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Abstract

This paper is concerned with the asymptotic stability towards a rarefaction
wave of the solution to an outflow problem for the Navier–Stokes equations in a
compressible fluid in the Eulerian coordinate in the half space. This is the second one
of our series of papers on this subject. In this paper, firstly we classify completely the
time-asymptotic states, according to some parameters, that is the spatial-asymptotic
states and boundary conditions, for this initial boundary value problem, and some
pictures for the classification of time-asymptotic states are drawn in the state space.
In order to prove the stability of the rarefaction wave, we use the solution to Burgers’
equation to construct a suitably smooth approximation of the rarefaction wave and
establish some time-decay estimates in L p-norm for the smoothed rarefaction wave.
We then employ the L2-energy method to prove that the rarefaction wave is non-
linearly stable under a small perturbation, as time goes to infinity.

1. Introduction

In this article, we shall investigate the large-time behavior of the solution to an
outflow problem for the one-dimensional isentropic Navier–Stokes equations for a
compressible fluid in the Eulerian coordinate in the half space. It will be proved
that the solution exists uniquely and converges to a rarefaction wave as time goes
to infinity under some suitable assumptions. This is one of the series of papers by
the authors on this topic. For the so-called outflow (inflow) problems, we refer to
the paper by Matsumura [21] for more details. We are now going to formulate
our problem. The one-dimensional and isentropic motion of compressible viscous
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gas, which is confined in the half space R
+ := {x ∈ R | x > 0}, can be described

by the following system:

ρt + (ρu)x = 0, (1.1)

(ρu)t +
(
ρu2 + p(ρ)

)
x

= (µux )x , (1.2)

which must be satisfied in the domain {(t, x) | t > 0, x > 0}. Here ρ (> 0), u
and p are the mass density, the velocity and the pressure of the gas, respectively.
And p is assumed to be a function of ρ defined by

p = p(ρ) = Kργ .

All the above coefficients µ (> 0), K (> 0) and γ (> 1) are assumed to be con-
stants, andµ is the viscosity coefficient. We do not consider here the linear case, that
is γ = 1. The gas corresponding to this case is ideal. We study the initial-boundary
value problem to the system (1.1) and (1.2) with the following initial data

(ρ, u)(0, x) = (ρ0, u0)(x), for all x > 0, and inf
x>0

ρ0(x) > 0, (1.3)

the boundary condition at the infinity x = +∞
lim

x→∞(ρ, u)(t, x) = (ρ+, u+), for any t � 0, (1.4)

and also the boundary conditions at x = 0

u(t, 0) = ub, for any t � 0. (1.5)

Here, ρ+, u+, ub are given constants satisfying

ρ+ > 0, ub < 0

and ρ0(x), u0(x) are given functions.
We are interested in the so-called outflow problem. For this case the boundary

data is taken as ub < 0. This means physically that the outflow exists constantly
thorough the wall. We note that for the case that ub > 0, the situation is different
and the corresponding problem is called an inflow problem. In that case, for the
well-posedness, one must impose one more boundary condition at x = 0, namely
we must consider a set of boundary conditions of the form

ρ(t, 0) = ρb, u(t, 0) = ub, t � 0. (1.6)

with ρb > 0 and ub > 0. Such an inflow problem is also interesting and has been
studied partly by Matsumura and Nishihara [26], and so on.

We consider the asymptotic stability towards non-linear waves of the solution
to the outflow problem under the space-asymptotic condition (1.4). Moreover, we
assume for simplicity that
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ρ > 0 and u+ �= ub, (1.7)

where the first condition in (1.7) means that no vacuum state is allowed, and the
second one is assumed to avoid some technical difficulties. It can be expected that
as t → ∞, the solution (ρ, u) to the above problem (1.1)–(1.5) is asymptotically
described by one of the following waves, such as a viscous shock wave, a stationary
wave, a rarefaction wave or the superposition of a stationary wave and a rarefac-
tion wave, which can be determined by the space-asymptotic conditions (1.4) and
the boundary data ub. The stability of a stationary wave has been investigated by
Kawashima et al. [10]. The study of the stability of a viscous shock wave or the
superposition of a rarefaction wave and a stationary wave will be carried out in
other papers by the authors. In this paper, we are interested particularly in the case
that the corresponding time-asymptotic state is rarefaction wave, that is sub-case 2
of Case (C) and sub-case 1 of Case (D), see Section 1.1 below.

1.1. Classification of the time-asymptotic states

In this subsection, we shall classify the time-asymptotic states to the initial
boundary value problem (1.1)–(1.5). The system (1.1) and (1.2) with µ = 0 has
two distinct characteristic fields, since we assume that ρ > 0, which correspond
the following two eigenvalues:

λ1(ρ, u) = u − C(ρ), λ2(ρ, u) = u + C(ρ). (1.8)

Here C(ρ) is the sound speed defined by

C(ρ) =
√
γ Kργ−1.

We introduce a new function M = |u|
C(ρ) , which is called the Mach number. We

need especially the quantity at infinity

M+ = |u+|
C(ρ+)

.

For our outflow problem, the second characteristic field that corresponds to the
second eigenvalues λ2(ρ, u) is important. In fact, it is convenient to classify the
time-asymptotic states, according to the sign of λ2(ρ, u) at (ρ+, u+). We classify
it into four cases, and each case is classified furthermore into several sub-cases:

(A) u+ < −C(ρ+), ( that is λ2(ρ+, u+) < 0 and M+ > 1 ),
(B) u+ = −C(ρ+), ( that is λ2(ρ+, u+) = 0 and M+ = 1 ),
(C) −C(ρ+) < u+ < 0, ( that is λ2(ρ+, u+) > 0 with u+ < 0 and M+ < 1 ),
(D) u+ > 0.
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It is easy to see that the values of u+ in the first three cases are taken negative;
however u+ is positive in the fourth case. Clearly, Case A) is the case that (ρ+, u+)
is in the supersonic region, where the Mach number M+ > 1, in the state space with
u+ < 0, while for Cases (B) or (C) the state (ρ+, u+) is in the transonic (M+ = 1)
or subsonic (M+ < 1) region, respectively. In what follows we present a complete
classification of the time-asymptotic states of the solution (ρ, u) by regarding the
boundary data ub, u+, v+ as parameters. From now on, we define

v = 1

ρ
, v+ = 1

ρ+
, . . . , and so on,

where v is the specific volume. Correspondingly, we introduce a new function

Ĉ(v) := C

(
1

v

)
.

We now draw the pictures in the state space which help us to understand this
classification of the non-linear waves.
Case (A): For the supersonic case, u+ < −Ĉ(v+), we have that
There are three sub-cases for this case:

Case 1. ub < u∗: There exists a unique stationary solution (ρ̃, ũ)(x) such that

ũ = u+
v+
ṽ,

with ũ(0) = ub and (ρ̃, ũ)(x) → (ρ+, u+) as x → ∞. ρ̃(0) = 1/vb and vb is
determined by the formula ub = u+

v+ vb. Moreover, we have either (i) If ub < u+,
then ũx > 0, that is ũ is monotonously increasing in x , or (ii) If u+ < ub < u∗,
then ũx < 0, that is ũ is monotonously decreasing in x .

Case 2. ub = u∗: There exists a 2-shock profile (ρ̃, ũ)(x) with speed s = 0
which connects the two states (v∗, u∗) and (v+, u+), and

(ρ̃, ũ)(x) → (ρ+, u+), as x → ∞;
(ρ̃, ũ)(x) → (ρ∗, u∗), as x → −∞.

Case 3. u∗ < ub < 0: We choose (v−, ub) ∈ S2 (S2 is the 2-shock curve,
defined by S2 : u − ub = −√

(v − v−)(p(v−)− p(v)) for v− < v), then there
exists a 2-shock profile (ρ̃, ũ)(x − st) with positive speed s > 0, which connects
(v−, ub) and (v+, u+). Hereafter, we denote ξ := x − st . We find the following
equation:

(ρ̃, ũ)(ξ) → (ρ+, u+), as ξ → ∞;
(ρ̃, ũ)(ξ) → (ρ−, ub), as ξ → −∞.
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Fig. A.

Case (B): The transonic case, that is u+ = −Ĉ(v+). For this case, the values
(v∗, u∗), (v+, u+), which appeared in Case A), satisfy that they now coincide, that is
v∗ = v+, u∗ = u+. Therefore, for this case, we can divide it into two sub-cases:

Case 1. ub < u+: There exists a unique stationary solution (ρ̃, ũ)(x) satisfying

ũ = u+
v+
ṽ, ũx > 0

with ũ(0) = ub and (ρ̃, ũ)(x) → (ρ+, u+) as x → ∞. ρ̃(0) = 1/vb, where vb is
determined by the relation

ub = u+
v+
vb.

Case 2. u+ < ub < 0: We choose (v−, ub) ∈ S2, then there exists 2-shock
profile (ρ̃, ũ)(ξ) with s > 0, which connects (v−, ub) and (v+, u+), and satisfies

(ρ̃, ũ)(ξ) → (ρ+, u+), as ξ → ∞;

(ρ̃, ũ)(ξ) → (ρ−, ub), as ξ → −∞.
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The picture for this case now becomes

Fig. B.

Case (C): The subsonic case. There holds −Ĉ(v+) < u+ < 0.
This case can be divided into three sub-cases:

Case 1. u+ < ub < 0: We choose (v−, ub) ∈ S2, then there exists a 2-shock
profile (ρ̃, ũ)(ξ) with s > 0, which connects (v−, ub) and (v+, u+). Moreover
there holds

(ρ̃, ũ)(ξ) → (ρ+, u+), as ξ → ∞;

(ρ̃, ũ)(ξ) → (ρ−, ub), as ξ → −∞.

Case 2. u∗ � ub < u+: We choose (v−, ub) ∈ R2 (R2 is the 2-rarefaction
curve, defined by R2 : u − ub = − ∫ v

v−
√−p′(y)dy for v− > v), then there exists

a 2-rarefaction wave (ρR, u R)(x/t) (with λ2 � 0), which connects (v−, ub) and
(v+, u+), to the corresponding Riemann problem.

Case 3. ub < u∗: We choose (vb, ub) ∈ L, here L is a line defined by L :=
{(v, u); u = u∗

v∗ v, v > 0}. Then the time-asymptotic state is the superposition of
the rarefaction wave and the stationary solution:
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(
ρAsym, uAsym

)
(x, t) := (ρ̃, ũ)(x)+ (ρR, u R)

( x

t

)
− (ρ∗, u∗),

where (ρ̃, ũ)(x) is the stationary solution connecting (v−, ub) and (v∗, u∗), while
(ρR, u R)

( x
t

)
is the 2-rarefaction wave which connects (v∗, u∗) and (v+, u+).

Fig. C.

Case (D): For u+ > 0, we have

This case also can be divided into three sub-cases:

Case 1. u∗ � ub < 0: Taking (v−, ub) ∈ R2, we then assert that there exists
2-rarefaction wave to the corresponding Riemann problem. The same as sub-Case 2
of Case (C).

Case 2. ub < u∗: We choose (vb, ub)∈L (Here L :={(v, u); u = u∗
v∗ v, v>0}),

then the time-asymptotic state is

(
ρAsym, uAsym

)
(x, t) := (ρ̃, ũ)(x)+ (ρR, u R)

( x

t

)
− (ρ∗, u∗).

The same as sub-Case 3 of Case (C).
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Fig. D.

From the above pictures we can easily see various types of time-asymptotic
states corresponding to the different values of parameters. The classification for
the inflow problem we refer to Matsumura [21]. We should mention here that
the corresponding classification of time-asymptotic states for the non-isentropic
problem (which is a 3 × 3-system) is much more complicated and remains open up
to now.

We now turn to recall some references related to our paper. In [5] Il’in and
Oleinik pioneered the study of stability of non-linear waves to the Cauchy problems
for scalar conservation laws. Since then there have been many mathematicians who
have continued this study, see, for example Freistühler and Serre [1], Goodman
[3], Jones et al. [6], Matsumura and Nishihara [27], Mei [29]. For this kind of
study on Cauchy problems for the p-system and more general systems, we refer
the readers to Kawashima and Matsumura [7,8], Liu [15], Liu and Xin [20],
Matsumura and Nishihara [22–24], etc.

As for the initial boundary value problems, we shall mention Liu et al. [17],
Liu and Nishihara [18], Liu and Yu [19] for the scalar case. However, the follow-
ing papers are concerned with the study on the system of equations: Kawashima
and Nikkuni [9], Kawashima and Tanaka [12], Matsumura and Mei [28],
Matsumura and Nishihara [25], etc. Especially, for the isentropic compressible
Navier–Stokes equations, Matsumura and Nishihara [26] study partly the inflow
problem, while Kawashima et al. [10], and Kawashima and Zhu [30] investigate
the outflow problem. For the non-isentropic compressible Navier–Stokes system,
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under the supervision of the first author, Zhu [30,31] prove the existence and
stability of stationary solution to the initial boundary value problem to this system,
which has been recently extended to a more general case in a work by Kawashima
et al. [14].

Throughout this paper, we use the following:
Notations: Let p be a constant such that 1 � p � ∞, and l be a non-negative
integer. σ ∈ (0, 1) is a constant. We denote the norms of the usual Sobolev spaces
L p(R+) (with p �= 2 and p � 1) and L2(R+) by ‖ · ‖p and ‖ · ‖, respectively.
Bl+σ (R+) denotes the Hölder space of continuous functions f (x), defined in R

+,
which have the Hölder continuous derivatives with exponent σ up to lth order, and
‖ · ‖l+σ is its norm. Hl(R+) is the Sobolev space which is the set of L2(R+)-
functions with the square integrable derivatives up to lth order, and its norm is
denoted by ‖ · ‖Hl . Let QT := (0, t)× R

+. Bσ/2,σ (QT ) denotes the Hölder space
of continuous functions u(t, x) which have the Hölder exponents σ/2 and σ with
respect to t and x , respectively. Its norm is ‖ · ‖σ/2,σ (QT ). B1+σ/2,1+σ (QT ) =
{u ∈ Bσ/2,σ (QT ) : ut , ux ∈ Bσ/2,σ (QT )}, ‖ · ‖1+σ/2,1+σ (QT ) denotes its
norm, and B1+σ/2,2+σ (QT ) = {u ∈ Bσ/2,σ (QT ) : ut , ux , uxx ∈ Bσ/2,σ (QT )},
‖ ·‖1+σ/2,2+σ (QT ) denotes its norm. To simplify the notations, we shall denote the
spaces Bσ/2,σ (QT ), B1+σ/2,1+σ (QT ) and B1+σ/2,2+σ (QT ) by Aσ

T , B1+σ
T and

C2+σ
T , and their norms by | · |σ,T , ‖ · ‖1+σ,T and ‖| · |‖2+σ,T , respectively. Let X be

a Banach space and 0 < t1 < t2 � ∞. We use C([t1, t2]; X) to denote the Banach
space of continuous functions u(t) on [t1, t2] with values in X , and L2(t1, t2; X) to
denote the Banach space of square summable functions u(t) on [t1, t2] with values
in X .

C denotes the universal constant which is independent of t and may vary from
line to line. δ, ε are positive constants which can taken suitably small, we still
denote Cδ,Cε by δ, ε, respectively. �	

Our main results are now stated below:

Theorem 1.1. Assume that ub, u∗ and the infinite states satisfy that ub < 0, and
that either (i) subsonic case (C), namely, −Ĉ(v+) < u+ < 0 and u∗ � ub < u+,
or (ii) u+ > 0 and u∗ � ub < 0.

Suppose furthermore that ρ0 ∈ B1+σ (R+), u0 ∈ B2+σ (R+) for some
σ ∈ (0, 1); and (ρ0 − ρ+, u0 − u+) ∈ H1(R+) × H1(R+), such that δ :=
|ρ+ − ρ−| + |u+ − ub|, ‖(ρ0 − ρ+, u0 − u+)‖H1 are suitably small. And the
compatibility conditions of 0th and 1st order are satisfied.

Then there exists a unique classical global solution (ρ, u)(t, x) to the problem
(1.1)–(1.5), such that for any fixed T > 0

ρ ∈ B1+σ
T , u ∈ C2+σ

T , ρ − ρR, u − u R ∈ C([0,∞); L2(R+));
ρx , ux ∈C([0,∞); L2(R+))∩L2(0,∞; L2(R+)); uxx ∈ L2(0,∞; L2(R+)).

Moreover, we assert that as t → ∞ the solution (ρ, u)(t, x) converges to a rar-
efaction wave (ρR, u R)( x

t ), that is

lim
t→∞ sup

x∈R+

∣∣∣(ρ, u)(t, x)−
(
ρR, u R

) ( x

t

)∣∣∣ = 0.
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Here, the functions ρR
0 = ρR

0 (x), u R
0 = u R

0 (x) are defined by

ρR
0 (x) =

{
ρ+, for x > 0;
ρ−, for x < 0

and u R
0 (x) =

{
u+, for x > 0;
ub, for x < 0.

In the following context, we shall employ the standard continuation argument
based on a local existence theorem and some a priori estimates (see Proposition 3.2)
to prove this theorem. The main difficulties in our proof of Theorem 1.1 arise from
the presence of the boundary condition and that we formulate the problem in the
Eulerian coordinate. For our initial boundary value problem, the classification of
time-asymptotic states is more complicated than the classification for the problem
in the Lagrangian coordinate. There are non-linear waves which are called the
boundary layer solution or the superposition of a rarefaction wave and a stationary
solution. The latter case is considered in [30]. And there are only a few results
on the stability of superposition waves, see, for example [16,17]. Since we consider
the problem in the Eulerian coordinate, the system is more complicated than that in
the Lagrangian mass coordinate which usually makes the form of equations simpler
and the treatment of the equations easier. Matsumura and Nishihara [26], Huang
et al. [4] transform the inflow problem in the Eulerian coordinate into that in the
Lagrangian coordinate with a prescribed moving boundary, and prove partly the
stability of the boundary layer solution, viscous shock wave, or the superposition of
a rarefaction wave and a stationary solution. However, for our outflow problem, such
a transformation results in a free boundary problem which makes the treatment of the
boundary more difficult. To overcome this difficulty, we therefore employ a direct
energy method to the reformulated problem for the Navier–Stokes equations in the
Eulerian coordinate and take into account the dissipative effect of the boundary
terms. Finally, it is more difficult to justify the formal argument on the derivation
of the energy estimates for the higher derivatives of the unknown functions. For the
details of a rigorous argument, we refer to Kawashima et al. [10] and omit them
in this paper.

The remaining part of this article is organized as follows: In Section 2, since rar-
efaction waves are not smooth, we must construct a smooth approximation of those
rarefaction waves by using the Burgers equation, instead of the smooth approxima-
tion of the initial data as usual. Then we derive the time-decay rates for the smooth
rarefaction waves by making use of the results by Kawashima and Tanaka [12].
Next we reformulate the problem and restate our main theorem in Section 3. A
proposition on the a priori estimates is formulated. For the reformulated initial
boundary value problem we establish the energy estimates in Sections 4, and 5.
By those estimates we prove that proposition at the end of Section 5. Finally, in
Section 6, we shall prove the asymptotic stability of the solution.

2. Construction and decay estimates of the smoothed rarefaction waves

Since the rarefaction wave (ρR, u R)( x
t ) is not smooth, we intend to construct a

smooth approximation of the rarefaction wave (ρ̃, ũ)(t, x) in this section. Then we
derive the estimates of decay rates for this smooth wave (ρ̃, ũ)(t, x). To this end, we
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make use of an approach which has been developed by Kawashima and Tanaka
[12], based on a parabolic approximation instead of the usual method based on the
smooth approximation of initial data. For the sake of simplicity of notations, we
still denote (ρ̃, ũ)(t, x) by (ρ, u)(t, x) in the remaining part of this section, and
change the notation (ρ, u)(t, x) back to (ρ̃, ũ)(t, x) in the other Sections 4–6.

Let the function w = w(t, x) be a solution to the problem for the Burgers
equation

wt + wwx = κwxx (2.1)

with initial data

w(x, 0) = w± for x >
< 0, (2.2)

where w± are given by w± := u± + C(ρ±) satisfying

w+ > w−. (2.3)

We then define the functions

ρ = ρ(t, x), u = u(t, x)

by the equations below

λ(ρ, u) := u + C(ρ) = w(1 + t, x), and
du

dρ
= C(ρ)

ρ
. (2.4)

for any t, x � 0. Then we can easily see that ρ, u are not independent functions,
and one of these two functions can be written in terms of another one, that is

ρ = ρ(u), u = u(ρ).

There holds

wt = λρρt = λuut , (2.5)

wx = λρρx = λuux , (2.6)

and

wxx = λρρxx + λρρ (ρx )
2 = λuuxx + λuu (ux )

2 . (2.7)

Here we have used the notations:

λρ = d

dρ
λ(ρ, u(ρ)) and λu = d

du
λ(ρ(u), u).

It then follows from (2.1)–(2.7) that

ux = du

dρ
ρx = C(ρ)

ρ
ρx .
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Next we are going to find the equations which are satisfied by ρ, u. There holds

ρt + (ρu)x = ρt + uρx + ρux = ρt + (u + C(ρ))ρx

= 1

λρ
(wt + wwx ) = 1

λρ
κwxx

= κρxx + κ
λρρ

λρ
(ρx )

2 , (2.8)

Similarly, one has

ρ(ut + uux )+ p(ρ)x = ρ(ut + (u + C(ρ))ux ) = ρ

λu
κwxx

= κρ

(
uxx + λuu

λu
(ux )

2
)
. (2.9)

Furthermore, after straightforward calculations, one has

λρρ

λρ
= γ − 3

2ρ
, and

λuu

λu
= 0

which combined with (2.8) and (2.9) yields ρ, u satisfies the following equations:

ρt + (ρu)x = f, (2.10)

ρ(ut + uux )+ p(ρ)x = g (2.11)

where f, g are defined by

f := κρxx + (γ − 3)κ

2

(ρx )
2

ρ
, (2.12)

g := κρuxx . (2.13)

In what follows, we intend to derive the decay rates of the smoothed rarefaction
waves ρ, u in L p(R+) by using the decay rates of w which have been established
by Kawashima and Tanaka [12], and are restated in Lemma 2.1 below for the
sake of an easy reference. Let

δ′ = w+ − w−.

One can easily show that C ′δ � δ′ � Cδ for two positive constants C ′,C which
are independent of δ, δ′.

Lemma 2.1. For the solution w(t, x) to (2.1) and (2.2), we have the following
conclusions:

(i) w(t, x) is a strictly increasing function of x ∈ R for each fixed t > 0 and

w+ > w(t, x) > w− f or x ∈ R and t > 0.
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(ii) (The L p-estimates) For 1 < p � ∞, there holds

∥∥∥w(t, ·)− wR
( ·

t

)∥∥∥
p

� C(1 + t)
− 1

2

(
1− 1

p

)
. (2.14)

And there holds for any t > 0 and for any 1 � p � ∞ that

∥∥∥∂xw(t, ·)−∂xw
R

( ·
t

)∥∥∥
p
�C(1 + t)−

1
2p t

−
(

1− 1
p

)
�Ct

−
(

1− 1
2p

)
. (2.15)

(iii) (The derivatives’ estimates) For 1 � p � ∞, we have the following decay
estimates for the derivatives of the solution w(t, x):

‖∂xw(t, ·)‖p � Cδ′
1
p t

−
(

1− 1
p

)
, t > 0, (2.16)

‖∂k
xw(t, ·)‖p � Cδ′t−

1
2

(
k− 1

p

)
, k = 1, 2, 3, . . . , t > 0, (2.17)

‖∂k
xw(t, ·)‖p �C(1 + t)−

1
2 t

− 1
2

(
k−1

p

)
�Ct

− 1
2

(
k+1−1

p

)
, k =2, 3, . . . , t>0.

(2.18)

(iv) Let y± := (x − w±t)/
√

2t, �+ := {x � w±t}, �− := {x � w±t}. We
have

(1) If (t, x) ∈ �+, then y+ � 0 and

|w(t, x)− w+| � Cδ′(1 + δ′
√

t)−1 exp(−y2+), (2.19)

|∂k
xw(t, x)| � Cδ′t−

k
2 (1 + δ′

√
t)−1(1 + y+)k exp(−y2+), ∀t > 0;

(2.20)

(2) If (t, x) ∈ �−, then there holds y− � 0 and

|w(t, x)− w−| � Cδ′(1 + δ′
√

t)−1 exp(−y2−), (2.21)

|∂k
xw(t, x)| � Cδ′t−

k
2 (1 + δ′

√
t)−1(1 − y−)k exp(−y2−), ∀t > 0.

(2.22)

(2a) Especially, ifw− > 0, then we conclude that the point (t, x) := (t, 0) ∈
�−; thus

|w(t, 0)− w−| � Cδ′(1 + δ′
√

t)−1 exp

(
−w

2−t

2

)
, (2.23)

|∂k
xw(t, x)| � Cδ′t−

k
2 (1 + δ′

√
t)−1

(
1 + w−

√
t

2

)k

exp

(
−w

2−t

2

)
, ∀t > 0. (2.24)
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Employing the above decay estimates on the function w, we can easily obtain
the corresponding time decay estimates of the smooth rarefaction waves ρ and u.
By the definition, we can find that the functions ρ(t, x) and u(t, x) depend only
on the value of w(t, x) with t � 1. So, they have no singularity at t = 0 though
w(t, x) has possible singular there.

Lemma 2.2. Assume that w(t, x) is a solution to (2.1) and (2.2), we can obtain by
solving (2.4) the corresponding smooth rarefaction waves ρ, u, which satisfy the
following estimates

(i) ρ, u are strictly increasing functions of x ∈ R for each fixed t > 0 and

ρx (t, x) > 0, ux (t, x) > 0,

ρ+ > ρ(t, x) > ρ−, and u+ > u(t, x) > u− for x ∈ R and t > 0.

(ii) (The L p-estimates) For 1 < p � ∞, there holds
∥∥∥∥(ρ, u)(t, ·)− (ρR, u R)

( ·
1 + t

)∥∥∥∥
p

� C(1 + t)
− 1

2

(
1− 1

p

)
. (2.25)

And for 1 � p � ∞, we have
∥∥∥∥∂x (ρ, u)(t, ·)− ∂x (ρ

R, u R)

( ·
1 + t

)∥∥∥∥
p

� C(1 + t)
−

(
1− 1

2p

)
. (2.26)

(iii) (The derivatives’ estimates) For 1 � p � ∞, we have the following decay
estimates for the derivatives of the solution (ρ, u):

‖∂x (ρ, u)(t, ·)‖p � Cδ
1
p (1 + t)

−
(

1− 1
p

)
, (2.27)

‖∂k
x (ρ, u)(t, ·)‖p � Cδ(1 + t)

− 1
2

(
k− 1

p

)
, k = 1, 2, 3, . . . , (2.28)

‖∂k
x (ρ, u)(t, ·)‖p � C(1 + t)

− 1
2

(
k+1− 1

p

)
, k = 2, 3, . . . . (2.29)

(iv) (The boundary estimate) For the boundary value, we have

|ψ(t, 0)| � Cδ(1 + δ
√

t)−1 exp

(
−Ct

2

)
, (2.30)

|ut (t, 0)| � Cδ(1 + δ
√

t)−1 exp

(
−Ct

2

)
. (2.31)

Here, C is a positive constant and the functionψ := u− ũ which will be defined
in Section 3, and u is the solution to the initial boundary value problem, while ũ is
just u here, the smoothed rarefaction wave.

Proof. By the definition of ρ, u one can find that the proofs of items (i)–(iii) are
easy. It needs only to prove (iv). First of all, we show that w− > 0. From both
Figs. C and D in the state space v − u for the rarefaction cases, we can determine
the value of ρ− since we choose the point (v−, ub) at the curve R2 and ub is given.
Then by the definition of w one has w− = u− + C(ρ−) > 0. Next, applying
conclusion (iv) in Lemma 2.1 and estimate (2.1), we assert that (iv) of this lemma
is valid. �	
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We shall see in the sequel that the boundary values exponentially decay and
these decay estimates are crucial for the proof of our main theorem. And the proof
is based on the L2-energy method, we shall deal with the terms arising from the
boundary.

3. Reformulation of the problem

In this section, we make use of the smoothed approximation rarefaction wave
(ρ, u)which has been constructed in Section 2, and we denote it hereafter by (ρ̃, ũ)
and (ρ, u) is left to denote the solution to the problem (1.1)–(1.5). Keeping it in
mind, we proceed to reformulate the problem under consideration. We define

φ(t, x) := ρ(t, x)− ρ̃(t, x), ψ(t, x) := u(t, x)− ũ(t, x). (3.1)

Then it is easy to check that (φ,ψ) satisfies

φt + uφx + ρψx = F, (3.2)

ρ(ψt + uψx )+ p′(ρ)φx − µψxx = G, (3.3)

where F,G are defined by

F := −
(
κρ̃xx + (γ − 3)κ

2

ρ̃2
x

ρ̃
+ ũxφ + ψρ̃x

)
, (3.4)

G :=
(
φ

p′(ρ̃)
ρ̃

− (
p′(ρ)− p′(ρ̃)

))
ρ̃x − ρψ ũx + (µ− κρ)ũxx . (3.5)

The boundary and initial conditions turn now out to be

ψ(t, 0) = ub − ũ(t, 0), (3.6)

φ(0, x) = ρ0(x)− ρ̃0(x), ψ(0, x) = u0(x)− ũ0(x). (3.7)

Moreover, for suitably small δ and φ,ψ (It can be confirmed in the following
context that φ,ψ are small), we have

|F | � C
(
|ρ̃xx | + |ρ̃x |2 + |ρ̃xψ | + |φũx |

)
, (3.8)

and

|G| � C (|φρ̃x | + |ψ ũx | + |ũxx |) . (3.9)

Therefore, we can now restate our main results as follows:

Theorem 3.1. Assume that ub < 0, and that either (i) subsonic case (C),−Ĉ(v+) <
u+ < 0 and u∗ � ub < u+, or (ii) u+ > 0 and u∗ � ub < 0.

Suppose further that φ0 ∈ B1+σ (R+), ψ0 ∈ B2+σ (R+) and (φ0, ψ0) ∈
H1(R+)× H1(R+), such that δ := |ρ+ − ρ−| + |u+ − ub| and ‖(φ0, ψ0)‖H1 are
suitably small. And the compatibility conditions of 0th and 1st order are satisfied.
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Then there exists a unique global solution (φ,ψ)(t, x) to the problem (3.2)–
(3.7), such that

φ ∈ B1+σ
T , ψ ∈ C2+σ

T , φ, ψ ∈ C([0,∞); H1);
φx ∈ L2(0,∞; L2); ψx ∈ L2(0,∞; H1).

Moreover, as time goes to infinity the solution (φ,ψ)(t, x) converges in L∞-norm
to (0, 0), namely

sup
x∈R+

|(φ,ψ)(t, x)| → 0, as t → ∞.

�	
In order to prove Theorem 3.1, we make use of the standard method, which

is based on a local existence theorem and a priori estimates. The local existence
theorem is similar to that in the previous paper by the authors [10]. On the other
hand, the a priori estimates are collected in Proposition 3.2.

To simplify the notations we define

M(t)2 :=
∫ t

0

(
‖φx (τ )‖2 + ‖ψx (τ )‖2

H1 + |φ(τ, 0)|2 + |φx (τ, 0)|2
)

dτ, (3.10)

and

N (t) := sup
0�τ�t

‖(φ,ψ)(τ )‖H1(R+) � E0. (3.11)

and E0 is suitably small so that ρ = φ + ρ̃ � ρ− − C1 E0 � 1
2ρ−. Here C1 is a

constant in the inequality ‖φ‖L∞ � C1‖φ‖H1 .
We now state the a priori estimates:

Proposition 3.2. (A priori estimates) Assume that (φ,ψ) is a solution to (3.2)–(3.9)
satisfying

φ ∈ C([0, T ]; H1) ∩ B1+σ
T , ψ ∈ C([0, T ]; H1) ∩ C2+σ

T ; (3.12)

inf
QT
ρ(t, x) > 0, (3.13)

for any fixed T > 0. Then there exists a constant θ ∈ (0, 1
2 ) and a suitably small

constant ε0 > 0, such that if N (t)+ δ � ε0, then the following estimates hold

‖(φ,ψ)(t)‖2
H1 +

∫ t

0

(
‖φx (τ )‖2 + |φ, φx |2(τ, 0)+ ‖ψx (τ )‖2

H1

)
dτ

� C
(
δ2θ + ‖(φ0, ψ0)‖2

H1

)
, (3.14)

for all t � 0. Here ε0,C are independent of t, δ. �	
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Proof. We divide the proof of this proposition into three steps, each is stated as
a lemma, namely Lemmas 4.1, 4.2 and 4.3. Then combining these three lemmas
we complete the proof of Proposition 3.2. Since we have carried out a rigorous
argument in [10] to derive the norms of the derivatives of the unknown functions
(for example the term ‖φx‖ in Section 5) for the case of the stationary solution, and
a rigorous argument for the present case is similar to that, we omit here the details
of that procedure and state only the following formal argument in this regard. �	
Step 1. The first step is the following basic energy estimate stated in Lemma 4.1 in
the next section.

4. The first energy estimates

From now on, to derive the energy estimates, we assume that (φ,ψ) is a solution
to (3.2)–(3.9) which satisfies the properties (3.12) and (3.13).

First of all, in this section, we shall establish the first energy estimate. To this
end, as in [10], we define an energy function by

ρE = ρ

{
1

2
(u − ũ)2 +�(ρ, ρ̃)

}
= ρ

{
1

2
ψ2 +�(ρ, ρ̃)

}
, (4.1)

where

�(ρ, ρ̃) =
∫ ρ

ρ̃

p(η)− p(ρ̃)

η2 dη. (4.2)

After a straightforward computation, we find that E satisfies

(ρE)t + {(ρuE)+ (p − p̃)ψ}x − {µψψx }x

= −µ|ψx |2 −
{
ρψ2 + p(ρ)− p(ρ̃)− p′(ρ̃)φ

}
ũx + R

R := −κ
ρ̃

p′(ρ̃)φ
(
ρ̃xx + γ − 3

2
(ρ̃x )

2ρ̃−1
)

+ ψ ũxx (µ− κρ). (4.3)

Here R can be estimated as

|R| � C
(
|φ|

(
|ρ̃xx | + (ρ̃x )

2
)

+ |ψ ũxx |
)
. (4.4)

Now we can state the first energy estimate as

Lemma 4.1. Let θ ∈ (0, 1
2 ) be the same constant as in Proposition 3.2. Then there

is a positive constant ε1 such that if N (t) + δ � ε1, then the following estimate
holds for any t � 0

‖(φ,ψ)(t)‖2 +
∫ t

0

{
‖ψx (τ )‖2 + |(φ,ψ)(τ, 0)|2

}
dτ

� C
(
‖(φ0, ψ0)‖2 + δθ (N (t)+ M(t))

)
. (4.5)

Here ε1,C are independent of t, δ.
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Proof. Integrating Equation (4.3) with respect to (t, x) over (0, t)× (0,∞) yields
∫ ∞

0
ρEdx + µ

∫ t

0

(
‖ψx‖2 + C

∫ ∞

0

(
ρψ2 + φ2

)
ũx dx

)
dτ

−
∫ t

0
(ρuE + (p − p̃)ψ − µψψx )|x=0 dτ

�
∫ ∞

0
ρ0E0dx + C

∫ t

0

∫ ∞

0

(
|φ|

(
|ρ̃xx | + (ρ̃x )

2
)

+ |ψ ũxx |
)

dxdτ. (4.6)

Here, the fact that ũx > 0 has been used. We now handle the boundary terms and
the right-hand side terms in (4.6) as follows. From the relation

−(ρuE+(p− p̃)ψ) |x=0 =−ρu

{
1

2
ψ2 +�(ρ, ρ̃)

}∣∣∣∣
x=0

−(p − p̃)ψ |x=0, (4.7)

recalling ub < 0, we have
∫ t

0
−ρu

{
1

2
ψ2 +�(ρ, ρ̃)

}∣∣∣∣
x=0

dτ � C
∫ t

0
ρ−

(
−ub

(
φ(τ, 0)2 + ψ(τ, 0)2

))
dτ

� C ′
∫ t

0
|(φ,ψ)(τ, 0)|2dτ. (4.8)

Using the mean value theorem, the Young inequality and the boundary estimate
in Lemma 2.2, we obtain∫ t

0
|(p − p̃)ψ |x=0| dτ =

∫ t

0

∣∣p′(η)(φψ)|x=0
∣∣ dτ

� C

(∫ t

0
|φ(τ, 0)|2dτ

) 1
2
(∫ t

0
|ψ(τ, 0)|2dτ

) 1
2

� C M(t)

(∫ t

0
δ2e−2Cτdτ

) 1
2

� CδM(t). (4.9)

As for the term onψ , making use of the Sobolev embedding theorem, the Hölder
inequality and Lemma 2.2, we have∣∣∣∣µ

∫ t

0
(ψψx )|x=0dτ

∣∣∣∣ � C
∫ t

0
‖ψx‖H1 |ψ(τ, 0)|dτ

� C

(∫ t

0
‖ψx‖2

H1 dτ

) 1
2
(∫ t

0
|ψ(τ, 0)|2dτ

) 1
2

� CδM(t). (4.10)

For the remaining terms, making use of the Hölder inequality, then by combining
(4.6)–(4.10), we arrive at
∫ ∞

0
ρEdx

∣∣∣∣
t

0
+

∫ t

0

(
µ‖ψx‖2+C

∫ ∞

0

(
ρψ2+φ2

)
ũx dx+C ′ |(φ,ψ)(τ, 0)|2

)
dτ

� C
∫ t

0

(
‖φ‖

(
‖ρ̃xx‖ + ‖ρ̃x‖2

4

)
+ ‖ψ‖‖ũxx‖

)
dτ + CδM(t)

� C sup
0�τ�t

(‖φ(τ)‖+‖ψ(τ)‖)
∫ t

0

(
‖(ρ̃, ũ)xx‖+‖ρ̃x‖2

4

)
dτ+CδM(t). (4.11)
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Invoking the decay estimates on the smooth solution (ρ̃, ũ), we have for any
t > 0

‖ρ̃xx‖ � Cδ(1 + t)−
3
4 , ‖ρ̃xx‖ � C(1 + t)−

5
4 .

Therefore, a combination of these two decay rate estimates yields

‖ρ̃xx‖ � Cδθ (1 + t)−
5−2θ

4 , (4.12)

for any 0 � θ � 1. Here we have used the basic fact that if 0 < C � A,C � B,
then C � Aθ B1−θ for any 0 � θ � 1.

It then follows from Lemma 2.2, (4.11) and estimate (4.12) that

∫ ∞

0
ρEdx+

∫ t

0

{
µ‖ψx‖2+C

∫ ∞

0

((
ρψ2 + φ2

)
ũx dx + |(φ,ψ)(τ, 0)|2

)}
dτ

� C‖(φ0, ψ0)‖2 + C N (t)
∫ t

0

(
δθ (1+τ)− 5−2θ

4 +δ 1
2 (1+τ)− 3

4 ×2
)

dτ+CδM(t)

� C
(
‖(φ0, ψ0)‖2 + δθN (t)+ δM(t)

)

� C
(
‖(φ0, ψ0)‖2 + δθ (N (t)+ M(t))

)
. (4.13)

Here we have chosen δ < 1 and θ ∈ (0, 1
2 ) so that 5−2θ

4 > 1.
Remembering the fact that ρ � C , we can easily obtain

∫ ∞

0
ρEdx � C(‖φ‖2 + ‖ψ‖2).

Thus the proof of this Lemma is complete. �	

5. The second energy estimates

With the first energy estimate in hand, we now proceed to establish the second
energy estimate. The main results are the following two lemmas, that is Lemmas 5.1
and 5.2.
Step 2. The second step aims at the proof of the following Lemma.

Lemma 5.1. There exists a positive constant ε2 � ε1 such that if N (t) + δ � ε2,
then the following estimate holds for any t � 0

‖φx (t)‖2 +
∫ t

0

(
‖φx (τ )‖2 + |φx (τ, 0)|2

)
dτ

� C‖(φ0, ψ0)‖2
H1 + C

(
(N (t)+ δ)M(t)2 + δθ (M(t)+ N (t))+ δ2

)
. (5.1)

where ε2,C are independent of t, δ.
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Proof. The proof of this lemma consists of two steps.
Firstly, we shall show that the function φx can estimated in terms of N (t) and

M(t). To this end, we differentiate (3.2) formally with respect to x to get

φxt + uφxx + ρψxx = Fx − ũxφx − ρ̃xψx − 2φxψx =: F1. (5.2)

Let us stop here to give a remark

Remark 5.1. The above computation is formal since there is a term φxt in (5.2).
For the justification of such formal calculation, we refer to [10].

We now turn to the proof of Lemma 5.1. To simply the calculation in the second
step below, we now transform the above equation of φx into that in the terms of φx

ρ
.

To this end, we divide (5.2) by ρ to get

φxt

ρ
+ u

φxx

ρ
+ ψxx = F1

ρ
. (5.3)

By the similar argument as in [10], we have
(
φx

ρ

)

t
+ u

(
φx

ρ

)

x
+ ψxx = F1

ρ
− φx

ρ2 (ρ̃t + ρ̃x u + φt + uφx )

= F1

ρ
+ φx ux

ρ
=: F2. (5.4)

Moreover,

|F2| � C(|F1| + |φx |(|ψx | + |ũx |)), (5.5)

and by the definition of F1, we obtain

|F1| � C
(
|ρ̃xxx | + |ρ̃xx ρ̃x | + |ρ̃x |3 + |φũxx | + |ψρ̃xx | + |φx ũx |

+ |ψx ρ̃x | + |φxψx |
)
. (5.6)

Then multiplying (5.4) by φx
ρ

, integrating it with respect to x and integration
by parts, we obtain

1

2

d

dt

∥∥∥∥
φx

ρ

∥∥∥∥
2

−
∞∫

0

ux

(
φx

ρ

)2

dx− 1

2
u

(
φx

ρ

)2
∣∣∣∣∣
x=0

+
∞∫

0

ψxxφx

ρ
dx =

∞∫

0

F2φx

ρ
dx .

(5.7)

Secondly, we try to remove the term of ψxx in (5.7). To this end, we multiply
(3.3) by φx

ρ
, and integrate the resulting equation with respect to x to get

(ψt + uψx , φx )+
∫ ∞

0

(
p′(ρ)φx − µψxx

) φx

ρ
dx =

∫ ∞

0

Gφx

ρ
dx . (5.8)
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Here, we have used the notation ( f, g) to denote the inner product of two functions
f, g. On the other hand, we have

(ψt , φx ) = d

dt
(ψ, φx )− (φxt , ψ)

= d

dt
(ψ, φx ) +(ψφt )|x=0 + (ψx , φt ). (5.9)

Then multiplying (5.7) byµ, adding it to (5.8) and integrating the resultant with
respect to t yields

µ

2

∥∥∥∥
φx

ρ

∥∥∥∥
2

+ (ψ, φx )− µ

∫ t

0

∫ ∞

0
ux

(
φx

ρ

)2

dxdτ − µ

2

∫ t

0
u

(
φx

ρ

)2
∣∣∣∣∣
x=0

dτ

+
∫ t

0

(
(ψφt )|x=0+(ψx , φt )

)
dτ+

∫ t

0
(uψx , φx )dτ+

∫ t

0

∫ ∞

0

p′(ρ)
ρ

|φx |2dxdτ

= µ

2

∥∥∥∥
φ0x

ρ0

∥∥∥∥
2

+ (ψ0, φ0x )+
∫ t

0

∫ ∞

0

(G + F2)φx

ρ
dxdτ. (5.10)

We now estimate (5.10) as follows. Firstly, it is easy to estimate that

|(ψ, φx )| � Cε‖ψ‖2 + ε‖φx‖2. (5.11)

By the decay estimates in Lemma 2.2, we have
∣∣∣∣∣
∫ t

0

∫ ∞

0
(ψx + ũx )

(
φx

ρ

)2

dxdτ

∣∣∣∣∣ � C
∫ t

0
(‖ψx‖∞ + ‖ũx‖∞)‖φx‖2dτ

� C
∫ t

0
(‖ψx‖H1 + δ)‖φx‖2dτ

� C(N (t)+ δ)M(t)2. (5.12)

For the boundary term, we make use of (3.2)

|φt (t, x)| � C(|ψx | + |φx | + |ρ̃xx | + |ρ̃x |2 + |φũx | + |ψρ̃x |), (5.13)

then apply the Young inequality, Lemma 4.1, and the estimates (2.31) and (5.13)
with x = 0, to get
∣∣∣∣
∫ t

0
(ψφt )(τ, 0)dτ

∣∣∣∣ � C
∫ t

0
|ψ(τ, 0)| (|φx (τ, 0)| + |ψx (τ, 0)|) dτ + Cδ2

+ C
∫ t

0
|ψ(τ, 0)| (|φ(τ, 0)| ‖ũx‖∞ + |ψ(τ, 0)| ‖ρ̃x‖∞) dτ

� C

(∫ t

0

(
|φx (τ, 0)|2+‖ψx‖2

H1

)
dτ

) 1
2
(∫ t

0
|ψ(τ, 0)|2dτ

)1
2

+ Cδ2 + Cδ
∫ t

0

(
|φ(τ, 0)|2 + |ψ(τ, 0)|2

)
dτ

� C
(
‖(φ0, ψ0)‖2 + δθ (N (t)+ M(t))+ δ2

)
. (5.14)
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Furthermore, using again the first energy estimate, Lemma 2.2 and estimate
(5.13), we have
∣∣∣∣∣∣

t∫

0

(ψx , φt )dτ

∣∣∣∣∣∣

� C

t∫

0

(
‖ψx‖2 + ε‖φx‖2

)
dτ + C

⎛
⎝

t∫

0

‖ψx‖2dτ

⎞
⎠

1
2

×
⎛
⎝

t∫

0

(
‖ρ̃xx‖2 + ‖ρ̃x‖4

4 + ‖φ‖2‖ũx‖2∞ + ‖ψ‖2‖ρ̃x‖2∞
)

dτ

⎞
⎠

1
2

� ε

t∫

0

‖φx‖2dτ + C
(
‖(φ0, ψ0)‖2 + (δ + N )M2(t)+ δθ (N + M)(t)+ δ2

)
.

(5.15)

We now estimate the right-hand side of (5.10). From (3.9) and Lemma 2.2 it
follows that

∣∣∣∣
∫ t

0

∫ ∞

0

Gφx

ρ
dxdτ

∣∣∣∣

� C

(∫ t

0
‖φx‖2dτ

) 1
2
(∫ t

0

(
‖φ‖2‖ρ̃x‖2∞ + ‖ψx‖2‖ũx‖2∞ + ‖ũxx‖2∞

)
dτ

) 1
2

� CδθM(t). (5.16)

Finally, for term of F2, recalling (5.5) and (5.6) and the decay estimates of the
smoothed rarefaction waves ρ̃, ũ as in Lemma 2.2, we then obtain

∣∣∣∣
∫ t

0

∫ ∞

0

F2φx

ρ
dxdτ

∣∣∣∣ � C
∫ t

0
‖φx‖2(‖ψx‖∞ + ‖ũx‖∞)dτ + C

(∫ t

0
‖φx‖2dτ

) 1
2

×
(∫ t

0

(
‖ρ̃xxx‖2+‖ρ̃x‖2∞‖ρ̃xx‖2+‖ρ̃x‖6

6+‖φ‖2∞‖ũxx‖2

+ ‖ψ‖2∞‖ρ̃xx‖2 + ‖φx‖2‖ũx‖2∞ + ‖ψx‖2‖ρ̃x‖2
)

dτ
) 1

2

� C
(
(N (t)+ δ)M(t)2 + δ (N (t)+ 1)M(t)

)

� C
(
(N (t)+ δ)M(t)2 + δM(t)

)
. (5.17)

Making use of (5.11)–(5.17) and taking ε suitably small, we then arrive at (5.1).
Thus the proof of Lemma 5.1 is complete. �	
Step 3. Therefore, we can find from the above that to complete the proof of Propo-
sition 4.1 it needs only to show the following Lemma
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Lemma 5.2. There exists a positive constant ε3 � ε2 such that if N (t) + δ � ε3.
Then the following estimate holds for any t � 0

‖ψx (t)‖2 +
∫ t

0
‖ψxx (τ )‖2dτ � C‖(φ0, ψ0)‖2

H1 + C
(
(N (t)+ δ)M(t)2

+ δθ (M(t)+ N (t))+ δ2
)
. (5.18)

Here ε3,C are independent of t, δ. �	

Proof. Multiplying Equation (3.3) by −ψxxρ
−1 and integrating it with respect to

x, t , we have

∫ t

0
(ψt + uψx ,−ψxx )dτ +

∫ t

0

∫ ∞

0

µ|ψxx |2
ρ

dxdτ

−
∫ t

0

∫ ∞

0

p′(ρ)
ρ

φxψxx dxdτ = −
∫ t

0

∫ ∞

0

Gψxx

ρ
dxdτ. (5.19)

It is easy to check that

(ψt ,−ψxx ) = (ψtψx )|x=0 + (ψx , ψt x ) = (ũtψx )|x=0 + 1

2

d

dt
‖ψx‖2. (5.20)

Therefore, (5.19) becomes

1

2
‖ψx (t)‖2 +

∫ t

0
(ũtψx |x=0 + (uψx ,−ψxx )) dτ +

∫ t

0

∫ ∞

0

µ|ψxx |2
ρ

dxdτ

−
∫ t

0

∫ ∞

0

p′(ρ)
ρ

φxψxx dxdτ = 1

2
‖ψ0x‖2 −

∫ t

0

∫ ∞

0

Gψxx

ρ
dxdτ. (5.21)

We now handle (5.21) term by term. We first use Lemma 2.2 and Hölder’s
inequality to estimate the boundary term as follows:

∣∣∣∣
∫ t

0
(ũtψx )(τ, 0)dτ

∣∣∣∣ � C

(∫ t

0
|ũt (τ, 0)|2dτ

) 1
2
(∫ t

0
|ψx (τ, 0)|2dτ

) 1
2

� Cδ

(∫ t

0
‖ψx‖2

H1 dτ

) 1
2

� CδM(t). (5.22)

Moreover we can show that
∣∣∣∣
∫ t

0

∫ ∞

0
uψx (−ψxx )dxdτ

∣∣∣∣ � ε

∫ t

0
‖ψxx‖2dτ + Cε

∫ t

0
‖ψx‖2dτ, (5.23)

∫ t

0

∫ ∞

0

µ|ψxx |2
ρ

dxdτ � C‖ψxx‖2, (5.24)
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and ∣∣∣∣
∫ t

0

∫ ∞

0

p′(ρ)
ρ

φxψxx dxdτ

∣∣∣∣ � C
∫ t

0

∫ ∞

0
|φx | |ψxx |dxdτ

� ε

∫ t

0
‖ψxx‖2dτ + Cε

∫ t

0
‖φx‖2dτ. (5.25)

Finally we estimate the right-hand side in a similar way as we handle (5.16) to
obtain
∣∣∣∣
∫ t

0

∫ ∞

0

Gψxx

ρ
dxdτ

∣∣∣∣ � C

(∫ t

0
‖ψxx‖2dτ

) 1
2

×
(∫ t

0
(‖φ‖2‖ρ̃x‖2∞ + ‖ψx‖2‖ũx‖2∞ + ‖ũxx‖2∞)dτ

) 1
2

� CδθM(t). (5.26)

Therefore, combination of Equations (5.21)–(5.26) and taking ε suitably small,
we then have

‖ψx‖2 +
∫ t

0
‖ψxx‖2dτ � C‖ψ0‖2

H1 + C
∫ t

0

(
‖φx‖2 + ‖ψx‖2

)
dτ

+ C
(
δM(t)+ δθM(t)

)
. (5.27)

Thus (5.18) follows from (5.1) and the first energy estimates. And the proof of
this lemma is complete. �	
Complete of the proof of Proposition 3.2: From the estimates (4.5), (5.1) and (5.18),
it follows that there exists a constant ε4 (which satisfies ε4 � ε3, and we can take
ε0 = ε4), such that if N (t)+ δ � ε4, then the following estimate holds

N 2(t)+ M2(t) = ‖(φ,ψ)‖2
H1 +

∫ t

0

(
‖φx‖2+‖ψx‖2

H1 +|φ(τ, 0)|2+|φx (τ, 0)|2
)

dτ

� C
(
‖(φ0, ψ0)‖2

H1 + δ2
)

+ C1

(
(N (t)+ δ)M(t)2 + δθ (N (t)+ M(t))

)
. (5.28)

Therefore, if we take ε4 < 1 such that C1ε4 � 1
4 , using the Young inequality

one has

N 2(t)+ M2(t) � C
(
‖(φ0, ψ0)‖2

H1 + δ2θ
)

+ 1

2

(
N 2(t)+ M2(t)

)
.

That is

‖(φ,ψ)(t)‖2
H1 +

∫ t

0

(
‖φx (τ )‖2 + ‖ψx (τ )‖2

H1 + |φ(τ, 0)|2 + |φx (τ, 0)|2
)

dτ

� C
(
‖(φ0, ψ0)‖2

H1 + δ2θ
)
. (5.29)

Which implies the results of Proposition 3.2. Thus the proof is complete. �	
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6. The proof of Theorem 1.1

This section is devoted to the proof of our main theorem. In order to prove
Theorem 1.1, we employ the standard continuation argument based on a local exis-
tence theorem and the a priori estimates. Similar to [10], we can prove easily the
local existence theorem. The a priori estimates have been established in Proposi-
tion 3.2. Therefore, we need only to prove the large time behavior of the solution
as t → ∞. For a rigorous argument we refer also to [10].
Complete of the proof of Theorem 1.1:
Step 1. We first make use of the energy estimates to prove that

sup
x∈R+

|(ρ − ρ̃, u − ũ)(t, x)| → 0, (6.1)

namely

sup
x∈R+

|(φ,ψ)(t, x)| → 0 (6.2)

as t → ∞. To this end, we only need to show that

‖φx (t)‖, ‖ψx (t)‖ → 0. (6.3)

If this holds, recalling the estimates ‖φ‖H1 and ‖ψ‖H1 � C , then by interpolation,
we arrive at

‖φ(t)‖∞ � C‖φ(t)‖ 1
2 ‖φx (t)‖ 1

2

→ 0, as t → ∞. (6.4)

Similarly, we can infer from ‖ψx (t)‖ → 0 that ‖ψ(t)‖∞ → 0 as t → ∞. So,
it remains to show (6.3). We define

P(t) =
∫
(φx )

2

ρ2 (t, x)dx, U (t) =
∫
(ψx )

2(t, x)dx .

It is easy to obtain from the energy estimates that
∫ ∞

0
P(t)dt � C.

Next to prove
∫ ∞

0 | d
dt P(t)|dt � C,we invoke Equation (5.10), and conclude that the

function P(t) :=
∥∥∥φx
ρ
(t)

∥∥∥
2

is differentiable with respect to t for almost everywhere

t ∈ (0,∞). Thus by combining with the estimates (5.7) and (5.29) we can obtain
∫ ∞

0

∣∣∣∣
d

dt
‖φx

ρ
(t)‖2

∣∣∣∣ dt � C.

That is
∫ ∞

0

∣∣∣∣
d

dt
P(t)

∣∣∣∣ dt � C.
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Recalling the fact
∫ ∞

0 P(t)dt � C , one thus has P(t) → 0; therefore ‖φx (t)‖ → 0
as t → ∞.

We can use Equation (5.21) and the energy estimates to show, in a similar way,
that ‖ψx (t)‖ → 0.
Step 2. On the other hand, by the construction of a smooth approximation of the
rarefaction waves, from Lemma 2.2 and the results in [12], we infer that

sup
x∈R+

∣∣∣(ρ̃, ũ)(t, x)− (ρR, u R)
( x

t

)∣∣∣ → 0, (6.5)

as t → ∞.
It then follows from (6.1) and (6.5) that

sup
x∈R+

∣∣∣(ρ, u)(t, x)− (ρR, u R)
( x

t

)∣∣∣ → 0 (6.6)

as t → ∞. Thus the proof of Theorem 1.1 is complete. �	
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