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HARDY INEQUALITIES, OBSERVABILITY, AND CONTROL FOR
THE WAVE AND SCHRÖDINGER EQUATIONS WITH SINGULAR

POTENTIALS∗

J. VANCOSTENOBLE† AND E. ZUAZUA‡

Abstract. We address the question of exact controllability of the wave and Schrödinger equa-
tions perturbed by a singular inverse-square potential. Exact boundary controllability is proved in
the range of subcritical coefficients of the singular potential and under suitable geometric conditions.
The proof relies on the method of multipliers. The key point in the proof of the observability inequal-
ity is a suitable Hardy-type inequality with sharp constants. On the contrary, in the supercritical
case, we prove that exact controllability is false.
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1. Introduction. In this work, we mainly address the problem of exact con-
trollability for linear wave equations with singular potentials. More precisely, we
focus on the so-called inverse-square potential arising, for example, in the context of
combustion theory [3, 7, 16, 20] and quantum mechanics [1, 10, 27].

Let N ≥ 1 be given, and consider Ω ⊂ RN a bounded open set such that 0 ∈ Ω
and whose boundary Γ is of class C2. We denote by Γ0 some nonempty part of Γ.
Then consider the following hyperbolic problem:

(1.1)




utt −∆u− λ

|x|2 u = 0, (t, x) ∈ (0, T )× Ω,

u(t, x) = h(t, x), (t, x) ∈ (0, T )× Γ0,

u(t, x) = 0, (t, x) ∈ (0, T )× Γ \ Γ0,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω,

with (u0, u1) given in L2(Ω)×H ′
λ (the space H ′

λ is defined later in section 2. However,
to fix ideas, we can assume that u1 ∈ H−1(Ω)). Here, h ∈ L2((0, T )×Γ0) is the control
that acts on the part Γ0 of Γ. The solution u of (1.1) is the state of the system.

We are concerned with the property of exact controllability, i.e., whether, for
every initial condition (u0, u1) ∈ L2(Ω)×H ′

λ and every target (ū0, ū1) ∈ L2(Ω)×H ′
λ,

there exists h ∈ L2((0, T )× Γ0) such that the solution u of (1.1) satisfies

(1.2) (u(T, x), ut(T, x)) = (ū0, ū1) for a.e. x ∈ Ω.

Here and in what follows, λ� stands for the critical constant

(1.3) λ� :=
(N − 2)2
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in the Hardy inequality (see for instance [22, 25]) guaranteeing that, when N 	= 2, for
every z ∈ H1

0 (Ω), we have z/|x| ∈ L2(Ω) and

(1.4) ∀z ∈ H1
0 (Ω), λ�

∫
Ω

z2

|x|2 dx ≤
∫

Ω

|∇z|2 dx.

In particular, (1.4) implies that, under the condition λ ≤ λ�, the operator−∆−λ|x|−2

is nonnegative. The critical value λ� of the parameter plays a key role in the statement
of well-posedness results for problems like (1.1), and one expects this value to be
important when addressing controllability as well.

Recently, the question of null controllability of heat equations with inverse-square
potentials has been studied in [30, 17]. It has been proved that, within the range of
subcritical values λ ≤ λ�, null controllability holds.

In this work, we address a similar question in the context of the wave equation.
More precisely, we consider the case where the subset Γ0 of the boundary where the
control is active is of the form

(1.5) Γ0 = {x ∈ Γ | x · ν ≥ 0}.
Our main result is the exact controllability of (1.1) for T > 0 sufficiently large,
independent of λ ≤ λ�, in this geometric setting.

This result is actually equivalent to an observability inequality for the solutions
of the adjoint system:

(1.6)



vtt −∆v − λ

|x|2 v = 0, (t, x) ∈ (0, T )× Ω,

v(t, x) = 0, (t, x) ∈ (0, T )× Γ,
v(0, x) = v0(x), vt(0, x) = v1(x), x ∈ Ω.

The main contribution of this paper consists precisely in proving this observability
inequality. To be more precise, we show that, for T large enough and all λ ≤ λ�, there
exists C > 0 such that

(1.7)
∫

Ω

(
|∇v(0, x)|2 − λ |v(0, x)|

2

|x|2 + |vt(0, x)|2
)
dx ≤ C

∫ T

0

∫
Γ0

∂v

∂ν

2

dσdt.

We refer to Theorem 3.1 for a precise statement of this result. As a consequence
of this inequality, it follows that system (1.1) is exactly controllable in time T by a
control acting on Γ0; see Theorem 4.1.

The proof of (1.7) relies on the method of multipliers, and a key point in the
proof is the following new sharp Hardy-type inequality.

Theorem 1.1. Let Ω be a bounded domain of R
N , N ≥ 1, and λ� be as in (1.3).

Then
(1.8)

∀z ∈ H1
0 (Ω),

∫
Ω

|x|2|∇z|2 dx ≤ R2
Ω

∫
Ω

(
|∇z|2 − λ�

z2

|x|2
)
dx+

N2 − 4
4

∫
Ω

z2 dx,

where RΩ := maxx∈Ω |x|.
The proof of this theorem is given in an appendix at the end of the paper.
Remark 1.1. The above result is a kind of Hardy–Poincaré inequality in the

spirit of the inequalities by Brézis-Vázquez [7], later improved by Vázquez-Zuazua
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[31] and Filippas-Tertikas [18] (and extended to the case of mutlipolar singularities
by Bosi-Dolbeault-Esteban [5]). In those works, the norm of z (in L2 or in W 1,q for
1 ≤ q < 2) was estimated by ‖z‖Hλ�

. For example, Brézis-Vázquez [7] proved

(1.9) ∀z ∈ H1
0 (Ω),

∫
Ω

z2 dx ≤ C

∫
Ω

(
|∇z|2 − λ�

z2

|x|2
)
dx.

For our purpose, we need here to provide an estimate of the L2-norm of x · ∇z in
terms of ‖z‖Hλ�

. Observe that (1.8) combined with (1.9) leads to

(1.10) ∀z ∈ H1
0 (Ω),

∫
Ω

|x|2|∇z|2 dx ≤ C

∫
Ω

(
|∇z|2 − λ�

z2

|x|2
)
dx.

However, (1.10) is not sharp enough for our purpose. Indeed, it would be sufficient
to prove the required observability inequality, but this would not yield the expected
minimal time of controllability.

The question of exact controllability for the wave equation when λ ≤ λ� is ad-
dressed in sections 2–4. On the contrary, in section 5, we prove that exact control-
lability is false in the supercritical case, i.e., when λ > λ�. In section 6, we also
briefly discuss the case of the Schrödinger equation with an inverse-square potential.
Following the proof of Machtyngier [24] (that holds for the standard Schrödinger equa-
tion) and using the Hardy inequality stated in Theorem 1.1, we prove similar exact
controllability results for this problem.

Finally, section 7 is devoted to discuss further results and issues related to the
limitations of the multiplier method. Our main results stated in sections 2–4 are
obtained using the simplest radial multiplier (x−x0) ·∇v (with x0 = 0); see, e.g., the
books by Lions [23] and Komornik [21]. Several variants have been developed in the
context of the wave equation. For instance, Osses in [26] introduced an added ”rotated
multiplier” of the form A(x − x0) · ∇v, where A is a skew-symmetric matrix. This
yields a wider class of geometric situations where explicit observability can be proved
for the wave equation. The application of this technique to our problem generates
further results, stated in section 7, where the geometric assumption (1.5) above on Γ0

is relaxed.
The main limitation of the multiplier method, as applied here, is that it has to

be centered at the point where the singularity is located (x0 = 0). Thus, our results
are limited to the case where Γ0 is of the form (1.5) or satisfies the assumptions
given in section 7. The case of a more general geometry is still to be considered. For
the same reason, the case of multipolar inverse-square singular potentials (considered
in [17] in the case of the heat equation) cannot be treated with this method. The
treatment of these two problems above requires other techniques such as, for example,
the derivation of new Carleman estimates for singular wave equations (as done in
[30, 17] for the heat equation). The microlocal analysis of these problems is also to
be done.

There is an extensive literature on Hardy-type inequalities with various gener-
alizations as, for instance, the case where the singularity is located all along the
boundary of the domain (see, for example, [6, 13, 8]). It would be natural to address
the extension of the controllability property to those frameworks. Another case of
interest that we do not treat here is that in which the singularity is placed on a point
of the boundary. Of course, our results apply in that case too. But there one expects
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to be able to improve the range of λ’s for which the results hold. This first needs of
improvements of the existing Hardy inequalities; see section 7.4.

2. Basic properties for the wave equation with an inverse-square po-
tential. We recall that N ≥ 1. We fix an arbitrary T > 0 and assume that Ω ⊂ RN

is a bounded open set such that 0 ∈ Ω whose boundary Γ is of class C2. We also use
the notations QT := (0, T )×Ω and ΣT := (0, T )×Γ. Finally, we assume that λ ≤ λ�.

Before considering controllability questions, we address the question of well-
posedness of problems of the form

(2.1)



utt −∆u− λ

|x|2 u = 0, (t, x) ∈ QT ,

u(t, x) = g(t, x), (t, x) ∈ ΣT ,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω.

In this purpose, we first need to state some basic properties of wave equations of the
following type:

(2.2)



vtt −∆v − λ

|x|2 v = f(t, x), (t, x) ∈ QT ,

v(t, x) = 0, (t, x) ∈ ΣT ,

v(0, x) = v0(x), vt(0, x) = v1(x), x ∈ Ω.

The well-posedness of the heat equation with an inverse-square singular potential has
been studied in [2, 8, 31] depending on the value of the parameter λ with respect to λ�:
the problem is well-posed when λ ≤ λ�, whereas instantaneous and complete blow-up
of positive solutions occurs when λ > λ�. We prove here a similar well-posedness
result for the wave equation: (2.2) is well-posed in the range of subcritical parameters
λ ≤ λ�. As in [31], the case λ = λ� is slightly peculiar, since the functional setting
differs from the case λ < λ� (see Remark 2.1).

2.1. Finite energy solutions for homogeneous Dirichlet boundary con-
ditions. The first step is to prove the existence of finite energy solutions for (2.2).
For that we introduce the Hilbert space Hλ obtained as the completion of H1

0 (Ω) with
respect to the norm

‖z‖Hλ
=
(∫

Ω

(
|∇z|2 − λ z

2

|x|2
)
dx

)1/2

.

In the subcritical case λ < λ� when N 	= 2, by (1.4), one can easily prove that
‖ · ‖Hλ

is equivalent to the usual norm in H1
0 (Ω), and therefore Hλ = H1

0 (Ω). But,
as pointed out in [31], when λ = λ�, Hλ� is strictly larger than H1

0 (Ω). To be more
precise, in the subcritical case, the following holds.

Lemma 2.1. Assume that N 	= 2 and λ < λ�. Then there exist two constants
C1,λ > 0 and C2,λ > 0 such that, for every z0 ∈ H1

0 (Ω),

C1,λ‖z0‖H1
0 (Ω) ≤ ‖z0‖Hλ

≤ C2,λ‖z0‖H1
0 (Ω).

More precisely,

C1,λ = 1− max (0, λ)
λ�

, C2,λ = 1− min (0, λ)
λ�

.
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Remark 2.1. In the critical case λ = λ�, the space Hλ� has been described
by Vázquez-Zuazua [31]. By improving some Hardy–Poincaré inequalities of Brézis-
Vázquez [7], they proved that Hλ� is slightly larger than H1

0 (Ω) and smaller than
∩q<2W

1,q(Ω). Those inequalities have also been refined by Filippas-Tertakis; see
[18].

For all λ ≤ λ�, we also define the domain of the operator −∆− λ|x|−2:

Dλ := D
(−∆− λ|x|−2

)
=
{
z ∈ Hλ | −∆z − λ|x|−2z ∈ L2(Ω)

}
.

Remark 2.2. Observe that when z ∈ Dλ, then ∆z ∈ L2(Ω \Bε) for all nonempty
ball Bε = B(0, ε) ⊂⊂ Ω. Hence z ∈ H2(Ω \ Bε), and ∂z/∂ν = ∇z · ν|Γ exists and
belongs, in particular, to L2(Γ).

With the above notations, one can prove that problem (2.2) is well-posed in the
energy space Hλ×L2(Ω) which, in the subcritical case λ < λ� when N 	= 2, coincides
with the energy space H1

0 (Ω)× L2(Ω) of the standard wave equation.
Proposition 2.1. Let T > 0 be given and assume λ ≤ λ�.
(i) For every (v0, v1) ∈ Hλ×L2(Ω) and f ∈ L1(0, T ;L2(Ω)), there exists a unique

solution v to (2.2) with v ∈ C([0, T ];Hλ) ∩ C1([0, T ];L2(Ω)).
Moreover, there exists a constant C > 0 such that, for every (v0, v1) ∈ Hλ×L2(Ω)

and f ∈ L1(0, T ;L2(Ω)), the solution v of (2.2) satisfies

‖(v, vt)‖L∞(0,T ;Hλ×L2(Ω)) ≤ C‖(v0, v1)‖Hλ×L2(Ω) + C‖f‖L1(0,T ;L2(Ω)).

(ii) Moreover, if (v0, v1) ∈ Dλ ×Hλ and f ∈ C([0, T ];L2(Ω)) ∩L1(0, T ;Hλ), then
the solution v of (2.2) satisfies

v ∈ C([0, T ];Dλ) ∩ C1([0, T ];Hλ) ∩ C2([0, T ];L2(Ω)).

Furthermore, there exists a constant C > 0 such that, for every (v0, v1) ∈ Dλ ×Hλ

and f ∈ C([0, T ];L2(Ω)) ∩ L1(0, T ;Hλ), the solution v of (2.2) satisfies

‖(v, vt)‖L∞(0,T ;Dλ×Hλ) ≤ C‖(v0, v1)‖Dλ×Hλ
+ C‖f‖L1(0,T ;Hλ).

Sketch of the proof. As in the case of the heat equation (see [31]), the proof
of Proposition 2.1 simply follows from standard semigroup theory. Here we simply
indicate how to build the generator of the semigroup. Let us consider the operator A
defined by A(v, w) = (w,∆v + λ|x|−2v) ∀ (v, w) ∈ D(A) = Dλ ×Hλ. Then one can
prove that (A,D(A)) and (−A,D(A)) are m-dissipative in Hλ × L2(Ω). (Here Hλ is
endowed with the scalar product naturally associated to the norm ‖ · ‖Hλ

.) Hence A
generates a unitary C0-group in Hλ × L2(Ω), and the result follows.

As it is typical for the groups of isometries generated by skew-adjoint operators,
we also have an energy identity that, in the absence of external forces, ensures the
energy conservation property. For all λ ≤ λ�, we define the generalized energy of the
solutions of (2.2):

Eλ
v (t) :=

1
2

∫
Ω

(
|∇v|2 − λ v

2

|x|2 + v2
t

)
dx =

1
2

(
‖v‖2

Hλ
+ ‖vt‖2

L2(Ω)

)
.

In the case λ < λ� when N 	= 2, since Hλ = H1
0 (Ω), we also introduce the classical

energy of v:

E0
v(t) :=

1
2

∫
Ω

(|∇v|2 + v2
t

)
dx =

1
2

(
‖v‖2

H1
0 (Ω) + ‖vt‖2

L2(Ω)

)
,
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which is, in that case, equivalent to Eλ
v (t):

(2.3) min
(
1, (C1,λ)2

)
E0

v (t) ≤ Eλ
v (t) ≤ max

(
1, (C2,λ)2

)
E0

v(t).

Classical computations show that the generalized energy Eλ
v of the solution is constant

when f = 0.
Lemma 2.2. Assume λ ≤ λ�, and consider (v0, v1) ∈ Hλ × L2(Ω) and f = 0.

Then the energy t �→ Eλ
v (t) of the solution v of (2.2) is constant in time.

2.2. Regularity of the normal derivative. Next we need to prove some reg-
ularity results of the normal derivative of the solutions of (2.2). Those results are well
known in the case of the standard wave equation (i.e., when λ = 0) and referred to
as a property of “hidden regularity”; see [23, Theorem 4.1]. More precisely, we prove
the following.

Proposition 2.2. Let T > 0 be given and assume λ ≤ λ�.
(i) There exists some constant CT,λ > 0 such that, for every (v0, v1, f) ∈ Hλ ×

L2(Ω)× L1(0, T ;L2(Ω)), the solution v of (2.2) satisfies

(2.4)
∫

ΣT

(
∂v

∂ν

)2

dσdt ≤ CT,λ

(
Eλ

v (0) + ‖f‖2
L1(0,T ;L2(Ω))

)
.

(ii) There exists some constant CT,λ > 0 such that, for every f1 ∈ C1
c (]0, T [;Hλ),

the solution v of (2.2) with (v0, v1) = (0, 0) and f = df1/dt satisfies

(2.5)
∫

ΣT

(
∂v

∂ν

)2

dσdt ≤ CT,λ‖f1‖2
L1(0,T ;Hλ).

Proof of point (i) of Proposition 2.2. We proceed in two steps. We first prove that
(2.4) holds for all (v0, v1, f) ∈ Dλ×Hλ×C0([0, T ];L2(Ω))∩L1(0, T ;Hλ). Observe that,
in that case, the solution v of (2.2) belongs to C([0, T ];Dλ). Hence, by Remark 2.2,
∂v/∂ν exists and belongs to L2(ΣT ). Next we conclude that ∂v/∂ν can also be defined
and that (2.4) also holds for all (v0, v1, f) ∈ Hλ × L2(Ω)× L1(0, T ;L2(Ω)).

Step 1. Let us first prove that (2.4) holds for all (v0, v1, f) ∈ Dλ × Hλ ×
C0([0, T ];L2(Ω)) ∩ L1(0, T ;Hλ). The proof relies on the multiplier method. Let us
recall the following classical identity.

Lemma 2.3 (see [23, Lemma 3.7, page 40]). Let q = (qk)k ∈ C1(Ω)N be given,
and consider the problem

(2.6)



ztt −∆z = F, (t, x) ∈ QT ,

z(t, x) = 0, (t, x) ∈ ΣT ,

z(0, x) = z0(x), zt(0, x) = z1(x), x ∈ Ω.

Then for every (z0, z1, F ) ∈ H1
0 (Ω)×L2(Ω)×L1(0, T ;L2(Ω)), the solution z of (2.6)

satisfies the identity

1
2

∫
ΣT

q · ν
(
∂z

∂ν

)2

dσdt =
[∫

Ω

ztq · ∇z dx
]T

0

+
1
2

∫
QT

(
z2

t − |∇z|2)div q dxdt
+
∑
j,k

∫
QT

∂qk
∂xj

∂z

∂xj

∂z

∂xk
dxdt−

∫
QT

Fq · ∇z dxdt.
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Since Ω ⊂ RN is a bounded open set whose boundary Γ is of class C2, it is well
known that there exists q0 ∈ C1(Ω)N such that, for all x ∈ Γ, q0(x) = ν(x); see [23,
Lemma 3.1, page 29]. Let us consider V0 and V ′

0 two open subsets such that

0 ∈ V0 ⊂⊂ V ′
0 ⊂⊂ Ω.

Next we introduce φ : R
N → R a cut-off function of class C∞ such that

0 ≤ φ ≤ 1, φ ≡ 0 in V0, φ ≡ 1 in Ω \ V ′
0 .

Finally we define q ∈ C1(Ω)N by q := q0φ. Notice that q satisfies the following
properties:

q(x) = ν(x) ∀ x ∈ Γ and q(x) = 0 ∀ x ∈ V0.

In order to derive inequality (2.4), we apply Lemma 2.3 with the above choice of
q and with z0 = v0, z1 = v1, and F = λv/|x|2 + f , where v is the solution of (2.2).
We obtain that

1
2

∫
ΣT

q · ν
(
∂v

∂ν

)2

dσdt =
[∫

Ω

vtq · ∇v dx
]T

0

+
1
2

∫
QT

(
v2

t − |∇v|2) div q dxdt
+
∑
j,k

∫
QT

∂qk
∂xj

∂v

∂xj

∂v

∂xk
dxdt− λ

∫
QT

v

|x|2 q · ∇v dxdt

−
∫

QT

fq · ∇v dxdt.

Using the fact that q ≡ 0 in V0, we deduce that

1
2

∫
ΣT

(
∂v

∂ν

)2

dσdt ≤ C

∫
Ω

v2
t (T ) dx+ C

∫
Ω\V0

|∇v|2(T ) dx

+ C

∫
Ω

v2
t (0) dx+ C

∫
Ω\V0

|∇v|2(0) dx+ C
∫

QT

v2
t dxdt

+ C

∫
(0,T )×(Ω\V0)

|∇v|2 dxdt+ |λ|
∫

QT

|v|
|x|2 |q · ∇v| dxdt

+ C

∫
(0,T )×(Ω\V0)

|f ||∇v| dxdt.

Hence

1
2

∫
ΣT

(
∂v

∂ν

)2

dσdt ≤ C(1 + T )‖(v, vt)‖2
L∞(0,T ;H1

0 (Ω\V0)×L2(Ω))

+ |λ|
∫

QT

|v|
|x|2 |q · ∇v| dxdt

+ C‖∇v‖L∞(0,T ;L2(Ω\V0)‖f‖L1(0,T ;L2(Ω).

Moreover,∫
QT

|v|
|x|2 |q · ∇v| dxdt =

∫ T

0

∫
Ω\V0

|v|
|x|2 |q · ∇v| dxdt ≤ C

∫ T

0

∫
Ω\V0

|v||∇v| dxdt

≤ C

∫ T

0

∫
Ω\V0

v2 dxdt+ C
∫ T

0

∫
Ω\V0

|∇v|2 dxdt

≤ C

∫ T

0

∫
Ω\V0

|∇v|2 dxdt,
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by Poincaré’s inequality. It follows that

∫
ΣT

(
∂v

∂ν

)2

dσdt ≤ CT,λ‖(v, vt)‖2
L∞(0,T ;H1

0 (Ω\V0)×L2(Ω)) + C‖f‖2
L1(0,T ;L2(Ω).

Applying [31, page 112], there exists a constant C = C(V0) > 0 such that, for every
z ∈ H1

0 (Ω), ∫
Ω

(
|∇z|2 − λ�

|z|2
|x|2

)
dx ≥ C‖z‖2

H1
0(Ω\V0)

.

Hence, for λ ≤ λ�,

(2.7) ‖z‖H1
0(Ω\V0) ≤ C‖z‖Hλ�

≤ C‖z‖Hλ
.

Finally,

∫
ΣT

(
∂v

∂ν

)2

dσdt ≤ CT,λ‖(v, vt)‖2
L∞(0,T ;Hλ×L2(Ω))) + C‖f‖2

L1(0,T ;L2(Ω).

Step 2. By Step 1, the linear mapping (v0, v1, f) �→ ∂v/∂ν, that is well defined on
Dλ ×Hλ × C0([0, T ];L2(Ω)) ∩ L1(0, T ;Hλ), can be extended into a linear continuous
mapping from Hλ × L2(Ω) × L1(0, T ;L2(Ω)) to L2(ΣT ). This defines the trace of
the normal derivative of the solution v of (2.2) associated to data (v0, v1, f) ∈ Hλ ×
L2(Ω)×L1(0, T ;L2(Ω)). And finally, (2.4) also holds for all (v0, v1, f) ∈ Hλ×L2(Ω)×
L1(0, T ;L2(Ω)).

Proof of point (ii) of Proposition 2.2. Let us assume that (v0, v1) = (0, 0) and
f = df1/dt, with f1 ∈ C1

c (]0, T [;Hλ), and consider v the solution of (2.2). Let V0

and q be defined as in the proof of point (i) of Proposition 2.2 and apply once again
Lemma 2.3 with this choice of q. Then we obtain

1
2

∫
ΣT

(
∂v

∂ν

)2

dσdt =
∫

Ω

vt(T )q · ∇v(T ) dx+ 1
2

∫
QT

(
v2

t − |∇v|2) div q dxdt
+
∑
j,k

∫
QT

∂qk
∂xj

∂v

∂xj

∂v

∂xk
dxdt− λ

∫
QT

v

|x|2 q · ∇v dxdt

−
∫

QT

df1
dt
q · ∇v dxdt.

Observe that v = wt, where w solves

(2.8)



wtt −∆w − λ

|x|2w = f1, (t, x) ∈ (0, T )× Ω,

w(t, x) = 0, (t, x) ∈ (0, T )× Γ,
w(0, x) = 0, wt(0, x) = 0, x ∈ Ω.

Then let us compute

I := −
∫

QT

df1
dt
q · ∇v dxdt =

∫
QT

f1q · ∇vt dxdt = −
∫

QT

div(f1q)vt dxdt.
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Since vt = wtt = ∆w + λw/|x|2 + f1, we get

I = −
∫

QT

div(f1q)
(
∆w + λ

w

|x|2
)
dxdt−

∫
QT

div(q)f2
1 dxdt −

∫
QT

q · ∇
(
f2
1

2

)
dxdt

= −
∫

QT

div(f1q)
(
∆w + λ

w

|x|2
)
dxdt− 1

2

∫
QT

div(q)f2
1 dxdt.

It follows that

1
2

∫
ΣT

(
∂v

∂ν

)2

dσdt =
∫

Ω

vt(T )q · ∇v(T ) dx

+
1
2

∫
QT

{(
∆w + λ

w

|x|2
)2

+ f2
1 + 2f1

(
∆w + λ

w

|x|2
)
− |∇v|2

}
div q dxdt

+
∑
j,k

∫
QT

∂qk
∂xj

∂v

∂xj

∂v

∂xk
dxdt− λ

∫
QT

v

|x|2 q · ∇v dxdt

−
∫

QT

div(q)f1

(
∆w + λ

w

|x|2
)
dxdt

−
∫

QT

q · ∇f1
(
∆w + λ

w

|x|2
)
dxdt

−1
2

∫
QT

div(q)f2
1 dxdt.

Simplifying the above relation and using the fact that q ≡ 0 in V0, we deduce that

(2.9)

1
2

∫
ΣT

(
∂v

∂ν

)2

dσdt =
∫

Ω\V0

vt(T )q · ∇v(T ) dx

+
1
2

∫ T

0

∫
Ω\V0

{(
∆w + λ

w

|x|2
)2

− |∇v|2
}
div q dxdt

+
∑
j,k

∫ T

0

∫
Ω\V0

∂qk
∂xj

∂v

∂xj

∂v

∂xk
dxdt− λ

∫ T

0

∫
Ω\V0

v

|x|2 q · ∇v dxdt

−
∫ T

0

∫
Ω\V0

q · ∇f1
(
∆w + λ

w

|x|2
)
dxdt.

By point (ii) of Proposition 2.1, the solution w of (2.8) satisfies

‖(w,wt)‖L∞(0,T ;Dλ×Hλ) ≤ C‖f1‖L1(0,T ;Hλ).

Hence, using also (2.7), we get
(2.10)

‖v‖L∞(0,T ;H1
0 (Ω\V0)) ≤ C‖v‖L∞(0,T ;Hλ) = C‖wt‖L∞(0,T ;Hλ) ≤ C‖f1‖L1(0,T ;Hλ).

Moreover, we have

(2.11)
∥∥∥∥∆w + λ

w

|x|2
∥∥∥∥

L∞(0,T ;L2(Ω))

= ‖w‖L∞(0,T ;Dλ) ≤ C‖f1‖L1(0,T ;Hλ).
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Besides, using vt = wtt = ∆w + λw/|x|2 + f1 and the fact that f1(T ) = 0, we get

(2.12) ‖vt(T )‖L2(Ω) =
∥∥∥∥∆w(T ) + λw(T )|x|2

∥∥∥∥
L2(Ω)

≤ C‖f1‖L1(0,T ;Hλ).

Finally, the estimates (2.10)–(2.12) associated to (2.9) produce (2.5).

2.3. Solutions defined by transposition. Finally, as in [23], we also need
to introduce the weaker notion of “solution defined by transposition”: for (u0, u1) ∈
L2(Ω) × H ′

λ and g ∈ L2(ΣT ), u is called a “very weak solution” of (2.1) if, for all
f ∈ D(QT ), it satisfies

(2.13)
∫

QT

uf dxdt = −(u0, vt(0))L2(Ω) + 〈u1, v(0)〉H′
λ,Hλ

−
∫

ΣT

g
∂v

∂ν
dσdt,

where v is the solution of

(2.14)



vtt −∆v − λ

|x|2 v = f(t, x), (t, x) ∈ QT ,

v(t, x) = 0, (t, x) ∈ ΣT ,

v(T, x) = 0, vt(T, x) = 0, x ∈ Ω.

Then one can prove what follows.
Proposition 2.3. Let T > 0 be given and assume λ ≤ λ�. For every (u0, u1) ∈

L2(Ω)×H ′
λ and g ∈ L2(ΣT ), there exists a unique solution u to (2.1) with

u ∈ C ([0, T ];L2(Ω)
) ∩ C1 ([0, T ];H ′

λ) .

Moreover, there exists a constant C > 0 such that, for every (u0, u1) ∈ L2(Ω) ×H ′
λ

and g ∈ L2(ΣT ), the solution u of (2.1) satisfies

‖(u, ut)‖L∞(0,T ;L2(Ω)×H′
λ
) ≤ C‖(u0, u1)‖L2(Ω)×H′

λ
+ C‖g‖L2(ΣT ).

The proof of Proposition 2.3 is a consequence of Propositions 2.1 and 2.2 by the
method of transposition; see [23, Theorem 4.2, page 46–54].

3. Observability. Our main result guarantees the observability of system (1.6)
under the condition λ ≤ λ� and with an observation on the following part of the
boundary:

(3.1) Γ0 := {x ∈ Γ | x · ν ≥ 0}.
The above choice of Γ0 allows us to use a multiplier centered at the singularity, which is
a crucial point in the proof of the observability inequality. For simplicity, we proceed
here with the more classical multiplier method; see, e.g., [23, 21]. However, some
variants, such as the rotated multipliers introduced by Osses [26], allow us to relax
assumption (3.1). Such further results are stated in section 7, followed by a discussion
concerning more general geometries and the case of multipolar singularities.

Denoting Σ0
T := (0, T )× Γ0 and

(3.2) RΩ := max
x∈Ω

|x|,

we prove the following inverse or observability inequality.
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Theorem 3.1 (observability). Assume that λ ≤ λ� and consider T > T0 = 2RΩ.
Then there exists C = C(T, λ,Ω) > 0 such that, for all (v0, v1) ∈ Hλ × L2(Ω), the
solution of (1.6) satisfies

(3.3) Eλ
v (0) ≤ C

∫
Σ0

T

∣∣∣∣∂v∂ν
∣∣∣∣
2

dσdt.

Proof of Theorem 3.1. Let us assume that λ ≤ λ�. In order to prove Theorem 3.1,
we apply Lemma 2.3 with z = v, F = λv/|x|2, and q defined by q(x) = x ∀ x ∈ Ω. It
follows that[

(vt, x · ∇v)L2(Ω)

]T
0
+
N

2

∫
QT

(
v2

t − |∇v|2) dxdt + ∫
QT

|∇v|2 dxdt

=
1
2

∫
ΣT

x · ν
(
∂v

∂ν

)2

dσdt+ λ
∫

QT

v

|x|2x · ∇v dxdt.

We can compute ∫
QT

v

|x|2x · ∇v dxdt = −N − 2
2

∫
QT

v2

|x|2 dxdt.

Hence[
(vt, x · ∇v)L2(Ω)

]T
0
+
N

2

∫
QT

v2
t dxdt −

N − 2
2

∫
QT

(
|∇v|2 − λ v

2

|x|2
)
dxdt

≤ RΩ

2

∫
Σ0

T

(
∂v

∂ν

)2

dσdt,

where RΩ = maxx∈Ω |x| and where we used the definition of Σ0
T . Using the definition

of Eλ
v , this can be rewritten as

[
(vt, x · ∇v)L2(Ω)

]T
0
+
∫ T

0

Eλ
v (t) dt+

N − 1
2

∫
QT

v2
t dxdt

− N − 1
2

∫
QT

(
|∇v|2 − λ v

2

|x|2
)
dxdt ≤ RΩ

2

∫
Σ0

T

(
∂v

∂ν

)2

dσdt.

Next, multiplying (2.2) by v, we obtain

(3.4)
∫

QT

(
v2

t − |∇v|2 + λ v
2

|x|2
)
dxdt =

[∫
Ω

vtv dx

]T

0

.

This implies

(3.5)[
(vt, x · ∇v)L2(Ω)

]T
0
+
∫ T

0

Eλ
v (t) dt+

N − 1
2

[∫
Ω

vtv dx

]T

0

≤ RΩ

2

∫
Σ0

T

(
∂v

∂ν

)2

dσdt.

Next, using the fact that Eλ
v (t) = Eλ

v (0) ∀ t ≥ 0, we deduce

(3.6)

[(
vt, x · ∇v + N − 1

2
v

)
L2(Ω)

]T

0

+ TEλ
v (0) ≤

RΩ

2

∫
Σ0

T

(
∂v

∂ν

)2

dσdt.
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It remains to estimate the quantity

∣∣∣∣∣∣
[(
vt, x · ∇v + N − 1

2
v

)
L2(Ω)

]T

0

∣∣∣∣∣∣ .
We proceed as in [23]. The following estimates are valid both for t = 0 and t = T .
First we write∣∣∣∣∣

(
vt, x · ∇v + N − 1

2
v

)
L2(Ω)

∣∣∣∣∣ ≤ RΩ

2
‖vt‖2

L2(Ω) +
1

2RΩ

∥∥∥∥x · ∇v + N − 1
2

v

∥∥∥∥
2

L2(Ω)

.

Next we compute

∥∥∥x ·∇v+ N − 1
2

v
∥∥∥2

L2(Ω)
= ‖x ·∇v‖2

L2(Ω)+
(N − 1)2

4
‖v‖2

L2(Ω) +(N−1) (x · ∇v, v)L2(Ω)

and

(x · ∇v, v)L2(Ω) =
1
2

∫
Ω

x · ∇(v2) dx = −1
2

∫
Ω

div(x)v2 dx = −N
2

∫
Ω

v2 dx.

It follows that

(3.7)

∣∣∣∣∣
(
vt, x · ∇v + N − 1

2
v

)
L2(Ω)

∣∣∣∣∣
≤ RΩ

2
‖vt‖2

L2(Ω) +
1

2RΩ
‖x · ∇v‖2

L2(Ω) −
1

2RΩ

(
N2 − 1

4

)
‖v‖2

L2(Ω).

Let us notice that, in the subcritical case λ < λ�, one could proceed as in the
case of the standard wave equation (when λ = 0). Indeed, when λ < λ�, ∇v can be
bounded in L2(Ω) in terms of E0

v . Next one can use the facts that E0
v and Eλ

v are
equivalent and that t �→ Eλ

v is constant. However, this would produce the required
estimate but with a constant T λ

0 depending on λ and such that T λ
0 → +∞ as λ →

λ�. Hence the time of controllability T λ
0 would not be uniform with respect to the

parameter λ. Moreover, by this method, no result could be expected in the critical
case λ = λ�.

In order to obtain a uniform time of controllability T0 and to also treat the critical
case λ = λ�, we need to derive some suitable improved Hardy-type inequalities to
produce a uniform bound of the term ‖x·∇v‖2

L2(Ω). Sharp versions of those Hardy-type
inequalities are needed to retrieve the expected minimal time of controllability T0 =
2RΩ, which coincides with the one that the multiplier method gives for the classical
wave equation with λ = 0. More precisely, we proved the Hardy-type inequality stated
in Theorem 1.1

Now we are ready to proceed with the end of the proof of (3.3). By Theorem 1.1,
we have

‖x · ∇v‖2
L2(Ω) ≤ R2

Ω‖v‖2
Hλ�

+
N2 − 4

4
‖v‖2

L2(Ω).
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Hence (3.7) becomes

∣∣∣∣∣
(
vt, x · ∇v + N − 1

2
v

)
L2(Ω)

∣∣∣∣∣
≤ RΩ

2
‖vt‖2

L2(Ω) +
RΩ

2
‖v‖2

Hλ�
+

1
2RΩ

(
N2 − 4

4
− N2 − 1

4

)
‖v‖2

L2(Ω)

≤ RΩ

2
‖vt‖2

L2(Ω) +
RΩ

2
‖v‖2

Hλ�
.

Since ‖ · ‖Hλ�
≤ ‖ · ‖Hλ

∀ λ ≤ λ�, we get

∣∣∣∣∣
(
vt, x · ∇v + N − 1

2
v

)
L2(Ω)

∣∣∣∣∣ ≤ RΩ

2

(
‖vt‖2

L2(Ω) + ‖v‖2
Hλ

)
= RΩE

λ
v = RΩE

λ
v (0).

It follows that ∣∣∣∣∣∣
[(
vt, x · ∇v + N − 1

2
v

)
L2(Ω)

]T

0

∣∣∣∣∣∣ ≤ 2RΩE
λ
v (0).

By (3.6), we finally get

(T − T0)Eλ
v (0) ≤

RΩ

2

∫
Σ0

T

(
∂v

∂ν

)2

dσdt,

where T0 = 2RΩ. This concludes the proof of (3.3).

4. Controllability. Our main result guarantees the exact controllability of sys-
tem (1.1) under the condition λ ≤ λ� and when the control acts on the part Γ0 of the
boundary. More precisely, we prove the following.

Theorem 4.1 (controllability). Assume λ ≤ λ�. For every T > T0 := 2RΩ,
(u0, u1) ∈ L2(Ω) × Hλ

′, and (ū0, ū1) ∈ L2(Ω) × Hλ
′, there exists h ∈ L2(Σ0

T ) such
that the solution of (1.1) satisfies (1.2).

Sketch of proof. As it is classical in controllability problems, the controllability
result given in Theorem 4.1 relies on the so-called direct and inverse inequalities for
the adjoint system (1.6). The direct inequality has been given in Proposition 2.2
(applied to v with f = 0). In this setting, it becomes the following: there exists
C = C(T, λ,Ω) > 0 such that, for all (v0, v1) ∈ Hλ × L2(Ω), the solution of (1.6)
satisfies

(4.1)
∫

Σ0
T

∣∣∣∣∂v∂ν
∣∣∣∣
2

dσdt ≤ CEλ
v (0).

Besides, the inverse inequality has been given in Theorem 3.1. Finally, we refer to
[23] for the arguments (Hilbert uniqueness method), proving that (4.1)–(3.3) imply
Theorem 4.1.

5. Lack of observability and controllability in the supercritical case.
Theorem 4.1 complements the null controllability results obtained in [30, 17] for the
heat equation with a subcritical inverse-square potential (i.e., when λ ≤ λ�). In the
supercritical case λ > λ�, we follow the arguments by Ervedoza [17] who proved that



14 J. VANCOSTENOBLE AND E. ZUAZUA

null controllability does not hold any more for the heat equation in that range. More
precisely, considering a sequence of regularized potentials −λ/(|x|2+ε2) (with ε > 0),
he proved that the system cannot be controlled uniformly with respect to ε > 0. The
proof relies on the spectral analysis of the associated operator and in particular on
the use of the first eigenfunction (the most explosive mode) whose energy is more and
more localized around the singularity. It allows in particular to construct a sequence
of solutions that contradicts the required observability inequality.

The same arguments hold in our context allowing us to show that problem (1.1)
is no more controllable when λ > λ�. Indeed, let us approximate problem (1.6) by
the systems

(5.1)



vtt −∆v − λ

|x|2 + ε2 v = 0, (t, x) ∈ (0, T )× Ω,

v(t, x) = 0, (t, x) ∈ (0, T )× Γ,
v(0, x) = v0(x), vt(0, x) = v1(x), x ∈ Ω,

where ε is a positive parameter. To simplify, we consider here the case N ≥ 3 and
Ω = B2, where B2 denotes the ball B(0, 2). Therefore, Γ0, defined in (3.1), is simply
∂B2, and T0 = 2RΩ = 4.

For all λ ∈ R, these regularized problems are well-posed in H1
0 (Ω)×L2(Ω): for all

λ ∈ R, ε > 0, and (v0, v1) ∈ H1
0 (Ω)× L2(Ω), there exists a unique solution v to (5.1)

with v ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)). Moreover, the following observability

inequality holds: for all λ ∈ R, ε > 0, and all T > 4, there exists some constant
Cλ(ε) > 0 such that, for all (v0, v1) ∈ H1

0 (Ω)×L2(Ω), the solution v of (5.1) satisfies

(5.2)
∫

B2

(|∇v(0, x)|2 + |vt(0, x)|2
)
dx ≤ Cλ(ε)

∫ T

0

∫
∂B2

∣∣∣∣∂v∂ν
∣∣∣∣
2

dσdt.

In the supercritical case λ > λ�, we prove that uniform observability with respect
to ε does not hold.

Proposition 5.1. Assume that λ > λ�. Then for any time T > 0, the constant
Cλ(ε) in (5.2) necessarily blows up as ε→ 0+.

Proof of Proposition 5.1. We argue by contradiction: we assume that, for some
T > 0, there exists Cλ > 0 (independent of ε) such that the solutions v of (5.1) satisfy

(5.3)
∫

B2

(|∇v(0, x)|2 + |vt(0, x)|2
)
dx ≤ Cλ

∫ T

0

∫
∂B2

∣∣∣∣∂v∂ν
∣∣∣∣
2

dσdt.

Step 1. First we prove that the solutions of (5.1) satisfy

(5.4)
∫ T

0

∫
∂B2

∣∣∣∣∂v∂ν
∣∣∣∣
2

dσdt ≤ Cλ

∫ T

0

∫
B2\B1

(|∇v|2 + v2
t

)
dxdt,

where Cλ > 0 is a constant independent of ε > 0. For this, we follow [23, Chapter VII,
section 2.3]. We first rewrite Lemma 2.3 in the case of a time-dependent multiplier:
assume that q = (qk)k ∈ C1([0, T ] × Ω)N ; then the solutions z of (2.6) satisfy the
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identity

1
2

∫
ΣT

q · ν
(
∂z

∂ν

)2

dσdt =
[∫

Ω

ztq · ∇z dx
]T

0

−
∫

QT

vtqt · ∇v dxdt(5.5)

+
1
2

∫
QT

(
z2

t − |∇z|2) div q dxdt
+
∑
j,k

∫
QT

∂qk
∂xj

∂z

∂xj

∂z

∂xk
dxdt−

∫
QT

Fq · ∇z dxdt.

Next, we consider q0 ∈ C1(Ω)N such that, for all x ∈ Γ, q0(x) = ν(x). We also
introduce φ : RN → R as a cut-off function of class C∞ such that

0 ≤ φ ≤ 1, φ ≡ 0 in B1, φ ≡ 1 in B2 \B3/2.

Finally we define q ∈ C1([0, T ]× Ω)N by q(t, x) := t(T − t)q0(x)φ(x).
Applying (5.5) with the above choice of q and with z = v and F = λv/(|x|2 + ε2)

and using the fact that q ≡ 0 in B1, we obtain

∫ T

0

∫
∂B2

(
∂v

∂ν

)2

dσdt ≤ C

∫ T

0

∫
B2\B1

(
v2

t + |∇v|2) dxdt
+ λ

∫ T

0

∫
B2\B1

1
|x|2 + ε2 |vq · ∇v| dxdt.

Since the potentials 1/(|x|2 + ε2) are uniformly bounded in B2 \B1, we finally obtain

∫ T

0

∫
∂B2

(
∂v

∂ν

)2

dσdt ≤ Cλ

∫ T

0

∫
B2\B1

(
v2

t + |∇v|2) dxdt
for some constant Cλ dependent of λ but independent of ε.

Step 2. By Step 1, it is now sufficient to contradict the following inequality:

(5.6)
∫

B2

(|∇v(0, x)|2 + |vt(0, x)|2
)
dx ≤ Cλ

∫ T

0

∫
B2\B1

(|∇v|2 + v2
t

)
dxdt.

In this purpose, we consider the radial solutions of (5.1), that is, the solutions of

(5.7)



vtt − vrr − N − 1

r
vr − λ

r2 + ε2
v = 0, (t, r) ∈ (0, T )× (0, 2),

vr(t, 0) = 0 = v(t, 2), t ∈ (0, T ),
v(0, r) = v0(r), vt(0, r) = v1(r), r ∈ (0, 2).

Hence it remains to contradict

(5.8)
∫ 2

0

(|vr(0, r)|2 + |vt(0, r)|2
)
rN−1dr ≤ Cλ

∫ T

0

∫ 2

1

(
v2

r + v2
t

)
rN−1drdt.

Next, by the change of variable

v̄(t, r) = r(N−1)/2v(t, r),
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problems (5.7) become

(5.9)



v̄tt − v̄rr − K

r2 + ε2
v̄ = 0, (t, r) ∈ (0, T )× (0, 2),

v̄(t, 0) = 0 = v(t, 2), t ∈ (0, T ),
v̄(0, r) = v̄0(r), v̄t(0, r) = v̄1(r), r ∈ (0, 2),

where

K = λ− (N − 1)(N − 3)
4

>
1
4
,

since λ > λ�. Moreover, (5.8) becomes

(5.10)
∫ 2

0

(
|v̄r(0, r)|2 + (N − 1)(N − 3)

4
|v̄(0, r)|2
r2 + ε2

+ |v̄t(0, r)|2
)
dr

≤ Cλ

∫ T

0

∫ 2

1

(
v̄2

r +
(N − 1)(N − 3)

4
v̄2

r2 + ε2
+ v̄2

t

)
drdt.

Step 3. Finally, we contradict (5.10). Under the assumption that K > 1/4,
Ervedoza [17] proved that the operator

LεΦ := −Φrr − K

r2 + ε2
Φ

with Dirichlet conditions admits a first eigenfunction Φε
0 such that



LεΦε

0 = λε
0Φε

0, λε
0 →

ε→0
−∞,

‖Φε
0‖L2(0,2) = 1, ‖Φε

0‖H1(1,2) →
ε→0

0.

For ε < 0 small enough, λε
0 > 0, and we denote ωε

0 =
√−λε

0. Next we introduce

v̄(t, r) = e−ωε
0tΦε

0.

It is easy to see that v̄ solves (5.9). Moreover, since N ≥ 3, we have

∫ 2

0

(
|vr(0, r)|2 + (N − 1)(N − 3)

4
|v(0, r)|2
r2 + ε2

+ |vt(0, r)|2
)
dr

≥
∫ 2

0

|vt(0, r)|2 dr = (ωε
0)

2‖Φε
0‖2

L2(0,2) = (ωε
0)

2.

On the other hand, we compute

∫ T

0

∫ 2

1

(
v2

r +
(N − 1)(N − 3)

4
v2

r2 + ε2
+ v2

t

)
drdt

≤ C

∫ T

0

∫ 2

1

(
v2

r + v2 + v2
t

)
drdt ≤ C

∫ T

0

∫ 2

1

(
v2

r + vt

)
drdt,
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by Poincaré inequality. Since ‖Φε
0‖L2(0,2) = 1 and ‖Φε

0‖H1(1,2) is bounded, we deduce
that

∫ T

0

∫ 2

1

(
v2

r +
(N − 1)(N − 3)

4
v2

r2 + ε2
+ v2

t

)
drdt

≤ C
1− e−2ωε

0T

2ωε
0

(
‖Φε

0‖2
H1

0(1,2) + (ωε
0)

2‖Φε
0‖2

L2(1,2)

)
≤ C

2

(
1
ωε

0

+ ωε
0

)
.

From (5.10), we finally get

(ωε
0)

2 ≤ Cλ

(
1
ωε

0

+ ωε
0

)
,

which provides a contradiction since ωε
0 → +∞ as ε→ 0.

6. The Schrödinger equation with an inverse-square potential. In this
section, we briefly discuss the case of the Schrödinger equation with an inverse-square
singular potential. Here Ω ⊂ RN (N ≥ 1) is a bounded open set such that 0 ∈ Ω
and whose boundary Γ is of class C3. We still denote by Γ0 the subset of Γ defined in
(3.1).

In the Hilbert spaces L2(Ω;C) and H1
0 (Ω;C), we consider the following inner

products:

〈u, v〉L2(Ω;C) = Re
∫

Ω

u(x)v(x) dx ∀u, v ∈ L2(Ω;C)

and

〈u, v〉H1
0 (Ω;C) = Re

∫
Ω

∇u(x) · ∇v(x) dx ∀u, v ∈ H1
0 (Ω;C).

For all λ ≤ λ�, we also define the Hilbert spaceHλ(Ω;C) as the completion ofH1
0 (Ω;C)

with respect to the norm associated to the inner product:

〈u, v〉Hλ(Ω;C) = Re
∫

Ω

(
∇u(x) · ∇v(x) − λu(x)v(x)|x|2

)
dx.

In order to simplify the notations, in the following, we denote by L2(Ω), H1
0 (Ω), and

Hλ the spaces L2(Ω;C), H1
0 (Ω;C), and Hλ(Ω;C), respectively.

Then we consider the following problem:

(6.1)




iut +∆u+
λ

|x|2 u = 0, (t, x) ∈ (0, T )× Ω,

u(t, x) = h(t, x), (t, x) ∈ (0, T )× Γ0,

u(t, x) = 0, (t, x) ∈ (0, T )× Γ \ Γ0,

u(0, x) = u0(x), x ∈ Ω.

Following the proof of Machtyngier [24] (developed when λ = 0) and using the Hardy
inequality stated in Theorem 1.1, we can also prove exact controllability results for
the above problem.
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As in [24], the proof relies on some direct and inverse inequalities for the adjoint
system:

(6.2)



ivt +∆v +

λ

|x|2 v = 0, (t, x) ∈ (0, T )× Ω,

v(t, x) = 0, (t, x) ∈ (0, T )× Γ,
v(0, x) = v0(x), x ∈ Ω.

More precisely, we prove what follows.
Theorem 6.1. Let T > 0 be given and assume λ ≤ λ�. Then there exist some

constants C1, C2 > 0 such that, for every v0 ∈ Hλ, the solution v of (6.2) satisfies

(6.3)
∫

ΣT

(
∂v

∂ν

)2

dσdt ≤ C1‖v0‖2
Hλ

and

(6.4) ‖v0‖2
Hλ

≤ C2

∫
Σ0

T

∣∣∣∣∂v∂ν
∣∣∣∣
2

dσdt.

Proof of Theorem 6.1. Before proving (6.3) and (6.4), let us first state a prelimi-
nary identitiy. Multiplying (6.2) by vt, one can prove∫

Ω

(
∇v · ∇vt − λ vvt

|x|2
)
dx = i

∫
Ω

|vt|2 dx ∈ iR.

Therefore,

d

dt
‖v(t)‖2

Hλ
= 2Re

(∫
Ω

∇v · ∇vt − λ vvt

|x|2
)
dx = 0,

and we deduce that

(6.5) ∀t ≥ 0, ‖v(t)‖Hλ
= ‖v0‖Hλ

.

Next, we recall the following identity given by the method of multipliers.
Lemma 6.1 (see [24, Lemma 2.2, page 26]). Let q = (qk)k ∈ C2(Ω)N be given,

and consider the problem

(6.6)



izt +∆z = F, (t, x) ∈ QT ,

z(t, x) = 0, (t, x) ∈ ΣT ,

z(0, x) = z0(x), x ∈ Ω.

Then for every (z0, z1, F ) ∈ H1
0 (Ω)×L2(Ω)×L1(0, T ;L2(Ω)), the solution z of (2.6)

satisfies the identity

1
2

∫
ΣT

q · ν
∣∣∣∣∂z∂ν

∣∣∣∣
2

dσdt =
1
2
Im
[ ∫

Ω

zq · ∇z dx
]T
0
+

1
2
Re
∫

QT

z∇(div q) · ∇z dxdt

+ Re
∑
j,k

∫
QT

∂qk
∂xj

∂z

∂xk

∂z

∂xj
dxdt+Re

∫
QT

Fq · ∇z dxdt

+
1
2
Re
∫

QT

Fz div q dxdt.
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Proof of (6.3). We apply Lemma 6.1 with z = v, F = −λv/|x|2, and q defined as
in the proof of Proposition 2.2. (Observe that, since Γ is here of class C3, then q can
be chosen such that q ∈ C2(Ω)N .) Using the fact that q ≡ 0 in V0, we get

1
2

∫
ΣT

∣∣∣∣∂v∂ν
∣∣∣∣
2

dσdt ≤ C‖v(T )‖2
L2(Ω\V0) + C‖∇v(T )‖2

L2(Ω\V0)

+ C‖v(0)‖2
L2(Ω\V0) + C‖∇v(0)‖2

L2(Ω\V0)

+
∫ T

0

∫
Ω\V0

|v|2 dxdt +
∫ T

0

∫
Ω\V0

|∇v|2 dxdt.

Using Poincaré inequality and next (2.7), we deduce that∫
ΣT

∣∣∣∣∂v∂ν
∣∣∣∣
2

dσdt ≤ C‖∇v(T )‖2
L2(Ω\V0) + C‖∇v(0)‖2

L2(Ω\V0) +
∫ T

0

∫
Ω\V0

|∇v|2 dxdt

≤ C‖v(T )‖2
Hλ

+ C‖v(0)‖2
Hλ

+
∫ T

0

‖v(t)‖2
Hλ
dxdt.

From (6.5), we finally get the result∫
ΣT

∣∣∣∣∂v∂ν
∣∣∣∣
2

dσdt ≤ C(2 + T )‖v0‖2
Hλ
.

Proof of (6.4). We proceed in two steps. First, we prove that the following
inequality holds for any given ε > 0 such that T − ε > 0:

(6.7) (T − ε)‖v0‖2
Hλ

≤ 1
2

∫
Σ0

T

∣∣∣∣∂v∂ν
∣∣∣∣
2

dσdt+ cε‖v0‖2
L2(Ω).

In a second step, to conclude the proof, it is enough to prove the following estimate:

(6.8) ‖v0‖2
L2(Ω) ≤ K

∫
Σ0

T

∣∣∣∣∂v∂ν
∣∣∣∣
2

dσdt.

Step 1. In order to prove (6.7), we apply Lemma 6.1 with z = v, F = −λv/|x|2,
and q defined by q(x) = x ∀ x ∈ Ω. It follows that

1
2

∫
ΣT

x · ν
∣∣∣∣∂v∂ν

∣∣∣∣
2

dσdt =
1
2
Im
[∫

Ω

vx · ∇v dx
]T

0

+
∫

QT

|∇v|2 dxdt

− λRe
∫

QT

v

|x|2 x · ∇v dxdt−
λ

2
N

∫
QT

|v|2
|x|2 dxdt.

Next, we compute

−λRe
∫

QT

v

|x|2 x · ∇v dxdt =
λ

2
(N − 2)

∫
QT

|v|2
|x|2 dxdt.

Thus,

1
2

∫
ΣT

x · ν
∣∣∣∣∂v∂ν

∣∣∣∣
2

dσdt =
1
2
Im
[∫

Ω

vx · ∇v dx
]T

0

+
∫

QT

(
|∇v|2 − λ |v|

2

|x|2
)
dxdt

=
1
2
Im
[∫

Ω

vx · ∇v dx
]T

0

+
∫ T

0

‖v(t)‖2
Hλ
dt.
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Using (6.5), the following identity holds:

1
2

∫
ΣT

x · ν
∣∣∣∣∂v∂ν

∣∣∣∣
2

dσdt =
1
2
Im
[∫

Ω

vx · ∇v dx
]T

0

+ T ‖v0‖2
Hλ
.

Furthermore, for all ε > 0 such that T − ε > 0, we can write∣∣∣∣Im
∫

Ω

vx · ∇v dx
∣∣∣∣ ≤ cε‖v‖2

L2(Ω) +
ε

C
‖x · ∇v‖2

L2(Ω),

where C denotes here the constant in (1.10). Hence, using (1.10), we get∣∣∣∣Im
∫

Ω

vx · ∇v dx
∣∣∣∣ ≤ cε‖v‖2

L2(Ω) + ε‖v‖2
Hλ
.

Finally, we obtain (6.7).
Step 2. As in [24], we argue by contradiction by the so-called compactness-

uniqueness argument. If (6.8) is not satisfied, one can construct a solution v of (6.2)
(obtained as limit of a sequence vn) that both satisfies

(6.9) ‖v(0)‖L2(Ω) = 1

and

(6.10)
∂v

∂ν
= 0 on Σ0

T .

Now it remains to prove that v ≡ 0, which is in contradiction with (6.9). In this
purpose, we use standard unique continuation properties showing that (6.2) combined
with (6.10) implies v ≡ 0. (Due to the local nature of those properties, one can use
standard unique continuation results that hold, for example, for bounded potentials
since we need only to apply them away from the singularity. For such results, we
refer, for example, to [29, section 5.2] and the references therein.)

Still following [24] and applying the Hilbert uniqueness method, we deduce the
exact controllability of system (6.1) under the condition λ ≤ λ� and when the control
acts on the subset Γ0 of the boundary. More precisely, we prove the following.

Theorem 6.2 (controllability). Assume λ ≤ λ�, and let T > 0 be given. Then
for any u0 ∈ Hλ

′, there exists h ∈ L2(Σ0
T ) such that the solution of (6.1) satisfies

u(T ) ≡ 0.
Remark 6.1. As done for the wave equation in section 5, using the same argu-

ments, one can also prove that exact controllability is false when λ > λ�.

7. Further results and open problems.

7.1. Rotated multipliers. The results stated in sections 2–4 rely on the use of
the simplest radial multiplier x·∇v. We may also use the rotated multiplier introduced
by Osses in [26] in order to relax the geometric assumption (1.5) on Γ0. To do this,
consider a skew-symmetric matrix A ∈ RN × RN (A = −At), some positive real
number d > 0, and denote by I the identity matrix in RN × RN . Without loss of
generality, we may assume that

(7.1) d2 + ‖A‖2
2 = 1,

where ‖A‖2 = sup{|Ax|, |x| = 1} is the Euclidean norm in R
N . We also define

r(d,A) = max{ x · (dI +A)ν, x ∈ Γ0}.
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Then, we replace assumption (1.5) by the following one:

(7.2) Γ0 = {x ∈ Γ | x · (dI +A)ν ≥ 0}.

Using the rotated multiplier (dI − A)x · ∇v instead of x · ∇v and arguing as in the
proof of Theorem 3.1, we can prove that, for all λ ≤ λ�, the solutions of (1.6) satisfy

(7.3) (dT − T0)Eλ
v (0) ≤

RΩ

2

∫
Σ0

T

(
∂v

∂ν

)2

dσdt,

where T0 = 2RΩ. Hence Theorem 3.1 still holds for any T > T0/d. Arguing as in the
proof of Theorem 4.1, this yields the controllability of (1.1) in time T > T0/d with
controls in a subset of the boundary of the form (7.2).

We refer to [26, page 781, Figures 2.1 and 2.2] for several examples of geometric
configurations that enter in that framework.

Sketch of proof of (7.3). The proof of Theorem 3.1 is modified as follows: with
q(x) = (dI − A)x instead of q(x) = x and with similar computations, (3.6) becomes
(observe that div (Ax) = 0; hence div (q(x) = dN)

(7.4)

[(
vt, q(x) · ∇v + d(N − 1)

2
v

)
L2(Ω)

]T

0

+ dTEλ
v (0)

−
∫

QT

A∇v · ∇v dxdt+ λ
∫

QT

Ax

|x|2 · ∇
(
v2

2

)
dxdt ≤ r(d,A)

2

∫
Σ0

T

(
∂v

∂ν

)2

dσdt.

Next, using At = −A, we have

∫
Ω

A∇v · ∇v dx = 0 and
∫

Ω

Ax

|x|2 · ∇
(
v2

2

)
dx = 0.

Besides, (3.7) is replaced by

∣∣∣∣∣
(
vt, q(x) · ∇v + d(N − 1)

2
v

)
L2(Ω)

∣∣∣∣∣
≤ RΩ

2
‖vt‖2

L2(Ω) +
1

2RΩ
‖q(x) · ∇v‖2

L2(Ω) −
1

2RΩ

(
d2(N2 − 1)

4

)
‖v‖2

L2(Ω).

Next we estimate

‖q(x) · ∇v‖2
L2(Ω) ≤

∫
Ω

(d2 + ‖A‖2
2)|x|2|∇v|2 =

∫
Ω

|x|2|∇v|2.

Therefore, by Theorem 1.1, we have

‖q(x) · ∇v‖2
L2(Ω) ≤ R2

Ω‖v‖2
Hλ�

+
N2 − 4

4
‖v‖2

L2(Ω).

Hence, using the fact that d ≤ 1 and following the end of the proof of Theorem 3.1,
we finally get (7.3).
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7.2. Geometric conditions. In the proof of the observability inequality, both
for the wave and the Schrödinger equations, it has been necessary to choose a multi-
plier centered at the singularity. This choice of the multiplier limits our result to the
case where the control acts on a subset Γ0 ⊂ Γ of the form given by (3.1) (or of the
form (7.2) by using rotated multipliers).

Now it would be interesting to consider more general geometries for the subset Γ0

of the boundary Γ where the control acts. For example, with respect to the literature
concerning the standard wave and Schrödinger equations (see, for example, [23]), it
would be natural to assume that

(7.5) Γ0 = {x ∈ Γ | (x− x0) · ν ≥ 0}

for some x0 ∈ RN .
But new difficulties arise when doing that. Let us comment on them in the case of

the wave equation, for instance. Following the proof of Theorem 3.1 with q(x) = x−x0

instead of q(x) = x, we see that, when using this new multiplier, one needs to estimate
two extra terms:

[∫
Ω

vtx0 · ∇v dx
]T

0

and
∫

QT

v

|x|2x0 · ∇v dx.

The first term could be estimated by Eλ
v (0), at least in the subcritical case λ < λ�,

using the fact that v ∈ C([0, T ];H1
0(Ω)) ∩ C1([0, T ];L2(Ω)) and the equivalence (2.3)

between the classical and the generalized energy that holds in that case. However,
this estimate would not be uniform with respect to λ and would not hold for λ = λ�.

The situation concerning the second term is even worse, since
∫

QT

v

|x|2 x0 · ∇v dxdt =
∫

QT

x · x0

|x|4 v
2 dxdt,

which cannot be estimated by Eλ
v (0). (Moreover, in the situation that we are inter-

ested with, that is to say when 0 ∈ Ω, this term may not have a definite sign.)
Hence the general case of a subset Γ0 of the form (3.1) cannot be treated by the

method of multipliers, at least without additional developments. However, there is no
obvious reason (for example, in terms of propagation of optic rays) to exclude similar
results when x0 	= 0. This case could possibly be addressed by means of suitable
hyperbolic Carleman estimates (see section 7.5 below).

7.3. Multipolar singularities. The fact that, with the method of multipliers,
one needs to choose a multiplier centered at the singularity also limits our proof
to the case of a single singularity. However, it would also be interesting to study
the case of multipolar inverse-square singular potentials. This situation has been
considered in [17] for the heat equation, and the problem has been solved by proving
parabolic Carleman estimates with singular potentials. Here again, the solution should
rely on the derivation of hyperbolic Carleman estimates for wave and Schrödinger
equations with singular potentials. In the spirit of [5], one should also extend the
Hardy inequality proved in Theorem 1.1 to the case of multipolar singularities. On
that subject, let us also mention the related work of Duyckaerts [15], who studied
the dispersive properties (Strichartz estimates) for the Schrödinger equations with
multipolar potentials.
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7.4. Other singularities. In this paper we have considered the case where the
singularity is in the interior of the domain. But the same results apply when the
singularity is placed on a point of the boundary. However, in that case, one expects
an improvement of the Hardy inequalities in the sense that λ∗ might be larger. There
are partial results in that direction, but the complete picture is still to be clarified
(see [11]). It would be natural to first address in a systematic manner the problem
of the optimal Hardy constant for boundary singularities and then the corresponding
controllability problems. The same can be said about the case where the singularities
are localized all over the boundary or in internal submanifolds.

7.5. Perspectives. The purpose of this work was to analyze the controllability
properties of the wave and Schrödinger equations with an inverse-square potential by
using the multiplier method. As it has been underlined in sections 7.2–7.3, it does not
seem possible to go further with this method. A possible way to improve our results
would be to derive hyperbolic Carleman estimates (see [32, 14] among others) for
equations with singular potentials. The difficulty here relies in the choice of suitable
weight functions allowing us to compensate the singularity of the potential term. This
strategy has been used successfully for the heat equation with singularities arising in
a diffusion coefficient [9] or in a potential term [30, 17]. This will be the object of a
forthcoming work.

8. Appendix: A sharp Hardy-type inequality. This section is devoted to
the proof of Theorem 1.1. The proof that is given here is elementary, as the proof
of the standard Hardy inequality recently given in [5]. Contrary to [31], there is no
need to use cut-off arguments in order to work in a ball and to consider separately
the radial and nonradial components of the functions. As a consequence, it allows us
to sharply determine the constants that appear in the inequality (which is crucial in
order to get the expected minimal time of controllability).

The main point in the proof is the following change of variables (inspired by
[7, 31]):

Z(x) = |x|(N−2)/2z(x), i.e., z(x) =
1

|x|(N−2)/2
Z(x).

Let us first observe that, for any α, β ≥ 0, we have

div
(
x

|x|α
)

=
N − α
|x|α and ∇

(
1

|x|β
)

= −β x

|x|β+2
.

Next we compute∫
Ω

|x|2|∇z|2 =
∫

Ω

|x|2
( ∇Z
|x|(N−2)/2

− N − 2
2

xZ

|x|(N+2)/2

)2

=
∫

Ω

|∇Z|2
|x|N−4

+
(N − 2)2

4

∫
Ω

Z2

|x|N−2
− N − 2

2

∫
Ω

x · ∇ (Z2
)

|x|N−2

=
∫

Ω

|∇Z|2
|x|N−4

+
(N − 2)2

4

∫
Ω

Z2

|x|N−2
+
N − 2

2

∫
Ω

div
(

x

|x|N−2

)
Z2

=
∫

Ω

|∇Z|2
|x|N−4

+
[
(N − 2)2

4
+ (N − 2)

]∫
Ω

Z2

|x|N−2

=
∫

Ω

|∇Z|2
|x|N−4

+
N2 − 4

4

∫
Ω

Z2

|x|N−2
.
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On the other hand, we have∫
Ω

|∇z|2 =
∫

Ω

∣∣∣∣ ∇Z
|x|(N−2)/2

− N − 2
2

x

|x|(N+2)/2
Z

∣∣∣∣
2

=
∫

Ω

|∇Z|2
|x|N−2

+
(N − 2)2

4

∫
Ω

Z2

|x|N − N − 2
2

∫
Ω

x

|x|N ∇ (Z2
)

=
∫

Ω

|∇Z|2
|x|N−2

+
(N − 2)2

4

∫
Ω

Z2

|x|N +
N − 2

2

∫
Ω

div
(

x

|x|N
)
Z2

=
∫

Ω

|∇Z|2
|x|N−2

+
(N − 2)2

4

∫
Ω

Z2

|x|N .

It follows that ∫
Ω

|∇z|2 − λ�
z2

|x|2 =
∫

Ω

|∇Z|2
|x|N−2

.

Hence (1.8) may be rewritten exactly as follows:∫
Ω

|∇Z|2
|x|N−4

+
N2 − 4

4

∫
Ω

Z2

|x|N−2
≤ R2

Ω

∫
Ω

|∇Z|2
|x|N−2

+
N2 − 4

4

∫
Ω

Z2

|x|N−2
.

And this inequality is trivially true by the definition of RΩ.
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[7] H. Brézis and J.L. Vázquez, Blow-up solutions of some nonlinear elliptic equations, Rev.
Mat. Complut., 10 (1997), pp. 443–469.
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