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Abstract. In this paper, we establish the global asymptotic stability of equi-
libria for an SIR model of infectious diseases with distributed time delays gov-

erned by a wide class of nonlinear incidence rates. We obtain the global prop-

erties of the model by proving the permanence and constructing a suitable
Lyapunov functional. Under some suitable assumptions on the nonlinear term

in the incidence rate, the global dynamics of the model is completely deter-

mined by the basic reproduction number R0 and the distributed delays do not
influence the global dynamics of the model.

1. Introduction. Mathematical models which describe the dynamics of infectious
diseases have played a crucial role in the disease control in epidemiological aspect.
In order to understand the mechanism of disease transmission, many authors have
proposed various kinds of epidemic models (see [1]-[23] and the references therein).

One of the basic SIR epidemic models is given as follows (see Hethcote [8]).

dS(t)

dt
= µN(t)− βS(t)I(t)

N(t)
− µS(t),

dI(t)

dt
=
βS(t)I(t)

N(t)
− (µ+ σ)I(t),

dR(t)

dt
= σI(t)− µR(t),

(1.1)
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where N(t) ≡ S(t) + I(t) +R(t). The initial condition of system (1.1) is S(0) ≥ 0,
I(0) ≥ 0 and R(0) ≥ 0 with N(0) = S(0)+ I(0)+R(0) ≡ N0 > 0. For system (1.1),
since N ′(t) = 0 holds for all t ≥ 0, we have that N(t) ≡ N0 for all t ≥ 0.
S(t), I(t) and R(t) denote the proportions of the population susceptible to the

disease, of infective members and of members who have been removed from the
possibility of infection, respectively. Hence, N(t) denotes the total population size.
µ represents the birth rate of the population and the death rates of susceptibles,
infected and recovered individuals. We assume that all newborns are susceptibles.
σ represents the recovery rate of infectives, and β represents the product of the
average number of contacts of an individual per unit time. All the coefficients µ, σ
and β are assumed to be positive. For system (1.1), individuals leave the susceptible

class at a rate βS(t)I(t)
N(t) , which is called standard incidence rate. By defining

S̃(t) =
S(t)

N0
, Ĩ(t) =

I(t)

N0
, R̃(t) =

R(t)

N0
, (1.2)

and dividing the equations in (1.1) by the constant total population size N0 yields
the following form (“˜” is dropped for convenience of readers).

dS(t)

dt
= µ− βS(t)I(t)− µS(t),

dI(t)

dt
= βS(t)I(t)− (µ+ σ)I(t),

dR(t)

dt
= σI(t)− µR(t).

(1.3)

On the other hand, many authors have suggested that the bilinear incidence rate
should be modified into a nonlinear incidence rate because the effect concerning the
nonlinearity of incidence rates has been observed for some disease transmissions.
For example, Capasso and Serio [4] studied the cholera epidemic spread in Bari in

1973 and introduced an incidence rate which takes a form βS(t)I(t)
1+αI(t) , and Brown and

Hasibuan [3] studied infection model of the two-spotted spider mites, Tetranychus
urticae and introduced an incidence rate which takes a form (S(t)I(t))b. In order
to study the impact of those nonlinearity, Korobeinikov and Maini [10] considered
a variety of models with the incidence rate of the form F (S(t))G(I(t)). Later,
Korobeinikov [11, 12] obtained the global properties of the following basic SIR
epidemic model with more general framework of the incidence rate.

dS(t)

dt
= µ− f(S(t), I(t))− µS(t),

dI(t)

dt
= f(S(t), I(t))− (µ+ σ)I(t),

dR(t)

dt
= σI(t)− µR(t).

(1.4)

However, we consider that the proof of Korobeinikov [12, Theorem 3.3] as not
complete, because to apply Lyapunov-LaSalle asymptotic stability theorem (see
LaSalle and Lefschetz [15]) to the stability analysis of the positive equilibrium,
we need the persistence or permanence result of the model, which is not found in
Korobeinikov [11, 12]. Moreover, it is advocated that more realistic models should
incorporate time delays, which enable us to investigate the spread of an infectious
disease transmitted by a vector (e.g. mosquitoes, rats, etc.) after an incubation
time denoting the time during which the infectious agents develop in the vector (see
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[2, 5]). This is called the phenomena of time delay effect which now has important
biological meanings in epidemic models.

In this paper, we establish the global asymptotic stability of equilibria for an SIR
epidemic model with a wide class of nonlinear incidence rates and distributed delays
by modifying Lyapunov functional techniques in Huang et al. [9], Korobeinikov
[11, 12] and McCluskey [18, 19]. Our results indicate that the global dynamics is
fully determined by a single threshold number R0 independently of time delay effects
under some biologically feasible hypotheses on the nonlinearity of the incidence rate.

The organization of this paper is as follows. In Section 2, for an SIR epidemic
model with a wide class of nonlinear incidence rates and distributed delays, we
establish our main results. In Section 3, we offer a basic result. In Section 4, we
show the global stability of the disease-free equilibrium of the system. In Section 5,
we show the permanence of the system and establish the global asymptotic stability
of the positive equilibrium for the system with using a key lemma (see Lemma 5.1).
Finally, we offer a discussion in Section 6.

2. Main results. In the present paper, we consider the following SIR epidemic
model with a wide class of nonlinear incidence rates and distributed delays:

dS(t)

dt
= µ−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − µS(t),

dI(t)

dt
=

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ σ)I(t),

dR(t)

dt
= σI(t)− µR(t),

(2.1)

with the initial conditions

S(θ) = ϕ1(θ), I(θ) = ϕ2(θ), R(θ) = ϕ3(θ), −h ≤ θ ≤ 0, h > 0, (2.2)

where ϕi ∈ C (i = 1, 2, 3) such that ϕi(θ) = ϕi(0) ≥ 0 (−h ≤ θ ≤ 0, i = 1, 3) and
ϕ2(θ) ≥ 0 (−h ≤ θ ≤ 0). C denotes the Banach space C([−h, 0],R3

+0) of continuous
functions mapping the interval [−h, 0] into R3

+0 with the supremum norm, where
Rn+0 = {(x1, · · · , xn)|xi ≥ 0, i = 1, · · · , n} for n ≥ 1. From a biological meaning,
we assume that ϕi(0) > 0 for i = 1, 2, 3.
h is a maximum time taken to become infectious and the transmission of the

infection is governed by an incidence rate
∫ h
0
p(τ)f(S(t), I(t − τ))dτ . Here, p(τ)

denotes the fraction of vector population in which the time taken to become infec-

tious is τ [21]. We assume that p(τ) is continuous on [0, h] satisfying
∫ h
0
p(τ)dτ = 1,

and f : R2
+0 → R+0 is continuously differentiable in the interior of R2

+0 satisfying
f(0, I) = f(S, 0) = 0 for S, I ≥ 0 and the following hypotheses.

(H1) f(S, I) is a strictly monotone increasing function of S ≥ 0, for any fixed
I > 0, and a monotone increasing function of I ≥ 0, for any fixed S ≥ 0,

(H2) φ(S, I) = f(S,I)
I is a bounded and monotone decreasing function of I > 0, for

any fixed S ≥ 0, and K(S) ≡ limI→+0 φ(S, I) is continuous on S ≥ 0.

We note that K(S) > 0 holds for any S > 0. The basic reproduction number of
system (2.1) becomes

R0 =
K(S0)

µ+ σ
, S0 = 1. (2.3)

R0 denotes the expected number of secondary infectious cases generated by one
typical primary case in an entirely susceptible and sufficiently large population.
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System (2.1) always has a disease-free equilibrium E0 = (S0, 0, 0). On the other
hand, under the hypotheses (H1) and (H2), if R0 > 1, then system (2.1) also admits
a unique positive equilibrium E∗ = (S∗, I∗, R∗), where S∗, I∗, R∗ > 0 satisfying the
following equations (see Korobeinikov [11, 12]). µ− µS∗ − f(S∗, I∗) = 0,

f(S∗, I∗)− (µ+ σ)I∗ = 0,
σI∗ − µR∗ = 0.

Our main theorems are as follows.

Theorem 2.1. Assume that the hypotheses (H1) and (H2) hold. Then the disease-
free equilibrium E0 of system (2.1) is the only equilibrium and globally asymptotically
stable, if and only if R0 ≤ 1.

Theorem 2.2. Assume that the hypotheses (H1) and (H2) hold. Then the positive
equilibrium E∗ of system (2.1) is globally asymptotically stable, if and only if R0 > 1.

Under the hypotheses (H1) and (H2), for a class of delayed epidemic models,
f(S, I) includes various special incidence rates. If f(S, I) = βSI, then the inci-
dence rate becomes a bilinear form, which is proposed in [16, 17, 18, 21] and if

f(S, I) = βSI
1+αI , then the incidence rate describes saturated effects of the preva-

lence of infectious diseases, which is proposed in [4, 19, 23]. In addition, f(S, I) =
F (S)G(I), then the incidence rate is of the form proposed in Huang et al. [9].

In this paper, by modifying techniques in Huang et al. [9], Korobeinikov [11, 12]
and McCluskey [18, 19], we complete the proof of the global asymptotic stability
of the disease-free equilibrium E0 and positive equilibrium E∗ for system (2.1)

with a wide class of nonlinear incidence rate
∫ h
0
p(τ)f(S(t), I(t− τ))dτ under some

biologically suitable assumptions on the function f . We note that the monotone
properties (H1) and (H2) of the function f for the global stability of equilibria
essentially agree with those in Korobeinikov [12, Theorems 3.1-3.3]. Furthermore,
it is remarkable that the restriction of time delay is no longer needed in ensuring
the global asymptotic stability of the equilibria of the model. This implies that an
incubation period does not influence the global dynamics if the infection incidence
rate satisfies the hypotheses (H1) and (H2).

3. Preliminary. In this section, we prove the following basic result, which guar-
antees the existence and uniqueness of the solution (S(t), I(t), R(t)) for system (2.1)
satisfying initial conditions (3.4).

Lemma 3.1. The solution (S(t), I(t), R(t)) of system (2.1) with initial conditions
(3.4) uniquely exists and is positive for all t ≥ 0. Furthermore, it holds that

lim
t→+∞

(S(t) + I(t) +R(t)) = 1. (3.1)

Proof. We notice that the right hand side of system (2.1) is completely continuous
and locally Lipschitzian on C. Then, it follows that the solution (S(t), I(t), R(t))
of system (2.1) exists and is unique on [0, α) for some α > 0. It is easy to prove

that S(t) > 0 for all t ∈ [0, α). Indeed, this follows from that Ṡ(t) = µ > 0 for any
t ∈ [0, α) when S(t) = 0. Let us now show that I(t) > 0 for all t ∈ [0, α). Suppose
on the contrary that there exists some t1 ∈ (0, α) such that I(t1) = 0 and I(t) > 0
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for t ∈ [0, t1). Integrating the second equation of system (2.1) from 0 to t1, we see
that

I(t1) = I(0)e−(µ+σ)t1 +

∫ t1

0

∫ h

0

p(τ)f(S(u), I(u− τ))e−(µ+σ)(t1−u)dτdu > 0.

This contradicts I(t1) = 0. From the third equation of system (2.1), we also have
that R(t) > 0 for all t ∈ [0, α). Furthermore, for t ∈ [0, α), we obtain that

Ṅ(t) = µ− µ(S(t) + I(t) +R(t))

= µ(1−N(t)), (3.2)

which implies that (S(t), I(t), R(t)) is uniformly bounded on [0, α). It follows that
(S(t), I(t), R(t)) exists and is unique and positive for all t ≥ 0. From (3.2), we
immediately obtain (3.1), which completes the proof. �

Since the variable R does not appear in the first and the second equations of
system (2.1), we omit the third equation of system (2.1). Thus, we consider the
following 2-dimensional system.

dS(t)

dt
= µ−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − µS(t),

dI(t)

dt
=

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ σ)I(t).

(3.3)

with initial conditions

S(θ) = ϕ1(θ), I(θ) = ϕ2(θ), −h ≤ θ ≤ 0, (3.4)

where ϕi ∈ C (i = 1, 2, 3) such that ϕi(θ) = ϕi(0) > 0 (−h ≤ θ ≤ 0, i = 1, 3) and
ϕ2(θ) ≥ 0 (−h ≤ θ ≤ 0) with ϕ2(0) > 0.

4. Global stability of the disease-free equilibrium for R0 ≤ 1. In this section,
we give a proof of the global asymptotic stability of the disease-free equilibrium
E0 = (S0, 0, 0) of system (2.1) for R0 ≤ 1. The following theorem indicates that
the disease can be eradicated in the host population if R0 ≤ 1.

Theorem 4.1. Assume that the hypotheses (H1) and (H2) hold. Then the disease-
free equilibrium Q0 ≡ (S0, 0) of system (3.3) is the only equilibrium and globally
asymptotically stable, if and only if R0 ≤ 1.

Proof. From the hypotheses (H1) and (H2), the disease-free equilibrium is the only
equilibrium for system (3.3) (see Korobeinikov [12]). We now consider the following
Lyapunov functional.

U0(t) = U0
1 (t) + I(t) + U0

+(t),

where

U0
1 (t) =

∫ S(t)

S0

(
1− K(S0)

K(s)

)
ds,

U0
+(t) =

∫ h

0

p(τ)

∫ t

t−τ
f(S(u+ τ), I(u))

K(S0)

K(S(u+ τ))
dudτ.
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We show that dU0(t)
dt ≤ 0 for all t ≥ 0. First, we calculate

dU0
1 (t)
dt . By using µ = µS0,

dU0
1 (t)

dt
=

(
1− K(S0)

K(S(t))

)(
µ−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − µS(t)

)

= −µ(S(t)− S0)

(
1− K(S0)

K(S(t))

)
−
(

1− K(S0)

K(S(t))

)∫ h

0

p(τ)f(S(t), I(t− τ))dτ.

Second, calculating
dU0

+(t)

dt , we get that

dU0
+(t)

dt
=

∫ h

0

p(τ)

{
f(S(t+ τ), I(t))

K(S0)

K(S(t+ τ))
− f(S(t), I(t− τ))

K(S0)

K(S(t))

}
dτ.

Therefore, it follows that

dU0(t)

dt

= −µ(S(t)− S0)

(
1− K(S0)

K(S(t))

)
−
(

1− K(S0)

K(S(t))

)∫ h

0

p(τ)f(S(t), I(t− τ))dτ

+

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ σ)I(t)

+

∫ h

0

p(τ)

{
f(S(t+ τ), I(t))

K(S0)

K(S(t+ τ))
− f(S(t), I(t− τ))

K(S0)

K(S(t))

}
dτ

= −µ(S(t)− S0)

(
1− K(S0)

K(S(t))

)
+

∫ h

0

p(τ)

{
φ(S(t+ τ), I(t))

µ+ σ
· K(S0)

K(S(t+ τ))
− 1

}
(µ+ σ)I(t)dτ.

By the hypothesis (H1), we obtain that

−µ(S(t)− S0)

(
1− K(S0)

K(S(t))

)
≤ 0,

where strict equality holds if and only if S(t) = S0. It follows from the hypothesis
(H2) that

φ(S(t+ τ), I(t))

µ+ σ
· K(S0)

K(S(t+ τ))
≤ K(S(t+ τ))

µ+ σ
· K(S0)

K(S(t+ τ))

=
K(S0)

µ+ σ
= R0.

Therefore, R0 ≤ 1 ensures that dU0(t)
dt ≤ 0 for all t ≥ 0, where dU0(t)

dt = 0 holds
if S(t) = S0. Hence, it follows from system (3.3) that Q0 is the largest invariant

set in {(S(t), I(t)) ∈ C × C|dU
0(t)
dt = 0}. From the Lyapunov-LaSalle asymptotic

stability theorem [13, Theorem 5.3], we obtain that Q0 is the only equilibrium of
system (3.3) and globally asymptotically stable. This completes the proof. �

Proof of Theorem 2.1. By Theorem 4.1, we immediately obtain the conclusion of
this theorem. �
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Remark 4.1. To establish the global asymptotic stability of the disease-free equi-
librium E0 for R0 ≤ 1, the hypothesis of the monotonicity of f(S, I) of I ≥ 0 for
any fixed S ≥ 0 in (H1) is not necessary.

5. Permanence and global stability of the positive equilibrium for R0 > 1.
In this section, we show the permanence and the global asymptotic stability of the
positive equilibrium E∗ = (S∗, I∗, R∗) for system (2.1) for R0 > 1.

5.1. Permanence. In this subsection, we show the permanence of system (2.1) by
using techniques in Song et al. [20] and Wang [22]. From (3.1), let us put sufficiently
small εS > 0 and sufficiently large TS > 0 satisfying K(S(t)) ≤ K(S0) + εS holds
for any t ≥ TS . The following theorem indicates that the disease eventually persists
in the host population if R0 > 1.

Theorem 5.1. Assume that the hypotheses (H1) and (H2) hold. If R0 > 1, then
for any solution of system (2.1), it holds that

lim inf
t→+∞

S(t) ≥ v1,
lim inf
t→+∞

I(t) ≥ v2 := qI∗ exp (−(µ+ σ)ρh),

lim inf
t→+∞

R(t) ≥ v3 :=
γv2
µ
,

where v1 > 0 satisfies µ−K(v1)− µv1 = 0, and q and ρ satisfy

S∗ <
µ− (K(S0) + εS)qI∗

µ

(
1− e−µρh

)
, 0 < q <

µ

(K(S0) + εS)I∗
, ρ ≥ 1. (5.1)

Proof. Let (S(t), I(t), R(t)) be a solution of system (2.1) with initial condition
(3.4). By Lemma 3.1, it follows that lim supt→+∞ I(t) ≤ 1, which implies from the
first equation of system (2.1) and the hypothesis (H2) that, for any εI > 0, there is
an integer TI ≥ 0 such that

dS(t)

dt
= µ−

∫ h

0

p(τ)
f(S(t), I(t− τ))

I(t− τ)
I(t− τ)dτ − µS(t)

≥ µ−K(S(t))

∫ h

0

p(τ)I(t− τ)dτ − µS(t)

= µ−K(S(t))(1 + εI)− µS(t),

for t ≥ TI + h. Let us now consider the auxiliary equation

dS(t)

dt
= µ−K(S(t))− µS(t).

Then, one can immediately obtain that limt→+∞ S(t) = v1 > 0. Since (5.2) holds
for arbitrary εI > 0 sufficiently small, it follows that lim inft→+∞ S(t) ≥ v1 > 0.

We now prove that it is impossible that I(t) ≤ qI∗ for all sufficiently large t.
Suppose on the contrary that there exists a sufficiently large t1 ≥ TS such that
I(t) ≤ qI∗ holds for all t ≥ t1. Then, similar to the above discussion, we have that
for any t ≥ t1 + h,

dS(t)

dt
= µ−

∫ h

0

p(τ)φ(S(t), I(t− τ))I(t− τ)dτ − µS(t)

≥ µ− (K(S0) + εS)qI∗ − µS(t),
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which yields for t ≥ t1 + h,

S(t) ≥ S(t1 + h)e−µ(t−t1−h) + e−µt
∫ t

t1+h

eµs(µ− (K(S0) + εS)qI∗)ds

= S(t1 + h)e−µ(t−t1−h) +
µ− (K(S0) + εS)qI∗

µ

(
1− e−µ(t−t1−h)

)
. (5.2)

Hence, it follows from (5.2) that for t ≥ t1 + h+ ρh,

S(t) >
µ− (K(S0) + εS)qI∗

µ

(
1− e−µρh

)
= S4 > S∗. (5.3)

Now, we define the following functional.

V (t) = I(t) +

∫ h

0

p(τ)

∫ t+τ

t

f(S(u), I(u− τ))dudτ. (5.4)

Calculating the derivative of V (t) along solutions of system (2.1) gives as follows.

dV (t)

dt
=

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ σ)I(t)

+

∫ h

0

p(τ) {f(S(t+ τ), I(t))− f(S(t), I(t− τ))} dτ

=

∫ h

0

p(τ)f(S(t+ τ), I(t))dτ − (µ+ σ)I(t).

For t ≥ t1 + h+ ρh, it follows from (5.3) and the relation µ+ σ = φ(S∗, I∗) that

dV (t)

dt
=

∫ h

0

p(τ) {φ(S(t+ τ), I(t))− (µ+ σ)} I(t)dτ

>

∫ h

0

p(τ) {φ(S(t+ τ), I∗)− φ(S∗, I∗) + φ(S∗, I∗)− (µ+ σ)} I(t)dτ

=

∫ h

0

p(τ){φ(S(t+ τ), I∗)− φ(S∗, I∗)}I(t)dτ

≥ {φ(S4, I∗)− φ(S∗, I∗)}I(t). (5.5)

Setting

i = min
θ∈[−h,0]

I(θ + t1 + ρh+ 2h),

we claim that I(t) ≥ i for all t ≥ t1 + h + ρh. Otherwise, if there is a T ≥ 0 such
that I(t) ≥ i for t1 + h + ρh ≤ t ≤ t1 + 2h + ρh + T , I(t1 + 2h + ρh + T ) = i and
d
dtI(t)|t=t1+2h+ρh+T ≤ 0, it follows from the second equation of system (2.1), the



GLOBAL STABILITY OF SIR EPIDEMIC MODELS WITH NONLINEAR INCIDENCE 9

hypotheses (H1) and (H2) that for t2 = t1 + 2h+ ρh+ T ,

dI(t)

dt

∣∣∣
t=t2

=

∫ h

0

p(τ)f(S(t2), I(t2 − τ))dτ − (µ+ σ)I(t2)

=

∫ h

0

p(τ)φ(S(t2), I(t2 − τ))I(t2 − τ)dτ − (µ+ σ)I(t2)

>

∫ h

0

p(τ)φ(S(t2), I∗)I(t2 − τ)dτ − (µ+ σ)I(t2)

≥ {φ(S(t2), I∗)− (µ+ σ)} I(t2)

≥
{
φ(S4, I∗)− (µ+ σ)

}
i

> {φ(S∗, I∗)− (µ+ σ)} i = 0.

This is a contradiction. Therefore I(t) ≥ i for all t ≥ t1 + h + ρh. It follows from
(5.5) that

dV (t)

dt
> {φ(S4, I∗)− φ(S∗, I∗)}i > 0, for t ≥ t1 + 2h+ ρh,

which implies that limt→+∞ V (t) = +∞. However, it holds from (3.1) and (5.4)
that lim supt→+∞ V (t) < +∞. Hence the claim holds.

Thus, we proved that it is impossible that I(t) ≤ qI∗ for all sufficiently large t.
This implies that we are left to consider the following two possibilities.

(i) I(t) ≥ qI∗ for all t sufficiently large,
(ii) I(t) oscillates about qI∗ for all t sufficiently large.

If the first case holds, then we immediately get the conclusion of the proof. If the
second case holds, we show that I(t) ≥ qI∗ exp (−(µ+ σ)ρh) for all t sufficiently
large. Let t3 < t4 be sufficiently large such that

I(t3) = I(t4) = qI∗, I(t) < qI∗, t3 < t < t4.

If t4 − t3 ≤ ρh, then it follows from the second equation of system (3.3) that

dI(t)

dt
> −(µ+ σ)I(t),

that is,

I(t) > I(t3) exp (−(µ+ σ)(t− t3))

≥ qI∗ exp (−(µ+ σ)ρh) = v2.

If t4 − t3 > ρh, we obtain from the second equation of system (3.3) that I(t) ≥ v2
for t3 ≤ t ≤ t3 + ρh. We now claim that I(t) ≥ v2 for all t3 + ρh ≤ t ≤ t4.
Otherwise, there is a T ∗ > 0 such that I(t) ≥ v2 for t3 ≤ t ≤ t3 + ρh + T ∗ < t4,

I(t3 + ρh + T ∗) = v2 and dI(t)
dt |t=t3+ρh+T∗ ≤ 0. On the other hand, for t0 =

t3 + ρh + T ∗, it follows from the second equation of system (3.3) and the relation
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φ(S(t0), I(t0)) > φ(S(t0), I∗) ≥ φ(S4, I∗) > φ(S∗, I∗) that

dI(t)

dt

∣∣∣
t=t0

=

∫ h

0

p(τ)f(S(t0), I(t0 − τ))dτ − (µ+ σ)I(t0)

=

∫ h

0

p(τ)φ(S(t0), I(t0 − τ))I(t0 − τ)dτ − (µ+ σ)I(t0)

> {φ(S(t0), I∗)− (µ+ σ)} I(t0)

≥
{
φ(S4, I∗)− (µ+ σ)

}
I(t0)

> {φ(S∗, I∗)− (µ+ σ)} I(t0) = 0,

which is a contradiction. Hence I(t) ≥ qI∗ exp (−(µ+ σ)ρh) = v2 for t3 ≤ t ≤ t4.
Since the interval [t3, t4] is arbitrarily chosen, we conclude that I(t) ≥ v2 for all t
sufficiently large for the second case. Thus, we obtain that

lim inf
t→+∞

I(t) ≥ v2.

From the above discussion, one can see immediately that

lim inf
t→+∞

R(t) ≥ v3.

Hence, this completes the proof. �

5.2. Global stability of the positive equilibrium. In this subsection, we give
a proof of the global asymptotic stability of the positive equilibrium E∗ for R0 > 1.

For a fixed 0 ≤ τ ≤ h, we put

yt =
I(t)

I∗
, ỹt,τ =

f(S(t+ τ), I(t))

f(S(t+ τ), I∗)
. (5.6)

The following lemma plays a key role to obtain Theorems 2.2 and 5.2.

Lemma 5.1. Assume that system (2.1) has a positive equilibrium E∗. Under the
hypotheses (H1) and (H2), it holds that

g(yt)− g(ỹt,τ ) ≥ 0, (5.7)

for all t ≥ 0 and 0 ≤ τ ≤ h, where g(x) = x− 1− lnx ≥ 0, for x > 0.

Proof. By the definitions of yt and ỹt,τ , we have that

ỹt,τ − 1 =
f(S(t+ τ), I(t))− f(S(t+ τ), I∗)

f(S(t+ τ), I∗)
,

and

yt − ỹt,τ =
I(t)

I∗
− f(S(t+ τ), I(t))

f(S(t+ τ), I∗)

=
I(t)

f(S(t+ τ), I∗)
{φ(S(t+ τ), I∗)− φ(S(t+ τ), I(t))} .

Then, it follows from the hypotheses (H1) and (H2) that

(yt − ỹt,τ )(ỹt,τ − 1) =
I(t)

f(S(t+ τ), I∗)2
{φ(S(t+ τ), I∗)− φ(S(t+ τ), I(t))}

×{(f(S(t+ τ), I(t))− f(S(t+ τ), I∗)} ≥ 0,

that is, either yt ≤ ỹt,τ ≤ 1 or yt ≥ ỹt,τ ≥ 1 holds for all t ≥ 0 and 0 ≤ τ ≤ h. Since
g′(x) = 1 − 1

x for all x > 0 and g′(1) = 0, it follows that g(yt) ≥ g(ỹt,τ ) ≥ 0. This
completes the proof. �



GLOBAL STABILITY OF SIR EPIDEMIC MODELS WITH NONLINEAR INCIDENCE 11

Now, we are in a position to prove the global asymptotic stability of the positive
equilibrium E∗ for R0 > 1, by applying the technique established by Huang et al.
[9], Korobeinikov [11, 12] and McCluskey [18, 19].

Theorem 5.2. Assume that the hypotheses (H1) and (H2) hold. Then the positive
equilibrium Q∗ ≡ (S∗, I∗) of the reduced system (3.3) is globally asymptotically
stable, if and only if R0 > 1.

Proof. We now define the following functional.

U∗(t) = U∗1 (t) + U∗+(t), (5.8)

where 
U∗1 (t) =

∫ S(t)

S∗

(
1− f(S∗, I∗)

f(s, I∗)

)
ds+ I(t)− I∗ − I∗ ln

I(t)

I∗
,

U∗+(t) = f(S∗, I∗)

∫ h

0

p(τ)

∫ t

t−τ
g

(
f(S(u+ τ), I(u))

f(S(u+ τ), I∗)

)
dudτ.

(5.9)

We here note that U∗1 (t) satisfies
∂U∗

1

∂S = 1− f(S∗,I∗)
f(S,I∗) and

∂U∗
1

∂I = 1− I∗

I , which implies

that the point (S(t), I(t)) = (S∗, I∗) is a stational point of the function U∗1 (t) and
it is the unique stational point and the global minimum of this function.

Using the relation µ = µS∗+ f(S∗, I∗) and µ+ σ = f(S∗,I∗)
I∗ , the time derivative

of the function U∗1 (t) along the positive solution of system (3.3) becomes

dU∗1 (t)

dt

=

(
1− f(S∗, I∗)

f(S(t), I∗)

){
µ−

∫ h

0

p(τ)f(S(t), I(t− τ))dτ − µS(t)

}
+

(
1− I∗

I(t)

)(∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (µ+ σ)I(t)

)
=

(
1− f(S∗, I∗)

f(S(t), I∗)

){∫ h

0

p(τ){f(S∗, I∗)− f(S(t), I(t− τ))}dτ − µ(S(t)− S∗)
}

+

(
1− I∗

I(t)

)(∫ h

0

p(τ)f(S(t), I(t− τ))dτ − (S∗, I∗)

I∗
I(t)

)
= µS∗

(
1− S(t)

S∗

)(
1− f(S∗, I∗)

f(S(t), I∗)

)
+f(S∗, I∗)

(
1− f(S∗, I∗)

f(S(t), I∗)

)∫ h

0

p(τ)

{
1− f(S(t), I(t− τ))

f(S∗, I∗)

}
dτ

+f(S∗, I∗)

(
1− I∗

I(t)

)∫ h

0

p(τ)

{
f(S(t), I(t− τ))

f(S∗, I∗)
− I(t)

I∗

}
dτ, (5.10)

and the time derivative of the function U∗+(t) becomes

dU∗+(t)

dt
= f(S∗, I∗)

∫ h

0

p(τ)

{
g

(
f(S(t+ τ), I(t))

f(S(t+ τ), I∗)

)
− g
(
f(S(t), I(t− τ))

f(S(t), I∗)

)}
dτ.

(5.11)
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From (5.10) and (5.11), we obtain that

dU∗(t)

dt

= µS∗
(

1− S(t)

S∗

)(
1− f(S∗, I∗)

f(S(t), I∗)

)
+f(S∗, I∗)

∫ h

0

p(τ)

(
1− f(S∗, I∗)

f(S(t), I∗)
+
f(S(t), I(t− τ))

f(S(t), I∗)

)
dτ

+f(S∗, I∗)

∫ h

0

p(τ)

(
1− I(t)

I∗
− I∗

I(t)

f(S(t), I(t− τ))

f(S∗, I∗)

)
dτ

+f(S∗, I∗)

∫ h

0

p(τ)

{
g

(
f(S(t+ τ), I(t))

f(S(t+ τ), I∗)

)
− g
(
f(S(t), I(t− τ))

f(S(t), I∗)

)}
dτ

= µS∗
(

1− S(t)

S∗

)(
1− f(S∗, I∗)

f(S(t), I∗)

)
+f(S∗, I∗)

∫ h

0

p(τ)

{
g

(
f(S(t+ τ), I(t))

f(S(t+ τ), I∗)

)
− g
(
I(t)

I∗

)}
dτ

−f(S∗, I∗)

∫ h

0

p(τ)

{
g

(
f(S∗, I∗)

f(S(t), I∗)

)
+ g

(
I∗

I(t)

f(S(t), I(t− τ))

f(S∗, I∗)

)}
dτ.(5.12)

From the hypothesis (H1), we obtain(
1− S(t)

S∗

)(
1− f(S∗, I∗)

f(S(t), I∗)

)
≤ 0,

with strict equality holds if and only if S(t) = S∗, and using Lemma 5.1, we have

g

(
f(S(t+ τ), I(t))

f(S(t+ τ), I∗)

)
− g
(
I(t)

I∗

)
≤ 0, for all 0 ≤ τ ≤ h.

This implies that dU∗(t)
dt ≤ 0 holds for all t ≥ 0 since S∗ and f(S∗, I∗) are non-

negative. Therefore, it follows from (5.12) that dU∗(t)
dt = 0 holds if S(t) = S∗ and

f(S∗, I(t− τ)) = f(S∗,I∗)
I∗ I(t) for almost all τ ∈ [0, h]. By Hale and Lunel [6, The-

orem 5.3.1], solutions of system (3.3) limit to M , the largest invariant subset of

{dU
∗(t)
dt = 0}. We now show that M consists of only the positive equilibrium Q∗.

For each element of M , we have S(t) = S∗ and, since M is invariant, dS(t)
dt = 0.

Using the first equation of system (3.3) and the relation µ = µS∗ + f(S∗, I∗), we
obtain that

0 =
dS(t)

dt

= µ−
∫ h

0

p(τ)f(S∗, I(t− τ))dτ − µS∗

= µ− f(S∗, I∗)

I∗
I(t)− µS∗

= µS∗ + f(S∗, I∗)− f(S∗, I∗)

I∗
I(t)− µS∗

= f(S∗, I∗)

(
1− I(t)

I∗

)
.
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Thus, each element of M satisfies S(t) = S∗ and I(t) = I∗. Since the permanence
result (see Lemma 3.1 and Theorem 5.1) for system (3.3) is already known, by an
extension of LaSalle invariance principle [13, Corollary 5.2], Q∗ is the only equi-
librium of system (3.3) on the line and globally asymptotically stable. Hence, the
proof is complete. �

Proof of Theorem 2.2. By Lemma 3.1, Theorems 5.1 and 5.2, we immediately
obtain the conclusion of this theorem. �

6. Discussion. In this paper, we establish the global asymptotic stability of the
disease-free equilibrium for R0 ≤ 1, and the positive equilibrium for R0 > 1 by
modifying Lyapunov functional techniques in Huang et al. [9], Korobeinikov [11, 12]
and McCluskey [18, 19]. From a biological motivation, we do not only extend the
nondelayed model (1.4) in Korobeinikov [11, 12] to the delayed model (2.1) but also
obtain the permanence result and the global properties for (2.1) with distributed

time delays governed by a wide class of nonlinear incidence rate
∫ h
0
p(τ)f(S(t), I(t−

τ))dτ . It is noteworthy that the global dynamics is completely determined by
the basic reproduction number R0 independently of the length of an incubation
period of the diseases as long as the infection rate has a suitable monotone property
characterized by the hypotheses (H1) and (H2).

It has been generally considered reasonable to expect that a biologically feasible
functional response is associated with monotonicity with respect to the proportion
of susceptible and infected individuals, and is concave, or at least nonconvex with
respect to the proportion of infective individuals (see, e.g., [4, 10, 11, 12]). Noting

that φ(S, I) = f(S,I)
I denotes the infection force per unit proportion of infective

individuals, the hypotheses that f(S, I) is monotone increasing of I and φ(S, I)
is monotone decreasing of I in (H1) and (H2) describe the crowding (saturation)
effects (see, e.g., [4, 19, 23]). Thus, one can see that the hypotheses (H1) and
(H2) are natural assumptions which have a biological meaning. Our result further
indicates that the disease dynamics is fully determined when the saturation effects
appear.

Finally, we have to stress that Lemma 5.1 plays a vital role to establish the
global asymptotic stability of the positive equilibrium E∗ of system (2.1) for R0 > 1.
These techniques are also applicable to various kinds of epidemic models (e.g. SIRS
models, SEIR models, etc.). These will be our future consideration.

7. Acknowledgements. The authors wish to express their gratitude to the editors
and anonymous referees for very helpful comments and valuable suggestion which
improved the quality of this paper.
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