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Abstract

In the present article we first study the existence of the

stationary solution to an initial boundary value problem for

the Mullins equation of fourth order, which was proposed by

Mullins in [18] to describe the groove development, due to the

surface diffusion, at the grain boundaries of a heated polycrys-

tal. Then employing an energy method we prove that this sta-

tionary solution is asymptotically stable in a suitable norm, as

time goes to infinity.
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1 Introduction

In this article we are interested in the existence and asymptotic stability of the

stationary solution to an initial boundary value problem for the Mullins equation of

fourth order which describes the groove development, due to the surface diffusion,

at the grain boundaries of a heated polycrystal. This model was proposed by

Mullins, see [18]. There are two cases of this model, namely the conserved and non-

conserved. Here we are interested in the conserved model. For the related result on

the non-conserved case, we refer to [4]. The initial boundary value problem reads

yt = −D
∂

∂x

(
1

(1 + y2
x)

1
2

∂

∂x

(
yxx

(1 + y2
x)

3
2

))
in QT , (1.1)

yx =
∂

∂x

(
yxx

(1 + y2
x)

3
2

)
= 0 on ΓT , (1.2)

y|t=0 = y0 on Ω̄, (1.3)

where we used the notations QT = (0, T ) × Ω, ΓT = ∂QT = [0, T ] × ∂Ω, T is a

positive real number and Ω = (a, b) is an open interval in R with a, b being real

numbers such that a < b and its closure is denoted by Ω̄.

Suppose y is a classical solution to the above problem. Straightforward compu-

tations show that the boundary conditions (1.2) are equivalent to

yx = yxxx = 0 on ΓT . (1.4)

The equation shows that it is non-uniformly parabolic, since the coefficient of its

principle term may decay to zero as yx tends to infinity. Moreover the nonlinearity

of this equation is very strong. Therefore, the global existence of weak solutions
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to problem (1.1) – (1.3) is very difficult. However noting that if yx is small in L∞-

norm, then equation (1.1) is uniformly parabolic. We shall see that it is possible

to investigate the asymptotic stability of the stationary solution to this problem.

We define the free energy function by

f(yx) =

∫ yx
∫ ξ

(1 + s2)−
3
2 dsdξ, (1.5)

and

F =

∫

Ω

f(yx(t, x))dx. (1.6)

There exists a flux function q = q(yt, yx, yxx, yxxx) defined by

q =

∫ yx

(1 + s2)−
3
2 ds yt +

Dyxx

(1 + y2
x)

2

∂

∂x

(
yxx

(1 + y2
x)

3
2

)
.

From equation (1.1) we have

d

dt
f(yx)− divx q =

∫ yx

(1 + s2)−
3
2 ds yxt − divx q

=

(∫ yx

(1 + s2)−
3
2 ds yt

)

x

− (1 + y2
x)
− 3

2 yxxyt − divx q

=

(∫ yx

(1 + s2)−
3
2 ds yt

)

x

+ D

(
yxx

(1 + y2
x)

2

∂

∂x

(
yxx

(1 + y2
x)

3
2

))

x

−D
1

(1 + y2
x)

1
2

(
∂

∂x

(
yxx

(1 + y2
x)

3
2

))2

− divx q

= −D
1

(1 + y2
x)

1
2

(
∂

∂x

(
yxx

(1 + y2
x)

3
2

))2

≤ 0. (1.7)
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Moreover, recalling boundary conditions one obtains

d

dt
F =

∫

Ω

∂

∂t
f(yx(t, x))dx

= −D

∫

Ω

1

(1 + y2
x)

1
2

∣∣∣∣∣
∂

∂x

(
yxx

(1 + y2
x)

3
2

)∣∣∣∣∣

2

dx

≤ 0. (1.8)

Therefore the second law of thermodynamics is satisfied.

Before stating our main result, we need to study the following stationary prob-

lem corresponding to problem (1.1) – (1.3). In this case, y satisfies

D
∂

∂x

(
1

(1 + y2
x)

1
2

∂

∂x

(
yxx

(1 + y2
x)

3
2

))
= 0 in Ω, (1.9)

yx = yxxx = 0 on ∂Ω. (1.10)

Concerning the existence of a solution to problem (1.9) – (1.10) we have

Lemma 1.1 There exists a unique solution y ≡ m to problem (1.9) – (1.10). Here

m is a constant satisfying

m =
1

meas(Ω)

∫

Ω

y0(x)dx.

The proof of this lemma will be presented in Section 2.

Reformulation of the problem: We next make a suitable transformation of the

unknown to make it slightly easier to establish a priori estimates for the new

unknown. We assume that y is a classical solution to problem (1.1) – (1.3). Then

we get

d

dt

∫

Ω

y(t, x)dx = 0.
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Thus one has

1

meas(Ω)

∫

Ω

y(t, x)dx =
1

meas(Ω)

∫

Ω

y(0, x)dx

=
1

meas(Ω)

∫

Ω

y0(x)dx

= const =: m.

Define a new variable

u = y −m, (1.11)

it is easy to see that ux = yx, and problem (1.1) – (1.3) turns out to be

ut = −D
∂

∂x

(
1

(1 + u2
x)

1
2

∂

∂x

(
uxx

(1 + u2
x)

3
2

))
in QT , (1.12)

ux = uxxx = 0 on ΓT , (1.13)

u|t=0 = y0 −m on Ω̄. (1.14)

For the convenience of readers, we now collect the notations that we have used

and will use in this article.

Notations: Let T be a real number, and C denotes a universal constant which is

independent of T . We denote the scalar product over QT by (·, ·)T , and the scalar

product over Ω by (·, ·), and its corresponding norm by ‖ · ‖, respectively. Let p be

real such that 1 ≤ p ≤ ∞. Lp(Ω) is the space of p-integrable functions with the

Lp-norm ‖ · ‖p defined in the standard way. For p = 2, we replace ‖ · ‖2 by ‖ · ‖.

C1+α
4

,4+α(Q̄T ) is the space of Hölder continuous functions with exponents α for x

and α/4 for t, where 0 < α < 1. Wm,p(Ω) denotes the standard Sobolev space,
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which is also denoted by Hm(Ω) in the case that p = 2. Let X be a Banach space.

Lp(0, T ; X) denotes the space of Lp-functions taking values in X.

The main result of this article is as follows:

Theorem 1.2 Let α be a constant satisfying 0 < α < 1. Suppose that u0 ∈

C4,α(Ω̄), and there is a suitably small number ε such that ‖u0‖H2(Ω) ≤ ε. Assume

that the compatibility conditions u0x(a) = u0x(b) = 0, u0xxx(a) = u0xxx(b) = 0 and

ut|t=0 = −D
∂

∂x

(
1

(1 + (u0x)
2)

1
2

∂

∂x

(
u0xx

(1 + (u0x)
2)

3
2

))

are satisfied.

Then there exists a classical solution u such that

u ∈ C1+α
4

,4+α(Q̄T ),

and

u ∈ L2(0,∞; H4(Ω)), ut ∈ L2(0,∞, L2(Ω)).

Moreover, there holds

‖y(t, ·)−m‖H2(Ω) → 0, ‖y(t, ·)−m‖W 1,∞(Ω) → 0

as t →∞.

We now recall the literature related closely to this model. Some authors have

investigated the existence of a weak/classical solution or the existence of special

solutions to a Cauchy problem/initial boundary value problem for this model in
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non-conserved/conserved case, see e.g. Alber and Zhu [4], Broadbridge [9], Broad-

bridge and Tritscher [10], Tritscher and Broadbridge [20], Kitada and Umehara

[15], Kanel and Novick-Cohen [14] and the references cited therein. For degenerate

fourth order parabolic equations, we refer to e.g., Bernis and Friedman [7], Bertozzi

and Pugh [8], Beretta, Bertsch and Dal Passo [6], Cahn, Elliott and Novick-Cohen

[11], Dal Passo, Garcke and Grün [13], where the mobility depends nonlinearly,

however smoothly, on the unknown itself. Recently new kinds of models have been

proposed to describe phase transitions driven by configurational forces in solids;

and they have been studied mathematically in Alber and Zhu [1, 2, 3, 5]. The mo-

bility in these models depends non-smoothly on the first order spatial derivatives,

while we can see that the mobility of the model in this article depends smoothly

on the first order spatial derivative.

The main difficulty in the proof of Theorem 1.2 is due to the fact that the

coefficient depends nonlinearly on the first order derivative and the equation is

of fourth-order. To prove the existence of a classical solution to the problem we

make use of the Leray-Schauder fix point theorem and an existence theorem for

the linearized problem from the book by Ladyzenskaya, et al [16].

The remaining parts of this article are organized as follows: In Section 2 we

are going to prove the existence of the stationary solution and the solution to

the reduced problem. In Section 3 we shall establish some a priori estimates for

the classical solution, which consist of the proof of Proposition 3.1. Section 4 is

devoted to investigating the large time behavior of a solution by using the a priori
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estimates.

2 Existence of stationary solution

In this section we are going to prove the existence of the stationary solution stated

in Lemma 1.1. We then construct an approximate problem and employ the Leray-

Schauder fixed-point theorem to prove the existence of the classical solution to

it.

We are now going to prove Lemma 1.1.

Proof of Lemma 1.1. From equations (1.9) – (1.10) we obtain

1

(1 + y2
x)

1
2

∂

∂x

(
yxx

(1 + y2
x)

3
2

)
= C1.

Since

∂

∂x

(
yxx

(1 + y2
x)

3
2

)
=

yxxx

(1 + y2
x)

3
2

− 3
yxy

2
xx

(1 + y2
x)

5
2

= 0

if x ∈ ∂Ω = {a, b}, whence C1 = 0 and

∂

∂x

(
yxx

(1 + y2
x)

3
2

)
= 0, (2.1)

yx = 0, for x = a, b. (2.2)

Conditions (2.1) and (2.2) tell us that we have a curve of constant curvature, with

zero gradient at two locations, x = a, b. It then follows immediately that the curve

is a horizonal line. The proof of the lemma is thus complete.

In the remaining part of this section, we will prove the existence of the unique

classical solution u to problem (1.12) – (1.14). To this end, we firstly employ an
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existence theorem in Ladyzenskaya, et al [16] to solve a linearized problem of (1.12)

– (1.14). Based on the a priori estimates for the approximate solutions, we can

use the Leray-Schauder fixed point theorem to prove the following existence result.

We have

Theorem 2.1 Assume that all the conditions listed in Theorem 1.2 are met.

Then there exists a unique classical solution u to problem (1.12) – (1.14).

Proof. We apply the Leray-Schauder fixed point theorem to prove this theorem.

Firstly, we consider the following linearized problem:

ut = −D
∂

∂x

(
1

(1 + λũ2
x)

1
2

∂

∂x

(
uxx

(1 + λũ2
x)

3
2

))
in QT , (2.3)

ux = uxxx = 0 on ΓT , (2.4)

u|t=0 = y0 −m on Ω̄. (2.5)

for any given ũ, and λ ∈ [0, 1]. Applying Theorem 10.1 on page 616 in [16] we find

a solution u ∈ C1+α/4,4+α(Q̄T ). Thus we can construct a mapping which allows us

to define Pλ : C1+α
4

,4+α(Q̄T ) ⊂⊂ C
α
4

,α(Q̄T ) → C1+α
4

,4+α(Q̄T ) : ũ 7→ u = Pλũ.

Here ⊂⊂ denotes the compact embedding.

Next, using the a priori estimates which are similar to those that we will es-

tablish in the next section, we conclude that

‖ux‖C
α
4 ,α(Q̄T )

≤ C.

Then one can derive from the equation the estimate of the Schauder type

‖u‖
C1+ α

4 ,4+α(Q̄T )
≤ C ′,
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which allows us to apply the Leray-Schauder fixed point theorem and conclude that

there exists a classical solution to problem (1.12) – (1.14).

3 A priori estimates

To derive the a priori estimates we assume that there exists a constant E such

that

M = M(t) = sup
0≤τ≤t

‖u(τ)‖H2(Ω) ≤ E, (3.1)

which implies, by the Sobolev embedding theorem, that

‖u‖L∞(0,T ;W 1,∞(Ω)) ≤ CE =: E1, (3.2)

we may choose E being so small that E1 ≤ 1
2

and

‖u‖L∞(0,T ;W 1,∞(Ω)) ≤ 1

2
. (3.3)

It is plausible to assume that E is small, suppose that the initial value of u and its

first two derivatives are chosen to be close to zero.

In what follows, to simplify the notations we denote

a(ux) =
1√

1 + u2
x

, b(ux) = a(ux)
3, (3.4)

thus by (3.3),

1 ≥ a(ux) ≥ δ, 1 ≥ b(ux) ≥ δ3 and (3.5)

|a′(r)|r=ux| ≤ C, |(b′(r), b′′(r))|r=ux| ≤ C, (3.6)

11



where δ = (1 + E2
1)
− 1

2 . It is easy to see that

1 > δ >
2
√

5

5
, and δ → 1 as E1 → 0.

We can now rewrite equation (1.12) as

ut = −D
(
a(ux) (b(ux)uxx)x

)
x
. (3.7)

In this section our main goal is to prove the following proposition:

Proposition 3.1 (A priori estimates) Suppose that the conditions in Theorem 1.2

are met. Assume that there exists a suitably small number ε0 such that

M(t) + ε ≤ ε0,

and ‖u0‖H2(Ω) ≤ ε0.

Then

‖u(t)‖2
H2(Ω) + D1

∫ t

0

‖uxx(τ)‖2
H2(Ω)dτ ≤ 2‖u0‖2

H2(Ω), (3.8)

here D1 is a constant depending on δ and D.

The proof of this proposition is divided into three steps, each stated as a lemma,

Lemmas 3.3 – 3.5 which are the a priori energy estimates.

3.1 The first energy estimate

We shall derive the a priori estimates in this section. First of all, we state the

important feature for this problem, namely, the conservation law:
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Lemma 3.2 For solution u,

∫

Ω

u(t, x)dx =

∫

Ω

u0(x)dx = 0. (3.9)

The first energy estimate is

Lemma 3.3 For any t ∈ [0, T ],

‖u(t)‖2 + 2D

∫ t

0

∫

Ω

b(ux)
2u2

xxdxdτ = ‖u0‖2 and (3.10)

‖u(t)‖2 + 2Dδ6

∫ t

0

‖uxx(τ)‖2dτ ≤ ‖u0‖2. (3.11)

Proof. Multiplying (3.7) by u, integrating it with respect to t, x over QT and using

integration by parts yield

1

2
‖u0‖2 =

1

2
‖u‖2 −D

∫ t

0

∫

Ω

a(ux) (b(ux)uxx))xuxdxdτ

=
1

2
‖u‖2 + D

∫ t

0

∫

Ω

uxxb(ux) (a(ux)ux)x dxdτ. (3.12)

Calculation yields

(a(y)y)′ = b(y),

whence

1

2
‖u‖2 + D

∫ t

0

∫

Ω

u2
xxb(ux)

2dxdτ =
1

2
‖u0‖2. (3.13)

From which we obtain (3.10). By (3.5) we get (3.11), and the proof of this lemma

is complete.

3.2 The higher order energy estimates

In this sub-section we are going to establish the a priori estimates for higher order

derivatives. The first is
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Lemma 3.4 There exists a small number ε1, such that if M(t)+ε ≤ ε1, then there

holds for any t ∈ [0, T ] that

‖ux(t)‖2 + Dδ4

∫ t

0

‖uxxx(τ)‖2dτ ≤ ‖u0x‖2 + CM2‖u0‖2. (3.14)

Proof. We first prove for the classical solution u that

(ut(t),−uxx(t)) =
1

2

d

dt
‖ux(t)‖2, (3.15)

and

(ut(t), uxxxx(t)) =
1

2

d

dt
‖uxx(t)‖2, (3.16)

which will be used in the proof of this lemma and the next lemma.

To this end, we make use of the technique of difference quotient. Let h > 0,

1

2

d

dt
‖ux(t)‖2 =

1

2
lim
h→0

1

h

(‖ux(t + h)‖2 − ‖ux(t)‖2
)

=
1

2
lim
h→0

1

h

∫

Ω

(ux(t + h, y) + ux(t, y)) (ux(t + h, y)− ux(t, y)) dy

= −1

2
lim
h→0

1

h

∫

Ω

(uxx(t + h, y) + uxx(t, y)) (u(t + h, y)− u(t, y)) dy

= −
∫

Ω

ut(t, y)uxx(t, y)dy

= −(ut, uxx). (3.17)

This is (3.15). Similarly, one can easily prove (3.16).

Multiplying (3.7) by −uxx, integrating the resulting equation over Ω, using

integration by parts, and taking the boundary conditions into account, we then
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obtain

0 = (ut,−uxx) + D (a(ux) (b(ux)uxx)x , uxxx)

=
1

2

d

dt
‖ux‖2 + D (a(ux) (b(ux)uxx)x , uxxx)

=
1

2

d

dt
‖ux‖2 + D

∫

Ω

a(ux)b(ux)u
2
xxxdx + D

(
a(r)b′(r)|r=uxu

2
xx, uxxx

)
.(3.18)

Making use of (3.5) and (3.6), the Nirenberg inequality in the form

‖f‖∞ ≤ C‖fx‖ 1
2‖f‖ 1

2 + C ′‖f‖, (3.19)

and the Hölder, Young inequalities, we infer from (3.18) that

1

2

d

dt
‖ux‖2 + Dδ4‖uxxx‖2 ≤ C‖uxx‖∞‖uxx‖‖uxxx‖

≤ C‖uxx‖ 3
2‖uxxx‖ 3

2 + C‖uxx‖2‖uxxx‖

≤ 1

2
Dδ4‖uxxx‖2 + C(‖uxx‖6 + ‖uxx‖4)

≤ 1

2
Dδ4‖uxxx‖2 + C‖uxx‖4. (3.20)

Therefore, we arrive at

1

2

d

dt
‖ux‖2 +

1

2
Dδ4‖uxxx‖2 ≤ C‖uxx‖4. (3.21)

Integrating (3.21) with respect to t over [0, T ] yields

‖ux(t)‖2 + 2Dδ4

∫ t

0

‖uxxx(τ)‖2dτ ≤ ‖u0x‖2 + C

∫ t

0

‖uxx(τ)‖4dτ

≤ ‖u0x‖2 + C sup
τ∈[0,T ]

‖uxx(τ)‖2

∫ t

0

‖uxx(τ)‖2dτ

≤ ‖u0x‖2 + CM2

∫ t

0

‖uxx(τ)‖2dτ. (3.22)

By combining with the first energy estimate we obtain (3.14).
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Next we shall derive the a priori estimates for the fourth order spatial derivative

and for the first time derivative. We have

Lemma 3.5 There exists a small number ε2, such that if M(t)+ε ≤ ε2, then there

holds for any t ∈ [0, T ] that

‖uxx(t)‖2 + Dδ4

∫ t

0

‖uxxxx(τ)‖2dτ ≤ ‖u0xx‖2 + C‖u0‖2
H1(Ω)M

2, (3.23)

∫ t

0

‖ut(τ)‖2dτ ≤ ‖u0xx‖2 + C‖u0‖2
H1(Ω)M

2. (3.24)

Proof. We first compute the right-hand side of (3.7) and obtain

−D
(
a(ux) (b(ux)uxx)x

)
x

= −Da(ux)b(ux)uxxxx + F , (3.25)

F = −D (a(r)b′(r))′
∣∣
r=ux

u3
xx

−D (3a(r)b′(r) + a′(r)b(r))|r=ux
uxxuxxx,(3.26)

and we infer from (3.5) and (3.6) that the following estimate holds

|F| ≤ C(|uxx|3 + |uxxuxxx|).

Then we multiply (3.7) by uxxxx and integrate the resulting equation with respect

to x, and use integration by parts to get

1

2

d

dt
‖uxx‖2 + D

∫

Ω

a(ux)b(ux)u
2
xxxxdx

=

∫

Ω

Fuxxxxdx

≤ C

∫

Ω

(|uxx|3 + |uxxuxxx|
) |uxxxx|dx

≤ C
(‖u3

xx‖+ ‖uxxuxxx‖
) ‖uxxxx‖

≤ C
(‖uxx‖2

∞‖uxx‖+ ‖uxx‖ ‖uxxx‖∞
) ‖uxxxx‖. (3.27)
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Integrating the above inequality with respect to t, applying the Nirenberg inequality

(3.19) to uxx and uxxx, we deal with the inequality (3.27) as follows

1

2
‖uxx(t)‖2 + Dδ4

∫ t

0

‖uxxxx(τ)‖2dτ

≤ 1

2
‖u0xx‖2 + C

∫ t

0

(
‖uxx‖4

∞‖uxx‖2 + ‖uxx‖‖uxxx‖ 1
2‖uxxxx‖ 1

2

)
‖uxxxx‖dτ

≤ 1

2
‖u0xx‖2 +

1

4
Dδ4

∫ t

0

‖uxxxx(τ)‖2dτ + CM2

∫ t

0

(‖uxxx‖2‖uxx‖2 + ‖uxx‖2
)
dτ

+C

∫ t

0

‖uxx‖ ‖uxxx‖ 1
2‖uxxxx‖1+ 1

2 dτ. (3.28)

Here we used the basic inequality ab ≤ 1
4
a4 + 3

4
b

4
3 for any a, b ≥ 0. The last term

in (3.28) can be treated as

C

∫ t

0

‖uxx‖ ‖uxxx‖ 1
2‖uxxxx‖1+ 1

2 dτ

≤ CM

(∫ t

0

‖uxxx‖2dτ

) 1
4
(∫ t

0

‖uxxxx‖2dτ

) 3
4

. (3.29)

Thus it follows from (3.29) and (3.28) that

1

2
‖uxx(t)‖2 + Dδ4

∫ t

0

‖uxxxx(τ)‖2dτ

≤ 1

2
‖u0xx‖2 +

1

4
Dδ4

∫ t

0

‖uxxxx‖2dτ + CM2

∫ t

0

(
M2‖uxxx‖2 + ‖uxx‖2

)
dτ

+
1

4
Dδ4

∫ t

0

‖uxxxx‖2dτ + CM4

∫ t

0

‖uxxx‖2dτ

≤ 1

2
‖u0xx‖2 +

1

2
Dδ4

∫ t

0

‖uxxxx‖2dτ + CM2

∫ t

0

(‖uxxx‖2 + ‖uxx‖2
)
dτ. (3.30)

Applying the first energy estimate and Lemma 2.2, from (3.30) we get

1

2
‖uxx(t)‖2 +

1

2
Dδ4

∫ t

0

‖uxxxx(τ)‖2dτ

≤ 1

2
‖u0xx‖2 + CM2

∫ t

0

(‖uxxx‖2 + ‖uxx‖2
)
dτ

≤ 1

2
‖u0xx‖2 + C

((‖u0x‖2 + M2‖u0‖2
)

+ ‖u0‖2
)
M2, (3.31)
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and we therefore arrive at (3.23).

To prove (3.24) we use equation (3.7). By the triangle inequality, the Sobolev

embedding theorem, and the Nirenberg inequality (3.19) we have

∫ t

0

‖ut‖2dτ ≤ C

∫ t

0

(‖uxxxx‖2 + ‖uxxuxxx‖2 + ‖u3
xx‖2

)
dτ

≤ C

∫ t

0

(‖uxxxx‖2 + ‖uxxx‖2
∞‖uxx‖2 + ‖uxx‖2‖uxx‖4

∞
)
dτ

≤ C

∫ t

0

‖uxxxx‖2 + CM2

∫ t

0

(
‖uxxx‖2

H1(Ω) + ‖uxxx‖2‖uxx‖2 + ‖uxx‖4
)

dτ

≤ C

∫ t

0

‖uxxxx‖2dτ + CM2

∫ t

0

(‖uxxxx‖2 + ‖uxxx‖2 + ‖uxx‖2
)
dτ, (3.32)

from which, applying the estimates in Lemmas 3.3 – 3.4 and (3.23) we then obtain

(3.24). And the proof of this lemma is complete.

Proof of Proposition 3.1 By combination of Lemmas 3.3 – 3.5, if we choose ε0 =

min{ε1, ε2}, and let ε be so small that M(t) + ε ≤ ε0, we can conclude that

‖u(t)‖2
H2(Ω) + D1

∫ t

0

‖uxx(τ)‖2
H2(Ω)dτ ≤ ‖u0‖2

H2(Ω) + Cε2M(t)2

≤ ‖u0‖2
H2(Ω) +

1

2
M(t)2, (3.33)

here we have chosen ε such that

Cε2 ≤ 1

2
.

Taking supremum for both sides of (3.33) yields

M(t)2 = sup
0≤τ≤t

‖u(τ)‖2
H2(Ω) ≤ ‖u0‖2

H2(Ω) +
1

2
M(t)2, (3.34)

whence

M(t)2 ≤ 2‖u0‖2
H2(Ω),

∫ t

0

‖uxx(τ)‖2
H2(Ω)dτ ≤ C. (3.35)
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Thus the proof of Proposition 3.1 is complete.

4 The large time behavior

We are going to complete, in this section, the proof of the main result of this article,

Theorem 1.2. To this end, we need only to investigate the large time behavior of

solution u. Because the constants C’s in Section 3 are independent of t, the upper

limit t of the integrals in Lemmas 3.3 – 3.5 can be changed to ∞, and the solution

u over [0, T ] can be extended to the one on the whole interval [0,∞).

The proof is divided into three steps. Using the boundary condition and the

Poincaré inequality we then have

‖ux‖ ≤ C‖uxx‖,

combination with (3.11) gives

∫ t

0

‖ux‖2dτ ≤ C

∫ t

0

‖uxx‖2dτ ≤ C. (4.1)

Since C is independent of t, the upper limit t in (4.1) can be changed to ∞. We

have

∫ ∞

0

‖ux‖2dτ ≤ C

∫ ∞

0

‖uxx‖2dτ ≤ C. (4.2)

Proof. Step 1. Defining

U(t) = ‖ux(t)‖2, V (t) = ‖uxx(t)‖2,

from (4.2) and the estimates in Section 3 we conclude that

∫ ∞

0

U(t)dt ≤ C,

∫ ∞

0

V (t)dt ≤ C. (4.3)
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Next we want to prove that

∫ ∞

0

∣∣∣∣
d

dt
U(t)

∣∣∣∣ dt ≤ C,

∫ ∞

0

∣∣∣∣
d

dt
V (t)

∣∣∣∣ dt ≤ C. (4.4)

Suppose that (4.4) were true, then we conclude easily that

U(t) → 0, V (t) → 0

as t →∞. Moreover, using the inequality of Poincaré type:

‖f − f̄‖ ≤ C‖fx‖,

where

f̄ = f̄(t) =
1

meas(Ω)

∫

Ω

f(t, x)dx,

letting f = u and invoking conservation law (3.9) and the definitions of u and m,

we assert that

‖u(t)‖ → 0, so ‖y(t)−m‖ → 0, (4.5)

as t →∞.

Step 2. It remains to prove (4.4). Recalling (3.18), the Sobolev embedding

theorem, the Nirenberg inequality (3.19), and applying the estimates in Lemmas

3.3 – 3.5, we obtain

∫ t

0

∣∣∣∣
d

dt
‖ux(τ)‖2

∣∣∣∣ dτ ≤ C

∫ t

0

(‖uxxx‖2 + ‖uxx‖4
)
dτ

≤ C

∫ t

0

(‖uxxx‖2 + M2‖uxx‖2
)
dτ

≤ C, (4.6)
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and from (3.27) and the Hölder inequality we have

∫ t

0

∣∣∣∣
d

dt
‖uxx(τ)‖2

∣∣∣∣ dτ ≤ C

∫ t

0

(‖uxxxx‖2 + (‖uxx‖2
∞ + uxxx‖∞)‖uxxxx‖

)
dτ

≤ C

∫ t

0

(‖uxxxx‖2 +
(‖uxxx‖ ‖uxx‖+ ‖uxx‖2 + ‖uxxx‖H1(Ω)

) ‖uxxxx‖
)
dτ

≤ C

∫ t

0

(‖uxxxx‖2 + ‖uxxx‖2 + ‖uxx‖2
)
dτ

≤ C. (4.7)

Thus (4.6) and (4.7) imply (4.4).

Step 3. Recalling (4.5), by Sobolev’s embedding theorem, we can easily prove

that

‖u(t)‖W 1,∞(Ω) → 0,

as t →∞. And the proof of Theorem 1.2 is complete.
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