τ)

(
xtỹt−τ − xtỹt−τ

yt
− yt + 1

)
dτ. (5.8)

Finally, calculating dU+(t)
dt gives as follows.

dU+(t)

dt
=

∫ h

0

f(τ)

(
g

(
G(I(t))

G(I∗)

)
− g

(
G(I(t− τ))

G(I∗)

))
dτ

=

∫ h

0

f(τ) (g(ỹt)− g(ỹt−τ )) dτ

=

∫ h

0

f(τ)(ỹt − ln ỹt − ỹt−τ + ln ỹt−τ )dτ. (5.9)

Combining (5.3), (5.7), (5.8) and (5.9), it follows from Lemma 5.1 that

dU(t)

dt
=

1

βG(I∗)

{
−S∗(µ+ δ)(xt − 1)2

S(t)

+βG(I∗)

∫ h

0

f(τ)

(
1− 1

xt
− xtỹt−τ + ỹt−τ

)
dτ − δI∗

S(t)
(xt − 1)(yt − 1)

}
+

I∗

βS∗G(I∗)

{
βS∗G(I∗)

I∗

∫ h

0

f(τ)

(
xtỹt−τ − xtỹt−τ

yt
− yt + 1

)
dτ

}
+

∫ h

0

f(τ)(ỹt − ln ỹt − ỹt−τ + ln ỹt−τ )dτ

= −S∗(µ+ δ)(xt − 1)2

βG(I∗)S(t)
− δI∗

βG(I∗)S(t)
(xt − 1)(yt − 1)− (g(yt)− g(ỹt))

−
∫ h

0

f(τ)

{
g

(
1

xt

)
+ g

(
xtỹt−τ

yt

)}
dτ

≤ −S∗(µ+ δ)(xt − 1)2 + δI∗(xt − 1)(yt − 1) + βG(I∗)S(t)C1C2I
∗(yt − 1)2

βG(I∗)S(t)
.

(5.10)

By Lemma 4.2, for any 0 < ε < v1, there exists a Tε > h such that S(t) > v1−ε
for any t > Tε. From the condition (II), we may restrict this ε > 0 sufficiently
small such that

δ2 − 4C1C2(µ+ γ)(µ+ δ)(v1 − ε) < 0.

13



Then, for all t > Tε, it follows that

(δI∗)2 − 4C1C2βS
∗G(I∗)(µ+ δ)I∗S(t)

= (I∗)2
{
δ2 − 4C1C2(µ+ γ)(µ+ δ)S(t)

}
< (I∗)2

{
δ2 − 4C1C2(µ+ γ)(µ+ δ)(v1 − ε)

}
< 0,

from which we obtain that dU(t)
dt ≤ 0 for all t > Tε. We recall that by Lemma

5.1, dU(t)
dt = 0 if xt = 1 and yt = 1, or equivalently, if S(t) = S∗ and I(t) = I∗

for all t > Tε. It follows from Lemma 2.1, 4.2 and LaSalle’s invariant principle
that Ẽ∗ of system (5.1) is globally asymptotically stable. This completes the
proof. □

Proof of Theorem 1.2. Summarizing results of Lemmas 2.1, 4.1, 4.2 and
Theorem 5.1, we obtain the conclusion of this theorem. □

6. Applications

In this section, we illustrate some examples in order to validate the feasibility
of our analytical results for R0 > 1 for the following SIRS epidemic model
proposed in Xu and Ma [18]:

dS(t)

dt
= B − µS(t)− βS(t)G(I(t− h)) + δR(t),

dI(t)

dt
= βS(t)G(I(t− h))− (µ+ γ)I(t),

dR(t)

dt
= γI(t)− (µ+ δ)R(t), h ≥ 0,

(6.1)

where G(I) = I
1+αI , α > 0.

If R0 < 1, then the disease-free equilibrium E0 of system (6.1) is globally
asymptotically stable. If R0 > 1, then system (6.1) is permanent. Concerning
the global stability of a unique endemic equilibrium E∗ for R0 > 1, Muroya et
al. [17, Corollary 4.1] established the following theorem:

Theorem A If R0 > 1 and

δ > δ1(α) :=
βγ

α(µ+ γ) + β
− µ, (6.2)

then the endemic equilibrium E∗ of system (6.1) is globally asymptotically stable.

Their result for p = 1 improved the global stability condition of the endemic
equilibrium in Xu and Ma [18, Theorem 3.1]. On the other hand, for R0 > 1,
similar to Theorem 1.2, we establish the following result:
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Parameter Description Value Reference

β Transmission rate 0.05 per day per inidividual Assumed
B Recruitment rate 30 individuals per day Assumed
µ Natural death rate 0.02 per day [4]
γ Recovery rate of infectives 0.077 per day [4]
h Latency period 0.1 days Assumed

Table 1: Parameters of system (6.1) and their values used in Figure 2. For the above parameter
values, we have R0 = 257.732 · · · > 1.

Corollary 6.1 If R0 > 1 and

0 ≤ δ < δ2(α), (6.3)

where

δ2(α) :=
2C1C2 (µ+ γ)B

µ+ βG(B/µ)
+

√{
2C1C2 (µ+ γ)B

µ+ βG(B/µ)

}2

+
4µC1C2 (µ+ γ)B

µ+ βG(B/µ)
,

then the endemic equilibrium E∗ of system (6.1) is globally asymptotically stable.

Next, for system (6.1), using parameter values given in Table 1, we carry
out some computational experiments to investigate the feasibility of our global
stability condition (6.3) with respect to the rate of immunity loss δ ≥ 0. For the
parameter values, we obtain R0 = 257.732 · · · > 1 and the endemic equilibrium
E∗ exists. In Figure 1, we show regions of global and local stability of the
endemic equilibrium E∗, which are obtained by Theorem A, Corollary 6.1 and
Xu and Ma [18, Section 2] in the parameter space (α, δ).

First, we consider the case α = 1.4. Then we obtain that δ1(α) = 0.0007 · · ·
by (6.2) and δ2(α) = 0.0021 · · · by (6.3). Hence, the endemic equilibrium E∗ of
system (6.1) is globally asymptotically stable for any δ ≥ 0. From a biological
point of view, the prevalence of the disease settles to an endemic steady state
independently of initial conditions concerning the fractions of a host population
for any rate of immunity loss.

Second, we consider the case α = 1.1. Then we obtain δ1(α) = 0.0045 · · ·
by (6.2) and δ2(α) = 0.0021 · · · by (6.3). Therefore, the endemic equilibrium
E∗ of system (6.1) is globally asymptotically stable for 0 ≤ δ < 0.0021 · · · or
δ > 0.0045 · · · . Thus, the global stability of the endemic equilibrium E∗ is
guaranteed for a small rate of immunity loss δ even if the condition (6.2) in
Theorem A does not hold.

On the other hand, Figure 2 indicates that the endemic equilibrium E∗ of
system (6.1) is also globally asymptotically stable for the case α = 1.1 and
δ = 0.003 ∈ [δ2(α), δ1(α)] with the parameter values in Table 1. There is still
an open problem to determine the global asymptotic stability of the endemic
equilibrium E∗ of system (6.1) when both of the conditions (6.2) and (6.3) fail.
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(1) E*: GAS

[Theorem A]

(2) E*: GAS

[Corollary 6.1]

(3) E*: LAS

[18, Section 2]

(1.1, 0.003)
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Α0.000

0.001

0.002

0.003
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0.005
∆

Figure 1: Curves of δ1(α) (dotted line) and δ2(α) (dashed line) for the parameter set in Table

1 [(1): δ > δ1(α), (2): 0 ≤ δ ≤ δ1(α) and 0 ≤ δ < δ2(α), (3): 0 ≤ δ ≤ δ1(α) and δ ≥ δ2(α)].
Here, GAS and LAS denote globally asymptotically stable and locally asymptotically stable,
respectively.

7. Discussion

In this paper, we consider delayed SIRS epidemic models with a class of
nonlinear incidence rates. For the nonlinear incidence rate, we put the hypothe-
ses (H1) and (H2), which describe the crowding (saturation) effects observed
in the literature of epidemiology. For R0 < 1, we establish the global asymp-
totic stability of the disease-free equilibrium in Theorem 1.1 and for R0 > 1,
we obtain sufficient conditions of the global asymptotic stability of the endemic
equilibrium in Theorem 1.2.

In particular, for R0 > 1, by using strict monotonicity of the functions G(I)
and I/G(I) on a neighborhood of I∗, we establish Lemma 5.1, which plays a
key role to construct a Lyapunov functional for the reduced limit system (5.1).

For the special case δ = 0 (a delayed SIR epidemic model), Beretta and
Takeuchi [1] obtained the global stability of a disease-free equilibrium and the
local stability of an endemic equilibrium of the model with a bilinear incidence
rate (i.e. G(I) = I). However, on their global stability analysis of the endemic
equilibrium, they required a condition that the size of time delay h should be
small enough. The global stability of the endemic equilibrium for a sufficiently
large h remained unsolved for a long time. Later, by applying techniques of
equation deformation on a calculation of the time derivative of a Lyapunov
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Figure 2: The graph trajectory of S(t), I(t) and R(t) of system (6.1). For the parameter
values in Table 1 with α = 1.1 and δ = 0.003, we have R0 = 257.732 · · · > 1 and E∗ =
(229.338 · · · , 106.56 · · · , 164.102 · · · ).

functional, McCluskey [13] solved the problem and established that the endemic
equilibrium of the model is globally asymptotically stable whenever it exists.
The similar global stability results for delayed SIR epidemic models with a wide
class of incidence rates are now obtained in [3, 6, 14].

On the other hand, for the case δ > 0, there are few global stability results
concerning an endemic equilibrium of delayed SIRS epidemic models. For a
delayed SIRS epidemic model with the saturated incidence rate, by applying
new monotone iterative techniques in [16], Muroya et al. [17] recently obtained
sufficient conditions which ensure the global asymptotic stability of an endemic

equilibrium of the model with an incidence rate βS(t) I(t−h)
1+αIp(t−h) with p > 0

for large δ. Their result for p = 1 improved the global stability condition of
the endemic equilibrium in Xu and Ma [18] for (6.1) (see Theorem A). For
the system (6.1), we derive Corollary 6.1 from Theorem 1.2 and find the new
global stability region of the endemic equilibrium in the parameter space (α, δ),
compared with that of Theorem A (see Figure 1). This illustrates that the
global stability of the endemic equilibrium still holds for small δ as well as the
case δ = 0.
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