
Lyapunov functional techniques for the global stability

analysis of a delayed SIRS epidemic model

Yoichi Enatsua,∗, Yukihiko Nakatab, Yoshiaki Muroyac

aDepartment of Pure and Applied Mathematics, Waseda University, 3-4-1 Ohkubo,
Shinjuku-ku, Tokyo, 169-8555, Japan

bBasque Center for Applied Mathematics, Bizkaia Technology Park, Building 500 E-48160
Derio, Spain

cDepartment of Mathematics, Waseda University 3-4-1 Ohkubo, Shinjuku-ku, Tokyo
169-8555, Japan

Abstract

In this paper, we study the global dynamics of a delayed SIRS epidemic model
for transmission of disease with a class of nonlinear incidence rates of the form
βS(t)

∫ h

0 f(τ)G(I(t − τ))dτ . Applying Lyapunov functional techniques in the
recent paper [Y. Nakata, Y. Enatsu and Y. Muroya, On the global stability of an
SIRS epidemic model with distributed delays, accepted], we establish sufficient
conditions of the rate of immunity loss for the global asymptotic stability of an
endemic equilibrium for the model. In particular, we offer a unified construction
of Lyapunov functionals for both cases of R0 ≤ 1 and R0 > 1, where R0 is the
basic reproduction number.

Keywords: SIRS epidemic model; nonlinear incidence rate; global asymptotic
stability; Lyapunov functional; distributed delays

1. Introduction

In order to understand epidemiological patterns and control communicable
diseases, we have obtained qualitative results of stability analyses of epidemic
models (see [1]-[23] and the references therein).

Mena Lorcat and Hethcote [15] formulated SIRS (Susceptible - Infected -
Recovered - Susceptible) epidemic models, which were initially applied to fit
data for infectious diseases as regulators of laboratory population of mice.

In order to investigate the effect of the impermanent immunity of vector-
borne diseases, many authors have now carried out stability analysis of the
equilibria for delayed SIRS epidemic models [16, 20, 21, 22, 23].
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Recently, Nakata et al. [16] studied the following SIRS epidemic model with
a bilinear incidence rate and distributed delays,































dS(t)

dt
= B − µS(t)− βS(t)

∫ h

0
f(τ)I(t − τ)dτ + δR(t),

dI(t)

dt
= βS(t)

∫ h

0
f(τ)I(t − τ)dτ − (µ+ γ)I(t),

dR(t)

dt
= γI(t)− (µ+ δ)R(t),

(1.1)

S(t), I(t) and R(t) denote the fractions of susceptible, infective and recov-
ered individuals at time t, respectively. The positive constant B represents the
birth rate of the population and the positive constant µ represents the death
rate of susceptible, infected and recovered individuals. The positive constant γ
represents the recovery rate of infectives and the nonnegative constant δ denotes
the rate at which recovered individuals lose immunity and return to suscepti-
ble class. The positive constant β is the contact rate between susceptible and
infective individuals and h is a superior limit of incubation times. The incuba-
tion period distribution f(τ), which denotes the fraction of vector population in
which the time taken to become infectious is τ , is assumed to be continuous on

[0, h] satisfying
∫ h

0 f(τ)dτ = 1 and f(τ) ≥ 0 for 0 ≤ τ ≤ h (see, e.g., [1, 2, 17]).
By applying Lyapunov functional techniques which is an extension of those

in McCluskey [12, 13] and the property that the total population of the system
(1.1) converges to a positive constant, Nakata et al. [16] established that if
1 < R̃0 ≤ 1 + µ

γ
, then a unique endemic equilibrium of system (1.1) is globally

asymptotically stable for any δ ≥ 0, where R̃0 = βB
µ(µ+γ) is the basic reproduction

number of system (1.1). Otherwise, they offered sufficient conditions 0 ≤ δ ≤
µ

R̃0

1+
µ
γ
−1

such that the endemic equilibrium is globally asymptotically stable.

On the other hand, in modeling of those communicable diseases, nonlinear
incidence rates have played a vital role in ensuring that the model can give
a reasonable qualitative description for the disease dynamics such as cholera
epidemic spread in Bari in 1973 (see, e.g., Capasso and Serio [3]).

Based on their idea, Xu and Ma [20] investigated the global dynamics for

a delayed SIRS epidemic model with a saturated incidence rate βS(t)I(t−τ)
1+αI(t−τ) and

established the global stability of the disease-free equilibrium and a sufficient
condition under which the endemic equilibrium is globally asymptotically stable
by applying monotone iterative techniques on a limit system obtained from the
fact that the total population N(t) = S(t) + I(t) +R(t) converges to a positive
constant (see Xu and Ma [20, Theorem 3.1]).

In this paper, by using the key properties of Lyapunov functional techniques
in Nakata et al. [16], we establish the global asymptotic stability of a disease-free
equilibrium and sufficient conditions of the rate of immunity loss for the global
asymptotic stability of an endemic equilibrium for the following SIRS epidemic
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models with a class of nonlinear incidence rates and distributed delays:































dS(t)

dt
= B − µ1S(t)− βS(t)

∫ h

0
f(τ)G(I(t − τ))dτ + δR(t),

dI(t)

dt
= βS(t)

∫ h

0
f(τ)G(I(t − τ))dτ − (µ2 + γ)I(t),

dR(t)

dt
= γI(t)− (µ3 + δ)R(t).

(1.2)

and offer a unified construction of the Lyapunov functionals for both cases that
the basic reproduction number is less than or equal and larger than 1.

The initial condition of system (1.2) is given as follows.

{

S(θ) = φ1(θ), I(θ) = φ2(θ), R(θ) = φ3(θ),
φi(θ) ≥ 0, θ ∈ [−h, 0], φi(0) > 0, φi ∈ C([−h, 0],R+), i = 1, 2, 3.

(1.3)

For system (1.2), the positive constants µ1, µ2 and µ3 satisfying µ1 ≤
min{µ2, µ3} represent the death rate of susceptible, infected and recovered in-
dividuals, respectively. For the incidence function G, we assume the following.

(H1) G(I) is continuous and monotone increasing on [0,+∞) with G(0) = 0.
(H2) I/G(I) is monotone increasing on (0,+∞) with lim

I→+0
(I/G(I)) = 1.

We note that G is Lipschitz continuous on [0,+∞) satisfying 0 < G(I) ≤ I
for all I > 0. Under the hypotheses (H1) and (H2), system (1.2) always has a
disease-free equilibrium E0 = (S0, I0, R0), where S0 = B

µ1
and I0 = R0 = 0.

In addition, if R0 > 1, then system (1.2) has a unique endemic equilibrium
E∗ = (S∗, I∗, R∗), where S∗ > 0, I∗ > 0 and R∗ > 0 (see Lemma 2.2).

The basic reproduction number of system (1.2) becomes as follows.

R0 =
βB

µ1(µ2 + γ)
. (1.4)

1
µ2+γ

denotes the average infection period and the relation that limI→+0
βS0G(I)

I
=

βS0 = β B
µ1

implies that β B
µ1

denotes the number of new cases infected per unit
time by one infective individual at an initial infection state. Thus, R0 denotes
the expected number of secondary infectious cases generated by one typical
primary case in an entirely susceptible and sufficiently large population.

If G(I) = I, then the incidence rate becomes a bilinear form, which is
proposed in [23] for the case µ1 = µ3 = µ > 0, µ2 = µ + c > 0, where c > 0
denotes the disease-related death rate and [16] for the case µ1 = µ2 = µ3 = µ >
0. Moreover, if G(I) = I

1+αI
, then the incidence rate describes saturated effects

of the prevalence of infectious diseases, which is proposed in [20] for the case
µ1 = µ2 = µ3 = µ > 0.

Our main results are as follows.
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Theorem 1.1 Let R0 > 1. If

µ1S
∗ − δR∗ ≥ 0, (1.5)

then the endemic equilibrium E∗ of system (1.2) is globally asymptotically stable.
Moreover, (1.5) holds if the following conditions are satisfied.







0 ≤ δ < +∞, for 1 < R0 ≤ 1 + µ2

γ
,

0 ≤ δ ≤ δ :=
µ3

R0

1+
µ2
γ

− 1
, for R0 > 1 + µ2

γ . (1.6)

In particular, for the case G(I) = I, then (1.5) is equivalent to (1.6).

Theorem 1.2 If R0 ≤ 1, then the disease-free equilibrium E0 of system (1.2)
is globally asymptotically stable.

To prove Theorems 1.1 and 1.2, for E = (S, I, R) and N = S+ I +R, we define

UE
δ (t) =











































Sg
(

S(t)
S

)

+ Ig
(

I(t)
I

)

+ βSG(I)
∫ h

0 f(τ)
∫ t

t−τ
g
(

G(I(u))
G(I)

)

dudτ

+ δ
γS

(R(t)−R)2

2 + δγ
{γ(µ3−µ1)+(µ2−µ1)(µ1+µ3+δ)}S

{N(t)−N+
µ2−µ1

γ (R(t)−R)}2

2 ,

if either µ1 < µ2 or µ1 < µ3,

Sg
(

S(t)
S

)

+ Ig
(

I(t)
I

)

+ βSG(I)
∫ h

0 f(τ)
∫ t

t−τ
g
(

G(I(u))
G(I)

)

dudτ

+ δ
γS

(R(t)−R)2

2 + δ
4µ1S

(N(t)−N)2

2 ,
if µ1 = µ2 = µ3,

(1.7)

where

N(t) = S(t) + I(t) +R(t), and g(x) = x− 1− lnx ≥ g(1) = 0. (1.8)

We offer a unified construction of Lyapunov functionals in the proof of global
stability of the global stability of the disease-free equilibrium E0 for R0 ≤ 1 and
the endemic equilibrium E∗ for R0 > 1, respectively as follows (see Section 4);

UE0

δ (t) := lim
E→E0

UE
δ (t), and UE∗

δ (t) := lim
E→E∗

UE
δ (t).

By using the relation

lim
x→+0

xg
( y

x

)

= y, for any fixed y > 0,

we obtain that, for N0 = S0 + I0 +R0 = S0 and N∗ = S∗ + I∗ +R∗,

UE0

δ (t) =















































S0g
(

S(t)
S0

)

+ I(t) + βS0
∫ h

0 f(τ)
∫ t

t−τ
G(I(u))dudτ

+ δ
γS0

(R(t)−R0)2

2 + δγ
{γ(µ3−µ1)+(µ2−µ1)(µ1+µ3+δ)}S0

{(N(t)−N0)+
µ2−µ1

γ (R(t)−R0)}2

2 ,

if either µ1 < µ2 or µ1 < µ3,

S0g
(

S(t)
S0

)

+ I(t) + βS0
∫ h

0 f(τ)
∫ t

t−τ
G(I(u))dudτ

+ δ
γS0

(R(t)−R0)2

2 + δ
4µ1S0

(N(t)−N0)2

2 ,
if µ1 = µ2 = µ3,
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and

UE∗

δ (t) =











































S∗g
(

S(t)
S∗

)

+ I∗g
(

I(t)
I∗

)

+ βS∗G(I∗)
∫ h

0 f(τ)
∫ t

t−τ
g
(

G(I(u))
G(I∗)

)

dudτ

+ δ
γS∗

(R(t)−R∗)2

2 + δγ
{γ(µ3−µ1)+(µ2−µ1)(µ1+µ3+δ)}S∗

{(N(t)−N∗)+
µ2−µ1

γ (R(t)−R∗)}2

2 ,

if either µ1 < µ2 or µ1 < µ3,

S∗g
(

S(t)
S∗

)

+ I∗g
(

I(t)
I∗

)

+ βS∗G(I∗)
∫ h

0 f(τ)
∫ t

t−τ
g
(

G(I(u))
G(I∗)

)

dudτ

+ δ
γS∗

(R(t)−R∗)2

2 + δ
4µ1S∗

(N(t)−N∗)2

2 ,
if µ1 = µ2 = µ3.

The organization of this paper is as follows. In Section 2, some basic results
are offered. In Section 3, we introduce the essential ideas of Lyapunov functional
technique in McCluskey [12]. In Section 4, we establish the global asymptotic
stability of the disease-free equilibrium E0 and the endemic equilibrium E∗ of
system (1.2) for R0 ≤ 1 and R0 > 1, respectively. Finally, we offer a conclusion
in Section 5.

2. Basic results

In this section, we state some basic results of system (1.2). Let µ̄ = max{µ2, µ3}.

Lemma 2.1 For system (1.2) with the initial condition (1.3),

lim sup
t→+∞

N(t) ≤
B

µ1
, lim inf

t→+∞
N(t) ≥

B

µ̄
, (2.1)

and














lim inf
t→+∞

N(t) ≥
B

µ1
−

µ2 − µ1

µ1
lim sup
t→+∞

I(t)−
µ3 − µ1

µ1
lim sup
t→+∞

R(t),

lim sup
t→+∞

N(t) ≤
B

µ1
−

µ2 − µ1

µ1
lim inf
t→+∞

I(t)−
µ3 − µ1

µ1
lim inf
t→+∞

R(t).
(2.2)

Proof. It follows from system (1.2) that

dN(t)

dt
= B − µ1S(t)− µ2I(t)− µ3R(t) ≤ B − µ1N(t),

from which we obtain the first equation of (2.1). Similarly, from

dN(t)

dt
≥ B − µ̄N(t), (2.3)

we obtain the second equation of (2.1). Moreover, we have

dN(t)

dt
= B − µ1N(t)− (µ2 − µ1)I(t) − (µ3 − µ1)R(t).
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First, we suppose that N(t) is eventually monotone decreasing for t ≥ 0.
Then there exists a limt→+∞ N(t) = N∗ > 0 and we have

0 = B − µ1N
∗ − lim

t→+∞
{(µ2 − µ1)I(t) − (µ3 − µ1)R(t)},

from which we obtain (2.2).
Second, we suppose that N(t) is not eventually monotone decreasing for

t ≥ 0. Then, there exists a sequence {tn}∞n=1 such that

dN(t)

dt

∣

∣

∣

t=tn
≥ 0, lim

n→+∞
N(tn) = lim sup

t→+∞
N(t).

Then, from (2.4) at t = tn, we obtain the second equation of (2.2). Similarly,
we can obtain the first equation of (2.2). This completes the proof. !

Lemma 2.2 (Cf. Enatsu et al. [7]) If R0 > 1, then system (1.2) has a unique
endemic equilibrium E∗ = (S∗, I∗, R∗) satisfying the following equations.







B − µ1S∗ − βS∗G(I∗) + δR∗ = 0,
βS∗G(I∗)− (µ2 + γ)I∗ = 0,
γI∗ − (µ3 + δ)R∗ = 0.

(2.4)

Proof. From the second and the third equations of (2.4), the following equa-
tions hold.

S∗ =
(µ2 + γ)I∗

βG(I∗)
, R∗ =

γI∗

µ3 + δ
. (2.5)

After substituting (2.5) into the first equation of (2.4), we consider the following
equation:

H(I) ≡ B −
µ1(µ2 + γ)I

βG(I)
− (µ2 + γ)I +

γδI

µ3 + δ
= 0.

By the hypothesis (H2), H(I) is a strictly monotone decreasing function on
(0,+∞) satisfying

lim
I→+0

H(I) = B −
µ1(µ2 + γ)

β
= B

(

1−
1

R0

)

> 0,

and H(I) < 0 holds for all I ≥ B/{µ2 + γ(1 − δ
µ3+δ )}. Hence, there exists a

unique positive I∗ > 0 such that H(I∗) = 0. By (2.5), we obtain the conclusion
of this theorem. !

First, we prepare the following basic lemma.

Lemma 2.3 (Cf. Enatsu et al. [5]) Assume that I(s) ≤ I∗ for any s such that
t− h ≤ s < t. If I(t) < I(s) for any s such that t− h ≤ s < t then S(t) ≤ S∗.
Inversely, if S(t) > S∗, then there exists an st ∈ [t−h, t) such that I(t) ≥ I(st).
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Proof. Assume that I(t) < I(s) ≤ I∗ holds for any s such that t− h ≤ s < t.
Then, by the monotonicity of I

G(I) in the hypothesis (H2), we have

I ′(t) = βS(t)

∫ h

0
f(τ)G(I(t − τ))dτ − (µ2 + γ)I(t)

≥

∫ h

0
f(τ) {βS(t)G(I(t − τ))− (µ2 + γ)I(t− τ)} dτ

=

∫ h

0
f(τ)

{

βS(t)
G(I(t − τ))

I(t− τ)
− (µ2 + γ)

}

I(t− τ)dτ

≥

∫ h

0
f(τ)

{

βS(t)
G(I∗)

I∗
− (µ2 + γ)

}

I(t− τ)dτ

= β
G(I∗)

I∗
(S(t)− S∗)

∫ h

0
f(τ)I(t− τ)dτ.

Then, by I ′(t) ≤ 0, we hence obtain S(t) ≤ S∗. The remaining part of the proof
is evident. !

By applying Lemma 2.3, we now offer a simplified proof for the permanence
of system (1.2) than that of Wang [18] (see also Xu and Ma [20]).

Lemma 2.4 If R0 > 1, then for any solution of system (1.2) with initial con-
dition (1.3), it holds that























lim inf
t→+∞

S(t) ≥ v1 :=
B

µ1 + βG(B/µ1)
> 0,

lim inf
t→+∞

I(t) ≥ v2(q) := qG(I∗)e−(µ2+γ)ρ(q) > 0,

lim inf
t→+∞

R(t) ≥ v3(q) :=
γ

µ3 + δ
v2(q) > 0,

where for any 0 < q < 1, ρ(q) > 0 is a constant such that

S∗ < S& :=
B

r
(1− e−rρ(q)), and r = µ1 + βqG(I∗). (2.6)

Proof. Let (S(t), I(t), R(t)) be any solution of system (1.2) with initial condi-
tion (1.3). By Lemma 2.1, we have lim supt→+∞ I(t) ≤ B/µ1. Hence, for ε > 0
sufficiently small, there is a T1 > 0 such that I(t) < B/µ1 + ε for t > T1. Then,
by the first equation of (1.2), we derive

dS(t)

dt
≥ B − {µ1 + βG(B/µ1 + ε)}S(t),

which implies

lim inf
t→+∞

S(t) ≥
B

µ1 + βG(B/µ1 + ε)
. (2.7)
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Since (2.7) holds for arbitrary ε > 0, we get lim inft→+∞ S(t) = v1.
We now show that lim inft→+∞ I(t) ≥ v2(q) for any 0 < q < 1. It follows

from (2.4) that S∗ = B
µ1+βG(I∗) < B

µ1+βqG(I∗) = B
r

for any 0 < q < 1. Thus,

there exists a positive constant ρ(q) such that (2.6) holds. We claim that it is
not possible that for any solution of system (1.2), there exists a nonnegative
constant t0 such that I(t) ≤ qG(I∗) for all t ≥ t0. Suppose on the contrary that
there exists a nonnegative constant t0 such that I(t) ≤ qG(I∗) for all t ≥ t0.
Then, by the hypothesis (H1), G(I(t)) ≤ qG(I∗) holds for all t ≥ t0. This yields

dS(t)

dt
≥ B − (µ1 + βqG(I∗))S(t) = B − rS(t) for all t ≥ t0 + h,

which yields

S(t) ≥ e−r(t−t0)

(

S(t0) +B

∫ t

t0

er(θ−t0)dθ

)

≥
B

r
(1− e−r(t−t0))

for any t ≥ t0 + h. Therefore, we have

S(t) ≥
B

r
(1− e−rρ(q)) = S& > S∗ (2.8)

for any t ≥ t0 +h+ ρ(q). By the second part of Lemma 2.3, we obtain I ′(t) ≥ 0
and for any t ≥ t0+h+ρ(q), there exists an st ∈ [t−h, t) such that I(t) ≥ I(st).
For a positive constant Î = mint0+ρ(q)≤s≤t0+h+ρ(q) I(s), we then have

I(t) ≥ Î for any t ≥ t0 + h+ ρ(q). (2.9)

We here consider the following functional.

W (t) = I(t) + β

∫ h

0
f(τ)

∫ t

t−τ

S(u+ τ)G(I(u))dudτ.

For t ≥ t0 + h+ ρ(q), we have

dW (t)

dt
= βS(t)

∫ h

0
f(τ)G(I(t − τ))dτ − (µ2 + γ)I(t)

+β

∫ h

0
f(τ){S(t+ τ)G(I(t)) − S(t)G(I(t − τ))}dτ

= β

∫ h

0
f(τ)S(t+ τ)G(I(t))dτ − (µ2 + γ)I(t)

=

{

βS&G(I(t))

I(t)
− (µ2 + γ)

}

I(t)

>

{

βS&G(I∗)

I∗
− (µ2 + γ)

}

I(t)

> β(S& − S∗)
G(I∗)

I∗
Î > 0,
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which implies limt→+∞ W (t) = +∞. However, by Lemma 2.1, it holds that
lim supt→+∞ W (t) ≤ B

µ1
+ β B

µ1
G( B

µ1
) < +∞. This is a contradiction. Hence,

the claim is proved.
By the claim, we are left to consider two cases. First, I(t) ≥ qG(I∗) for all t

sufficiently large. Second, I(t) oscillates about qG(I∗) for all t sufficiently large.
If the first case holds, then we get the conclusion of the proof. If the second
case holds, then we can choose t1 and t2 (t1 < t2) sufficiently large such that

I(t1) = I(t2) = qG(I∗), and I(t) < qG(I∗)

for t1 < t < t2. Since
dI(t)
dt ≥ −(µ2 + γ)I(t) for t ≥ t1, we have

I(t) ≥ I(t1)e
−(µ2+γ)(t−t1) ≥ qG(I∗)e−(µ2+γ)(t−t1)

for any t ≥ t1. Therefore, we obtain

I(t) ≥ qG(I∗)e−(µ2+γ)ρ(q) = v2(q)

for t1 ≤ t ≤ t1+ρ(q). If t2 ≥ t1+ρ(q), then by applying the similar discussion to
(2.8) and (2.9) in place of t0 by t1, we obtain I(t) ≥ v2(q) for t1+ ρ(q) ≤ t ≤ t2.
Hence, we prove I(t) ≥ v2(q) for t1 ≤ t ≤ t2. Since the interval t1 ≤ t ≤ t2 is
arbitrarily chosen, we conclude that I(t) ≥ v2(q) for all sufficiently large. Since
q is also arbitrarily chosen, Thus, we obtain lim inft→+∞ I(t) ≥ v2(q), which
implies lim inft→+∞ R(t) ≥ v3(q). This completes the proof. !

By Lemmas 2.1 and 2.4, we obtain the permanence of system (1.2) for R0 > 1.

3. Lyapunov functional techniques in McCluskey [12]

In this section, we consider the case δ = 0 for system (1.2). Then system
(1.2) becomes an SIR epidemic model with a class of nonlinear incidence rates
and distributed delays as follows.































dS(t)

dt
= B − µ1S(t)− βS(t)

∫ h

0
f(τ)G(I(t − τ))dτ,

dI(t)

dt
= βS(t)

∫ h

0
f(τ)G(I(t − τ))dτ − (µ2 + γ)I(t),

dR(t)

dt
= γI(t)− µ3R(t).

(3.1)

We consider the following Lyapunov functionals.






UE0

0 (t) = S0g
(

S(t)
S0

)

+ I(t) + βS0
∫ h

0 f(τ)
∫ t

t−τ
G(I(u))dudτ,

UE∗

0 (t) = S∗g
(

S(t)
S∗

)

+ I∗g
(

I(t)
I∗

)

+ βS∗G(I∗)
∫ h

0 f(τ)
∫ t

t−τ
g
(

G(I(u))
G(I∗)

)

dudτ.
(3.2)

We introduce essential ideas of the global stability of the endemic equilibrium
E∗ of (3.1) for R0 > 1 in McCluskey [12]. For a fixed 0 ≤ τ ≤ h, we put

xt =
S(t)

S∗
, yt =

I(t)

I∗
, ỹt =

G(I(t))

G(I∗)
, ỹt,τ =

G(I(t− τ))

G(I∗)
.
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Then, we obtain

d

dt

{

g

(

S(t)

S∗

)}

=

(

1

S∗
−

1

S(t)

){

B − µ1S(t)− βS(t)

∫ h

0
f(τ)G(I(t − τ))dτ

}

=
S(t)− S∗

S∗S(t)

{

B − µ1S(t)− βS(t)

∫ h

0
f(τ)G(I(t − τ))dτ

}

.(3.3)

Substituting B = µ1S∗ + βS∗G(I∗) in (3.3),

d

dt

{

g

(

S(t)

S∗

)}

=
S(t)− S∗

S∗S(t)

{

(µ1S
∗ + βS∗G(I∗))− µ1S(t)− βS(t)

∫ h

0
f(τ)G(I(t − τ))dτ

}

=
S(t)− S∗

S∗S(t)

{

−µ1(S(t)− S∗) + β

∫ h

0
f(τ)(S∗G(I∗)− S(t)G(I(t − τ)))dτ

}

= −µ1

(

1−
S∗

S(t)

)(

S(t)

S∗
− 1

)

+βG(I∗)

∫ h

0
f(τ)

(

1−
S∗

S(t)

)(

1−
S(t)

S∗

G(I(t− τ))

G(I∗)

)

dτ

= −µ1

(

1−
1

xt

)

(xt − 1) + βG(I∗)

∫ h

0
f(τ)

(

1−
1

xt

)

(1− xtỹt,τ ) dτ. (3.4)

Similar to the above discussion, by the relation µ2 + γ = βS∗G(I∗)
I∗

, we have

d

dt

{

g

(

I(t)

I∗

)}

=
I(t)− I∗

I∗I(t)

{

βS(t)

∫ h

0
f(τ)G(I(t − τ))dτ − (µ2 + γ)I(t)

}

=
I(t)− I∗

I∗I(t)

{

βS(t)

∫ h

0
f(τ)G(I(t − τ))dτ − βS∗G(I∗)

I∗
I(t)

}

= βS∗G(I∗)

I∗

∫ h

0
f(τ)

(

1−
I∗

I(t)

)(

S(t)

S∗

G(I(t − τ))

G(I∗)
−

I(t)

I∗

)

dτ

= βS∗G(I∗)

I∗

∫ h

0
f(τ)

(

1−
1

yt

)

(xtỹt,τ − yt)dτ. (3.5)

Finally, we obtain

d

dt

{
∫ h

0
f(τ)

∫ t

t−τ

g

(

G(I(u))

G(I∗)

)

dudτ

}

=

∫ h

0
f(τ)(g(ỹt)− g(ỹt,τ ))dτ.

The following lemma plays an important role to apply techniques of equation
deformation in McCluskey [12] to the global stability analysis for the endemic
equilibria of system (1.2).
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Lemma 3.1 If R0 > 1, then it holds that
(

1−
1

xt

)

(1 − xtỹt,τ ) +

(

1−
1

yt

)

(xtỹt,τ − yt)

= −g

(

1

xt

)

− g

(

xtỹt,τ
yt

)

− (g(yt)− g(ỹt,τ )). (3.6)

Proof.
(

1−
1

xt

)

(1 − xtỹt,τ ) +

(

1−
1

yt

)

(xtỹt,τ − yt)

=

(

1−
1

xt
− xtỹt,τ + ỹt

)

+

(

xtỹt,τ −
xtỹt,τ
yt

− yt + 1

)

= 2−
1

xt
+ ỹt,τ −

xtỹt,τ
yt

− yt

= −g

(

1

xt

)

− g

(

xtỹt,τ
yt

)

− (g(yt)− g(ỹt,τ )).

This completes the proof. !

By Lemma 3.1, the time derivative of UE∗

0 (t) along the solution of system
(3.1) becomes as follows.

dUE∗

0 (t)

dt
= −µ1S

∗ (xt − 1)2

xt

−βS∗G(I∗)

∫ h

0
f(τ)

{

g

(

1

xt

)

+ g

(

xtỹt,τ
yt

)

+ (g(yt)− g(ỹt))

}

dτ.

In order to show dUE∗

0 (t)
dt

≤ 0, we need the following lemma.

Lemma 3.2 If R0 > 1, then for all t ≥ 0,

g(yt)− g(ỹt) ≥
G(I(t)) −G(I∗)

I∗

(

I(t)

G(I(t))
−

I∗

G(I∗)

)

≥ 0.

Proof. First, we have ỹt − 1 = G(I(t))−G(I∗)
G(I∗) and

yt − ỹt =
I(t)

I∗
−

G(I(t))

G(I∗)
=

G(I(t))

I∗

(

I(t)

G(I(t))
−

I∗

G(I∗)

)

.

Since g′(x) = 1− 1
x = x−1

x and g′′(x) = 1
x2 > 0 for all x > 0, by the hypotheses

(H1) and (H2), we obtain

g(yt)− g(ỹt) ≥
ỹt − 1

ỹt
(yt − ỹt) =

G(I(t)) −G(I∗)

I∗

(

I(t)

G(I(t))
−

I∗

G(I∗)

)

≥ 0.

Thus, we get the conclusion of this lemma. !
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By Lemma 3.2, we obtain dUE∗

0 (t)
dt

≤ 0. From the permanence result in
Lemmas 2.1 and 2.4, by applying LaSalle invariance principle [11, Corollary 5.2],
the endemic equilibrium E∗ of system (3.1) is globally asymptotically stable.

Similar to the case R0 > 1, for R0 ≤ 1, we obtain

d

dt

{

g

(

S(t)

S0

)}

=
S(t)− S0

S0S(t)

{

−µ1(S(t)− S0)− βS(t)

∫ h

0
f(τ)G(I(t − τ))dτ

}

.(3.7)

Then, we have

dUE0

0 (t)

dt
= −µ1

(S(t)− S0)2

S(t)
− β(S(t) − S0)

∫ h

0
f(τ)G(I(t − τ))dτ

+βS(t)

∫ h

0
f(τ)G(I(t − τ))dτ − (µ2 + γ)I(t)

+βS0

∫ h

0
f(τ) {G(I(t)) −G(I(t− τ))} dτ

= −µ1
(S(t)− S0)2

S(t)
+
{

βS0G(I(t)) − (µ2 + γ)I(t)
}

= −µ1
(S(t)− S0)2

S(t)
+ (µ2 + γ)

(

R0
G(I(t))

I(t)
− 1

)

I(t)

≤ −µ1
(S(t)− S0)2

S(t)
+ (µ2 + γ)(R0 − 1)I(t) ≤ 0.

By applying Lyapunov-LaSalle asymptotic stability theorem [11, Theorem 5.3],
the disease-free equilibrium E0 of system (3.1) is globally asymptotically stable.
Summarizing the above discussion, we obtain the following result.

Corollary 3.1 (See McCluskey [12, 13]) The following statement holds true.

(I) If R0 ≤ 1, then the disease-free equilibrium E0 of system (3.1) is globally
asymptotically stable.

(II) If R0 > 1, then the endemic equilibrium E∗ of system (3.1) is globally
asymptotically stable.

The results in Corollary 3.1 plays an important role to extend the global
stability results for the case δ = 0 to those for the case δ ≥ 0. Recently, the
similar global stability results for delayed SIR epidemic models with a wider
class of nonlinear incidence rates are obtained in [6, 8, 9, 14]. We note that the
differentiability of the incidence function as imposed in [8, 9, 14] is no longer
needed. In addition, the inequality estimation in Lemma 3.2 is also extended in
the Lyapunov functional techniques for a delayed SIRS model with a nonsepa-
rable incidence rate in Enatsu et al. [7].

4. Proofs of Theorems 1.1 and 1.2

In this section, by applying Lyapunov functional techniques for the SIR
epidemic model (3.1) in Section 3, we prove Theorems 1.1 and 1.2.
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First, we consider the case R0 > 1 and prove Theorem 1.1. In addition to
the notations in (3.3), we put

zt =
R(t)

R∗
, nt =

N(t)

N∗
.

The following lemma also plays an important role as in Nakata et al. [16].

Lemma 4.1 Let R0 > 1. Then it holds that
(

1−
1

xt

)

(zt − 1)− (zt − 1)(xt − 1) =

(

1−
1

xt

)

(1 − xt)(zt − 1)

= −
(xt − 1)2

xt
(zt − 1). (4.1)

Lemma 4.2 Let R0 > 1. Then (1.5) holds if (1.6) holds. In particular, for the
case G(I) = I, then (1.5) is equivalent to (1.6).

Proof. From (2.4), I∗ satisfies the following equation.

β{µ3(µ2 + γ) + µ2δ}

µ3 + δ
I∗ + µ1(µ2 + γ)

I∗

G(I∗)
= βB. (4.2)

From the hypothesis (H2), we have

I∗ =
µ3 + δ

β{µ3(µ2 + γ) + µ2δ}

{

βB − µ1(µ2 + γ)
I∗

G(I∗)

}

≤
µ3 + δ

β{µ3(µ2 + γ) + µ2δ}
{βB − µ1(µ2 + γ)}

=
µ1(µ2 + γ)(µ3 + δ)

β{µ3(µ2 + γ) + µ2δ}
(R0 − 1) . (4.3)

Therefore, from (1.6) and (4.3), we obtain

µ1S
∗ − δR∗ = µ1

(µ2 + γ)(µ3 + δ)R∗

βγG(I∗)
(µ2 + γ)(µ3 + δ)− δR∗

=
R∗

βγG(I∗)
{µ1(µ2 + γ)(µ3 + δ)− βγδG(I∗)}

≥
R∗

βγG(I∗)
{µ1(µ2 + γ)(µ3 + δ)− βγδI∗}

≥
R∗

βγG(I∗)

{

µ1(µ2 + γ)(µ3 + δ)− γδ
µ1(µ2 + γ)(µ3 + δ)

µ3(µ2 + γ) + µ2δ
(R0 − 1)

}

=
R∗

βγG(I∗)

[

µ1(µ2 + γ)2(µ3 + δ)

µ3(µ2 + γ) + µ2δ

{

µ3 − δ

(

R0

1 + µ2

γ

− 1

)}]

≥ 0.

From the above discussion, it is obvious that (1.5) is equivalent to (1.6) for
G(I) = I. This completes the proof. !
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Proof of Theorem 1.1. We consider the following Lyapunov functional.

UE∗

δ (t) =



















UE∗

0 (t) + δ
γS∗

(R(t)−R∗)2

2 + δγ
{γ(µ3−µ1)+(µ2−µ1)(µ1+µ3+δ)}S∗

{(N(t)−N∗)+
µ2−µ1

γ (R(t)−R∗)}2

2 ,

if either µ1 < µ2 or µ1 < µ3,

UE∗

0 (t) + δ
γS∗

(R(t)−R∗)2

2 + δ
4µ1S∗

(N(t)−N∗)2

2 ,
if µ1 = µ2 = µ3,

where UE∗

0 (t) is defined in (3.2). First, by Lemma 3.1, the time derivative of
UE∗

0 (t) along the solution of system (1.2) becomes as follows.

dUE∗

0 (t)

dt
= −µ1S

∗ (xt − 1)2

xt
+ δR∗

(

1−
1

xt

)

(zt − 1)

−

∫ h

0
f(τ)

{

g

(

1

xt

)

+ g

(

xtỹt,τ
yt

)

+ g(yt)− g(ỹt)

}

dτ.(4.4)

Second, by I(t) = N(t) − S(t) − R(t), calculating the time derivatives of
δ

γS∗

(R(t)−R∗)2

2 gives

d

dt

{

δ

γS∗

(R(t)−R∗)2

2

}

=
δ

γS∗
(R(t)−R∗) {γI(t)− (µ3 + δ)R(t)}

=
δ

γS∗
(R(t)−R∗) {γ (N(t)− S(t)−R(t))− (µ3 + δ)R(t)}

=
δ

γS∗
(R(t)−R∗) {γ(N(t)−N∗)− γ(S(t)− S∗)− (µ3 + γ + δ)(R(t)−R∗)}

=
δR∗N∗

S∗
(zt − 1)(nt − 1)− δR∗(zt − 1)(xt − 1)−

δ(µ3 + γ + δ)(R∗)2

γS∗
(zt − 1)2.

(4.5)
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For the first case either µ1 < µ2 or µ1 < µ3, by S(t) = N(t) − I(t) − R(t), we
obtain

d

dt

{

{(N(t)−N∗) + µ2−µ1

γ
(R(t)−R∗)}2

2

}

=

{

(N(t)−N∗) +
µ2 − µ1

γ
(R(t)−R∗)

}{

B − µ1S(t)− µ2I(t) − µ3R(t)−
µ2 − µ1

γ
(γI(t)− µ3R(t))

}

=

{

(N(t)−N∗) +
µ2 − µ1

γ
(R(t)−R∗)

}

×

{

B − µ1(N(t)− I(t)−R(t))− µ2I(t)− µ3R(t)−
µ2 − µ1

γ
(γI(t)− µ3R(t))

}

=

{

(N(t)−N∗) +
µ2 − µ1

γ
(R(t)−R∗)

}

×

{

B − µ1N(t)− (µ2 − µ1)I(t)− (µ3 − µ1)R(t)−
µ2 − µ1

γ
(γI(t)− (µ3 + δ)R(t))

}

=

{

(N(t)−N∗) +
µ2 − µ1

γ
(R(t)−R∗)

}[

B − µ1N(t)−

{

(µ3 − µ1) +
(µ2 − µ1)(µ3 + δ)

γ
R(t)

}]

=

{

(N(t)−N∗) +
µ2 − µ1

γ
(R(t)−R∗)

}

×

[

−µ1(N(t)−N∗)−

{

(µ3 − µ1) +
(µ2 − µ1)(µ3 + δ)

γ

}

(R(t)−R∗)

]

.

= −µ1(N
∗)2(nt − 1)2 −

{

(µ3 − µ1) +
(µ2 − µ1)(µ1 + µ3 + δ)

γ

}

N∗R∗(nt − 1)(zt − 1)

−
µ2 − µ1

γ

{

(µ3 − µ1) +
(µ2 − µ1)(µ3 + δ)

γ

}

(R∗)2(zt − 1)2. (4.6)

Combining (4.4), (4.5) and (4.6), we have

dUE∗

δ (t)

dt
= −µ1S

∗ (xt − 1)2

xt
+ δR∗

(

1−
1

xt

)

(zt − 1)

+
δR∗N∗

S∗
(zt − 1)(nt − 1)− δR∗(zt − 1)(xt − 1)−

δ(µ3 + γ + δ)(R∗)2

γS∗
(zt − 1)2

−
µ1δγ(N∗)2

{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗
(nt − 1)2 −

δN∗R∗

S∗
(nt − 1)(zt − 1)

−
δ(µ2 − µ1){γ(µ3 − µ1) + (µ2 − µ1)(µ3 + δ)}(R∗)2

γ{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗
(zt − 1)2

−

∫ h

0
f(τ)

{

g

(

1

xt

)

+ g

(

xtỹt,τ
yt

)

+ g(yt)− g(ỹt)

}

dτ. (4.7)
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By the condition (1.5) and Lemma 4.1, we have

dUE∗

δ (t)

dt
= −(µ1S

∗ + δ(R(t)−R∗))
(xt − 1)2

xt

−
µ1δγ(N∗)2

{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗
(nt − 1)2

−

{

δ(µ2 − µ1){γ(µ3 − µ1) + (µ2 − µ1)(µ3 + δ)}(R∗)2

γ{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗
+

δ(µ3 + γ + δ)(R∗)2

γS∗

}

(zt − 1)2

−

∫ h

0
f(τ)

{

g

(

1

xt

)

+ g

(

xtỹt,τ
yt

)

+ g(yt)− g(ỹt)

}

dτ

≤ −
µ1δγ(N∗)2

{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗
(nt − 1)2

−

{

δ(µ2 − µ1){γ(µ3 − µ1) + (µ2 − µ1)(µ3 + δ)}(R∗)2

γ{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗
+

δ(µ3 + γ + δ)(R∗)2

γS∗

}

(zt − 1)2

−

∫ h

0
f(τ)

{

g

(

1

xt

)

+ g

(

xtỹt,τ
yt

)}

dτ. (4.8)

For the second case µ1 = µ2 = µ3, by S∗ + I∗ +R∗ = B/µ1, we obtain

d

dt

{

δ

4µ1S∗

(N(t)−N∗)2

2

}

=
δ

4µ1S∗
(N(t)−N∗)(B − µ1N(t)) = −

δ

4S∗
(N(t)−N∗)2.(4.9)

Combining (4.4), (4.5) and (4.9), we have

dUE∗

δ (t)

dt
= −µ1S

∗ (xt − 1)2

xt
+ δR∗

(

1−
1

xt

)

(zt − 1)− δR∗(zt − 1) (xt − 1)

−
δ(R∗)2

S∗
(zt − 1)2 +

δR∗N∗

S∗
(zt − 1)(nt − 1)−

δ(N∗)2

4S∗
(nt − 1)2

−βS∗G(I∗)

∫ h

0
f(τ)

{

g

(

1

xt

)

+ g

(

xtyt,τ
yt

)

+ g (yt)− g (ỹt)

}

dτ

−
δ(R∗)2

γS∗
(µ+ δ)(zt − 1)2.

By the condition (1.5) and Lemma 4.1, we obtain

dUE∗

δ (t)

dt
= −(µ1S

∗ + δ(R(t)−R∗))
(xt − 1)2

xt
−

δ

S∗

{

R∗(zt − 1)−
N∗

2
(nt − 1)

}2

−

∫ h

0
f(τ)

{

g

(

1

xt

)

+ g

(

xtỹt,τ
yt

)

+ g(yt)− g(ỹt)

}

dτ

−
δ(R∗)2

γS∗
(µ+ δ)(zt − 1)2

≤ −
δ

S∗

{

R∗(zt − 1)−
N∗

2
(nt − 1)

}2

−

∫ h

0
f(τ)

{

g

(

1

xt

)

+ g

(

xtỹt,τ
yt

)}

dτ

−
δ(R∗)2

γS∗
(µ+ δ)(zt − 1)2. (4.10)
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From (4.8) and (4.10), for the both cases, we obtain dUE∗

(t)
dt

≤ 0 for all t > 0 with
equality if and only if S(t) = S∗, R(t) = R∗. This implies limt→+∞ S(t) = S∗,
limt→+∞ R(t) = R∗, that is limt→+∞ I(t) = I∗ holds. By an extension of
LaSalle invariance principle (see also Kuang [11, Corollary 5.2]), the endemic
equilibrium E∗ is globally asymptotically stable. This completes the proof. !

Proof of Theorem 1.2. We consider the following Lyapunov functional.

UE0

δ (t) =























UE0

0 (t) + δ
γS0

(R(t)−R0)2

2 + δγ
{γ(µ3−µ1)+(µ2−µ1)(µ1+µ3+δ)}S0

{(N(t)−N0)+
µ2−µ1

γ (R(t)−R0)}2

2 ,

if either µ1 < µ2 or µ1 < µ3,

UE0

0 (t) + δ
γS0

(R(t)−R0)2

2 + δ
4µ1S0

(N(t)−N0)2

2 ,
if µ1 = µ2 = µ3,

where UE0

0 (t) is defined in (3.2). First, the time derivative of UE0

0 (t) along the
solution of system (1.2) becomes as follows.

dUE0

0 (t)

dt
= −µ1

(S(t)− S0)2

S(t)
+ (µ2 + γ)

(

R0
G(I(t))

I(t)
− 1

)

I(t) + δ

(

1−
S0

S(t)

)

(R(t)− R0).

(4.11)

Second, calculating the time derivatives of δ
γS0

(R(t)−R0)2

2 gives

d

dt

{

δ

γS0

(R(t)−R0)2

2

}

=
δ

γS0
(R(t)−R0)

{

γI(t)− (µ3 + δ)(R(t)−R0)
}

=
δ

γS0
(R(t)−R0)

{

γ (N(t)− S(t)−R(t))− (µ3 + δ)(R(t)−R0)
}

=
δ

γS0
(R(t)−R0)

{

γ(N(t)−N0)− γ(S(t)− S0)− (µ3 + γ + δ)(R(t)−R0)
}

=
δ

S0
R(t)(N(t)−N0)− δ(R(t)−R0)

(

S(t)

S0
− 1

)

−
δ(µ3 + γ + δ)

γS0
(R(t)−R0)2.

(4.12)
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For the first case either µ1 < µ2 or µ1 < µ3, similar to (4.6), we obtain

d

dt

{

{(N(t)−N0) + µ2−µ1

γ

(

R(t)−R0
)

}2

2

}

=

{

(N(t)−N0) +
µ2 − µ1

γ

(

R(t)−R0
)

}{

B − µ1S(t)− µ2I(t)− µ3R(t)−
µ2 − µ1

γ
(γI(t)− µ3R(t))

}

=

{

(N(t)−N0) +
µ2 − µ1

γ

(

R(t)−R0
)

}

×

{

B − µ1(N(t)− I(t)−R(t))− µ2I(t)− µ3R(t)−
µ2 − µ1

γ
(γI(t)− µ3R(t))

}

=

{

(N(t)−N0) +
µ2 − µ1

γ

(

R(t)−R0
)

}

×

{

B − µ1N(t)− (µ2 − µ1)I(t)− (µ3 − µ1)R(t)−
µ2 − µ1

γ
(γI(t)− (µ3 + δ)R(t))

}

=

{

(N(t)−N0) +
µ2 − µ1

γ

(

R(t)−R0
)

}[

B − µ1N(t)−

{

(µ3 − µ1) +
(µ2 − µ1)(µ3 + δ)

γ
R(t)

}]

=

{

(N(t)−N0) +
µ2 − µ1

γ

(

R(t)−R0
)

}

×

[

−µ1(N(t)−N0)−

{

(µ3 − µ1) +
(µ2 − µ1)(µ3 + δ)

γ

}

(R(t)−R0)

]

= −µ1(N(t)−N0)2 −

{

(µ3 − µ1) +
(µ2 − µ1)(µ1 + µ3 + δ)

γ

}

(N(t)−N0)
(

R(t)−R0
)

−
µ2 − µ1

γ

{

(µ3 − µ1) +
(µ2 − µ1)(µ3 + δ)

γ

}

(

R(t)−R0
)2

. (4.13)

Combining (4.11), (4.12) and (4.13), we have

dUE0

δ (t)

dt

= −µ1
(S(t)− S0)2

S(t)
+ (µ2 + γ)

(

R0
G(I(t))

I(t)
− 1

)

I(t) + δ

(

1−
S0

S(t)

)

(R(t)−R0)

+
δ

S0
(R(t)−R0)(N(t)−N0)− δ(R(t)−R0)

(

S(t)

S0
− 1

)

−
δ(µ3 + γ + δ)

γS0
(R(t)−R0)2

−
µ1δγ

{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S0
(N(t)−N0)2 −

δ

S0
(N(t)−N0)(R(t)−R0)

−
δ(µ2 − µ1){γ(µ3 − µ1) + (µ2 − µ1)(µ3 + δ)}

γ{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S0
(R(t)−R0)2.
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Similar to Lemma 4.1, we use the following equation (see [16]).
(

1−
S0

S(t)

)

(R(t)−R0)− (R(t)−R0)

(

S(t)

S0
− 1

)

=

(

1−
S0

S(t)

)(

1−
S(t)

S0

)

(R(t)−R0)

= −
(S(t)− S0)2

S0S(t)
R(t) ≤ 0. (4.14)

Then, by (4.14), we obtain

dUE0

δ (t)

dt
= −(µ1S

0 + δR(t))
(S(t)− S0)2

S0S(t)
+ (µ2 + γ)

(

R0
G(I(t))

I(t)
− 1

)

I(t)

−
µ1δγ

{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗
(N(t)−N0)2

−
δ(µ2 − µ1){γ(µ3 − µ1) + (µ2 − µ1)(µ3 + δ)}

γ{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S0
(R(t)−R0)2

≤ −(µ1S
0 + δR(t))

(S(t)− S0)2

S0S(t)
+ (µ2 + γ)(R0 − 1)I(t)

−
µ1δγ

{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S∗
(N(t)−N0)2

−
δ(µ2 − µ1){γ(µ3 − µ1) + (µ2 − µ1)(µ3 + δ)}

γ{γ(µ3 − µ1) + (µ2 − µ1)(µ1 + µ3 + δ)}S0
(R(t)−R0)2.

For the second case µ1 = µ2 = µ3, similar to (4.9), we obtain

d

dt

{

δ

4µ1S0

(N(t)−N0)2

2

}

= −
δ

4S0
(N(t)−N0)2. (4.15)

By (4.14), we obtain

dUE0

δ (t)

dt
= −(µ1S

0 + δR(t))
(S(t)− S0)2

S0S(t)
+ (µ2 + γ)

(

R0
G(I(t))

I(t)
− 1

)

I(t)

−
δ

S0
R(t)2 +

δ

S0
R(t)(N(t)−N0)−

δ

4S0
(N(t)−N0)2 −

δ(µ3 + δ)

γS0
R(t)2

≤ −(µ1S
0 + δR(t))

(S(t)− S0)2

S0S(t)
+ (µ2 + γ)(R0 − 1)I(t)

−
δ

S0

{

R(t)−
(N(t)−N0)

2

}2

−
δ(µ3 + δ)

γS0
R(t)2. (4.16)

From (4.15) and (4.16), for the both cases, we obtain dUE0

δ (t)
dt

≤ 0 for all t > 0
with equality if and only if S(t) = S0, R(t) = R0 and N(t) = N0. Therefore, we
have limt→+∞ S(t) = S0, limt→+∞ R(t) = R0 and limt→+∞ N(t) = N0, which
imply that limt→+∞ I(t) = I0 holds. By an extension of LaSalle invariance
principle (see also Kuang [11, Corollary 5.2]), the disease-free equilibrium E0 is
globally asymptotically stable. From Lemma 4.2, the proof is complete. !
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5. Conclusion

To investigate global behavior of disease prevalence has played a vital role
to predict the dynamics of the disease transmission in the long run and take
more efficient control measures such as vaccination for immunization in the
communicable diseases.

In this paper, by applying deformation techniques of the time deriavtive of
Lyapunov functionals in Nakata et al. [16] (see Lemma 4.1) and constructing a

Lyapunov functional UE0

δ (resp. UE∗

δ ) for R0 ≤ 1 (resp. R0 > 1), we established
the global asymptotic stability of the disease-free equilibrium E0 (resp. the
endemic equilibrium E∗) of an SIRS epidemic model with a class of nonlinear
incidence rates and distributed delays for R0 ≤ 1 (resp. R0 > 1).

Our model incorporates the assumption that the death rates of susceptible,
infective and recovered individuals is different each other and the monotone
properties of G(I) and I/G(I) in (H1) and (H2) are satisfied when considering
a class of nonlinear incidence rates which describes saturation effects observed
in the literature of epidemiology [3]. Theorems 1.1 and 1.2 show that, if R0 ≤
1, then the diseases transmission with impermanent immunity will eventually
disappear, and if R0 > 1, then the diseases will be permanent. Furthermore,
without imposing any restriction on the size of a latent period h, if the basic
reproduction number R0 lies in an interval (1, 1 + µ2/γ], then the disease will
equilibrate at an endemic steady state for any rate of immunity loss δ and
otherwise, we establish the maximal rate of immunity loss δ which guarantees
the global stability of the endemic steady state.
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