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Abstract

In the present article we first study the existence of the
stationary solution to an initial boundary value problem for
the Mullins equation of fourth order, which was proposed by
Mullins in [18] to describe the groove development, due to the
surface diffusion, at the grain boundaries of a heated polycrys-
tal. Then employing an energy method we prove that this sta-
tionary solution is asymptotically stable in a suitable norm, as

time goes to infinity.



1 Introduction

In this article we are interested in the existence and asymptotic stability of the
stationary solution to an initial boundary value problem for the Mullins equation of
fourth order which describes the groove development, due to the surface diffusion,
at the grain boundaries of a heated polycrystal. This model was proposed by
Mullins, see [18]. There are two cases of this model, namely the conserved and non-
conserved. Here we are interested in the conserved model. For the related result on

the non-conserved case, we refer to [4]. The initial boundary value problem reads
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where we used the notations Qr = (0,7) x Q, I'r = 0Qr = [0,T] x 99, T is a
positive real number and 2 = (a,b) is an open interval in R with a,b being real
numbers such that @ < b and its closure is denoted by €.

Suppose vy is a classical solution to the above problem. Straightforward compu-

tations show that the boundary conditions (1.2) are equivalent to

Yo = Yoze = 0 on I'p. (1.4)

The equation shows that it is non-uniformly parabolic, since the coefficient of its
principle term may decay to zero as ¥, tends to infinity. Moreover the nonlinearity

of this equation is very strong. Therefore, the global existence of weak solutions



to problem (1.1) — (1.3) is very difficult. However noting that if y, is small in L>°-
norm, then equation (1.1) is uniformly parabolic. We shall see that it is possible

to investigate the asymptotic stability of the stationary solution to this problem.

We define the free energy function by

fw)= [ f (1t ) basde (15)

and
- [ sttt (1.6
There exists a flux function ¢ = q(yt, Yz, Yoz, Youz) defined by
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From equation (1.1) we have
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Moreover, recalling boundary conditions one obtains
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Therefore the second law of thermodynamics is satisfied.
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Before stating our main result, we need to study the following stationary prob-

lem corresponding to problem (1.1) — (1.3). In this case, y satisfies

p2 S — 0inQ, (1.9)
Or \ (14y2)2 9z \ (1+4¢2)>

Concerning the existence of a solution to problem (1.9) — (1.10) we have

Lemma 1.1 There exists a unique solution y = m to problem (1.9) — (1.10). Here

m is a constant satisfying

ngéﬁﬂﬁmmmm

The proof of this lemma will be presented in Section 2.

Reformulation of the problem: We next make a suitable transformation of the
unknown to make it slightly easier to establish a priori estimates for the new
unknown. We assume that y is a classical solution to problem (1.1) — (1.3). Then
we get

d

a /. y(t,z)dxr = 0.



Thus one has

meals(Q)/Qy(t’x)dx - meals(Q)/Qy(O’m)dw

1
- meas(Q)/Qyo(m)dI

= const =: m.
Define a new variable
u=y—m, (1.11)
it is easy to see that u, = y,, and problem (1.1) — (1.3) turns out to be

0 1 0 T .
- -pZ 7 i , 1.12
B Oz <<1+ug)zax <(1+ug)z>> n Qr (1.12)

Uy = Ugpe =0 on L'y, (1.13)

uli—g = yo — m on Q. (1.14)

For the convenience of readers, we now collect the notations that we have used

and will use in this article.

Notations: Let T" be a real number, and C' denotes a universal constant which is
independent of 7'. We denote the scalar product over Qr by (-, -)r, and the scalar
product over by (+,-), and its corresponding norm by || - ||, respectively. Let p be
real such that 1 < p < oco. LP(2) is the space of p-integrable functions with the
LP-norm || - ||, defined in the standard way. For p = 2, we replace || - ||2 by || - |-
C'* 54+ (Qr) is the space of Hélder continuous functions with exponents o for z
and «/4 for t, where 0 < a < 1. W™P(Q) denotes the standard Sobolev space,
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which is also denoted by H™(2) in the case that p = 2. Let X be a Banach space.

LP(0,T; X) denotes the space of LP-functions taking values in X.

The main result of this article is as follows:

Theorem 1.2 Let o be a constant satisfying 0 < a < 1. Suppose that uy €
C*+(Q), and there is a suitably small number & such that ||ug|| 2 < &. Assume

that the compatibility conditions ug,(a) = (D) = 0, Uogzs(a) = Uopez(b) = 0 and

0 1 0 Uz
Uli=o = —Do- | ——— 75| T a2
| Ox ((1+(u0x) )2 Ox ((1+(U0x) ) ))

Njw

are satisfied.

Then there exists a classical solution w such that
= Cl+%,4+a<QT)’

and

u € L*(0,00; HY(Q)), u; € L*(0,00,L*(12)).
Moreover, there holds
ly(t,) = mllm2) — 0, y(t,-) — mflwre@) — 0
ast — 0o.
We now recall the literature related closely to this model. Some authors have

investigated the existence of a weak/classical solution or the existence of special

solutions to a Cauchy problem/initial boundary value problem for this model in



non-conserved /conserved case, see e.g. Alber and Zhu [4], Broadbridge [9], Broad-
bridge and Tritscher [10], Tritscher and Broadbridge [20], Kitada and Umehara
[15], Kanel and Novick-Cohen [14] and the references cited therein. For degenerate
fourth order parabolic equations, we refer to e.g., Bernis and Friedman [7], Bertozzi
and Pugh [8], Beretta, Bertsch and Dal Passo [6], Cahn, Elliott and Novick-Cohen
[11], Dal Passo, Garcke and Griin [13], where the mobility depends nonlinearly,
however smoothly, on the unknown itself. Recently new kinds of models have been
proposed to describe phase transitions driven by configurational forces in solids;
and they have been studied mathematically in Alber and Zhu [1, 2, 3, 5]. The mo-
bility in these models depends non-smoothly on the first order spatial derivatives,
while we can see that the mobility of the model in this article depends smoothly
on the first order spatial derivative.

The main difficulty in the proof of Theorem 1.2 is due to the fact that the
coefficient depends nonlinearly on the first order derivative and the equation is
of fourth-order. To prove the existence of a classical solution to the problem we
make use of the Leray-Schauder fix point theorem and an existence theorem for
the linearized problem from the book by Ladyzenskaya, et al [16].

The remaining parts of this article are organized as follows: In Section 2 we
are going to prove the existence of the stationary solution and the solution to
the reduced problem. In Section 3 we shall establish some a priori estimates for
the classical solution, which consist of the proof of Proposition 3.1. Section 4 is

devoted to investigating the large time behavior of a solution by using the a prior:



estimates.

2 Existence of stationary solution

In this section we are going to prove the existence of the stationary solution stated
in Lemma 1.1. We then construct an approximate problem and employ the Leray-
Schauder fixed-point theorem to prove the existence of the classical solution to
it.

We are now going to prove Lemma 1.1.

Proof of Lemma 1.1. From equations (1.9) — (1.10) we obtain

1 0 Yz
LAY . e
(1+y2)2 07 \ (1+42)2

Since

O Yoo\ L Yoo o UeYee
Or \ (1+92)2) (1+y2) (14 42)3

if z € 00 = {a, b}, whence C; = 0 and

0 Yua

- = 2.1

Z <<1+yz>%> § “
Yy, = 0, for z =a,b. (2.2)

Njw

Conditions (2.1) and (2.2) tell us that we have a curve of constant curvature, with
zero gradient at two locations, x = a,b. It then follows immediately that the curve

is a horizonal line. The proof of the lemma is thus complete.

In the remaining part of this section, we will prove the existence of the unique
classical solution u to problem (1.12) — (1.14). To this end, we firstly employ an

9



existence theorem in Ladyzenskaya, et al [16] to solve a linearized problem of (1.12)
— (1.14). Based on the a priori estimates for the approximate solutions, we can

use the Leray-Schauder fixed point theorem to prove the following existence result.

We have

Theorem 2.1 Assume that all the conditions listed in Theorem 1.2 are met.

Then there ezists a unique classical solution u to problem (1.12) — (1.14).

Proof. We apply the Leray-Schauder fixed point theorem to prove this theorem.

Firstly, we consider the following linearized problem:

0 1 0 Ugy )
U = —D— = 3 in Qr, 2.3
¢ ox ((14_)\71326)2 ox ((1—1—)\&%)2)) r (23)
Uy = Ugpe =0 on Iy, (2.4)
uli=o = yo —m on Q. (2.5)

for any given @, and A € [0,1]. Applying Theorem 10.1 on page 616 in [16] we find
a solution u € C'T/44+2(Q1). Thus we can construct a mapping which allows us
to define P, : CHi4+e(Qr) cC CTY(Qr) — CHIHH(Qr) + G — u = Py
Here CC denotes the compact embedding.

Next, using the a priori estimates which are similar to those that we will es-

tablish in the next section, we conclude that
||ua:||c%va(QT) <C.
Then one can derive from the equation the estimate of the Schauder type

HuHcH%v‘Ha(QT) < Cl;

10



which allows us to apply the Leray-Schauder fixed point theorem and conclude that

there exists a classical solution to problem (1.12) — (1.14).

3 A priori estimates

To derive the a priori estimates we assume that there exists a constant E such

that

M= M(t)= sup |[u(7)|m2n) < E, (3.1)

0<r<t

which implies, by the Sobolev embedding theorem, that
||u||Loo(07T;W1,oo(Q)) S OE = El, (32)
we may choose F being so small that £} < % and

||| oo 0,100 )y < 5 (3.3)

DO | —

It is plausible to assume that E' is small, suppose that the initial value of u and its
first two derivatives are chosen to be close to zero.
In what follows, to simplify the notations we denote

a(ty) = ———— b(uy) = a(u)?, (3.4)

NAERTA

thus by (3.3),

1>a(u,) > 6, 1>blu,) >4 and (3.5)

@' (P lr=ue | <Oy V() 7 (1)) =] < € (3.6)



where 0 = (1 + E2)~2. It is easy to see that

2V/5

1>(5>T, and 0 — 1 as E£; — 0.

We can now rewrite equation (1.12) as

wy = —D(a(ux) (b(ux)um)x> . (3.7)

X
In this section our main goal is to prove the following proposition:

Proposition 3.1 (A priori estimates) Suppose that the conditions in Theorem 1.2

are met. Assume that there ezists a suitably small number ey such that
M(t) + € < ey,

and [[uol| m2(0) < €o.

Then

t
lu(t) 172 + Dl/ 00 (T) 172y dT < 2l T2y (3.8)
0
here Dy is a constant depending on 6 and D.

The proof of this proposition is divided into three steps, each stated as a lemma,

Lemmas 3.3 — 3.5 which are the a priori energy estimates.

3.1 The first energy estimate

We shall derive the a priori estimates in this section. First of all, we state the

important feature for this problem, namely, the conservation law:

12



Lemma 3.2 For solution u,

/Qu(t,x)dx _ /Quo(:p)dx —0. (3.9)

The first energy estimate is
Lemma 3.3 For any t € [0,7],
t
lu(®)|? + 2D / / b2, dedr = |uo|? and (3.10)
0 Jo
t
Hu(f)\|2+2D56/ luaa(7)[dT < [luol*. (3.11)
0

Proof. Multiplying (3.7) by u, integrating it with respect to ¢, x over Q7 and using

integration by parts yield
1 2 1 2 !
§||u0|| = 5”“” - D a(uz’) (b(ux)um))zuxdxdT
0 Jo
1 t
= §||u||2 + D/ / Uzeb(Uy) (a(ug)ug), dedr. (3.12)
0 Ja

Calculation yields

whence

1
—Hu\|2+D/ /u b(uy) dCBdT:§HU0H2. (3.13)

From which we obtain (3.10). By (3.5) we get (3.11), and the proof of this lemma

is complete.

3.2 The higher order energy estimates

In this sub-section we are going to establish the a prior: estimates for higher order
derivatives. The first is

13



Lemma 3.4 There exists a small number 1, such that if M (t)+e < ey, then there

holds for any t € [0,T] that

t
luz(®)]1* + D54/ [tz (T %7 < [0z ]|* + CM[Juo|.
0

Proof. We first prove for the classical solution u that

((0) ~taalt)) = 5 Sl DI,
and
(1) e 1) = 5 (D

which will be used in the proof of this lemma and the next lemma.

(3.14)

(3.15)

(3.16)

To this end, we make use of the technique of difference quotient. Let h > 0,

1d 1
Sl = 5 lm o (a4 B — (1))
= 5}1111)1(1%/ (ugp(t + hyy) + up(t,y)) (ug(t + h,y) —

U (t, y)) dy

= lymt / (e (£ + 1 y) + (£, 9)) (ult + By y) — ult, ) dy

2 h—0 h

—/ut(t,ZJ)Uxx(t?y)dy
Q

= _<ut7 u:vac)

This is (3.15). Similarly, one can easily prove (3.16).

(3.17)

Multiplying (3.7) by —u,,, integrating the resulting equation over €2, using

integration by parts, and taking the boundary conditions into account, we then

14



obtain
0 = (g, —Uzs) + D (alug) (b(tg)Uss), » Usws)
L2+ D (alu 2) (0(Ue)Usz),, , Usaz)
= Gl 4 D [ atw)bun)iuds + D (@ ()] o) (319
Making use of (3.5) and (3.6), the Nirenberg inequality in the form

£l < CILNZIFNZE +C 1AL (3.19)

and the Holder, Young inequalities, we infer from (3.18) that

bl D8 g < Ol e ot
< Clutao | ozl + Cllttas | [t |
< 5D el + Cltal + el
< 3Dl + Clltae (3.20)
Therefore, we arrive at
1d 2 4 2 4
o luel? + S D el < Ol (3.21)

Integrating (3.21) with respect to t over [0, 7] yields
t t
s (B)] + 2D§" / ltae()2dr < Jugel® +C / ltaa ()|
0
< el € s fues (7)) / ltaa(r) |2

< ||u0z||2+C'M2/ luwe ()27, (3.22)
0

By combining with the first energy estimate we obtain (3.14).

15



Next we shall derive the a priori estimates for the fourth order spatial derivative

and for the first time derivative. We have

Lemma 3.5 There exists a small number €3, such that if M (t)+e < e4, then there

holds for any t € [0,T] that

t
‘|um<t)‘|2+D54/ Huxmx(T)HQdT < HquacH2+CHUOH?*{1(Q)M27 (3.23)
0

t
/Ilut(f)llsz < losell? + Clluollfp @ M?. (3.24)
0

Proof. We first compute the right-hand side of (3.7) and obtain

—D(a(ux) (b(uz)um)x)x = —Da(uy)b(uy)ttsses + F, (3.25)
F = =D(a(mt(r)],_, v,

—D (3a(r)b'(r) + a'(r)b(r))b:uﬂc Uz Uz 3.26)
and we infer from (3.5) and (3.6) that the following estimate holds
|Fl < C(‘uxx‘d + |Ugateaal)-

Then we multiply (3.7) by ... and integrate the resulting equation with respect

to x, and use integration by parts to get

14l + D / ()bt )il

Q
= / FUppprdr
Q

< c / (It + [t sttnea]) ltsnealda
[9]

IN

IN
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Integrating the above inequality with respect to ¢, applying the Nirenberg inequality

(3.19) to Uy, and gy, we deal with the inequality (3.27) as follows

1 t
s O + D8 [t (7 Par

IA

1 t 1 1
5”“0%”2 + C/ <||um||io||uwz||2 + ||Um||||u:vcca:||§||umm||§> | Ugae |l dT
0

IA

1 1 t t
lasa 4 305" | )P+ M [ (it Pt + ) d
0 0

t
40 [t Wtz (3.28)
0

Here we used the basic inequality ab < ia“ + %b% for any a,b > 0. The last term

in (3.28) can be treated as

t
1 1
C [ Mool s e
0

¢ 3 ¢ 3
< CM (/ ||umx||2d7') (/ ||umm||2d7') ) (3.29)
0 0

Thus it follows from (3.29) and (3.28) that

1 t
s O + D8 [ (7 Pr

IN

1 1 t ¢
5”“0%”2 + ZD54/ Humzx||2d7— + CMZ/ (M2||uma:||2 + ||Um||2) dr
0 0
1 t t
+ZD§4/ It |27 + CM4/ [t |2
0 0

1 1 t t
< 5””0%1”2 + §D54/0 |’umm”2d7 + CM2/O (Humw|l2 + HUMH2) dr. (3.30)

Applying the first energy estimate and Lemma 2.2, from (3.30) we get

1 1 t
s + 506" [ fizaee(r) P
0

IN

1 t
lasal 4 €3 [ (el + ) d
0

IA

1
oz + C (s I + M2 luoll*) + [luol|*) M7, (3.31)
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and we therefore arrive at (3.23).
To prove (3.24) we use equation (3.7). By the triangle inequality, the Sobolev

embedding theorem, and the Nirenberg inequality (3.19) we have

t t
[ lPdr <€ [ (el + Jusstane P+ 1, 2) dr
0 0

IA

t
C/o (HummHz + HUmH?,oHumHQ + ‘|um’|2”um|’io) dr

IN

t t
C [ utsrel+ €M [ (el oy + o Pl + ) e
t t
< C [ Niaaaal P+ O [ (a4 a4 e ) 7, (332)
0 0

from which, applying the estimates in Lemmas 3.3 — 3.4 and (3.23) we then obtain

(3.24). And the proof of this lemma is complete.

Proof of Proposition 3.1 By combination of Lemmas 3.3 — 3.5, if we choose gy =

min{ey, 2}, and let € be so small that M(t) + & < gy, we can conclude that

t
()12 0 +D1/ [t (T) | T2y AT < 0|l + C* M (t)?
0

1
< luolliz) + 5M @) (3.33)

2
here we have chosen ¢ such that
1
Oe? < =,
© =3
Taking supremum for both sides of (3.33) yields
2 2 2 1 2
M(t)" = sup [[u(7) |72 < lluollfz@) + 5M ()7 (3.34)
0<r<t 2
whence
t
0

18



Thus the proof of Proposition 3.1 is complete.

4 The large time behavior

We are going to complete, in this section, the proof of the main result of this article,
Theorem 1.2. To this end, we need only to investigate the large time behavior of
solution u. Because the constants C'’s in Section 3 are independent of ¢, the upper
limit ¢ of the integrals in Lemmas 3.3 — 3.5 can be changed to oo, and the solution
u over [0, 7] can be extended to the one on the whole interval [0, c0).

The proof is divided into three steps. Using the boundary condition and the

Poincaré inequality we then have
combination with (3.11) gives

¢ t
/ |z ||?dr < C’/ |t ||PdT < C. (4.1)
0 0

Since C' is independent of ¢, the upper limit ¢ in (4.1) can be changed to co. We

have

[ hwatar ¢ [ funpar < c (42)
Proof. Step 1. Defining

Ut) = lua (D1, V(t) = lluaa ()],
from (4.2) and the estimates in Section 3 we conclude that

/ Tumdt <, / Vi< o (4.3)
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Next we want to prove that
/OO Lomla < c /Oo Lvmla <o (4.4)
o |dt - Jo |dt - '
Suppose that (4.4) were true, then we conclude easily that
Ut)—0, V(t)—0
as t — 0o0. Moreover, using the inequality of Poincaré type:

If = Fl < Clfall,

where

PO = e [ fta)te

letting f = u and invoking conservation law (3.9) and the definitions of u and m,

we assert that
|u(®)]| =0, so |ly(t) —m| — 0, (4.5)

as t — oo.

Step 2. It remains to prove (4.4). Recalling (3.18), the Sobolev embedding
theorem, the Nirenberg inequality (3.19), and applying the estimates in Lemmas

3.3 — 3.5, we obtain

(||umz||2 + ||um||4) dr

(||umz||2 + M2||um||2> dr

IN
Q

(4.6)



and from (3.27) and the Holder inequality we have

/

t
< C/o (HummHQ + (HUIMH (||| + HumH2 + HuwwaHl(Q)) HuwmxH) dr

d
el (2 Col

t
di dr < C/ (Humm”2 + (Humuio + umeOO)HummrH) dr
0

< C [ (ltoael? + el + fal?)
< C. (4.7)
Thus (4.6) and (4.7) imply (4.4).
Step 3. Recalling (4.5), by Sobolev’s embedding theorem, we can easily prove
that
[w(@®)[[wr.00(0) = 0,

as t — 0o0. And the proof of Theorem 1.2 is complete.
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