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Abstract In this paper, by constructing Lyapunov functionals, we consider the global dy-
namics of an SIRS epidemic model with a wide class of nonlinear incidence rates and dis-
tributed delays

∫ h
0 p(τ) f (S(t), I(t− τ))dτ under the condition that the total population N(t)

converges to 1. By using a technical lemma which is derived from strong condition of strict
monotonicity of functions f (S, I) and f (S, I)/I with respect to S ≥ 0 and I > 0, we extend
the global stability result for an SIR epidemic model if R0 > 1, where R0 is the basic re-
production number. By using a limit system of the model, we also give a proof that the
disease-free equilibrium is globally asymptotically stable for R0 = 1.
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1 Introduction

In order to understand the mechanism of disease transmission, many authors have paid at-
tention to the stability analysis of the equilibria for various kinds of epidemic models (see
[1–24] and the references therein).

To investigate the disease spreading effect transmitted by a vector (e.g. mosquitoes, rats,
etc.) after an incubation time denoting the time during which the infectious agents develop
in the vector, Takeuchi et al. [21] formulated an SIR (Susceptible-Infected-Recovered) epi-
demic model with distributed delays of the form βS(t)

∫ h
0 p(τ)I(t−τ)dτ . However, when the

reproduction number is larger than 1, it was shown that the endemic equilibrium is globally
asymptotically stable only for the case that the delay h is small enough, that is, an open prob-
lem for the global stability of the endemic equilibrium for the case h is sufficiently large was
still left. Later, by focusing on the equation deformation in time derivative of a Lyapunov
functional, McCluskey [14] proved that the endemic equilibrium is globally asymptotically
stable for any length of delay h if the basic reproduction number is larger than 1. Recently,
Enatsu et al. [5] and McCluskey [16] considered the following SIR epidemic model with a
wide class of nonlinear incidence rates and distributed delays:































dS(t)
dt

= µ−µS(t)−
∫ h

0
p(τ) f (S(t), I(t− τ))dτ ,

dI(t)
dt

=
∫ h

0
p(τ) f (S(t), I(t− τ))dτ− (µ+ γ)I(t),

dR(t)
dt

= γI(t)−µR(t).

(1.1)

S(t), I(t) and R(t) denote the fractions of susceptible, infective and recovered individuals
at time t, respectively. µ > 0 is the death rate of the population, γ > 0 is the recovery rate
of the infective individuals. h > 0 is a maximum time taken to become infectious and the
transmission of the infection is governed by an incidence rate

∫ h
0 p(τ) f (S(t), I(t− τ))dτ .

p(τ) denotes the fraction of vector population in which the time taken to become infectious
is τ ∈ [0,h] satisfying p ∈C([0,h],R+0) and

∫ h
0 p(τ)dτ = 1.

By constructing suitable Lyapunov functionals, they showed that the global stability of
equilibria of (1.1) is fully determined by the basic reproduction number when the functions
f (S, I) and f (S, I)/I has monotone properties with respect to S ≥ 0 and I > 0. The similar
results have now been obtained in Huang and Takeuchi [8] for an SIR epidemic model with
the wide class of nonlinear incidence rates and a discrete delay.

On the other hand, Mena-Lorcat and Hethcote [17] considered several SIRS (Susceptible-
Infected-Recovered-Susceptible) epidemic models with a bilinear incidence rate and a stan-
dard incidence rate. The SIRS models describe the phenomena that susceptible individuals
become infectious, then removed with immunity after recovery from infection and then sus-
ceptible again when the temporary immunity fades away. In order to investigate the effect
of the immunity loss of diseases, various kinds of SIRS epidemic models and a significant
body of work concerning the stability analysis of the steady states of the models have now
been carried out (see, for example, [1,9–12,22] and the references therein).

In addition, many authors have suggested that transmission of the infection shall have
a nonlinear incidence rate. Capasso and Serio [3] studied the cholera epidemic spread in
Bari in 1973 and have given an assumption that the incidence rate may take the nonlinear
form βS(t)I(t)

1+αI(t) , which has been interpreted as saturated incidence rate measuring the crowd-
ing effect of the infective individuals (see also Xu and Ma [23]). Based on their idea, Ko-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



3

robeinikov and Maini [10] and Korobeinikov [11,12] obtained the global properties of SIR
and SEIR models with a nonlinear incidence rate h(S(t))g(I(t)) and SIR, SEIR and SIRS
epidemic models with a more general framework of the incidence rate f (S(t), I(t)), respec-
tively. Thereafter, Zhou and Cui [24] have introduced a nonlinear incidence rate of the form
βS(t)I(t)(1+αI(t)k−1) with k= 2 for an SEIV epidemic model.

However, for global stability conditions of the endemic equilibrium of the delayed
SIRS epidemic model, only restricted sufficient conditions are known by literatures. For
the model with a bilinear incidence rate, Nakata et al. [20] obtained a sufficient condi-
tion which ensure the global stability of the endemic equilibrium. Vargas-De-León and
Gómez-Alcaraz [22] constructed an another Lyapunov functional for the same global sta-
bility result. For the model with nonlinear incidence rates, Enatsu et al. [6] also obtained
that the endemic equilibrium for an SIRS epidemic model with an incidence rate of the
form

∫ h
0 βS(t)G(I(t − τ))dτ is globally stable for a small rate of immunity loss by con-

structing a Lyapunov functional. By improving monotone iterative techniques in Xu and
Ma [23], Muroya et al. [19] obtained sufficient conditions which ensure the global asymp-
totic stability of an endemic equilibrium for an SIRS epidemic model with an incidence rate
βS(t)I(t−τ)/(1+αI(t−τ)p), where p≥ 1 (see also Muroya et al. [18] for p= 2). In fact,
by introducing a generalized nonlinear incidence as a function of the number of infected
individuals, Alexander and Moghadas [1] showed that stability of the endemic equilibrium
can change through Hopf, saddle-node and Bogdanov-Takens bifurcations.

Motivated by the above facts, in this paper, we extend global stability results in [5,6,8,
16] to the following SIRS epidemic model with a wide class of the nonlinear incidence rates
and distributed delays:































dS(t)
dt

= µ−µS(t)−
∫ h

0
p(τ) f (S(t), I(t− τ))dτ+δR(t),

dI(t)
dt

=
∫ h

0
p(τ) f (S(t), I(t− τ))dτ− (µ+ γ)I(t),

dR(t)
dt

= γI(t)− (µ+δ )R(t)

(1.2)

with the initial condition
{

S(θ) = ϕ1(θ), I(θ) = ϕ2(θ), R(θ) = ϕ3(θ),
ϕi(θ)≥ 0, θ ∈ [−h,0], ϕi(0) > 0, ϕi ∈C([−h,0],R+), i= 1,2,3. (1.3)

δ ≥ 0 is the rate at which recovered individuals lose immunity and return to the susceptible
class. We here assume that f :R2+0→R+0 is a locally Lipschitz continuous function on R2+0
satisfying f (0, I) = f (S,0) = 0 for S, I ≥ 0 and the followings hold.

(H1)















i) f (S, I) is a strictly monotone increasing function of S≥ 0,
for any fixed I > 0,

ii) if R0 > 1, then f (S, I) is a monotone increasing function of I ≥ 0,
for any fixed S≥ 0,

and

(H2)















i) φ(S, I) = f (S,I)
I is a bounded and monotone decreasing function of

I > 0, for any fixed S ≥ 0,
ii) K(S)≡ limI→+0 φ(S, I) is a continuous and monotone increasing
function on S≥ 0,
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where

R0 =
K(S0)
µ+ γ

, S0 = 1 (1.4)

is the basic reproduction number of system (1.2). R0 denotes the expected number of sec-
ondary infectious cases generated by one typical primary case in an entirely susceptible and
sufficiently large population. We note that 0< φ(S, I)≤ K(S) holds for any S, I > 0.

It is well known by the fundamental theory of functional differential equations that the
solution (S(t), I(t),R(t)) of system (1.2) is unique and positive for all t ≥ 0.

System (1.2) always has a disease-free equilibrium E0 = (S0,0,0). On the other hand,
under the hypotheses (H1) and (H2), if R0 > 1, then system (1.2) also admits a unique
positive equilibrium E∗ = (S∗, I∗,R∗), where S∗, I∗,R∗ > 0 (see Korobeinikov [11,12] and
Lemma 2.2 below).

The main results are as follows:

Theorem 1.1 If R0 ≤ 1, then the disease-free equilibrium E0 of system (1.2) is globally
asymptotically stable.

By applying a key property of strict monotonicity of functions f (S, I) and f (S, I)/I with re-
spect to S≥ 0 and I > 0, we obtain sufficient conditions which ensure the global asymptotic
stability of the endemic equilibrium E∗ of system (1.2) for R0 > 1.

Theorem 1.2 If R0 > 1, then the endemic equilibrium E∗ of system (1.2) exists uniquely and
system (1.2) is permanent. Moreover, if the following conditions hold:



































































(I) there exist positive constants C0, C1 and C2 such that
for any ν1 ≤ S ≤ S0,0≤ I ≤ S0, S≤ S∗ and I (= I∗,

f (S, I∗)− f (S∗, I∗)
(S−S∗)I∗

≤C0,

f (S, I)− f (S, I∗)
I− I∗

≥C1 > 0,
I

f (S,I) −
I∗

f (S,I∗)

I− I∗
≥C2 > 0,

(II) δ 2 < 4C0C1C2(µ+δ )(µ+ γ)
f (v1, I∗)
I∗

,

(1.5)

then the endemic equilibrium E∗ of system (1.2) is globally asymptotically stable, where
v= v1 > 0 is a unique positive solution of µ−K(v)−µv= 0.

Note that if f (S, I) = βSI/(1+αI), then the incidence rate becomes saturated-type,
which is of the form used in Xu and Ma [23].

Theorem 1.2 indicates that the endemic equilibrium of system (1.2) is globally asymp-
totically stable when R0 > 1 for a small rate of immunity loss δ as long as the infection
rate has suitable monotone properties of function f characterized by (H1), (H2) and the
condition (1.5).

The organization of this paper is as follows. In Section 2, we offer basic results for
system (1.2). In Section 3, we establish global asymptotic stability of the disease-free equi-
librium for R0 ≤ 1 and prove Theorem 1.1. In Section 4, we establish global asymptotic sta-
bility of the endemic equilibrium for R0 > 1 and prove Theorem 1.2 by means of Lyapunov
functionals to the reduced system which is derived from system (1.2). Finally, a discussion
is offered in Section 6.
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2 Basic results

We offer some basic results of system (1.2). The following lemmas will be used in the proofs
of Theorems 1.1 and 1.2.

Lemma 2.1 The plane S(t)+I(t)+R(t)= S0 is an invariant manifold of system (1.2), which
is globally attractive in the first octant of R3, that is,

lim
t→+∞

(S(t)+ I(t)+R(t)) = S0. (2.1)

Proof Let N(t) = S(t)+ I(t)+R(t). Then it follows from system (1.2) that

dN(t)
dt

= µ−µS(t)−µI(t)−µR(t)

= µ−µN(t).

Hence, we obtain that limt→+∞N(t) = S0. This completes the proof. )*

Lemma 2.2 System (1.2) always has a disease-free equilibrium E0 = (S0,0,0). Moreover,
if R0 > 1, then system (1.2) has a unique endemic equilibrium E∗ = (S∗, I∗,R∗) satisfying
the following equations:







µ−µS∗ − f (S∗, I∗)+δR∗ = 0,
f (S∗, I∗)− (µ+ γ)I∗ = 0,
γI∗ − (µ+δ )R∗ = 0.

(2.2)

Proof First, it is evident that there always exists a disease-free equilibrium E0. Second, we
now show that system (1.2) has a unique endemic equilibrium E∗ = (S∗, I∗,R∗) if R0 > 1.
By (2.2), at a fixed point of the system, the following equalities hold.

µ−µS−
{

(µ+ γ)−
γδ
µ+δ

}

I = 0, f (S, I)− (µ+ γ)I = 0. (2.3)

By the implicit function theorem and the hypotheses (H1), we see that f (S, I)−(µ+γ)I = 0
defines a function S = ζ (I) on neighborhood around I = 0. Then, it follows from (2.3) that

lim
I→+0

f (ζ (I), I)
I

= µ+ γ < K (S0) = lim
I→+0

f (S0, I)
I

, (2.4)

if R0 = K(S0)/(µ+ γ)> 1. Therefore, by the hypotheses (H2), we obtain that

lim
I→+0

ζ (I)< S0. (2.5)

By the hypothesis (H2), the function ζ (I) is a monotone increasing function and either exists
and is continuous for I ∈ (0,µ/{(µ + γ)− γδ

µ+δ }], or reaches infinity in this interval. After
substituting the relations S= ζ (I) and f (S, I)− (µ+ γ)I = 0 into the first equation of (2.3),
we consider the following equation.

H(I) := µ−µζ (I)−
{

(µ+ γ)−
γδ
µ+δ

}

I = 0,
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from which we obtain that H(I) is a strictly monotone decreasing function. By (2.5), we
have that

lim
I→+0

H(I) = µ−µ lim
I→+0

ζ (I)> µ−µS0 = 0,

which implies that there exists a unique positive solution 0 < I∗ < µ/{(µ + γ)− γδ
µ+δ } <

S0 = 1 such that H(I∗) = 0. Therefore, there exists a unique positive solution R∗ > 0 such
that γI∗ − (µ+δ )R∗ = 0. Hence, the proof is complete. )*

3 Global stability of the disease-free equilibrium E0

In this section, we assume that R0 ≤ 1 and show the global asymptotic stability of the
disease-free equilibrium E0 of system (1.2) constructing a Lyapunov functional. From Lemma
2.1, the limit set of system (1.2) in the first octant of R3 locates on the plane S+ I+R= S0.
Hence, the dynamics of system (1.2) in the first octant of R3 is equivalent to the following
system:































dS(t)
dt

= µ−µS(t)−
∫ h

0
p(τ) f (S(t), I(t− τ))dτ+δR(t),

dI(t)
dt

=
∫ h

0
p(τ) f (S(t), I(t− τ))dτ− (µ+ γ)I(t).

dR(t)
dt

= γ(S0−S(t)−R(t))− (µ+δ )R(t).

(3.1)

Theorem 3.1 If R0 ≤ 1, then the disease-free equilibrium E0 of system (3.1) is globally
asymptotically stable on {(S, I,R) ∈ R3+|S+ I+R= S0}.

Proof We consider the following Lyapunov functional:

W (t) =
∫ S(t)

S0

(

1− K(S0)
K(s)

)

ds+ I(t)+
∫ h

0
p(τ)

∫ t

t−τ

K(S0)
K(S(u+ τ))

f (S(u+ τ), I(u))dudτ .
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We then obtain

dW (t)
dt

=

(

1− K(S0)
K(S(t))

)(

µ−µS(t)−
∫ h

0
p(τ) f (S(t), I(t− τ))dτ+δR(t)

)

+
∫ h

0
p(τ) f (S(t), I(t− τ))dτ− (µ+ γ)I(t)

+
∫ h

0
p(τ)

{

K(S0)
K(S(t+ τ))

f (S(t+ τ), I(t))−
K(S0)
K(S(t))

f (S(t), I(t− τ))
}

dτ

=

(

1−
K(S0)
K(S(t))

)

(−µ(S(t)−S0)+δR(t))

−
∫ h

0
p(τ)

(

1−
K(S0)
K(S(t))

)

f (S(t), I(t− τ))dτ

+
∫ h

0
p(τ) f (S(t), I(t− τ))dτ− (µ+ γ)I(t)

+
∫ h

0
p(τ)

{

K(S0)
K(S(t+ τ))

f (S(t+ τ), I(t))−
K(S0)
K(S(t))

f (S(t), I(t− τ))
}

dτ

=

(

1− K(S0)
K(S(t))

)

(−µ(S(t)−S0)+δR(t))

+
∫ h

0
p(τ)

{

K(S0)
K(S(t+ τ))

f (S(t+ τ), I(t))
I(t)

− (µ+ γ)
}

I(t)dτ .

Noting that δR(t)(1− K(S0)
K(S(t)) ) ≤ 0 on the plane {(S, I,R) ∈ R3+|S+ I+R= S0}, we obtain

dW (t)
dt

≤ −µ
(

1− K(S0)
K(S(t))

)

(S(t)−S0)

+
∫ h

0
p(τ)

{

K(S0)
K(S(t+ τ))

K(S(t+ τ))− (µ+ γ)
}

I(t)dτ

= −µ
(

1− K(S0)
K(S(t))

)

(S(t)−S0)+(µ+ γ)(R0−1)I(t).

Thus, it holds that dW (t)
dt ≤ 0 with equality if S(t) = S0. Hence, we have limt→+∞ S(t) = S0,

which implies from system (3.1) that limt→+∞ I(t) = 0 and limt→+∞R(t) = 0 hold. By an
extension of Lyapunov-LaSalle asymptotic stability theorem (see also Kuang [13, Theorem
5.3]), the disease-free equilibrium E0 of system (3.1) is globally asymptotically stable. This
completes the proof. )*

Proof of Theorem 1.1. From Theorem 3.1, we immediately obtain the conclusion of this
theorem. )*

4 Global stability of the endemic equilibrium E∗ for R0 > 1

In this section, we establish the global asymptotic stability of the endemic equilibrium E∗ of
system (1.2) for R0 > 1 by using a lower bound of the susceptible individuals S(t) for large
t.

First, we obtain the following theorem, which indicates that the disease eventually per-
sists in the host population when R0 > 1.
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Theorem 4.1 If R0 > 1, then for any solution of system (1.2), it holds that










liminf
t→+∞

S(t)≥ v1, liminft→+∞
I(t)≥ v2 := qI∗ exp (−(µ+ γ)ρh),

liminf
t→+∞

R(t)≥ v3 :=
γv2
µ+δ

,

where v1 > 0 satisfies µ−K(v1)−µv1 = 0 and 0< q< 1 and ρ ≥ 1 satisfy

S∗ <
µ− (K(S0)+ εS)qI∗

µ

(

1− e−µρh
)

, 0< q<
µ

(K(S0)+ εS)I∗
. (4.1)

Proof Let (S(t), I(t),R(t)) be a solution of system (1.2) with initial condition (1.3). By
Lemma 2.1, it follows that limsupt→+∞ I(t) ≤ 1, which implies from the first equation of
system (1.2) and the hypothesis (H2) that, for any εI > 0, there is an integer TI ≥ 0 such that

dS(t)
dt

≥ µ−
∫ h

0
p(τ)

f (S(t), I(t− τ))
I(t− τ)

I(t− τ)dτ−µS(t)

≥ µ−K(S(t))
∫ h

0
p(τ)I(t− τ)dτ−µS(t)

= µ−K(S(t))(1+ εI)−µS(t), (4.2)

for t ≥ TI +h. Let us now consider the following auxiliary equation:

dS(t)
dt

= µ−K(S(t))−µS(t).

Then one can obtain that limt→+∞ S(t) = v1 > 0. Since (4.2) holds for arbitrary εI > 0 suffi-
ciently small, it follows that liminft→+∞ S(t)≥ v1 > 0.

We now prove that it is impossible that I(t) ≤ qI∗ for all sufficiently large t. Suppose
to the contrary that there exists a sufficiently large t1 ≥ TS such that I(t) ≤ qI∗ holds for all
t ≥ t1. Then, similar to the above discussion, we have that for any t ≥ t1+h,

dS(t)
dt

≥ µ−
∫ h

0
p(τ)φ(S(t), I(t− τ))I(t− τ)dτ−µS(t)

≥ µ− (K(S0)+ εS)qI∗ −µS(t),

which yields for t ≥ t1+h,

S(t) ≥ S(t1+h)e−µ(t−t1−h) + e−µt
∫ t

t1+h
eµs(µ− (K(S0)+ εS)qI∗)ds

= S(t1+h)e−µ(t−t1−h) + µ− (K(S0)+ εS)qI∗

µ

(

1− e−µ(t−t1−h)
)

. (4.3)

Hence, it follows from (4.3) that for t ≥ t1+h+ρh,

S(t) >
µ− (K(S0)+ εS)qI∗

µ

(

1− e−µρh
)

= S+ > S∗. (4.4)

Now, we define the following function:

V (t) = I(t)+
∫ h

0
p(τ)

∫ t+τ

t
f (S(u), I(u− τ))dudτ . (4.5)
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Calculating the derivative of V (t) along solutions of system (1.2) gives as follows:

dV (t)
dt

=
∫ h

0
p(τ) f (S(t), I(t− τ))dτ− (µ+ γ)I(t)

+
∫ h

0
p(τ){ f (S(t+ τ), I(t))− f (S(t), I(t− τ))}dτ

=
∫ h

0
p(τ) f (S(t+ τ), I(t))dτ− (µ+ γ)I(t).

For t ≥ t1+h+ρh, it follows from (4.4) and the relation µ+ γ = φ(S∗, I∗) that

dV (t)
dt

=
∫ h

0
p(τ){φ(S(t+ τ), I(t))− (µ+ γ)} I(t)dτ

>
∫ h

0
p(τ){φ(S(t+ τ), I∗)−φ(S∗, I∗)+φ(S∗, I∗)− (µ+ γ)} I(t)dτ

=
∫ h

0
p(τ){φ(S(t+ τ), I∗)−φ(S∗, I∗)}I(t)dτ

≥ {φ(S+, I∗)−φ(S∗, I∗)}I(t). (4.6)

Setting i = minθ∈[−h,0] I(θ + t1+ ρh+ 2h), we claim that I(t) ≥ i for all t ≥ t1+ h+ ρh.
Otherwise, if there is a T ≥ 0 such that I(t) ≥ i for t1+ h+ ρh ≤ t ≤ t1 + 2h+ ρh+ T ,
I(t1+2h+ρh+T ) = i and dI(t)

dt |t=t1+2h+ρh+T ≤ 0, it follows from the second equation of
system (1.2), the conditions (H1) and (H2) that for t2 = t1+2h+ρh+T ,

dI(t)
dt

∣

∣

∣

t=t2
=

∫ h

0
p(τ) f (S(t2), I(t2− τ))dτ− (µ+ γ)I(t2)

=
∫ h

0
p(τ)φ(S(t2), I(t2− τ))I(t2− τ)dτ− (µ+ γ)I(t2)

>
∫ h

0
p(τ)φ(S(t2), I∗)I(t2− τ)dτ− (µ+ γ)I(t2)

≥ {φ(S(t2), I∗)− (µ+ γ)} I(t2)

≥
{

φ(S+, I∗)− (µ+ γ)
}

i

> {φ(S∗, I∗)− (µ+ γ)} i= 0.

This is a contradiction. Therefore I(t) ≥ i for all t ≥ t1+h+ρh. It follows from (4.6) that

dV (t)
dt

> {φ(S+, I∗)−φ(S∗, I∗)}i> 0, for t ≥ t1+2h+ρh,

which implies that limt→+∞V (t)=+∞. However, it holds from (2.1) and (4.5) that limsupt→+∞V (t)<
+∞. Hence the claim holds.

Thus, we proved that it is impossible that I(t) ≤ qI∗ for all sufficiently large t. Now, we
are left to consider the following two possibilities:

{

(i) I(t)≥ qI∗ for all t sufficiently large,
(ii) I(t) oscillates about qI∗ for all t sufficiently large.
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If the first case holds, then we immediately get the conclusion of the proof. If the second
case holds, we show that I(t) ≥ qI∗ exp(−(µ+ γ)ρh) for all t sufficiently large. Let t3 < t4
be sufficiently large such that

I(t3) = I(t4) = qI∗, I(t)< qI∗, t3 < t < t4.

If t4− t3 ≤ ρh, then it follows from the second equation of system (1.2) that

dI(t)
dt

>−(µ+ γ)I(t),

that is,

I(t) > I(t3)exp(−(µ+ γ)(t− t3))
≥ qI∗ exp(−(µ+ γ)ρh) = v2.

If t4− t3 > ρh, we obtain from the second equation of system (1.2) that I(t)≥ v2 for t3 ≤ t ≤
t3+ρh. We now claim that I(t)≥ v2 for all t3+ρh≤ t ≤ t4. Otherwise, there is a T ∗ > 0 such
that I(t) ≥ v2 for t3 ≤ t ≤ t3+ρh+T ∗ < t4, I(t3+ρh+T ∗) = v2 and dI(t)

dt |t=t3+ρh+T ∗ ≤ 0.
On the other hand, for t0 = t3+ρh+T ∗, it follows from the second equation of system (1.2)
and the relation φ(S(t0), I(t0))> φ(S(t0), I∗)≥ φ(S+, I∗)> φ(S∗, I∗) that

dI(t)
dt

∣

∣

∣

t=t0
=

∫ h

0
p(τ) f (S(t0), I(t0− τ))dτ− (µ+ γ)I(t0)

=
∫ h

0
p(τ)φ(S(t0), I(t0− τ))I(t0− τ)dτ− (µ+ γ)I(t0)

> {φ(S(t0), I∗)− (µ+ γ)} I(t0)

≥
{

φ(S+, I∗)− (µ+ γ)
}

I(t0)

> {φ(S∗, I∗)− (µ+ γ)} I(t0) = 0,

which is a contradiction. Hence I(t) ≥ qI∗ exp (−(µ+ γ)ρh) = v2 for t3 ≤ t ≤ t4. Since the
interval [t3, t4] is arbitrarily chosen, we conclude that I(t)≥ v2 for all t sufficiently large for
the second case. Thus, we obtain that liminft→+∞ I(t)≥ v2. From the above discussion, one
can see that liminft→+∞R(t)≥ v3. Hence, this completes the proof. )*

Recalling by Lemma 2.2 that the existence of the endemic equilibrium Ẽ∗ ≡ (S∗, I∗) of
system (4.10) is guaranteed for the case R0 > 1, for a fixed 0≤ τ ≤ h, we put







xt =
S(t)
S∗

, x̃t =
f (S(t), I∗)
f (S∗, I∗)

, yt =
I(t)
I∗

, ỹt,τ =
f (S(t+ τ), I(t))
f (S(t+ τ), I∗)

,

g(x) = x−1− lnx≥ g(1) = 0, for x> 0.
(4.7)

The following lemma plays a key role to obtain Theorem 1.2.

Lemma 4.1 For all t ≥ 0 and 0≤ τ ≤ h, it holds that

(1− xt)
(

1− 1
x̃t

)

≤−C0
f (S(t), I∗)
S∗I∗

(

1− 1
x̃t

)2
(4.8)

and

g(yt)−g(ỹt,τ)≥C1C2I∗(yt−1)2, (4.9)

with equality if and only if xt = 1 and yt = ỹt,τ = 1, respectively.
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Proof First, by the condition (I) of (1.5), we obtain that

(1− xt)
(

1− 1
x̃t

)

=

(

1− S(t)
S∗

)(

1− f (S∗, I∗)
f (S(t), I∗)

)

= −
1
S∗

(S(t)−S∗)
(

1−
f (S∗, I∗)
f (S(t), I∗)

)

≤ −
C0
S∗I∗

( f (S(t), I∗)− f (S∗, I∗))
(

1− f (S∗, I∗)
f (S(t), I∗)

)

= −C0
f (S(t), I∗)
S∗I∗

(

1− 1
x̃t

)2
.

Second, we have that

ỹt,τ −1 =
f (S(t+ τ), I(t))− f (S(t+ τ), I∗)

f (S(t+ τ), I∗)

and

yt − ỹt,τ =
I(t)
I∗

−
f (S(t+ τ), I(t))
f (S(t+ τ), I∗)

=
f (S(t+ τ), I(t))

I∗

(

I(t)
f (S(t+ τ), I(t))

−
I∗

f (S(t+ τ), I∗)

)

.

Then, by the hypotheses (H1) and (H2), we immediately obtain

(yt− ỹt,τ )(ỹt,τ −1) =
f (S(t+ τ), I(t))
I∗ f (S(t+ τ), I∗)

(

I(t)
f (S(t+ τ), I(t))

−
I∗

f (S(t+ τ), I∗)

)

×
(

f (S(t+ τ), I(t))− f (S(t+ τ), I∗)
)

≥ 0,

with equality if and only if yt = ỹt,τ = 1. Moreover, since g′(x) = 1− 1
x and g

′′(x) = 1
x2 ≥ 0

for all x> 0, it holds that

g(yt)−g(ỹt,τ) ≥ g′(ỹt,τ )(yt− ỹt,τ)

≥
ỹt,τ −1
ỹt,τ

(yt− ỹt,τ )

=
1
I∗

(

I(t)
f (S(t+ τ), I(t))

−
I∗

f (S(t+ τ), I∗)

)

×
(

f (S(t+ τ), I(t))− f (S(t+ τ), I∗)
)

≥
C1C2
I∗

(I(t)− I∗)2

= C1C2I∗(yt−1)2,

with equality if and only if yt = ỹt,τ = 1. Hence, we get the conclusion. )*
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Now, we are in a position to prove the global asymptotic stability of the endemic equi-
librium E∗ of system (1.2) for R0 > 1.

Proof of Theorem 1.2. From Lemma 2.1, the limit set of system (1.2) in the first octant
of R3 locates on the plane S+ I+R = S0. Hence, the dynamics of system (1.2) in the first
octant of R3 is equivalent to the following system:















dS(t)
dt

= (µ+δ )− (µ+δ )S(t)−
∫ h

0
p(τ) f (S(t), I(t− τ))dτ−δ I(t),

dI(t)
dt

=
∫ h

0
p(τ) f (S(t), I(t− τ))dτ− (µ+ γ)I(t).

(4.10)

We consider the following Lyapunov functional (cf. [5,7,14,15]):

V (t) =U(t)+U+(t), (4.11)

where















U(t) =
∫ S(t)

S∗

(

1− f (S∗, I∗)
f (τ , I∗)

)

dτ+
(

I(t)− I∗ − ln I(t)
I∗

)

,

U+(t) = f (S∗, I∗)
∫ h

0
p(τ)

∫ t

t−τ
g
(

f (S(u+ τ), I(u)
f (S(u+ τ), I∗)

)

dudτ .

The time derivative of dU(t)
dt along the solution of system (4.10) satisfies as follows:

dU(t)
dt

=

(

1−
f (S∗, I∗)
f (S(t), I∗)

){

(µ+δ )−
∫ h

0
p(τ) f (S(t), I(t− τ))dτ− (µ+δ )S(t)−δ I(t)

}

+

(

1− I∗

I(t)

)(

∫ h

0
p(τ) f (S(t), I(t− τ))dτ− (µ+ γ)I(t)

)

.
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Rearranging µ+δ = (µ+δ )S∗+ f (S∗, I∗)+δ I∗ and µ+ γ = f (S∗,I∗)
I∗ gives

dU(t)
dt

=

(

1−
f (S∗, I∗)
f (S(t), I∗)

)

×

{

(µ+δ )(S∗ −S(t))+
(

f (S∗, I∗)−
∫ h

0
p(τ) f (S(t), I(t− τ))dτ

)}

+

(

1− I∗

I(t)

)(

∫ h

0
p(τ) f (S(t), I(t− τ))dτ− f (S∗, I∗)

I(t)
I∗

)

+δ
(

1−
f (S∗, I∗)
f (S(t), I∗)

)

(I∗ − I(t))

= (µ+δ )S∗
(

1− S(t)
S∗

)(

1− f (S∗, I∗)
f (S(t), I∗)

)

+ f (S∗, I∗)
(

1−
f (S∗, I∗)
f (S(t), I∗)

)

∫ h

0
p(τ)

(

1−
f (S(t), I(t− τ))

f (S∗, I∗)

)

dτ

+ f (S∗, I∗)
(

1− I∗

I(t)

)

∫ h

0
p(τ)

(

f (S(t), I(t− τ))
f (S∗, I∗)

−
I(t)
I∗

)

dτ

+δ
(

1− f (S∗, I∗)
f (S(t), I∗)

)

(I∗ − I(t))

= (µ+δ )S∗
(

1− S(t)
S∗

)(

1− f (S∗, I∗)
f (S(t), I∗)

)

+ f (S∗, I∗)
∫ h

0
p(τ)

{(

2− f (S∗, I∗)
f (S(t), I∗)

−
I∗

I(t)
f (S(t), I(t− τ))

f (S∗, I∗)

)

+

(

f (S(t), I(t− τ))
f (S(t), I∗)

−
I(t)
I∗

)}

dτ+δ
(

1−
f (S∗, I∗)
f (S(t), I∗)

)

(I∗ − I(t))

= (µ+δ )S∗
(

1− S(t)
S∗

)(

1− f (S∗, I∗)
f (S(t), I∗)

)

+ f (S∗, I∗)
∫ h

0
p(τ)

{

−g
(

f (S∗, I∗)
f (S(t), I∗)

)

−g
(

I∗

I(t)
f (S(t), I(t− τ))

f (S∗, I∗)

)

+g
(

f (S(t), I(t− τ))
f (S(t), I∗)

)

−g
(

I(t)
I∗

)}

dτ+δ
(

1− f (S∗, I∗)
f (S(t), I∗)

)

(I∗ − I(t)).

Second, calculating dU+(t)
dt gives as follows.

dU+(t)
dt

= f (S∗, I∗)
∫ h

0
p(τ)

{

g
(

f (S(t+ τ), I(t))
f (S(t+ τ), I∗)

)

−g
(

f (S(t), I(t− τ))
f (S(t), I∗)

)}

dτ .
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Finally, we obtain that

dV (t)
dt

= (µ+δ )S∗
(

1− S(t)
S∗

)(

1− f (S∗, I∗)
f (S(t), I∗)

)

+ f (S∗, I∗)
∫ h

0
p(τ)

{

−g
(

f (S∗, I∗)
f (S(t), I∗)

)

−g
(

I∗

I(t)
f (S(t), I(t− τ))

f (S∗, I∗)

)

+g
(

f (S(t+ τ), I(t))
f (S(t+ τ), I∗)

)

−g
(

I(t)
I∗

)}

dτ

+δ
(

1−
f (S∗, I∗)
f (S(t), I∗)

)

(I∗ − I(t))

= (µ+δ )S∗ (1− xt)
(

1− 1
x̃t

)

−δ I∗
(

1− 1
x̃t

)

(yt−1)

− f (S∗, I∗)
∫ h

0
p(τ)

{

g
(

1
x̃t

)

+g
(

x̃t ỹt−τ ,τ
yt

)

+g(yt)−g(ỹt,τ )
}

dτ .

(4.12)

By applying (4.8), (4.9) and the relation g( 1x̃t )+g( x̃t ỹt−τ ,τyt )≥ 0 to (4.12), it holds that

dV (t)
dt

≤ −C0
f (S(t), I∗)

I∗
(µ+δ )

(

1−
1
x̃t

)2

−δ I∗
(

1− 1
x̃t

)

(yt −1)−C1C2 f (S∗, I∗)I∗(yt−1)2.

Using f (S∗, I∗) = (µ+ γ)I∗ gives as follows. we have that

dV (t)
dt

≤ −

{

C0
f (S(t), I∗)

I∗
(µ+δ )

(

1−
1
x̃t

)2
+δ I∗

(

1−
1
x̃t

)

(yt−1)

+C1C2(µ+ γ)(I∗)2(yt−1)2
}

.

By Theorem 4.1, for any 0 < ε < v1, there exists a Tε > 0 such that S(t) > v1− ε for any
t > Tε . From the condition (II) of (1.5), we may restrict this ε > 0 sufficiently small such
that

δ 2−4C0C1C2(µ+δ )(µ+ γ)
f (v1− ε , I∗)

I∗
< 0.

Then, we have that

(δ I∗)2−4
{

C0
f (S(t), I∗)

I∗
(µ+δ )

}{

C1C2(µ+ γ)(I∗)2
}

< (I∗)2
{

δ 2−4C0C1C2(µ+δ )(µ+ γ)
f (v1− ε , I∗)

I∗

}

< 0,

from which we obtain that dV (t)dt ≤ 0 holds for all t > Tε with equality if and only if S(t) = S∗
and I(t) = I∗. Thus, by an extention of LaSalle’s invariant principle (see also Kuang [13,
Corollary 5.2]), E∗ is globally asymptotically stable. Hence, the proof is complete. )*
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5 Applications

In this section, we illustrate some examples in order to validate the feasibility of our global
stability results with respect to the rate of immunity lost δ . We consider the following SIRS
epideimc model with a discrete delay:































dS(t)
dt

= µ−µS(t)−β
S(t)

1+αSS(t)
I(t− τ)

1+αI I(t− τ)
+δR(t),

dI(t)
dt

= β
S(t)

1+αSS(t)
I(t− τ)

1+αI I(t− τ)
− (µ+ γ)I(t),

dR(t)
dt

= γI(t)− (µ+δ )R(t), τ > 0.

(5.1)

β > 0 denotes the infection force of disease. Here, 1
1+αSS(t)

and 1
1+αI I(t−τ) measures

the inhibition effects from the behavioral change of the susceptible individuals and infec-
tive individuals, respectively. For the case αS = αI = 0, the incidence rate becomes a form
which is proposed in Vargas-De-León and Gómez-Alcaraz [22] and for the case αS = 0, the
incidence rate becomes a form which is proposed in Xu and Ma [23]. From (1.4), the basic
reproduction number of system (5.1) becomes R0 = β

(µ+γ)(1+αS)
.

Using similar techniques in the proofs of Theorems 1.1 and 1.2, we establish the follow-
ing result (cf. McCluskey [14, Section 5]):

Corollary 5.1 If R0 ≤ 1, then the disease-free equilibrium E0 of system (1.2) is globally
asymptotically stable. If R0 > 1, then the endemic equilibrium E∗ of system (5.1) exists
uniquely and system (5.1) is permanent. Moreover, the endemic equilibrium E∗ of system
(5.1) is globally asymptotically stable if



















































δ 2 < 4C̃0C̃1C̃2(µ+δ )(µ+ γ)
β ṽ1

(1+αSṽ1)(1+αII∗)
,

C̃0 =
(1+αSṽ1)(1+αII∗)

β
≤

(1+αSS∗)(1+αII∗)
β

,

C̃1 =
β

(1+αSṽ1)(1+αI)2
≤

β
(1+αSṽ1)(1+αI)(1+αII∗)

,

C̃2 =
(1+αS)αI

β
,

(5.2)

where v= ṽ1 is a unique positive solution of µ− βv
(1+αSv)

−µv= 0.

For system (5.1), under the conditions

τ = 0.1, αS = αI = 0.1, γ = 0.01 and µ = 0.02, (5.3)

we consider two cases of β = 0.02 and β = 0.06. First, we consider the case β = 0.02. Then,
we obtain R0 = 0.606 · · · ≤ 1. By Theorem 1.1, the disease-free equilibrium E0 of system
(5.1) is globally asymptotically stable for any δ ≥ 0.

Second, we consider the case β = 0.06. Then, we obtain R0 = 1.818 · · · > 1 and ṽ1 =
0.512 · · · . For this case, since the condition (5.2) becomes 0 < δ < δ ∗ := 0.013 · · · , the
endemic equilibrium E∗ of system (5.1) is globally asymptotically stable for any 0< δ < δ ∗.
From a biological point of view, for a small loss of immunity rate, the prevalence of the
disease can settle to an endemic steady state independently of the initial conditions.
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Fig. 1 The graph trajectory of S(t), I(t) and R(t) of system (5.1). For the case (5.3) with β = 0.02 and
δ = 0.07, we have R0 = 0.606 · · · < 1 and E0 = (1,0,0).
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Fig. 2 The graph trajectory of S(t), I(t) and R(t) of system (5.1). For the case (5.3) with β = 0.06 and
δ = 0.007 < δ ∗, we have R0 = 1.818 · · · > 1 and E∗ = (0.544 · · · ,0.332 · · · ,0.123 · · · ).

Figures 1 and 2 indicate that the disease-free equilibrium E0 and the endemic equilib-
rium E∗ of system (5.1) are globally asymptotically stable for the first and the second cases
with δ = 0.07 and δ = 0.007, respectively.

On the other hand, Figure 3 indicates that the endemic equilibrium E∗ of system (5.1)
is also globally asymptotically stable even if the condition (5.2) in Corollary 5.1 fail for the
second case with δ = 0.07≥ δ ∗ for R0 > 1. There is still an open problem to determine the
global asymptotic stability of the endemic equilibrium of system (5.1) for δ ≥ δ ∗.
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Fig. 3 The graph trajectory of S(t), I(t) and R(t) of system (5.1). For the case (5.3) with β = 0.06 and
δ = 0.07 ≥ δ ∗, we have R0 = 1.818 · · · > 1 and E∗ = (0.548 · · · ,0.406 · · · ,0.045 · · · ).

6 Discussion

In this paper, for an SIRS epidemic model with a wide class of nonlinear incidence rates and
distributed delays

∫ h
0 p(τ) f (S(t), I(t− τ))dτ , we established the global asymptotic stability

of the disease-free equilibrium E0 for R0 ≤ 1 and the endemic equilibrium E∗ of system (1.2)
for R0 > 1. By using a limit system of the model, a proof that the disease-free equilibrium is
globally asymptotically stable for R0 = 1 is also given. In particular, without imposing any
restriction on the size of a maximum latent period h, the global asymptotic stability of the
endemic equilibrium E∗ of system (1.2) is established for a small loss of immunity rate δ .
By means of strict monotonicity of functions f (S, I) and f (S, I)/I with respect to S ≥ 0 and
I > 0, we obtain Lemma 4.1 which plays an important role to establish the condition (1.5)
such thatV is a Lyapunov functional. Hence, our result is an extension to the global stability
result for an SIR epidemic model.
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