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Using molecular dynamics simulations, strain rate, temperature and size dependent mechanical properties of
b001Norientation diamond nanowires are investigated. It is found that, for the same cross-sectional areas,
strain rates have almost no effect on yield strength and Young's modulus, provided strain rates are within the
range from 0.001 to 0.025 ps−1. Our calculated results have also indicated that, at the temperature ranging
from 100 to 500 K, diamond nanowires' yield strength, Young's modulus, fracture strength and fracture strain
are all decreasing with increasing temperature. Furthermore, at the temperature of 300 K, yield strength,
Young's modulus, fracture strength and fracture strain increase dramatically with increasing cross sectional
area. Finally, orientation dependent diamond nanowires mechanical properties are studied.
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© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Diamond nanowires (DNWs) were fabricated firstly by Shiomi in
1997 [1], and many methods [2–12] were developed to fabricate
DNWs after that. Due to their unique properties and a wide range of
current and potential applications [2,13–20], DNWs have attracted
much attention in recent years and a number of theoretical and
experimental efforts have recently been carried out in order to better
understand the properties of DNWs.

For example, the energy band structure of DNWs has been
investigated by first principles calculations by Barnard in 2004 [21].
The crystalline structure of DNWs has been studied by first principle
calculations by Okada in 2009 [22]. Thermal conductivities of DNWs
have been studied by molecular dynamics simulations by Moreland
et al. [23], Padgett et al. [24], and Guo et al. [25], in 2004, 2006 and
2010, respectively. Electrochemical properties of DNWs have been
studied experimentally by Nebel et al. in 2009 [10]. Optical properties
of DNWs have been studied by Thomas et al. in 2010 [26].

Due to potential applications of DNWs in chemical and bio-
chemical sensing, enhancements in thermalmanagement, mechanical
reinforcement and electro-mechanical devices, the mechanical prop-
erties of DNWs are becoming an increasingly important area of study.
Although many works were performed to understand the mechanical
properties for other nanodiamond structures (e. g. films, particles etc.)
[27–33], the research results on the mechanical properties of DNWs
are scarce in the literature. To fill this gap, in this work the mechanical
properties have been studied by using molecular dynamics (MD)
simulations, and the effects of strain rate, size and temperature on
DNWs mechanical properties have been analyzed in detail.

2. Computational method

In this work, hydrogen-terminated one dimensional DNWs of
b001Norientation have been studied. To gain insights into mechanical
properties of DNWs, classical MD simulations were used to carry out
DNWs tensile tests [34]. All the properties were obtained as time
averages over the particle positions and velocities. The MD simulations
havebeenperformedbyemploying thewidely usedLarge-scaleAtomic/
Molecular Massively Parallel Simulator (LAMMPS) package [35]. The
interactions between atoms were described by the Adaptive Intermo-
lecular Reactive Empirical Bond Order (AIREBO) potential [36]. These
interactionshave strongcoordinationdependence throughabondorder
parameter, and the inter-atomic forces used in the simulations were
modeled by a many-body bond order function.

A schematic representation of the system we simulate is shown in
Fig. 1(a). Firstly, the DNWs are relaxed to their equilibrium states at a

http://dx.doi.org/10.1016/j.diamond.2011.02.016
mailto:wenbin@ysu.edu.cn
http://dx.doi.org/10.1016/j.diamond.2011.02.016
http://www.sciencedirect.com/science/journal/09259635


Fig. 1. (a) A schematic representation of the simulated DNWs, (b) Convergence dynamics
to reach the steady state for DNWs at 300 K.
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Fig. 2. Stress vs strain curves for bulk diamond with b001Ncrystal orientation at 300 K.

Table 1
Calculated Young's modulus compared to experimental and other
theoretical values for single-crystal diamond.

Diamond Young's modulus (GPa)

Jiang [33] 1004
Paci [38] 1090
Shenderova [39] 1052
Hess [40] 1143
This work 1014

552 J. Guo et al. / Diamond & Related Materials 20 (2011) 551–555
specified temperature and while being free of tensile strain, and then
the DNWs are relaxed under tensile strain by moving the end atoms.
In this work, the isothermal–isobaric (NPT) ensemble is used, and
the pressure is atmospheric pressure. For the relaxation of DNWs
under no tensile strain, the simulation step time is 0.1 fs. The entire
simulation time is 24 ps, that is 2.4×105 MD steps. To ensure the
equilibrium, we obtained the total energy vs simulation time in the
temperature of 300 K. Fig. 1(b) shows a relationship between the
whole energy and simulation time (or time steps) for DNWs at 300 K.
This result indicates that 2.4×105 MD steps are sufficient to reach the
steady state for the total energy (similar results hold true for all DNWs
studied in this work).

After DNWs reach the steady state under no tensile strain
conditions, an axial strain along the b001Norientation is applied at
a special strain rateΔεz. Therefore, strain εz at simulation step nstep
can be written as:

εz = Δεz⋅Δt⋅nstep; ð1Þ

whereΔεz is the strain rate, nstep is the number of relaxation steps, Δt
is the simulation step time.

At the same time, the axial stress at simulation step nstep can be
deduced by computing the arithmetic mean of the local stress on all
the atoms [37]. It is expressed as:

σz εð Þ = 1
Ω

∑
n

i=1
∑
n

j=1
j≠ i

Fijz εð Þrijz εð Þ; ð2Þ
where n represents the number of atoms, Fz
ij represents the

b001Ndirection component of the pairwise interatomic force be-
tween atoms i and j, rz

ij is the interatomic distance in the
b001Ndirection between the (i, j) pair, Ω refers to the system volume.
Finally, stress–strain curves of DNWs are obtained by plotting the
relationship between strain and the corresponding stress, and then
the Young'smoduli are obtained from the slope of the linear portion of
such stress–strain curves.

To verify the accuracy of our current computational method, stress
versus strain curves in the b001Norientation crystal of bulk diamond
at 300 K have been analyzed by using the above methodology, and
they are shown in Fig. 2. The Young's modulus can be obtained by
calculating the slope of the straight line in the elastic region (up to
3%). In Table 1 and Fig. 3, the calculated Young's modulus is compared
with experimental and other theoretical [33,38–40] data, the
calculated Young'smodulus agrees perfectly well with experimentally
and other theoretically reported results. Such an agreement demon-
strates that the computational methodology and parameters used in
this work are appropriate and that themechanical properties from our
calculations are reliable. We also note that similar methodologies
have already been applied successfully to the analysis of the
mechanical behaviors of several other nanostructures [34,37,41–43].

3. Results and discussions

3.1. Strain rate effect on mechanical properties

To study strain rate effects on mechanical properties, stress–strain
curves of DNWs with cross-sectional areas of 4.58 nm2 have been
investigated. The simulated temperature has been set as 300 K, and
the strain rates have been ranging from 0.001 to 0.025 ps−1. Fig. 4
shows the relationship between computed stresses and strain under
different strain rates conditions. It can be seen that all DNWs yield
strengths and Young's moduli are less affected by strain rates within
the strain rates range studied in this work. In particular, the Young's

image of Fig.�2
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Fig. 3. Calculated Young's modulus compared to experimental and other theoretical
values for bulk single-crystal diamond.
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Fig. 5. Stress–strain responses with temperature ranging from 100 to 500 K for DNWs
with cross sectional area of 4.58 nm2.
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modulus is 688 GPa and the yield strength is 63 GPa. Note also that the
Young's modulus of DNWs determined here is lower than that of bulk
diamond (1014 GPa).

3.2. Temperatures effect on mechanical properties

Temperature effects have been shown to be an important factor in
defining correctly key properties of low dimensional nanostructures
[44]. In order to analyze the temperature effect on mechanical
properties, DNWs with cross-sectional areas of 4.58 nm2 have been
investigated. In this analysis, the strain rate has been 0.001 ps−1, and
the temperature has been ranging from 100 to 500 K. Fig. 5 shows
temperature dependent stress–strain responses. To analyze this in
detail, temperature dependent yield strength and Young's modulus
have been determined from the corresponding stress–strain responses
by using a linear regression, and they are shown in Fig. 6 (a) and (b),
respectively. All details on mechanical property values are summarized
in Table 2. Observe that in Figs. 5 and 6, with increasing temperature,
DNWs yield strength and Young's modulus are decreasing. Specifically,
with the temperature increase from 100 to 500 K, Young's modulus has
a 28.3%drop and theyield strength has a 29.8%drop, respectively. As can
be seen fromTable 2 and Fig. 6,when the temperature is 100 K, the yield
strength is 74 GPa and the Young's modulus is 831 GPa. Note also that
when the temperature is 500 K, the yield strength is 53 GPa and the
Young's modulus is 583 GPa. It can be seen that the Young's modulus
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Fig. 4. Stress–strain responses with strain rate ranging from 0.001 to 0.025 ps−1 at cross
sectional area of 4.58 nm2 and temperature of 300 K.
andyield strengthdecreasemonotonicallywith increasing temperature.
It also indicates that the fracture strength and fracture strain decrease
with increasing temperature. When the temperature is 100 K, the
fracture strength and fracture strain are 122 GPa and 0.45, respectively,
100 200 300 400 500
45

50

55

60

65

70

75

80

Temperature (K)

Y
ie

ld
 S

tr
en

g
th

 (
G

p
a)

(b)

Fig. 6. Variations of the yield strength (a) and Young's modulus (b) with temperature
increasing from 100 to 500 K; DNWs cross-sectional area is 4.58 nm2.



Table 2
Calculated mechanical properties at different temperature conditions for DNWs' cross-
sectional areas of 4.58 nm2.

Temperature (K) 100 200 300 400 500

Yield strength (GPa) 74 68 63 54 53
Young's modulus (GPa) 831 753 688 633 583
Fracture strength (GPa) 122. 112 91 80 68
Fracture strain 0.45 0.41 0.35 0.31 0.25
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Fig. 8. Stress–strain curves with DNWs cross sectional areas ranging from 2.04 nm2 to
12.72 nm2 at 300 K.
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whereas when the temperature is 500 K, the fracture strength and
fracture strain become 68 GPa and 0.25, respectively.

To further understand the mechanism of Young's modulus and
yield strength decrease monotonically with temperature, total
energies as a function of strain have also been computed at different
temperatures, and they are shown in Fig. 7. With increasing
temperature, the total energy increases, and then the structural
stability decreases. This may account to the Young's modulus and
yield strength monotonic decrease with temperature.

3.3. Cross-sectional area effect on mechanical properties

Next, at the temperature of 300 K, cross sectional area dependent
tensile strain of DNWs has also been investigated. The cross sectional
areas analyzed here have been ranging from2.04 nm2 to 12.72 nm2, and
the strain rate has been 0.001 ps−1. Fig. 8 shows the cross sectional area
dependent stress–strain curves, and details on mechanical property
values are summarized in Table 3. It can be seen that the yield strength
and Young's modulus increase dramatically with increasing cross
sectional area, and the values are lower than those of bulk. As shown
in Table 3, the cross sectional area increase from 2.04 to 12.72 nm2, will
amount for 175.8% in yield strength increase and 99.7% in Young's
modulus respectively. Figs. 9 (a) and (b) show thevariations trendof the
Young's modulus and yield strength as a function of the cross sectional
area. As can be seen, the Young'smodulus of DNWs increases as its cross
sectional area becomes larger. It is expected that, as the cross sectional
area increases, the Young's modulus will eventually approach the value
of bulk diamond (Ebulk=1014 GPa). An exponential formula can be
fitted to describe the relationship between the cross sectional area and
the Young's modulus, namely

E = 5851:8−4924:2⋅exp
1

5:2A

� �
; ð3Þ

where A is the cross sectional area (in nm2), E is the Young's modulus
(in GPa).
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Fig. 7. Total energy curves as a function of strain at different temperatures.
The above trend can be explained based on the state of stress in the
stable structure of diamond nanowires. Surface stress is inversely
related to the cross sectional area of the nanowires [42,45]. The surface
stress induced compressivepressure is very small and the surface effects
are insignificant when the cross sectional area is sufficiently large.

3.4. Orientation effect on mechanical properties

Finally, crystal orientations dependent tensile strains of DNWs have
also been investigated. Three crystal orientations DNWs have been
considered, that is b001N, b011N and b111N crystal orientations. All
DNWs cross-sectional areas considered here are about 4.58 nm2. The
relationships between crystal orientations and stress–strain responses
for these three crystal orientations DNWs are shown in Fig. 10. It can be
seen that DNWs yield strength and Young's modulus are disparate with
different crystal orientations. For b001N crystal orientation DNWs, the
yield strength is 63 GPa and the Young's modulus is 688 GPa. However,
for b011N crystal orientation DNWs, Young's modulus has a 74.7% drop
and the yield strength has a 77.8% drop, respectively. For b111N crystal
orientationDNWs, itwill amount for 47.7% in yield strength increase and
0.8% in Young's modulus respectively. In particular, Young's modulus in
b111N crystal orientation is significantly larger than in b001N andb011N
crystal orientations. It has also indicated that Young's modulus in all
DNWs considered here are lower than those of bulk diamond.

4. Conclusions

In summary, mechanical properties of hydrogen-terminated dia-
mond nanowires with b001Ncrystal orientations were investigated by
using molecular dynamics simulations. Our calculated results indicated
Table 3
Variations of mechanical properties of DNWs with cross sectional area ranging from
2 to 12.7 nm2 at temperature of 300 K.

Cross sectional
area (nm2)

Yield
strength
(GPa)

Young's
modulus
(GPa)

Fracture
strength
(GPa)

Fracture
strain

2.0 29 425 45 0.19
3.2 55 635 74 0.31
4.6 63 688 82 0.33
6.2 72 764 91 0.34
8.1 75 825 98 0.31
10.3 79 834 106 0.35
12.7 80 849 111 0.31
Bulk diamond 183 1014 183 0.35
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Fig. 9. Variations of the yield strength (a) and Young's modulus (b) with the inverse of
DNWs cross sectional area increasing from 2.04 to 12.72 nm2.
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that within strain rates ranging from 0.001 to 0.025 ps−1, strain rates
have almost no effect on yield strength andYoung'smodulus. Itwas also
found that the yield strength and Young's modulus are decreasing with
increasing temperature from 100 K to 500 K. In addition, at the same
temperature conditions, the yield strength and Young's modulus
increase dramatically with increasing cross sectional area, gradually
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Fig. 10. Stress–strain curves with DNWs in b111N, b001Nand b011Ncrystal orienta-
tions at 300 K. Also shown are data of bulk diamond computed in this simulation.
approaching the value of bulk diamond. Finally, orientation dependent
diamond nanowires mechanical properties were analyzed.
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