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Abstract

We show that a twist of a three-dimensional tube of uniform cross-
section yields an improved decay rate for the heat semigroup associated
with the Dirichlet Laplacian in the tube. The proof employs Hardy in-
equalities for the Dirichlet Laplacian in twisted tubes and the method of
self-similar variables and weighted Sobolev spaces for the heat equation.
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1 Introduction

It has been shown recently in [7] that a local twist of a straight three-dimensional
tube Ω0 := R×ω of non-circular cross-section ω ⊂ R

2 leads to an effective repul-
sive interaction in the Schrödinger equation of a quantum particle constrained
to the twisted tube Ωθ. More precisely, there is a Hardy-type inequality for the
particle Hamiltonian modelled by the Dirichlet Laplacian −∆Ωθ

D at its thresh-
old energy E1 if, and only if, the tube is twisted (cf Figure 1). That is, the
inequality

−∆Ωθ

D − E1 ≥ ̺ (1.1)

holds true, in the sense of quadratic forms in L2(Ωθ), with a positive function ̺
provided that the tube is twisted, while ̺ is necessarily zero for Ω0. Here E1

coincides with the first eigenvalue of the Dirichlet Laplacian −∆ω
D in the cross-

section ω.

Figure 1: Untwisted and twisted tubes of elliptical cross-section.

The inequality (1.1) has important consequences for conductance properties
of quantum waveguides. It clearly implies the absence of bound states (i.e.,
stationary solutions to the Schrödinger equation) below the energy E1 even if
the particle is subjected to a small attractive interaction, which can be either
of potential or geometric origin (cf [7] for more details). At the same time, a
repulsive effect of twisting on eigenvalues embedded in the essential spectrum
has been demonstrated in [14]. Hence, roughly speaking, the twist prevents
the particle to be trapped in the waveguide. Additional spectral properties of
twisted tubes have been studied in [9, 18, 2].

It is natural to ask whether the repulsive effect of twisting demonstrated
in [7] in the quantum context has its counterpart in other areas of physics,
too. The present paper gives an affirmative answer to this question for systems
modelled by the diffusion equation in the tube Ωθ:

ut −∆u = 0 , (1.2)

subject to Dirichlet boundary conditions on ∂Ωθ. Indeed, we show that the twist
is responsible for a faster convergence of the solutions of (1.2) to the (zero) stable
equilibrium. The second objective of the paper is to give a new (simpler and
more direct) proof of the Hardy inequality (1.1) under weaker conditions than
those in [7].
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1.1 The main result

Before stating the main result about the large time behaviour of the solutions
to (1.2), let us make some comments on the subtleties arising with the study of
the heat equation in Ωθ.

The specific deformation Ωθ of Ω0 via twisting we consider can be visu-
alized as follows: instead of simply translating ω along R we also allow the
(non-circular) cross-section ω to rotate with respect to a (non-constant) angle
x1 7→ θ(x1). See Figure 1 (the precise definition is postponed until Section 2,
cf Definition 2.1). We assume that the deformation is local, i.e.,

θ̇ has compact support in R. (1.3)

Then the straight and twisted tubes have the same spectrum (cf [17, Sec. 4]):

σ(−∆Ωθ

D ) = σess(−∆Ωθ

D ) = [E1,∞) . (1.4)

The fine difference between twisted and untwisted tubes in the spectral setting
is reflected in the existence of (1.1) for the former.

In view of the spectral mapping theorem, the indifference (1.4) transfers to
the following identity for the heat semigroup:

∀t ≥ 0 ,
∥

∥e∆
Ωθ

D
t
∥

∥

L2(Ωθ)→L2(Ωθ)
= e−E1t , (1.5)

irrespectively whether the tube Ωθ is twisted or not. That is, we clearly have
the exponential decay

‖u(t)‖L2(Ωθ) ≤ e−E1t ‖u0‖L2(Ωθ) (1.6)

for each time t ≥ 0 and any initial datum u0 of (1.2). To obtain some finer dif-
ferences as regards the time-decay of solutions, it is therefore natural to consider
rather the “shifted” semigroup

S(t) := e(∆
Ω
D
+E1)t (1.7)

as an operator from a subspace of L2(Ωθ) to L
2(Ωθ).

In this paper we mainly (but not exclusively) consider the subspace of initial
data given by the weighted space

L2(Ωθ,K) with K(x) := ex
2
1/4 , (1.8)

and study the asymptotic properties of the semigroup via the decay rate defined
by

Γ(Ωθ) := sup
{

Γ
∣

∣

∣
∃CΓ > 0, ∀t ≥ 0, ‖S(t)‖L2(Ωθ,K)→L2(Ωθ) ≤ CΓ (1 + t)−Γ

}

.

Our main result reads as follows:

Theorem 1.1. Let θ ∈ C1(R) satisfy (1.3). We have

Γ(Ωθ)

{

= 1/4 if Ωθ is untwisted,

≥ 3/4 if Ωθ is twisted.

3



The statement of the theorem for solutions u of (1.2) in Ωθ can be reformu-
lated as follows. For every Γ < Γ(Ωθ), there exists a positive constant CΓ such
that

‖u(t)‖L2(Ωθ) ≤ CΓ (1 + t)−Γ e−E1t ‖u0‖L2(Ωθ,K) (1.9)

for each time t ≥ 0 and any initial datum u0 ∈ L2(Ωθ,K). This should be
compared with the inequality (1.6) which is sharp in the sense that it does
not allow for any extra polynomial-type decay rate due to (1.5). On the other
hand, we see that the decay rate is at least three times better in a twisted tube
provided that the initial data are restricted to the weighted space.

A type of the estimate (1.9) in an untwisted tube can be obtained in a less
restrictive weighted space (cf Theorem 4.1). The power 1/4 actually reflects
the quasi-one-dimensional nature of our model. Indeed, in the whole Euclidean
space one has the well known dimensional bound

∀t ≥ 0 ,
∥

∥e∆
R
d

D
t
∥

∥

L2(Rd,K)→L2(Rd)
≤ (1 + t)−d/4 . (1.10)

The fact that the power 1/4 is optimal for untwisted tubes can be established
quite easily by a “separation of variables” (cf Proposition 4.2). The fine effect
of twisting is then reflected in the positivity of Γ(Ωθ) − 1/4; in view of (1.10),
it can be interpreted as “enlarging the dimension” of the tube.

1.2 The idea of the proof

The principal idea behind the main result of Theorem 1.1, i.e. the better decay
rate in twisted tubes, is the positivity of the function ̺ in (1.1). In fact, Hardy
inequalities have already been used as an essential tool to study the asymptotic
behaviour of the heat equation in other situations [3, 22]. However, it should be
stressed that Theorem 1.1 does not follow as a direct consequence of (1.1) by
some energy estimates (cf Section 4.3) but that important and further technical
developments that we explain now are needed. Nevertheless, overall, the main
result of the paper confirms that the Hardy inequalities end up enhancing the
decay rate of solutions..

Let us now briefly describe our proof (as given in Section 5) that there is
the extra decay rate if the tube is twisted.

I. First, we map the twisted tube Ωθ to the straight one Ω0 by a change of
variables, and consider rather the transformed (and shifted by E1) equation

ut − (∂1 − θ̇ ∂τ )
2u−∆′u− E1u = 0 (1.11)

in Ω0 instead of (1.2). Here −∆′ := −∂22 − ∂23 and ∂τ := x3∂2 − x2∂3, with
x = (x1, x2, x3) ∈ Ω0, denote the “transverse” Laplace and angular-derivative
operators, respectively.

II. The main ingredient in the subsequent analysis is the method of self-similar
solutions developed in the whole Euclidean space by Escobedo and Kavian [8].
Writing

ũ(y1, y2, y3, s) = es/4u(es/2y1, y2, y3, e
s − 1) , (1.12)

the equation (1.11) is transformed to

ũs − 1
2 y1∂1ũ− (∂1 − σs ∂τ )

2ũ− es∆′ũ− E1 e
s ũ− 1

4 ũ = 0 (1.13)
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in self-similarity variables (y, s) ∈ Ω0 × (0,∞), where

σs(y1) := es/2θ̇(es/2y1) . (1.14)

Note that (1.13) is a parabolic equation with time-dependent coefficients.
This non-autonomous feature is a consequence of the non-trivial geometry we
deal with and represents thus the main difficulty in our study. We note that an
analogous difficulty has been encountered previously for a convection-diffusion
equation in the whole space but with a variable diffusion coefficient [5].

III. We reconsider (1.13) in the weighted space (1.8) and show that the as-
sociated generator has purely discrete spectrum then. Now a difference with
respect to the self-similarity transformation in the whole Euclidean space is
that the generator is not a symmetric operator if the tube is twisted. However,
this is not a significant obstacle since only the real part of the corresponding
quadratic form is relevant for subsequent energy estimates (cf (5.11)).

IV. Finally, we look at the asymptotic behaviour of (1.13) as the self-similar
time s tends to infinity. Assume that the tube is twisted. The scaling coming
from the self-similarity transformation is such that the function (1.14) converges
in a distributional sense to a multiple of the delta function supported at zero as
s → ∞. The square of σs becomes therefore extremely singular at the section
{0}×ω of the tube for large times. At the same time, the prefactors es in (1.13)
diverge exactly as if the cross-section of the tube shrunk to zero s→ ∞. Taking
these two simultaneous limits into account, it is expectable that (1.13) will be
approximated for large times by the essentially one-dimensional problem

ϕs − 1
2 y1ϕy1 − ϕy1y1 − 1

4 ϕ = 0 , s ∈ (0,∞), y1 ∈ R , (1.15)

with an extra Dirichlet boundary condition at y1 = 0. This evolution equation
is explicitly solvable in L2(R,K) and it is easy to see that

‖ϕ‖L2(R,K) ≤ e−
3
4
s ‖ϕ0‖L2(R,K) , (1.16)

for any initial datum ϕ0. Here the exponential decay rate transfers to a poly-
nomial one after returning to the original time t, and the number 3/4 gives rise
to that of the bound of Theorem 1.1 in the twisted case.

On the other hand, we get just 1/4 in (1.16) provided that the tube is
untwisted (which corresponds to imposing no extra condition at y1 = 0).

Two comments are in order. First, we do not establish any theorem that
solutions of (1.13) can be approximated by those of (1.15) as s→ ∞. We only
show a strong-resolvent convergence for operators related to their generators
(Proposition 5.4). This is, however, sufficient to prove Theorem 1.1 with help
of energy estimates. Proposition 5.4 is probably the most significant auxiliary
result of the paper and we believe it is interesting in its own right.

Second, in the proof of Proposition 5.4 we essentially use the existence of
the Hardy inequality (1.1) in twisted tubes. In fact, the positivity of ̺ is di-
rectly responsible for the extra Dirichlet boundary condition of (1.15). Since the
Hardy inequality holds in the Hilbert space L2(Ω0) (no weight), Proposition 5.4
is stated for operators transformed to it from (1.8) by an obvious unitary trans-
form. In particular, the asymptotic operator hD of Proposition 5.4 acts in a
different space, L2(R), but it is unitarily equivalent to the generator of (1.15).
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1.3 The content of the paper

The organization of this paper is as follows.
In the following Section 2 we give a precise definition of twisted tubes Ωθ

and the corresponding Dirichlet Laplacian −∆Ωθ

D .
Section 3 is mainly devoted to a new proof of the Hardy inequality (Theo-

rem 3.1) as announced in [18]. We mention its consequences on the stability of
the spectrum of the Laplacian (Proposition 3.2) and emphasize that the Hardy
weight cannot be made arbitrarily large by increasing the twisting (Proposi-
tion 3.3). Finally, we establish there a new Sobolev-type inequality in twisted
tubes (Theorem 3.2).

The heat equation in twisted tubes is considered in Section 4. Using some
energy-type estimates, we prove in Theorems 4.1 and 4.2 polynomial-type de-
cay results for the heat semigroup as a consequence of the Sobolev and Hardy
inequalities, respectively. Unfortunately, Theorem 4.2 does not represent any
improvement upon the 1/4-decay rate of Theorem 4.1 which is valid in untwisted
tubes as well.

The main body of the paper is therefore represented by Section 5 where we
develop the method of self-similar solutions to get the improved decay rate of
Theorem 1.1 as described above. Furthermore, in Section 5.9 we establish an
alternative version of Theorem 1.1.

The paper is concluded in Section 6 by referring to physical interpretations
of the result and to some open problems.

2 Preliminaries

In this section we introduce some basic definitions and notations we shall use
throughout the paper.

2.1 The geometry of a twisted tube

Given a bounded open connected set ω ⊂ R
2, let Ω0 := R×ω be a straight tube

of cross-section ω. We assume no regularity hypotheses about ω. Let θ : R → R

be a C1-smooth function with bounded derivative (occasionally we will denote
by the same symbol θ the function θ⊗ 1 on Ω0). We introduce another tube of
the same cross-section ω as the image

Ωθ := Lθ(Ω0) ,

where the mapping Lθ : R3 → R
3 is given by

Lθ(x) :=
(

x1, x2 cos θ(x1) + x3 sin θ(x1),−x2 sin θ(x1) + x3 cos θ(x1)
)

. (2.1)

Definition 2.1 (Twisted and untwisted tubes). We say that the tube Ωθ is
twisted if the following two conditions are satisfied:

1. θ is not constant,

2. ω is not rotationally symmetric with respect to the origin in R
2.

Otherwise we say that Ωθ is untwisted.

6



Here the precise meaning of ω being “rotationally symmetric with respect
to the origin in R

2” is that, for every ϑ ∈ (0, 2π),

ωϑ :=
{

x2 cosϑ+ x3 sinϑ,−x2 sinϑ+ x3 cosϑ
∣

∣ (x2, x3) ∈ ω
}

= ω ,

with the natural convention that we identify ω and ωϑ (and other open sets)
provided that they differ on a set of zero capacity. Hence, modulus a set of zero
capacity, ω is rotationally symmetric with respect to the origin in R

2 if, and
only if, it is a disc or an annulus centered at the origin of R2. In view of this
convention, any untwisted Ωθ can be identified with the straight tube Ω0 by an
isometry of the Euclidean space.

We write x = (x1, x2, x3) for a point/vector in R
3. If x is used to denote

a point in Ω0 or Ωθ, we refer to x1 and x′ := (x2, x3) as “longitudinal” and
“transverse” variables in the tube, respectively.

It is easy to check that the mapping Lθ is injective and that its Jacobian
is identically equal to 1. Consequently, Lθ induces a (global) diffeomorphism
between Ω0 and Ωθ.

2.2 The Dirichlet Laplacian in a twisted tube

It follows from the last result that Ωθ is an open set. The corresponding Dirichlet
Laplacian in L2(Ωθ) can be therefore introduced in a standard way as the self-
adjoint operator −∆Ωθ

D associated with the quadratic form

QΩθ

D [Ψ] := ‖∇Ψ‖2L2(Ωθ)
, Ψ ∈ D(QΩθ

D ) := H1
0 (Ωθ) .

By the representation theorem, −∆Ωθ

D Ψ = −∆Ψ for Ψ ∈ D(−∆Ωθ

D ) := {Ψ ∈
H1

0 (Ωθ) |∆Ψ ∈ L2(Ωθ)}, where the Laplacian ∆Ψ should be understood in the
distributional sense.

Moreover, using the diffeomorphism induced by Lθ, we can “untwist” the
tube by expressing the Laplacian −∆Ωθ

D in the curvilinear coordinates deter-
mined by (2.1). More precisely, let Uθ be the unitary transformation from
L2(Ωθ) to L

2(Ω0) defined by

UθΨ := Ψ ◦ Lθ . (2.2)

It is easy to check that Hθ := Uθ(−∆Ωθ

D )U−1
θ is the self-adjoint operator in

L2(Ω0) associated with the quadratic form

Qθ[ψ] := ‖∂1ψ−θ̇ ∂τψ‖2L2(Ω0)
+‖∇′ψ‖2L2(Ω0)

, ψ ∈ D(Qθ) := H1
0 (Ω0) . (2.3)

Here ∇′ := (∂2, ∂3) denotes the transverse gradient and ∂τ is a shorthand for
the transverse angular-derivative operator

∂τ := τ · ∇′ = x3∂2 − x2∂3 , where τ(x2, x3) := (x3,−x2) .
We have the point-wise estimate

|∂τψ| ≤ a |∇′ψ| , where a := sup
x′∈ω

|x′| . (2.4)

The sesquilinear form associated with Qθ[·] will be denoted by Qθ(·, ·). In the
distributional sense, we can write

Hθψ = −(∂1 − θ̇ ∂τ )
2ψ −∆′ψ , (2.5)

where −∆′ := −∂22 − ∂23 denotes the transverse Laplacian.
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3 The Hardy and Sobolev inequalities

In this section we summarize basic spectral results about the Laplacian−∆Ωθ

D we
shall need later to study the asymptotic behaviour of the associated semigroup.

3.1 The Poincaré inequality

Let E1 be the first eigenvalue of the Dirichlet Laplacian in ω. Using the Poincaré-
type inequality in the cross-section

‖∇f‖2L2(ω) ≥ E1‖f‖2L2(ω) , ∀f ∈ H1
0 (ω) , (3.1)

and Fubini’s theorem, it readily follows that Qθ[ψ] ≥ E1‖ψ‖2L2(Ω0)
for every

ψ ∈ H1
0 (Ω0). Or, equivalently,

−∆Ωθ

D ≥ E1 (3.2)

in the form sense in L2(Ωθ). Consequently, the spectrum of −∆Ωθ

D does not start
below E1. The result (3.2) can be interpreted as a Poincaré-type inequality and
it holds for any tube Ωθ.

The inequality (3.2) is clearly sharp for an untwisted tube, since (1.4) holds
in that case trivially by separation of variables. In general, the spectrum of
−∆Ωθ

D can start strictly above E1 if the twisting is effective at infinity (cf [18,
Corol. 6.6]). In this paper, however, we focus on tubes for which the energy E1

coincides with the spectral threshold of −∆Ωθ

D . This is typically the case if the
twisting vanishes at infinity (cf [17, Sec. 4]). More restrictively, we assume (1.3).
Under this hypothesis, (1.4) holds and (3.2) is sharp in the twisted case too.

3.2 The Poincaré inequality in a bounded tube

For our further purposes, it is important that a better result than (3.2) holds
in bounded tubes.

Given a bounded open interval I ⊂ R, let HI
θ be the “restriction” of Hθ

to the tube I × ω determined by the conditions ∂1ψ − θ̇∂τψ = 0 on the new
boundary (∂I)×ω. More precisely, HI

θ is introduced as the self-adjoint operator
in L2(I × ω) associated with the quadratic form

QIθ[ψ] := ‖∂1ψ − θ̇ ∂τψ‖2L2(I×ω) + ‖∇′ψ‖2L2(I×ω) ,

ψ ∈ D(QIθ) :=
{

ψ ↾(I × Ω) | ψ ∈ H1
0 (Ω0)

}

.

That is, we impose no additional boundary conditions in the form setting.
Contrary to Hθ, H

I
θ is an operator with compact resolvent. Let λ(θ̇, I)

denote the lowest eigenvalue of the shifted operator HI
θ − E1. We have the

following variational characterization:

λ(θ̇, I) = min
ψ∈D(QI

θ
)\{0}

QIθ[ψ]− E1‖ψ‖2L2(I×ω)

‖ψ‖2L2(I×ω)

. (3.3)

As in the unbounded case, (3.1) yields that λ(θ̇, I) is non-negative (it is zero if
the tube is untwisted). However, thanks to the compactness, now we have that
HI
θ − E1 is a positive operator whenever the tube is twisted.
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Lemma 3.1. Let θ ∈ C1(R). Let I ⊂ R be a bounded open interval such that

θ ↾ I is not constant. Let ω be not rotationally invariant with respect to the

origin in R
2. Then

λ(θ̇, I) > 0 .

Proof. We proceed by contradiction and assume that λ(θ̇, I) = 0. Then the
minimum (3.3) is attained by a (smooth) function ψ ∈ D(QIθ) satisfying (re-
call (3.1))

‖∂1ψ − θ̇ ∂τψ‖2L2(I×ω) = 0 and ‖∇′ψ‖2L2(I×ω) − E1‖ψ‖2L2(I×ω) = 0 . (3.4)

Writing ψ(x) = ϕ(x1)J1(x
′) + φ(x), where J1 is the positive eigenfunction

corresponding to E1 of the Dirichlet Laplacian in L2(ω) and (J1, φ(x1, ·))L2(ω) =
0 for every x1 ∈ I, we deduce from the second equality in (3.4) that φ = 0. The
first identity is then equivalent to

‖ϕ̇‖2L2(I)‖J1‖2L2(ω)+‖θ̇ϕ‖2L2(I)‖∂τJ1‖2L2(ω)−2(J1, ∂τJ1)L2(ω)ℜ(ϕ̇, θ̇ ϕ)L2(I) = 0 .

Since (J1, ∂τJ1)L2(ω) = 0 by an integration by parts, it follows that ϕ must be
constant and that

‖θ̇‖L2(I) = 0 or ‖∂τJ1‖L2(ω) = 0 .

However, this is impossible under the stated assumptions because ‖θ̇‖L2(I) van-
ishes if and only if θ is constant on I, and ∂τJ1 = 0 identically in ω if and only
if ω is rotationally invariant with respect to the origin.

Lemma 3.1 was the cornerstone of the method of [18] to establish the exis-
tence of Hardy inequalities in twisted tubes (see also the proof of Theorem 3.1
below).

3.3 Infinitesimally thin tubes

It is clear that λ(θ̇,R) := inf σ(Hθ) = 0 whenever (1.4) holds (e.g., if (1.3) is
satisfied). It turns out that the shifted spectral threshold diminishes also in the
opposite asymptotic regime, i.e. when the interval Iǫ := (−ǫ, ǫ) shrinks, and this
irrespectively of the properties of ω and θ̇.

Proposition 3.1. Let θ ∈ C1(R). We have

lim
ǫ→0

λ
(

θ̇, Iǫ
)

= 0 .

Proof. Let {ωk}∞k=0 be an exhaustion sequence of ω, i.e., each ωk is an open set
with smooth boundaries satisfying ωk ⋐ ωk+1 and ∪∞

k=0ωk = ω. Let J k
1 denote

the first eigenfunction of the Dirichlet Laplacian in L2(ωk); we extend it by zero
to the whole R

2. Finally, set ψk := (1⊗ J k
1 ) ◦ Lθ0 with θ0(x1) := θ̇(0)x1, i.e.,

ψk(x) = J k
1

(

x2 cos(θ̇0x1) + x3 sin(θ̇0x1),−x2 sin(θ̇0x1) + x3 cos(θ̇0x1)
)

,

where θ̇0 := θ̇(0).
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For any (large) k ∈ N there exists (small) positive ǫk such that ψk belongs
to D(QIǫθ ) for all ǫ ≤ ǫk. Hence it is an admissible trial function for (3.3). Now,
fix k ∈ N and assume that ǫ ≤ ǫk. Then we have

‖ψk‖2L2(Iǫ×ω)
= |Iǫ| ‖J k

1 ‖2L2(ωk)
,

where we have used the change of variables y = Lθ0(x). At the same time, em-
ploying consecutively the identity ∂1ψ

k−θ̇ ∂τψk = (θ̇0−θ̇) ∂τψk, the bound (2.4),
the identity |∇′ψk(x)| = |∇J k

1 (y2, y3)| and the same change of variables, we get
the estimate

‖∂1ψk − θ̇ ∂τψ
k‖2L2(Iǫ×ω)

≤ ‖(θ̇0 − θ̇)‖2L∞(Iǫ)
|Iǫ| a2 ‖∇J k

1 ‖2L2(ωk)
,

where the supremum norm clearly tends to zero as ǫ→ 0. Finally,

‖∇′ψk‖2L2(Iǫ×ω)
− E1‖ψk‖2L2(Iǫ×ω)

= (Ek1 − E1) |Iǫ| ‖J k
1 ‖2L2(ωk)

,

where Ek1 denotes the first eigenvalue of the Dirichlet Laplacian in L2(ωk).
Sending ǫ to zero, the trial-function argument therefore yields

lim
ǫ→0

λ(θ̇, Iǫ) ≤ Ek1 − E1 .

Since k can be made arbitrarily large and Ek1 → E1 as k → ∞ by standard
approximation arguments (see, e.g., [4]), we conclude with the desired result.

Remark 3.1 (An erratum to [17]). The study of the infinitesimally thin tubes
played a crucial in the proof of Hardy inequalities given in [17]. According
to Lemma 6.3 in [17], λ

(

θ̇, Iǫ
)

, with constant θ̇, is independent of ǫ > 0 (and
therefore remains positive for a twisted tube even if ǫ → 0). However, in view
Proposition 3.1, this is false. Consequently, Lemmata 6.3 and 6.5 and Theo-
rem 6.6 in [17] cannot hold. The proof of Hardy inequalities presented in [17]
is incorrect. A corrected version of the paper [17] can be found in [18].

3.4 The Hardy inequality

Now we come back to unbounded tubes Ωθ. Although (3.2) represents a sharp
Poincaré-type inequality both for twisted and untwisted tubes (if (1.4) holds),
there is a fine difference in the spectral setting. Whenever the tube Ωθ is non-
trivially twisted (cf Definition 2.1), there exists a positive function ̺ (necessarily
vanishing at infinity if (1.4) holds) such that (3.2) is improved to (1.1). A variant
of the Hardy inequality is represented by the following theorem:

Theorem 3.1. Let θ ∈ C1(R) and suppose that θ̇ has compact support. Then

for every Ψ ∈ H1
0 (Ωθ) we have

‖∇Ψ‖2L2(Ωθ)
− E1 ‖Ψ‖2L2(Ωθ)

≥ cH ‖ρΨ‖2L2(Ωθ)
, (3.5)

where ρ(x) := 1/
√

1 + x21 and cH is a non-negative constant depending on θ̇
and ω. Moreover, cH is positive if, and only if, Ωθ is twisted.
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Proof. It is clear that the left hand side of (3.5) is non-negative due to (3.2). The
fact that cH = 0 if the tube is untwisted follows from the more general result
included in Proposition 3.2.2 below. We divide the proof of the converse fact
(i.e. that twisting implies cH > 0) into several steps. Recall the identification
of Ψ ∈ L2(Ωθ) with ψ := UθΨ ∈ L2(Ω0) via (2.2).

1. Let us first assume that the interval I := (inf supp θ̇, sup supp θ̇) is symmetric
with respect to the origin of R.

2. The main ingredient in the proof is the following Hardy-type inequality for a
Schrödinger operator in R× ω with a characteristic-function potential:

‖ρψ‖2L2(Ω0)
≤ 16 ‖∂1ψ‖2L2(Ω0)

+ (2 + 64/|I|2) ‖ψ‖2L2(I×ω) (3.6)

for every ψ ∈ H1
0 (Ω0). This inequality is a consequence of the classical one-

dimensional Hardy inequality
∫

R
x−2
1 |ϕ(x1)|2dx1 ≤ 4

∫

R
|ϕ̇(x1)|2dx1 valid for

any ϕ ∈ H1
0 (R\ {0}). Indeed, following [7, Sec. 3.3], let η be the Lipschitz

function on R defined by η(x1) := 2|x1|/|I| for |x1| ≤ |I|/2 and 1 otherwise
in R (we shall denote by the symbol the function η ⊗ 1 on R × ω). For any
ψ ∈ C∞

0 (Ω0), let us write ψ = ηψ + (1 − η)ψ, so that (ηψ)(·, x′) ∈ H1
0 (R\{0})

for every x′ ∈ ω. Then, employing Fubini’s theorem, we can estimate as follows:

‖ρψ‖2L2(Ω0)
≤ 2

∫

Ω0

x−2
1 |(ηψ)(x)|2 dx+ 2 ‖(1− η)ψ‖2L2(Ω0)

≤ 8 ‖∂1(ηψ)‖2L2(Ω0)
+ 2 ‖ψ‖2L2(I×ω)

≤ 16 ‖η∂1ψ‖2L2(Ω0)
+ 16 ‖(∂1η)ψ‖2L2(Ω0)

+ 2 ‖ψ‖2L2(I×ω)

≤ 16 ‖∂1ψ‖2L2(Ω0)
+ (2 + 64/|I|2) ‖ψ‖2L2(I×ω) .

By density, this result extends to all ψ ∈ H1
0 (Ω0) = D(Qθ).

3. By Lemma 3.1, we have

Qθ[ψ]− E1 ‖ψ‖2L2(Ω0)
≥ QIθ[ψ]− E1 ‖ψ‖2L2(I×ω) ≥ λ(θ̇, I) ‖ψ‖2L2(I×ω) (3.7)

for every ψ ∈ D(Qθ). Here the first inequality employs the trivial fact that the
restriction to I × ω of a function from D(Qθ) belongs to D(QIθ). Under the

stated hypotheses, we know from Lemma 3.1 that λ(θ̇, I) is a positive number.

4. At the same time, for every ψ ∈ D(Qθ),

Qθ[ψ]− E1 ‖ψ‖2L2(Ω0)

≥ ǫ ‖∂1ψ‖2L2(Ω0)
+

∫

Ω0

{[

1− ǫ

1− ǫ
a2 θ̇2(x1)

]

|∇′ψ(x)|2 − E1 |ψ(x)|2
}

dx

≥ ǫ ‖∂1ψ‖2L2(Ω0)
− ǫ

1− ǫ
a2E1 ‖θ̇ψ‖2L2(Ω0)

≥ ǫ ‖∂1ψ‖2L2(Ω0)
− ǫ

1− ǫ
‖θ̇‖2L∞(I) a

2E1 ‖ψ‖2L2(I×ω) (3.8)

for sufficiently small positive ǫ. Here the first estimate is an elementary Cauchy-
type inequality employing (2.4) and valid for all ǫ ∈ (0, 1). The second inequality
in (3.8) follows from (3.1) with help of Fubini’s theorem provided that ǫ is

sufficiently small, namely if ǫ <
(

1 + a2‖θ̇‖2L∞(R)

)−1
.
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5. Interpolating between the bounds (3.7) and (3.8), and using (3.6) in the
latter, we finally arrive at

Qθ[ψ]− E1 ‖ψ‖2L2(Ω0)
≥ 1

2

ǫ

16
‖ρψ‖2L2(Ω0)

+
1

2

[

λ(θ̇, I)− ǫ

(

1

8
+

4

|I|2
)

− ǫ

1− ǫ
‖θ̇‖2L∞(I) a

2E1

]

‖ψ‖2L2(I×ω)

for every ψ ∈ D(Qθ). It is clear that the last line on the right hand side of this
inequality can be made non-negative by choosing ǫ sufficiently small. Such an ǫ
then determines the Hardy constant c′H := ǫ/32.

6. The previous bound can be transferred to L2(Ωθ) via (2.2). In general, if the
centre of I is an arbitrary point x01 ∈ R, the obtained result is equivalent to

∀Ψ ∈ D(QΩθ

D ) , ‖∇Ψ‖2L2(Ωθ)
− E1 ‖Ψ‖2L2(Ωθ)

≥ c′H ‖ρx0
1
Ψ‖2L2(Ωθ)

,

where ρx0
1
(x) := 1/

√

1 + (x1 − x01)
2. This yields (3.5) with

cH := c′H min
x1∈R

1 + x21
1 + (x1 − x01)

2
,

where the minimum is a positive constant depending on x01.

The Hardy inequality of Theorem 3.1 was first established [7] under addi-
tional hypotheses. The present version is adopted from [18], where other variants
of the inequality can be found, too.

3.5 The spectral stability

Theorem 3.1 provides certain stability properties of the spectrum for twisted
tubes, while the untwisted case is always unstable, in the following sense:

Proposition 3.2. Let V be the multiplication operator in L2(Ωθ) by a bounded

non-zero non-negative function v such that v(x) ∼ |x1|−2 as |x1| → ∞. Then

1. if Ωθ is twisted with θ ∈ C1(R) and θ̇ has compact support, then there

exists ε0 > 0 such that for all ε < ε0,

inf σ(−∆Ωθ

D − εV ) ≥ E1 ;

2. if Ωθ is untwisted then, for all ε > 0,

inf σ(−∆Ωθ

D − εV ) < E1 .

Proof. The first statement follows readily from one part of Theorem 3.1. To
prove the second property (and therefore the other part of Theorem 3.1 stating
that cH = 0 if the tube is untwisted), it is enough to consider the case θ = 0
and construct a test function ψ from H1

0 (Ω0) such that

P0[ψ] := ‖∇ψ‖2L2(Ω0)
− E1‖ψ‖2L2(Ω0)

− ε
∥

∥v1/2ψ
∥

∥

2

L2(Ω0)
< 0
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for all positive ε. For every n ≥ 1, we define

ψn(x) := ϕn(x1)J1(x2, x3) , (3.9)

where J1 is the positive eigenfunction corresponding to E1 of the Dirichlet
Laplacian in the cross-section ω, normalized to 1 in L2(ω), and

ϕn(x1) := exp

(

−x
2
1

n

)

. (3.10)

In view of the separation of variables and the normalization of J1, we have

P0[ψn] = ‖ϕ̇n‖2L2(R) − ε
∥

∥v
1/2
1 ϕn

∥

∥

2

L2(R)
,

where v1(x1) := ‖v(x1, ·)1/2J1‖2L2(ω). By hypothesis, v1 ∈ L1(R) and the in-

tegral ‖v1‖L1(R) is positive. Finally, an explicit calculation yields ‖ϕ̇n‖L2(R) ∼
n−1/4. By the dominated convergence theorem, we therefore have

P0[ψn] −−−−→
n→∞

−ε ‖v1‖L1(R) .

Consequently, taking n sufficiently large and ε positive, we can make the form
P0[ψn] negative.

Since the potential V is bounded and vanishes at infinity, it is easy to see
that the essential spectrum is not changed, i.e., σess(−∆Ωθ

D − εV ) = [E1,∞),
independently of the value of ε and irrespectively of whether the tube is twisted
or not. As a consequence of Proposition 3.2, we have that an arbitrarily small
attractive potential −εV added to the shifted operator −∆Ωθ

D − E1 in the un-
twisted tube would generate negative discrete eigenvalues, however, a certain
critical value of ε is needed in order to generate the negative spectrum in the
twisted case. In the language of [21], the operator −∆Ωθ

D − E1 is therefore
subcritical (respectively critical) if Ωθ is twisted (respectively untwisted).

3.6 An upper bound to the Hardy constant

Now we come back to Theorem 3.1 and show that the Hardy weight at the right
hand side of (3.5) cannot be made arbitrarily large by increasing θ̇ or making
the cross-section ω more eccentric.

Proposition 3.3. Let θ ∈ C1(R) and suppose that θ̇ has compact support. Then

cH ≤ 1/2 ,

where cH is the constant of Theorem 3.1.

Proof. Recall the unitary equivalence of −∆Ωθ

D and Hθ given by (2.2). We
proceed by contradiction and show that the operator Hθ −E1 − cρ2 is not non-
negative if c > 1/2, irrespectively of properties of θ and ω. (Recall that ρ was
initially introduced in Theorem 3.1 as a function on Ωθ. In this proof, with an
abuse of notation, we denote by the same symbol analogous functions on Ω0

and R.) It is enough to construct a test function ψ from D(Qθ) such that

P cθ [ψ] := Qθ[ψ]− E1‖ψ‖2L2(Ω0)
− c ‖ρψ‖2L2(Ω0)

< 0 .
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As in the proof of Proposition 3.2, we use the decomposition (3.9), but now the
sequence of functions ϕn is defined as follows:

ϕn(x1) :=















x1−b
1
n

b2
n
−b1

n

if x1 ∈ [b1n, b
2
n) ,

b3
n
−x1

b3
n
−b2

n

if x1 ∈ [b2n, b
3
n) ,

0 otherwise .

Here {bjn}n∈N, with j = 1, 2, 3, are numerical sequences such that sup supp θ̇ <
b1n < b2n < b3n for each n ∈ N and b1n → ∞ as n → ∞; further requirements will
be imposed later on. Since ϕn and θ̇ have disjoint supports, and J1 is supposed
to be normalized to 1 in L2(ω), it easily follows that

P cθ [ψn] = ‖ϕ̇n‖2L2(R) − c ‖ρϕn‖2L2(R) .

Note that the right hand side is independent of θ and ω. An explicit calculation
yields

‖ϕ̇n‖2L2(R) =
1

b2n − b1n
+

1

b3n − b2n
,

‖ρϕn‖2L2(R) =
b2n − b1n + [(b1n)

2 − 1](arctan b2n − arctan b1n)− b1n log
1+(b2

n
)2

1+(b1
n
)2

(b2n − b1n)
2

+
b3n − b2n + [(b3n)

2 − 1](arctan b3n − arctan b2n)− b3n log
1+(b3

n
)2

1+(b2
n
)2

(b3n − b2n)
2

.

Specifying the numerical sequences in such a way that also the quotients b2n/b
1
n

and b3n/b
2
n tend to infinity as n→ ∞, it is then straightforward to check that

b2n P
c
θ [ψn] −−−−→

n→∞
1− 2c .

Since the limit is negative for c > 1/2, it follows that P cθ [ψn] can be made
negative by choosing n sufficiently large.

The proposition shows that the effect of twisting is limited in its nature,
at least if (1.3) holds. This will have important consequences for the usage of
energy methods when studying the heat semigroup below.

3.7 The Sobolev inequality

Regardless of whether the tube is twisted or not, the operator −∆Ωθ

D − E1

satisfies the following Sobolev-type inequality.

Theorem 3.2 (Sobolev inequality). Let θ ∈ C1(R) and suppose that θ̇ has

compact support. Then for every Ψ ∈ H1
0 (Ωθ) ∩ L2(Ωθ, ρ

−2) we have

‖∇Ψ‖2L2(Ωθ)
− E1‖Ψ‖2L2(Ωθ)

≥ cS
‖Ψ‖6L2(Ωθ)

‖Ψ‖41
, (3.11)

where ‖Ψ‖1 :=
√

∫

ω
dx2dx3

(∫

R
dx1|(Ψ ◦ Lθ)(x)|

)2
and cS is a positive constant

depending on θ̇ and ω.
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Proof. Recall that Ψ ◦ Lθ = UθΨ =: ψ belongs to L2(Ω0). First of all, let
us notice that ‖Ψ‖1 is well defined for Ψ ∈ L2(Ωθ, ρ

−2). Indeed, the Schwarz
inequality together with Fubini’s theorem yields

‖Ψ‖21 ≤ ‖ρ−1ψ‖2L2(Ω0)

∫

R

dx1
1 + x21

= ‖ρ−1Ψ‖2L2(Ωθ)
π <∞ . (3.12)

Here the equality of the norms is obvious from the facts that the mapping Lθ
leaves invariant the first coordinate in R

3 and that its Jacobian is one. We also
remark that, by density, it is enough to prove the theorem for Ψ ∈ C∞

0 (Ωθ).
The inequality (3.11) is a consequence of the one-dimensional inequality

∀ϕ ∈ H1(R) ∩ L1(R) , ‖ϕ̇‖2L2(R) ≥
1

4

‖ϕ‖6L2(R)

‖ϕ‖4L1(R)

, (3.13)

which is established quite easily by combining elementary estimates

‖ϕ‖2L2(R) ≤ ‖ϕ‖L1(R)‖ϕ‖L∞(R) and ‖ϕ‖2L∞(R) ≤ 2 ‖ϕ‖L2(R)‖ϕ̇‖L2(R) .

In order to apply (3.13), we need to estimate the left hand side of (3.11) from
below by ‖∂1ψ‖2L2(Ω0)

. We can proceed as in the proof of Theorem 3.1. Inter-

polating between the bounds (3.7) and (3.8), we get

‖∇Ψ‖2L2(Ωθ)
− E1‖Ψ‖2L2(Ωθ)

≥ ǫ

2
‖∂1ψ‖2L2(Ω0)

,

where ǫ =: 8 cS is a positive constant depending on θ̇ and ω. Using now (3.13)
with help of Fubini’s theorem, we conclude the proof with

‖∂1ψ‖2L2(Ω0)
≥ 1

4

∫

ω

‖ψ(·, x2, x3)‖6L2(R)

‖ψ(·, x2, x3)‖4L1(R)

dx2dx3 ≥ 1

4

‖Ψ‖6L2(Ωθ)

‖Ψ‖41
.

Here the second inequality follows by the Hölder inequality with properly chosen
conjugate exponents (recall also that ‖ψ‖L2(Ω0) = ‖Ψ‖L2(Ωθ)).

4 The energy estimates

4.1 The heat equation

Having the replacement u(x, t) 7→ e−E1t u(x, t) for (1.2) in mind, let us consider
the following t-time evolution problem in the tube Ωθ:











ut −∆u − E1u = 0 in Ωθ × (0,∞) ,

u = u0 in Ωθ × {0} ,
u = 0 in (∂Ωθ)× (0,∞) ,

(4.1)

where u0 ∈ L2(Ωθ).
As usual, we consider the weak formulation of the problem, i.e., we say a

Hilbert space-valued function u ∈ L2
loc

(

(0,∞);H1
0 (Ωθ)

)

, with the weak deriva-

tive u′ ∈ L2
loc

(

(0,∞);H−1(Ωθ)
)

, is a (global) solution of (4.1) provided that

〈

v, u′(t)
〉

+
(

∇v,∇u(t)
)

L2(Ωθ)
− E1

(

v, u(t)
)

L2(Ωθ)
= 0 (4.2)

15



for each v ∈ H1
0 (Ωθ) and a.e. t ∈ [0,∞), and u(0) = u0. Here 〈·, ·〉 denotes the

pairing of H1
0 (Ωθ) and H

−1(Ωθ). With an abuse of notation, we denote by the
same symbol u both the function on Ωθ × (0,∞) and the mapping (0,∞) →
H1

0 (Ωθ).
Standard semigroup theory implies that there indeed exists a unique solution

of (4.1) that belongs to C0
(

[0,∞), L2(Ωθ)
)

. More precisely, the solution is
given by u(t) = S(t)u0, where S(t) is the heat semigroup (1.7) associated with
−∆Ωθ

D − E1. By the Beurling-Deny criterion, S(t) is positivity-preserving for
all t ≥ 0.

Since E1 corresponds to the threshold of the spectrum of −∆Ωθ

D if (1.3)
holds, we cannot expect a uniform decay of solutions of (4.1) as t → ∞ in this
case. More precisely, the spectral mapping theorem together with (1.4) yields:

Proposition 4.1. Let θ ∈ C1(R) and suppose that θ̇ has compact support. Then

for each time t ≥ 0 we have

‖S(t)‖L2(Ωθ)→L2(Ωθ) = 1 .

Consequently, for each t > 0 and each ε ∈ (0, 1) we can find an initial datum
u0 ∈ H1

0 (Ωθ) such that ‖u0‖L2(Ωθ) = 1 and such that the solution of (4.1)
satisfies

‖u(t)‖L2(Ωθ) ≥ 1− ε .

4.2 The dimensional decay rate

However, if we restrict ourselves to initial data decaying sufficiently fast at
the infinity of the tube, it is possible to obtain a polynomial decay rate for
the solutions of (4.1). In particular, we have the following result based on
Theorem 3.2:

Theorem 4.1. Let θ ∈ C1(R) and suppose that θ̇ has compact support. Then

for each time t ≥ 0 we have

‖S(t)‖L2(Ωθ,ρ−2)→L2(Ωθ) ≤
(

1 +
4 cS
π2

t

)−1/4

,

where cS is the positive constant of Theorem 3.2 and ρ is introduced in Theo-

rem 3.1.

Proof. The statement is equivalent to the following bound for the solution u
of (4.1):

∀t ∈ [0,∞) , ‖u(t)‖L2(Ωθ) ≤ ‖ρ−1u0‖L2(Ωθ)

(

1 +
4 cS
π2

t

)−1/4

, (4.3)

where u0 ∈ L2(Ωθ, ρ
−2) is any non-trivial datum. It is easy to see that the

real and imaginary parts of the solution of (4.1) evolve separately. Further-
more, since S(t) is positivity-preserving, given a non-negative datum u0, the
solution u(t) remains non-negative for all t ≥ 0. Consequently, establishing
the bound for positive and negative parts of u(t) separately, it is enough to
prove (4.3) for non-negative (and non-trivial) initial data only. Without loss of
generality, we therefore assume in the proof below that u(t) ≥ 0 for all t ≥ 0.
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Let {ϕn}∞n=1 be the family of mollifiers on R given by (3.10); we denote by
the same symbol the functions ϕn ⊗ 1 on R × R

2 ⊃ Ωθ. Inserting the trial
function

vn(x; t) := ϕn(x1) ūn(x2, x3; t) , ūn(x2, x3; t) :=
∥

∥ϕnu(·, x2, x3; t)
∥

∥

L1(R)
,

into (4.2), we arrive at (recall the definition of ‖ · ‖1 from Theorem 3.2)

1

2

d

dt
‖ϕnu(t)‖21 = −‖∇ūn(t)‖2L2(ω) + E1‖ūn(t)‖2L2(ω) −

(

∂1vn(t), ∂1u(t)
)

L2(Ωθ)

≤
(

∂1vn(t), ∂1u(t)
)

L2(Ωθ)

≤ ‖∂1vn(t)‖L2(Ωθ)‖∇u(t)‖L2(Ωθ) .

Here the first inequality is due to the Poincaré-type inequality in the cross-
section (3.1). We clearly have

‖∂1vn(t)‖L2(Ωθ) = ‖ϕ̇n‖L2(R) ‖ūn(t)‖L2(ω) = ‖ϕ̇n‖L2(R) ‖ϕnu(t)‖1 .

Integrating the differential inequality, we therefore get

‖ϕnu(t)‖1 − ‖ϕnu0‖1 ≤ ‖ϕ̇n‖L2(R)

∫ t

0

‖∇u(t′)‖2L2(Ωθ)
dt′ .

Since ‖ϕ̇n‖L2(R) → 0 and {ϕn}∞n=1 is an increasing sequence of functions con-
verging pointwise to 1 as n→ ∞, we conclude from this inequality that

∀t ∈ [0,∞) , ‖u(t)‖1 ≤ ‖u0‖1 , (4.4)

where ‖u0‖1 is finite due to (3.12).
Now, substituting u for the trial function v in (4.2), applying Theorem 3.2

and using (4.4), we get

1

2

d

dt
‖u(t)‖2L2(Ωθ)

= −
(

‖∇u(t)‖2L2(Ωθ)
− E1‖u(t)‖2L2(Ωθ)

)

≤ −cS
‖u(t)‖6L2(Ωθ)

‖u(t)‖41

≤ −cS
‖u(t)‖6L2(Ωθ)

‖u0‖41
.

An integration of this differential inequality leads to

∀t ∈ [0,∞) , ‖u(t)‖L2(Ωθ) ≤ ‖u0‖L2(Ωθ)

(

1 + 4 cS
‖u0‖4L2(Ωθ)

‖u0‖41
t

)−1/4

.

Dividing the last inequality by ‖ρ−1u0‖L2(Ωθ) and replacing ‖u0‖1 with
‖ρ−1u0‖L2(Ωθ) using (3.12), we get

‖u(t)‖L2(Ωθ)

‖ρ−1u0‖L2(Ωθ)
≤ ξ

(

1 +
4 cS
π2

ξ4 t

)−1/4

≤
(

1 +
4 cS
π2

t

)−1/4

,

where ξ := ‖u0‖L2(Ωθ)/‖ρ−1u0‖L2(Ωθ) ∈ (0, 1). This establishes (4.3).
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As a direct consequence of the theorem, we get:

Corollary 4.1. Under the hypotheses of Theorem 4.1, Γ(Ωθ) ≥ 1/4.

Proof. It is enough to realize that L2(Ωθ,K) is embedded in L2(Ωθ, ρ
−2).

The following proposition shows that the decay rate of Theorem 4.1 is opti-
mal for untwisted tubes.

Proposition 4.2. Let Ωθ be untwisted. Then for each time t ≥ 0 we have

‖S(t)‖L2(Ωθ,K)→L2(Ωθ) ≥ 1√
2
(1 + t)−1/4 .

Proof. Without loss of generality, we may assume θ = 0. It is enough to find
an initial datum u0 ∈ L2(Ω0,K) such that the solution u of (4.1) satisfies

∀t ∈ [0,∞) ,
‖u(t)‖L2(Ω0)

‖u0‖L2(Ω0,K)
≥ 1√

2
(1 + t)−1/4 . (4.5)

The idea is to take u0 := ψn, where {ψn}∞n=1 is the sequence (3.9) approximating
a generalized eigenfunction of −∆Ω0

D corresponding to the threshold energy E1.
Using the fact that Ω0 is a cross-product ofR and ω, (4.1) can be solved explicitly
in terms of an expansion into the eigenbasis of the Dirichlet Laplacian in the
cross-section and a partial Fourier transform in the longitudinal variable. In
particular, for our initial data we get

‖u(t)‖2L2(Ω0)
=

∫

R

|ϕ̂n(ξ)|2 exp (−2ξ2t) dξ =

√

n

n+ 4t

√

πn

2
,

where the second equality is a result of an explicit calculation enabled due to
the special form of ϕn given by (3.10). At the same time, for every n < 8
ψn belongs to L2(Ω0,K) and an explicit calculation yields

‖u0‖2L2(Ω0,K) = 2

√

πn

8− n
.

For the special choice n = 6 we get that the left hand side of (4.5) actually
equals the right hand side with t being replaced by 2t/3 < t.

The power 1/4 in the decay bounds of Theorem 4.1 and Proposition 4.2
reflects the quasi-one-dimensional nature of Ωθ (cf (1.10)), at least if the tube
is untwisted. More precisely, Proposition 4.2 readily implies that the inequality
of Corollary 4.1 is sharp for untwisted tubes.

Corollary 4.2. Let Ωθ be untwisted. Then Γ(Ωθ) = 1/4.

This result establishes one part of Theorem 1.1. The much more difficult
part is to show that the decay rate is improved whenever the tube is twisted.
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4.3 The failure of the energy method

As a consequence of combination of direct energy arguments with Theorem 3.1,
we get the following result. In Remark 4.2 below we explain why it is useless.

Theorem 4.2. Let Ωθ be twisted with θ ∈ C1(R). Suppose that θ̇ has compact

support. Then for each time t ≥ 0 we have

‖S(t)‖L2(Ωθ,ρ−2)→L2(Ωθ) ≤ (1 + 2 t)
−min{1/2,cH/2} , (4.6)

where cH is the positive constant of Theorem 3.1.

Proof. For any positive integer n and x ∈ Ωθ, let us set ρn(x) := min{ρ(x), n−1}.
Then {ρ−1

n }∞n=1 is a non-decreasing sequence of bounded functions converging
pointwise to ρ−1 as n → ∞. Recalling the definition of ρ from Theorem 3.1,
it is clear that x 7→ ρn(x) is in fact independent of the transverse variables x′.
Moreover, ρ−γn u belongs to H1

0 (Ωθ) for every γ ∈ R provided u ∈ H1
0 (Ωθ).

Choosing v := ρ−2
n u in (4.2) (and possibly combining with the conjugate

version of the equation if we allow non-real initial data), we get the identity

1

2

d

dt
‖ρ−1
n u(t)‖2 = −‖ρ−1

n ∇u(t)‖2+E1‖ρ−1
n u(t)‖2−ℜ

(

u(t)∇ρ−2
n ,∇u(t)

)

. (4.7)

Here and in the rest of the proof, ‖·‖ and (·, ·) denote the norm and inner product
in L2(Ωθ) (we suppress the subscripts in this proof). Since ρn depends on the
first variable only, we clearly have ∇(ρ−2

n ) = (−2ρ−3∂1ρ, 0, 0). Introducing an
auxiliary function vn(t) := ρ−1

n u(t), one finds

‖ρ−1
n ∇u(t)‖2 = ‖∇vn(t)‖2 + ‖(∂1ρn/ρn) vn(t)‖2 + 2ℜ

(

vn(t), (∂1ρn/ρn) ∂1vn(t)
)

,

ℜ
(

u(t)∇ρ−2
n ,∇u(t)

)

= −2‖(∂1ρn/ρn) vn(t)‖2 − 2ℜ
(

vn(t), (∂1ρn/ρn) ∂1vn(t)
)

.

Combining these two identities and substituting the explicit expression for ρ,
we see that the right hand side of (4.7) equals

−‖∇vn(t)‖2 + E1‖vn(t)‖2 + ‖(∂1ρn/ρn) vn(t)‖2

= −‖∇vn(t)‖2 + E1‖vn(t)‖2 + ‖χnρvn(t)‖2 − ‖χnρ2vn(t)‖2 (4.8)

≤ (1 − cH) ‖χnρvn(t)‖2 − ‖χnρ2vn(t)‖2 .

Here χn denotes the characteristic function of the set Ωnθ := Ωθ ∩{supp(∂1ρn)},
and the inequality follows from Theorem 3.1 and an obvious inclusion Ωnθ ⊂ Ωθ.
Substituting back the solution u(t), we finally arrive at

1

2

d

dt
‖ρ−1
n u(t)‖2 ≤ (1− cH) ‖χnρvn(t)‖2 − ‖χnρ2vn(t)‖2

≤ (1− cH) ‖χnρvn(t)‖2 . (4.9)

Now, using the monotone convergence theorem and recalling the initial data
to which we restrict in the hypotheses of the theorem, the last estimate implies
that u(t) belongs to L2(Ωθ, ρ

−2) and that it remains true after passing to the
limit n→ ∞, i.e.,

1

2

d

dt
‖ρ−1u(t)‖2 ≤ (1− cH) ‖u(t)‖2 . (4.10)
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At the same time, we have

1

2

d

dt
‖u(t)‖2 = −

(

‖∇u(t)‖2 − E1‖u(t)‖2
)

≤ −cH ‖ρu(t)‖2

≤ −cH
‖u(t)‖4

‖ρ−1u(t)‖2 , (4.11)

where the equality follows from (4.1), the first inequality follows from Theo-
rem 3.1 and the last inequality is established by means of the Schwarz inequal-
ity.

Summing up, in view of (4.11) and (4.10), a(t) := ‖u(t)‖2 and b(t) :=
‖ρ−1u(t)‖2 satisfy the system of differential inequalities

ȧ ≤ −2 cH
a2

b
, ḃ ≤ 2 (1− cH) a , (4.12)

with the initial conditions a(0) = ‖u0‖2 =: a0 and b(0) = ‖ρ−1u0‖2 =: b0. We
distinguish two cases:

1. cH ≥ 1. In this case, it follows from the second inequality of (4.12) that b
is decreasing. Solving the first inequality of (4.12) with b being replaced by b0,
we then get

a(t) ≤ a0
[

1 + 2 cH (a0/b0) t
]−1

.

Dividing this inequality by b0 and maximizing the resulting right hand side with
respect to a0/b0 ∈ (0, 1), we finally get

∀t ∈ [0,∞) , ‖u(t)‖ ≤ ‖ρ−1u0‖ (1 + 2 cH t)
−1/2

, (4.13)

which in particular implies (4.6).

2. cH ≤ 1. We “linearize” (4.12) by replacing one a of the square on the right
hand side of first inequality by employing the second inequality of (4.12):

ȧ

a
≤ −2 cH

a

b
≤ − cH

1− cH

ḃ

b
.

This leads to
a/a0 ≤ (b/b0)

−
cH

1−cH .

Using this estimate in the original, non-linearized system (4.12), i.e. solving the
system by eliminating b from the first and a from the second inequality of (4.12),
we respectively obtain

a(t) ≤ a0
[

1 + 2 (a0/b0) t
]−cH

, b(t) ≤ b0
[

1 + 2 (a0/b0) t
]1−cH

.

Dividing the first inequality by b0 and maximizing the resulting right hand side
with respect to a0/b0 ∈ (0, 1), we finally get

∀t ∈ [0,∞) , ‖u(t)‖ ≤ ‖ρ−1u0‖ (1 + 2 t)−cH/2 , (4.14)

which is equivalent to (4.6).
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Remark 4.1. We see that the power in the polynomial decay rate of Theorem 4.2
diminishes as cH → 0. Let us now argue that this cannot be improved by the
present method of proof. Indeed, the first inequality of (4.11) is an application
of the Hardy inequality of Theorem 3.1 and the second one is sharp. The
Hardy inequality is also applied in the first inequality of (4.9). In the second
inequality of (4.9), however, we have neglected a negative term. Applying the
second inequality of (4.11) to it instead, we conclude with an improved system
of differential inequalities

ȧ ≤ −2 cH
a2

b
, ḃ ≤ 2 (1− cH) a− 2

a2

b
. (4.15)

The corresponding system of differential equations has the explicit solution

ã(t) = a0

(

ξ0

W
[

ξ0 exp (ξ0 + 2t)
]

)cH

, b̃(t) = a(t)
(

1 +W
[

ξ0 exp (ξ0 + 2t)
]

)

,

where ξ0 := b0/a0 − 1 > 0 and W denotes the Lambert W function (product
log), i.e. the inverse function of w 7→ w exp(w). Since

W
[

ξ0 exp (ξ0 + 2t)
]

= 2 t+ o(t) as t→ ∞ ,

we see that the t−cH/2 decay in (4.6) for cH < 1 cannot be improved by replac-
ing (4.12) with (4.15).

Remark 4.2. Note that the hypothesis (1.3) is not explicitly used in the proof of
Theorem 4.2, it is just required that the inequality (3.5) holds with some positive
constant cH . For tubes satisfying (1.3), however, we know from Proposition 3.3
that the constant cannot exceed the value 1/2. Consequently, irrespectively of
the strength of twisting, Theorem 4.2 never represents an improvement upon
Theorem 4.1. This is what we mean by the failure of a direct energy argument
based on the Hardy inequality of Theorem 3.1.

5 The self-similarity transformation

Let us now turn to a completely different approach which leads to an improved
decay rate regardless of the smallness of twisting.

5.1 Straightening of the tube

First of all, we reconsider the heat equation (4.1) in an untwisted tube Ω0 by
using the change of variables defined by the mapping Lθ. In view of the unitary
transform (2.2), one can identify the Dirichlet Laplacian in L2(Ωθ) with the
operator (2.5) in L2(Ω0), and it is readily seen that (4.1) is equivalent to

ut +Hθu− E1u = 0 in Ω0 × (0,∞) ,

plus the Dirichlet boundary conditions on ∂Ω0 and an initial condition at t = 0.
(We keep the same latter u for the solutions transformed to Ω0.) More precisely,
the weak formulation (4.2) is equivalent to

〈

v, u′(t)
〉

+Qθ
(

v, u(t)
)

− E1

(

v, u(t)
)

L2(Ω0)
= 0 (5.1)
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for each v ∈ H1
0 (Ω0) and a.e. t ∈ [0,∞), with u(0) = u0 ∈ L2(Ω0). Here 〈·, ·〉

denotes the pairing of H1
0 (Ω0) and H−1(Ω0). We know that the transformed

solution u belongs to C0
(

[0,∞), L2(Ω0)
)

by the semigroup theory.

5.2 Changing the time

The main idea is to adapt the method of self-similar solutions used in the case of
the heat equation in the whole Euclidean space by Escobedo and Kavian [8] to
the present problem. We perform the self-similarity transformation in the first
(longitudinal) space variable only, while keeping the other (transverse) space
variables unchanged.

More precisely, we consider a unitary transformation Ũ on L2(Ω0) which
associates to every solution u ∈ L2

loc

(

(0,∞), dt;L2(Ω0, dx)
)

of (5.1) a self-similar

solution ũ := Ũu in a new s-time weighted space L2
loc

(

(0,∞), esds;L2(Ω0, dy)
)

via (1.12). The inverse change of variables is given by

u(x1, x2, x3, t) = (t+ 1)−1/4 ũ
(

(t+ 1)−1/2x1, x2, x3, log(t+ 1)
)

.

When evolution is posed in that context, y = (y1, y2, y3) plays the role of space
variable and s is the new time. One can check that, in the new variables, the
evolution is governed by (1.13).

More precisely, the weak formulation (5.1) transfers to

〈

ṽ, ũ′(s)− 1
2 y1∂1ũ(s)

〉

+ Q̃s
(

ṽ, ũ(s)
)

− E1 e
s
(

ṽ, ũ(s)
)

L2(Ω0)
= 0 (5.2)

for each ṽ ∈ H1
0 (Ω0) and a.e. s ∈ [0,∞), with ũ(0) = ũ0 := Ũu0 = u0.

Here Q̃s(·, ·) denotes the sesquilinear form associated with

Q̃s[ũ] := ‖∂1ũ− σs ∂τ ũ‖2L2(Ω0)
+ es ‖∇′ũ‖2L2(Ω0)

− 1

4
‖ũ‖2L2(Ω0)

,

ũ ∈ D(Q̃s) := H1
0 (Ω0) ,

where σs has been introduced in (1.14).
Note that the operator H̃s in L

2(Ω0) associated with the form Q̃s has s-time-
dependent coefficients, which makes the problem different from the whole-space
case. In particular, the twisting represented by the function (1.14) becomes
more and more “localized” in a neighbourhood of the origin y1 = 0 for large
time s.

5.3 The natural weighted space

Since Ũ acts as a unitary transformation on L2(Ω0), it preserves the space norm
of solutions of (5.1) and (5.2), i.e.,

‖u(t)‖L2(Ω0) = ‖ũ(s)‖L2(Ω0) . (5.3)

This means that we can analyse the asymptotic time behaviour of the former
by studying the latter.

However, the natural space to study the evolution (5.2) is not L2(Ω0) but
rather the weighted space (1.8). For k ∈ Z, we define

Hk := L2
(

Ω0,K
k(y1) dy1dy2dy3

)

.
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Hereafter we abuse the notation a bit by denoting by K, initially introduced as
a function on Ωθ in (1.8), the analogous function on R too. Note that K−1/2 is
the first eigenfunction of the harmonic-oscillator Hamiltonian

h := − d2

dy21
+

1

16
y21 in L2(R) (5.4)

(i.e. the Friedrichs extension of this operator initially defined on C∞
0 (R)). The

advantage of reformulating (5.2) in H1 instead of H0 = L2(Ω0) lies in the fact
that then the governing elliptic operator has compact resolvent, as we shall see
below (cf Proposition 5.3).

Let us also introduce the weighted Sobolev space

H1
k := H1

0

(

Ω0,K
k(y1) dy1dy2dy3

)

,

defined as the closure of C∞
0 (Ω0) with respect to the norm (‖·‖2Hk

+‖∇·‖2Hk
)1/2.

Finally, we denote by H−1
k the dual space to H1

k.

5.4 The evolution in the weighted space

We want to reconsider (1.13) as a parabolic problem posed in the weighted
space H1 instead of H0. We begin with a formal calculation. Choosing ṽ(y) :=
K(y1)v(y) for the test function in (5.2), where v ∈ C∞

0 (Ω0) is arbitrary, we can
formally cast (5.2) into the form

〈

v, ũ′(s)
〉

+ as
(

v, ũ(s)
)

= 0 . (5.5)

Here 〈·, ·〉 denotes the pairing of H1
1 and H−1

1 , and

as(v, ũ) :=
(

∂1v − σs ∂τv, ∂1ũ− σs ∂τ ũ
)

H1
+ es

(

∇′v,∇′ũ
)

H1

− E1 e
s
(

v, ũ
)

H1
− 1

2

(

y1 v, σs ∂τ ũ
)

H1
− 1

4

(

v, ũ
)

H1
.

Note that as is not a symmetric form.
Of course, the formulae are meaningless in general, because the solution ũ(s)

and its derivative ũ′(s) may not belong to H1
1 and H−1

1 , respectively. We there-
fore proceed conversely by showing that (5.5) is actually well posed in H1 and
that the solution solves (5.2) too. As for the former, we have:

Proposition 5.1. For any u0 ∈ H1, there exists a unique function ũ such that

ũ ∈ L2
loc

(

(0,∞);H1
1

)

∩ C0
(

[0,∞);H1

)

, ũ′ ∈ L2
loc

(

(0,∞);H−1
1

)

,

and it satisfies (5.5) for each v ∈ H1
1 and a.e. s ∈ [0,∞), and ũ(0) = u0.

Proof. First of all, let us show that as is well-defined as a sesquilinear form
with domain D(as) := H1

1 for any fixed s ∈ [0,∞). In view of the boundedness
of σs (for every finite s) and the estimate (2.4), it only requires to check that
y1v ∈ H1 provided v ∈ H1

1. Let v ∈ C∞
0 (Ω0). Then

‖y1v‖2H1
= 2

∫

Ω0

y1 |v(y)|2
dK(y1)

dy1
dy

= −2

∫

Ω0

{

|v(y)|2 + 2 y1ℜ
[

v̄(y)∂1v(y)
]

}

K(y1) dy

≤ 4 ‖y1v‖H1
‖∂1v‖H1

.
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Consequently,
‖y1v‖H1

≤ 4 ‖∂1v‖H1
≤ 4 ‖v‖H1

1
. (5.6)

By density, this inequality extends to all v ∈ H1
1. Hence, as(v, u) is well defined

for all s ≥ 0 and v, u ∈ H1
1 (we suppress the tilde over u in the rest of the

proof). Then the Proposition follows by a theorem of J. L. Lions [1, Thm. X.9]
about weak solutions of parabolic equations with time-dependent coefficients.
We only need to verify its hypotheses:

1. Measurability. The function s 7→ as(v, u) is clearly measurable on [0,∞) for
all v, u ∈ H1

1, since it is in fact continuous.

2. Boundedness. Let s0 be an arbitrary positive number. Using the bound-
edness of θ̇, the estimates (2.4) and (5.6), it is quite easy to show that there
is a constant C, depending uniquely on s0, ‖θ̇‖L∞(R) and the geometry of ω
(through a and E1), such that

|as(v, u)| ≤ C ‖v‖H1
1
‖u‖H1

1
(5.7)

for all s ∈ [0, s0] and v, u ∈ H1
1.

3. Coercivity. Recall that as is not symmetric and that we consider complex
functional spaces. However, since the real and imaginary parts of the solution ũ
of (5.5) evolve independently, one may restrict to real-valued functions v and ũ
there. Alternatively, it is enough to check the coercivity of the real part of as.
We therefore need to show that there are positive constants ǫ and C such that
the inequality

ℜ{as[v]} ≥ ǫ ‖v‖2H1
1
− C ‖v‖2H1

(5.8)

holds for all v ∈ H1
1 and s ∈ [0, s0], where as[v] := as(v, v). We have

ℜ{as[v]} = ‖∂1v − σs ∂τv‖2H1
+ es ‖∇′v‖2H1

− E1 e
s ‖v‖2H1

− 1

4
‖v‖2H1

− 1

2
ℜ (y1 v, σs ∂τv)H1

(5.9)

for all v ∈ H1
1. For every v ∈ C∞

0 (Ω0), an integration by parts shows that:

ℜ (y1 v, σs ∂τv)H1
= 0 ; (5.10)

by density, this result extends to all v ∈ H1
1. Hence, the mixed term in (5.9)

vanishes. We continue with estimating the first term on the right hand side
of (5.9):

‖∂1v − σs ∂τv‖2H1
≥ ǫ ‖∂1v‖2H1

− ǫ

1− ǫ
‖σs ∂τv‖2H1

≥ ǫ ‖∂1v‖2H1
− ǫ

1− ǫ
es ‖θ̇‖L∞(R) a

2 ‖∇′v‖2H1

valid for every ǫ ∈ (0, 1) and v ∈ H1
1. Here the second inequality follows from

the definition of σs in (1.14) and the estimate (2.4). Using (3.1) with help of
Fubini’s theorem, we therefore have

‖∂1v − σs ∂τv‖2H1
+ (1− ǫ) es ‖∇′v‖2H1

≥ ǫ ‖∂1v‖2H1
+ E1 e

s

(

1− ǫ− ǫ

1− ǫ
‖θ̇‖L∞(R) a

2

)

‖v‖2H1
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provided that ǫ is sufficiently small (so that the expression in the round brackets
is positive). Putting this inequality into (5.9), recalling (5.10) and using the
trivial bounds 1 ≤ es ≤ es0 for s ∈ [0, s0], we conclude with

ℜ{as[v]} ≥ ǫ ‖∇v‖2H1
−
[

E1 e
s0

(

ǫ +
ǫ

1− ǫ
‖θ̇‖L∞(R) a

2

)

+
1

4

]

‖v‖2H1
,

valid for all sufficiently small ǫ and all real-valued v ∈ H1
1. It is clear that the

last inequality can be cast into the form (5.8), with a constant ǫ depending on a
and ‖θ̇‖L∞(R), and a constant C depending on s0, ‖θ̇‖L∞(R) and the geometry
of ω (through a and E1).

Now it follows from [1, Thm. X.9] that the unique solution ũ of (5.5) satisfies

ũ ∈ L2
(

(0, s0);H1
1

)

∩ C0
(

[0, s0];H1

)

, ũ′ ∈ L2
(

(0, s0);H−1
1

)

.

Since s0 is an arbitrary positive number here, we actually get a global continuous
solution in the sense that ũ ∈ C0

(

[0,∞);H1

)

.

Remark 5.1. As a consequence of (5.7), (5.8) and the Lax-Milgram theorem, it
follows that the form as is closed on its domain H1

1.

Now we are in a position to prove a partial equivalence of evolutions (5.2)
and (5.5).

Proposition 5.2. Let u0 ∈ H1. Let ũ be the unique solution to (5.5) for each

v ∈ H1
1 and a.e. s ∈ [0,∞), subject to the initial condition ũ(0) = u0, that is

specified in Proposition 5.1. Then ũ is also the unique solution to (5.2) for each
ṽ ∈ H1

0 and a.e. s ∈ [0,∞), subject to the same initial condition.

Proof. Choosing v(y) := K(y1)
−1 ṽ(y) for the test function in (5.5), where ṽ ∈

C∞
0 (Ω0) is arbitrary, one easily checks that ũ satisfies (5.2) for each ṽ ∈ C∞

0 (Ω0)
and a.e. s ∈ [0,∞). By density, this result extends to all ṽ ∈ H1

0.

5.5 Reduction to a spectral problem

As a consequence of the previous subsection, reducing the space of initial data,
we can focus on the asymptotic time behaviour of the solutions to (5.5). Choos-
ing v := ũ(s) in (5.5) (and possibly combining with the conjugate version of the
equation if we allow non-real initial data), we arrive at the identity

1

2

d

ds
‖ũ(s)‖2H1

= −J (1)
s [ũ(s)] , (5.11)

where J
(1)
s [ũ] := ℜ{as[ũ]}, ũ ∈ D(J

(1)
s ) := D(as) = H1

1 (independent of s).
Recalling (5.9) and (5.10), we have

J (1)
s [ũ] = ‖∂1ũ− σs ∂τ ũ‖2H1

+ es ‖∇′ũ‖2H1
− E1 e

s ‖ũ‖2H1
− 1

4
‖ũ‖2H1

.

As a consequence of (5.7), (5.8) and the Lax-Milgram theorem, we know that

J
(1)
s is closed on its domain H1

1. It remains to analyse the coercivity of the

form J
(1)
s .
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More precisely, as usual for energy estimates, we replace the right hand side
of (5.11) by the spectral bound, valid for each fixed s ∈ [0,∞),

∀ũ ∈ H1
1 , J (1)

s [ũ] ≥ µ(s) ‖ũ‖2H1
, (5.12)

where µ(s) denotes the lowest point in the spectrum of the self-adjoint opera-

tor T
(1)
s in H1 associated with J

(1)
s . Then (5.11) together with (5.12) implies

the exponential bound

∀s ∈ [0,∞) , ‖ũ(s)‖H1
≤ ‖ũ0‖H1

e−
R

s

0
µ(r)dr , (5.13)

In this way, the problem is reduced to a spectral analysis of the family of oper-

ators {T (1)
s }s≥0.

5.6 Removing the weight

In order to investigate the operator T
(1)
s in H1, we first map it into a unitarily

equivalent operator T
(0)
s inH0. This can be carried out via the unitary transform

U0 : H1 → H0 defined by

(U0u)(y) := K1/2(y1)u(y) .

We define T
(0)
s := U0T

(1)
s U−1

0 , which is the self-adjoint operator associated with

the quadratic form J
(0)
s [v] := J

(1)
s [U−1

0 v], v ∈ D(J
(0)
s ) := U0 D(J

(1)
s ). A straight-

forward calculation yields

J (0)
s [v] = ‖∂1v − σs ∂τv‖2H0

+
1

16
‖y1v‖2H0

+ es ‖∇′v‖2H0
− E1 e

s ‖v‖2H0
. (5.14)

It is easy to verify that the domain of J
(0)
s coincides with the closure of

C∞
0 (Ω0) with respect to the norm (‖ · ‖2H0

+ ‖∇ · ‖2H0
+ ‖y1 · ‖2H0

)1/2. In par-

ticular, D(J
(0)
s ) is independent of s. Moreover, since this closure is compactly

embedded in H0 (one can employ the well-known fact that (5.4) has purely
discrete spectrum, which essentially uses the fact that the form domain of h is

compactly embedded in L2(R)), it follows that T
(0)
s (and therefore T

(1)
s ) is an

operator with compact resolvent. In particular, we have:

Proposition 5.3. T
(1)
s ≃ T

(0)
s have purely discrete spectrum for all s ∈ [0,∞).

Consequently, µ(s) is the lowest eigenvalue of T
(1)
s .

5.7 The asymptotic behaviour of the spectrum

In order to study the decay rate via (5.13), we need information about the limit
of the eigenvalue µ(s) as the time s tends to infinity.

Since the function σs from (1.14) converges in the distributional sense to
a multiple of the delta function supported at zero as s → ∞, it is expectable

(cf (5.14)) that the operator T
(0)
s will converge, in a suitable sense, to the one-

dimensional operator h from (5.4) with an extra Dirichlet boundary condition
at zero. More precisely, the limiting operator, denoted by hD, is introduced as
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the self-adjoint operator in L2(R) whose quadratic form acts in the same way
as that of h but has a smaller domain

D(h
1/2
D ) :=

{

ϕ ∈ D(h1/2) | ϕ(0) = 0
}

.

Alternatively, the form domain D(h
1/2
D ) is the closure of C∞

0 (R \ {0}) with
respect to the norm (‖ · ‖2L2(R) + ‖∇ · ‖2L2(R) + ‖y1 · ‖2L2(R))

1/2.

To make this limit rigorous (T
(0)
s and hD act in different spaces), we fol-

low [10] and decompose the Hilbert space H0 into an orthogonal sum

H0 = H1 ⊕ H
⊥
1 ,

where the subspace H1 consists of functions of the form ψ1(y) = ϕ(y1)J1(y
′).

Recall that J1 denotes the positive eigenfunction of −∆ω
D corresponding to E1,

normalized to 1 in L2(ω). Given any ψ ∈ H0, we have the decomposition
ψ = ψ1 + φ with ψ1 ∈ H1 as above and φ ∈ H⊥

1 . The mapping π : ϕ 7→ ψ1 is
an isomorphism of L2(R) onto H1. Hence, with an abuse of notations, we may
identify any operator h on L2(R) with the operator πhπ−1 acting on H1 ⊂ H0.

Proposition 5.4. Let Ωθ be twisted with θ ∈ C1(R). Suppose that θ̇ has com-

pact support. Then T
(0)
s converges to hD ⊕ 0⊥ in the strong-resolvent sense as

s→ ∞, i.e., for every F ∈ H0,

lim
s→∞

∥

∥

∥

(

T (0)
s + 1

)−1
F −

[

(

hD + 1
)−1 ⊕ 0⊥

]

F
∥

∥

∥

H0

= 0 .

Here 0⊥ denotes the zero operator on the subspace H⊥
1 ⊂ H0.

Proof. For any fixed F ∈ H0 and sufficiently large positive number z, let us set

ψs := (T
(0)
s + z)−1F . In other words, ψs satisfies the resolvent equation

∀v ∈ D(J (0)
s ) , J (0)

s (v, ψs) + z (v, ψs)H0
= (v, F )H0

. (5.15)

In particular, choosing ψs for the test function v in (5.15), we have

‖∂1ψs − σs ∂τψs‖2H0
+

1

16
‖y1ψs‖2H0

+ es
(

‖∇′ψs‖2H0
−E1‖ψs‖2H0

)

+ z ‖ψs‖2H0

= (ψs, F )H0
≤ 1

4
‖ψs‖2H0

+ ‖F‖2H0
. (5.16)

Henceforth we assume that z > 1/4.
We employ the decomposition ψs(y) = ϕs(y1)J1(y1)+φs(y) where φs ∈ H⊥

1 ,
i.e.,

∀y1 ∈ R ,
(

J1, φs(y1, ·)
)

L2(ω)
= 0 . (5.17)

Then, for every ǫ ∈ (0, 1),

‖∇′ψs‖2H0
− E1‖ψs‖2H0

= ǫ‖∇′φs‖2H0
+ (1− ǫ)‖∇′φs‖2H0

− E1‖φs‖2H0

≥ ǫ‖∇′φs‖2H0
+
[

(1− ǫ)E2 − E1

]

‖φs‖2H0
,

where E2 denotes the second eigenvalue of −∆ω
D. Since E1 is (strictly) less

then E2, we can choose the ǫ so small that (5.16) implies

‖φs‖2H0
≤ Ce−s and ‖∇′φs‖2H0

≤ Ce−s , (5.18)
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where C is a constant depending on ω and ‖F‖H0
. At the same time, (5.16)

yields

‖ϕs‖L2(R) ≤ C , ‖y1ϕs‖L2(R) ≤ C , and ‖y1φs‖H0
≤ C , (5.19)

where C is a constant depending on ‖F‖H0
.

To get an estimate on the longitudinal derivative of ψs, we handle the first
three terms on left hand side of (5.16) as follows. Defining a new function us ∈
H0 by ψs(y) = es/4us(e

s/2y1, y
′) (cf the self-similarity transformation (1.12))

and making the change of variables (x1, x
′) = (es/2y1, y

′), we have

J (0)
s [ψs] = es‖∂1us − θ̇ ∂τus‖2H0

+
e−s

16
‖x1us‖2H0

+ es
(

‖∇′us‖2H0
− E1‖us‖2H0

)

≥ es
{

‖∂1us − θ̇ ∂τus‖2H0
+ ‖∇′us‖2H0

− E1‖us‖2H0

}

≥ es cH ‖ρus‖2H0
,

= es cH ‖ρsψs‖2H0
, where ρs(y) := ρ(es/2y1, y

′) . (5.20)

In the second inequality we have employed the Hardy inequality of Theorem 3.1;
the constant cH is positive by the hypothesis. Consequently, (5.16) yields

‖ρsψs‖2H0
≤ Ce−s , (5.21)

where C is a constant depending on θ̇, ω and ‖F‖H0
. Now, proceeding as in the

proof of (3.8), we get

‖∂1ψs − σs ∂τψs‖2H0
+ es

(

‖∇′ψs‖2H0
− E1‖ψs‖2H0

)

≥ ǫ ‖∂1ψs‖2H0
− ǫ

1− ǫ
‖θ̇‖2L∞(R) a

2E1 e
s ‖ψs‖2L2(Is×ω)

for every ǫ <
(

1+ a2‖θ̇‖2L∞(R)

)−1
, where Is := e−s/2I ≡ {e−s/2x1 |x1 ∈ I} with

I := (inf supp θ̇, sup supp θ̇). Since

‖ψs‖L2(Is×ω) ≤ C ‖ρsψs‖H0
, (5.22)

where C is a constant depending exclusively on I, (5.16) together with (5.21)
implies ‖∂1ψs‖2H0

≤ C, where C is a constant depending on θ̇, ω and ‖F‖H0
.

Recalling (5.17), we therefore get the separate bounds

‖∂1φs‖H0
≤ C and ‖ϕ̇s‖L2(R) ≤ C , (5.23)

with the same constant C.
By (5.18), φs converges strongly to zero inH0 as s→ ∞. Moreover, it follows

from (5.18), (5.19) and (5.23) that {φs}s≥0 is a bounded family in D(J
(0)
s ).

Consequently, φs converges weakly to zero in D(J
(0)
s ) as s→ ∞.

At the same time, it follows from (5.19) and (5.23) that {ϕs}s≥0 is a bounded
family in D(h1/2). Therefore it is precompact in the weak topology of D(h1/2).
Let ϕ∞ be a weak limit point, i.e., for an increasing sequence of positive numbers
{sn}n∈N such that sn → ∞ as n → ∞, {ϕsn}n∈N converges weakly to ϕ∞ in
D(h1/2). Actually, we may assume that it converges strongly in L2(R) because
D(h1/2) is compactly embedded in L2(R).
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Employing (5.17), (5.21) together with (5.22) gives

‖ϕs‖2L2(Is)
≤ Ce−s , (5.24)

where C is a constant depending on θ̇, ω and ‖F‖H0
. Multiplying this inequality

by es/2 and taking the limit s→ ∞, we verify that

ϕ∞(0) = 0 . (5.25)

(We note that D(h1/2) ⊂ H1(R) and that H1(J) is compactly embedded in
C0,λ(J) for every λ ∈ (0, 1/2) and any bounded interval J ⊂ R.)

Finally, let ϕ ∈ C∞
0 (R\{0}) be arbitrary. Taking v(x) := ϕ(x1)J1(x

′) as the
test function in (5.15), with s being replaced by sn, and sending n to infinity,
we easily check that

(ϕ̇, ϕ̇∞)L2(R) +
1

16
(y1ϕ, y1ϕ∞)L2(R) + z (ϕ, ϕ∞)L2(R) = (ϕ, f)L2(R) ,

where f(x1) := (J1, F (x1, ·))L2(ω). That is, ϕ∞ = (hD + z)−1f , for any weak
limit point of {ϕs}s≥0.

Summing up, we have shown that ψs converges strongly to ψ∞ in H0 as
s→ ∞, where ψ∞(y) := ϕ∞(y1)J1(y

′) =
[

(hD + z)−1 ⊕ 0⊥
]

F .

Remark 5.2. The crucial step in the proof is certainly the usage of the Hardy
inequality in the second inequality of (5.20). Indeed, it enables one to control
the mixed terms coming from the first term on the left hand side of (5.16). We
would like to mention that instead of the Hardy inequality itself we could have
used in (5.20) the corner-stone Lemma 3.1. This would leave to the lower bound

J
(0)
s [ψs] ≥ es λ(θ̇, I) ‖ψs‖2L2(Is×ω)

, which is sufficient to conclude the proof in the
same way as above.

Corollary 5.1. Let Ωθ be twisted with θ ∈ C1(R). Suppose that θ̇ has compact

support. Then

lim
s→∞

µ(s) = 3/4 .

Proof. In general, the strong-resolvent convergence of Proposition 5.4 is not
enough to guarantee the convergence of spectra. However, in our case, since the
spectra are purely discrete, the eigenprojections converge even in norm (cf [23]).
In particular, µ(s) converges to the first eigenvalue of hD. It remains to notice
that the first eigenvalue of hD coincides (in view of the symmetry) with the
second eigenvalue of h which is 3/4. (For the spectrum of h, see any textbook
dealing with quantum harmonic oscillator, e.g., [13, Sec. 2.3].)

5.8 The improved decay rate - Proof of Theorem 1.1

Now we have all the prerequisites to prove Theorem 1.1. Recall that the iden-
tity Γ(Ωθ) = 1/4 for untwisted tubes is already established by Corollary 4.2.
Throughout this subsection we therefore assume that Ωθ is twisted with (1.3)
and show that there is an extra decay rate.

We come back to (5.13). It follows from Corollary 5.1 that for arbitrarily
small positive number ε there exists a (large) positive time sε such that for all
s ≥ sε, we have µ(s) ≥ 3/4− ε. Hence, fixing ε > 0, for all s ≥ sε, we have

−
∫ s

0

µ(r) dr ≤ −
∫ sε

0

µ(r) dr−(3/4− ε)(s− sε) ≤ (3/4− ε)sε−(3/4− ε)s ,
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where the second inequality is due to the fact that µ(s) is non-negative for all
s ≥ 0 (it is in fact greater than 1/4, cf Proposition 5.5). At the same time,
assuming ε ≤ 3/4, we trivially have

−
∫ s

0

µ(r) dr ≤ 0 ≤ (3/4− ε)sε−(3/4− ε)s

also for all s ≤ sε. Summing up, (5.13) implies

‖ũ(s)‖H1
≤ Cε e

−(3/4−ε)s ‖ũ0‖H1
(5.26)

for every s ∈ [0,∞), where Cε := esε ≥ e(3/4−ε)sε . Returning to the variables
in the straightened tube via u = Ũ−1ũ, using (5.3) together with the point-wise
estimate 1 ≤ K, and recalling that ũ0 = u0, it follows that

‖u(t)‖H0
= ‖ũ(s)‖H0

≤ ‖ũ(s)‖H1
≤ Cε (1 + t)−(3/4−ε) ‖u0‖H1

for every t ∈ [0,∞). Finally, we recall that the weight K in H1 depends on the
longitudinal variable only, which is therefore left invariant by the mapping Lθ.
Consequently, we apply the unitary transform (2.2) and conclude with

‖S(t)‖L2(Ωθ,K)→L2(Ωθ) = sup
u0∈H1\{0}

‖u(t)‖H0

‖u0‖H1

≤ Cε (1 + t)−(3/4−ε)

for every t ∈ [0,∞). Since ε can be made arbitrarily small, this bound implies
Γ(Ωθ) ≥ 3/4 and concludes thus the proof of Theorem 1.1.

5.9 The improved decay rate - an alternative statement

Theorem 1.1 provides quite precise information about the extra polynomial
decay of solutions u of (1.2) in a twisted tube in the sense that the decay
rate Γ(Ωθ) is at least three times better than in the untwisted case. On the
other hand, we have no control over the constant CΓ in (1.9) (in principle it
may blow up as Γ → Γ(Ωθ)). As an alternative result, we therefore present also
the following theorem, where we get rid of the constant CΓ but the prize we pay
is just a qualitative knowledge about the decay rate.

Theorem 5.1. Let θ ∈ C1(R) satisfy (1.3). We have

∀t ≥ 0 , ‖S(t)‖L2(Ωθ,K)→L2(Ωθ) ≤ (1 + t)
−(γ+1/4)

, (5.27)

where γ is a non-negative constant depending on θ̇ and ω. Moreover, γ is positive

if, and only if, Ωθ is twisted.

In order to establish Theorem 5.1, the asymptotic result of Corollary 5.1
need to be supplied with information about values of µ(s) for finite times s.

5.9.1 Singling the dimensional decay rate out

It follows from Theorem 4.1 that there is at least a 1/4 polynomial decay rate
for the solutions of the heat equations. In the setting of self-similar solutions
(recall (5.13) and the relation between the initial and self-similar times t and s
given by (1.12)), this will be reflected in that we actually have µ(s) ≥ 1/4,
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regardless whether the tube is twisted or not. It is therefore natural to study

rather the shifted operator T
(0)
s − 1/4. However, it is not obvious from (5.14)

that such an operator is non-negative.
In order to introduce the shift explicitly into the structure of the oper-

ator, we therefore introduce another unitarily equivalent operator T
(−1)
s :=

U−1T
(0)
s (U−1)

−1 in H−1, where the map U−1 : H0 → H−1 acts in the same
way as U0:

(U−1v)(y) := K1/2(y1) v(y) .

T
(−1)
s is the self-adjoint operator associated with the quadratic form J

(−1)
s [w] :=

J
(0)
s [(U−1)

−1w], w ∈ D(J
(−1)
s ) := U−1 D(J

(0)
s ). Again, it is straightforward to

check that

J (−1)
s [w] = ‖∂1w − σs ∂τw‖2H−1

+ es ‖∇′w‖2H−1
− E1 e

s ‖w‖2H−1
+

1

4
‖w‖2H−1

.

Now it readily follows from the structure of the quadratic form that the

shifted operator T
(−1)
s − 1/4 is non-negative. Moreover, it is positive if, and

only if, the tube is twisted.

Proposition 5.5. If Ωθ is twisted with θ ∈ C1(R), then we have

∀s ∈ [0,∞), µ(s) > 1/4 .

Conversely, µ(s) = 1/4 for all s ∈ [0,∞) if Ωθ is untwisted.

Proof. Since J
(−1)
s [w] − 1

4 ‖w‖2H−1
≥ 0 for every w ∈ D(J

(−1)
s ), we clearly have

µ(s) ≥ 1/4, regardless whether the tube is twisted or not. By definition, if it
is untwisted, then either σs = 0 identically in R for all s ∈ [0,∞) or ∂τJ1 = 0
identically in ω, where J1 is the positive eigenfunction corresponding to E1

of the Dirichlet Laplacian in L2(ω). Consequently, choosing w(y) = J1(y
′) as

a test function for J
(−1)
s , we also get the opposite bound µ(s) ≤ 1/4 in the

untwisted case. To get the converse result, we can proceed exactly as in the
proof of Lemma 3.1: Assuming µ(s) = 1/4 in the twisted case, the variational
definition of the eigenvalue µ(s) would imply

‖σs‖L2(R,K−1) = 0 or ‖∂τJ1‖L2(ω) = 0 ,

a contradiction.

Now we are in a position to prove Theorem 5.1.

5.9.2 Proof of Theorem 5.1

Assume (1.3). It follows from Proposition 5.5 and Corollary 5.1 that the number

γ := inf
s∈[0,∞)

µ(s)− 1/4 (5.28)

is positive if, and only if, Ωθ is twisted. In any case, (5.13) implies

‖ũ(s)‖H1
≤ ‖ũ0‖H1

e−(γ+1/4)s
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for every s ∈ [0,∞). Using this estimate instead of (5.26), but following the
same type of arguments as in Section 5.8 below (5.26), we get

‖S(t)‖L2(Ωθ,K)→L2(Ωθ) ≤ (1 + t)−(γ+1/4)

for every t ∈ [0,∞). This is equivalent to (5.27) and we know that γ is positive
if Ωθ is twisted. On the other hand, in view of Proposition 4.2, estimate (5.27)
cannot hold with positive γ if the tube is untwisted. This concludes the proof
of Theorem 5.1.

6 Conclusions

The classical interpretation of the heat equation (1.2) is that its solution u
gives the evolution of the temperature distribution of a medium in the tube
cooled down to zero on the boundary. It also represents the simplest version
of the stochastic Fokker-Planck equation describing the Brownian motion in Ωθ
with killing boundary conditions. Then the results of the present paper can
be interpreted as that the twisting implies a faster cool-down/death of the
medium/Brownian particle in the tube. Many other diffusive processes in nature
are governed by (1.2).

Our proof that there is an extra decay rate for solutions of (1.2) if the tube is
twisted was far from being straightforward. This is a bit surprising because the
result is quite expectable from the physical interpretation, if one notices that
the twist (locally) enlarges the boundary of the tube, while it (locally) keeps
the volume unchanged. (By “locally” we mean that it is the case for bounded
tubes, otherwise both the quantities are infinite of course.) At the same time,
the Hardy inequality (1.1) did not play a direct role in the proof of Theorems 1.1
and 5.1 (although, combining any of the theorems with Theorem 3.1, we even-
tually know that the existence of the Hardy inequality is equivalent to the extra
decay rate for the heat semigroup). It would be desirable to find a more direct
proof of Theorem 1.1 based on (1.1).

We conjecture that the inequality of Theorem 1.1 can be replaced by equality,
i.e., Γ(Ωθ) = 3/4 if the tube is twisted and (1.3) holds. The study of the
quantitative dependence of the constant γ from Theorem 5.1 on properties of θ̇
and the geometry of ω also constitutes an interesting open problem. Note that
the two quantities are related by γ + 1/4 ≤ Γ(Ωθ).

Throughout the paper we assumed (1.3). We expect that this hypothesis
can be replaced by a mere vanishing of θ̇ at infinity to get Theorems 1.1 and 5.1
(and also Theorem 3.1). This less restrictive assumption is known to be enough
to ensure (1.4) and there exist versions of (1.1) even if (1.3) is violated (cf [18]).
However, it is quite possible that a slower decay of θ̇ at infinity will make the
effect of twisting stronger. In particular, can Γ(Ωθ) be strictly greater than 3/4
if the tube is twisted and θ̇ decays to zero very slowly at infinity?

Equally, it is not clear whether Proposition 3.3 holds if (1.3) is violated.
There are some further open problems related to the Hardy inequality of The-
orem 3.1. In particular, it is frustrating that the proof of the theorem does not
extend to all θ̇ merely vanishing at infinity. In this context, it would be highly
desirable to establish a more quantitative version of Lemma 3.1, i.e. to get a
positive lower bound to λ(θ̇, I) depending explicitly on θ̇, |I| and ω.
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On the other hand, a completely different situation will appear if one allows
twisted tubes for which θ̇ does not vanish at infinity. Then the spectrum of
−∆Ωθ

D can actually start strictly above E1 (cf [9] or [17, Corol. 6.6]) and an
extra exponential decay rate for our semigroup S(t) follows at once already
in L2(Ωθ). In such situations it is more natural to study the decay of the
semigroup associated with −∆Ωθ

D shifted by the lowest point in its spectrum. As
a particularly interesting situation we mention the case of periodically twisted
tubes, for which a systematic analysis based on the Floquet-Bloch decomposition
could be developed in the spirit of [6, 20].

We expect that the extra decay rate will be induced also in other twisted
models for which Hardy inequalities have been established recently [16, 15].

It would be also interesting to study the effect of twisting in other physical
models. As one possible direction of this research, let us mention the question
of the long time behaviour of the solutions to the dissipative wave equation
[11, 12, 19].

Let us conclude the paper by a general conjecture. We expect that there
is always an improvement of the decay rate for the heat semigroup if a Hardy
inequality holds:

Conjecture. Let Ω be an open connected subset of Rd. Let H and H+ be two

self-adjoint operators in L2(Ω) such that inf σ(H) = inf σ(H+) = 0. Assume

that there is a positive smooth function ̺ : Ω → R such that H+ ≥ ̺, while

H − V is a negative operator for any non-negative non-trivial V ∈ C∞
0 (Ω).

Then there exists a positive function K : Ω → R such that

lim
t→∞

‖e−H+t‖L2(Ω,K)→L2(Ω)

‖e−Ht‖L2(Ω,K)→L2(Ω)
= 0 .

A similar conjecture can be stated for the same type of operators in different
Hilbert spaces. In this paper we proved the conjecture for the special situation
where H = H0 − E1 and H+ = Hθ − E1 (transformed Dirichlet Laplacians) in
L2(Ω), with Ω = Ω0 (unbounded tube). In general, the proof seems to be a
hardly accessible problem.
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[3] X. Cabré and Y. Martel, Existence versus explosion instantanée pour des
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