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Abstract. This paper is devoted to analyze the convergence of optimal control problems

for an evolution equation in a finite time-horizon [0, T ] towards the limit steady state
ones as T →∞. We focus on linear problems. We first consider linear time-independent

finite-dimensional systems and show that the optimal controls and states exponentially

converge in the transient time (as T tends to infinity) to the ones of the corresponding
steady state model. For this to occur suitable observability assumptions need to be

imposed. We then extend the results to infinite dimensional systems including the linear

heat and wave equations.

1. Introduction

In this paper, we address the question of the limiting behavior of optimal control problems
as the time-horizon tends to infinity. More specifically, we analyze the convergence of the
trajectories and controls which are optimal in [0, T ] towards the stationary state and control
which are optimal for the corresponding stationary regime.

In general terms, the question could be set as follows. We are given a dynamics

(1.1)

{
xt = f(x, u)
x(0) = x0

and a corresponding control problem

min
u

JT (u) :=
∫ T

0

L(x, u)ds , x solution of (1.1),

under some conditions ensuring that this control problem as well as the stationary analog,
namely

min
u

Js(u) := L(x, u) , with the constraint f(x, u) = 0,

are well posed.
In other words, we assume that both JT and Js admit minimal controls (and states),

possibly unique.
The question we address is the following: To which extent the long–horizon optimal con-

trols and states uT (t), xT (t) approximate the stationary ones ū, x̄ as T →∞?

Of course, this kind of question can lead to several possible directions of investigation
(finite or infinite dimensional systems, linear or nonlinear dynamics, generality of the cost
functional, etc...). This paper is fully devoted to the linear case, both in finite and infinite
dimensions.

The motivation is multifold. On one hand, the study of long time behavior of Mean
Fields Games systems in [4], [5]. This leads to a system of PDE which can be seen as
the optimality system of a (bilinear) optimal control problem for a convection diffusion
equation (see [13]). While studying ergodicity properties and long time stability of the
Mean Field Games systems, it is proved in [4], [5] that, in the long horizon problem, the
optimal controls and states are close, in average, to the stationary ones and, in some cases,
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2 A. PORRETTA AND E. ZUAZUA

they are exponentially close in the transient time, namely far from t = 0 and t = T . On the
other hand, the use of steady state models for optimal design is classical in aeronautics (see
[11]). It is then natural to ask the question of whether these steady state optimal designs are
limits as time tends to infinity of time-evolution optimal designs. Of course, in that setting
these questions need to be addressed in the complex context of Euler and Navier-Stokes
equations and for models of turbulence. The theory is far from being applicable in that
context. In [10], motivated by optimal control problems in Fluid Mechanics, a first attempt
has been done in the frame of hyperbolic conservation laws, where the problem of passing to
the limit as time tends to infinity in the linearization of 1−d scalar hyperbolic conservation
laws towards the steady state ones has been analyzed.

These results and topics suggest to look more closely to the question of the long time
behavior of optimality systems.

One of the main goals of this paper consists in establishing the role played by stabiliza-
tion and observability estimates in order to get the convergence of finite horizon control
problems in [0, T ] to their steady state version as T tends to infinity. Indeed, although these
assumptions are not needed when considering the optimal control problem in a fixed finite
time interval, they are essential to perform the analysis as the time-horizon tends to infinity.

Our first result refers to the finite-dimensional case. We denote by MN,M the set of
N ×M matrices.

Theorem 1.1. Let A ∈MN,N , B ∈MN,M , u ∈ L2(0, T ; RM ), and x0 ∈ RN , and consider
the dynamics {

xt +Ax = Bu

x(0) = x0.

Given a matrix C ∈MN,N , and some z ∈ RN , consider the optimal control problem

min
u

JT (u) =
1
2

∫ T

0

(|u(t)|2 + |Cx(t)− z|2)dt ,

which admits a unique optimal control and state (uT , xT ).
Assuming that (A,B) is controllable and (A,C) is observable, we have that there exist

positive constants λ and K, independent on T , such that

|uT (t)− ū|+ |xT (t)− x̄| ≤ K(e−λt + e−λ(T−t)) ∀t ∈ [0, T ] ,

where (ū, x̄) are the stationary optimal control and state.

Actually, in this finite-dimensional case, λ will be characterized as the exponential sta-
bility index for a stabilized dynamics using the algebraic Riccati equation.

Based on the methods we develop to prove this finite dimensional result, we also obtain
similar results for parabolic equations (see Theorem 3.10) as well as for wave equations (see
Section 4). We pay special attention to the case of control and/or observation operators
localized in an open subset of the domain where the dynamics evolves.

Our analysis is restricted to linear problems, but we hope to pave the way for a more
general approach to the question which may, eventually, be used in nonlinear problems as
well.

Let us also remark that similar questions could as well be addressed from the point of view
of Hamilton-Jacobi equations (finite or infinite dimensional). But, although this approach
could lead to the convergence analysis of 1

T min JT towards min Js by looking at the long
time behavior of the value function, the convergence of the optimal control and states does
not seem to be achieved in the literature by this approach. One of the possible reasons
is that the construction of the optimal control (and therefore state) involves intrinsically
a forward-backward mechanism. This forward-backward feature is evident in the structure
of the optimality system and makes the question of long time behavior non standard. As
suggested in [4], [5], boundary layers may occurr at t = 0 and t = T and stability should
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be observed in the transient time. Here we support this hint by showing how, in the linear
framework, such result can be obtained using tools from control theory, specifically some
stabilization and uncoupling methods as classically addressed in [14], [15]. The exponential
rate of this stability is a significant byproduct of our approach, compared with previous
ones.

At this stage it is worth mentioning that a whole literature, mainly motivated by economic
theories, has been concerned with this kind of stationary behavior in the transient time for
long horizon control problems. In that context, such type of result goes under the name of
turnpike property (more precisely, middle type turnpike property for our kind of behavior),
according to a terminology introduced by Nobel prize P. Samuelson. This property was
mostly investigated in the finite dimensional case, as well as in connection to Calculus
of Variations, although in a slightly different framework with respect to our setting. Being
impossible to quote all relevant contributions in this area, we refer the reader to the extensive
survey [21] (and references therein), to [6], [22] for some result on control problems in the
infinite dimensional case, and to [7], [9] for some related result on unbounded solutions to
the Riccati equation, with applications to zero-sum games.

The rest of this paper is organized as follows. In Section 2 we analyze the finite-
dimensional case in detail. In Section 3 we discuss the case of parabolic equations. Section
4 is devoted to the wave equation. Finally, in Section 5 we discuss several open problems
and related issues.

2. The finite dimensional case

In this section, we consider the finite dimensional case. We denote by MN,M the set of
N ×M matrices, and we consider the dynamics

(2.1)

{
xt +Ax = Bu

x(0) = x0

where A ∈MN,N , B ∈MN,M , the control u ∈ L2(0, T ; RM ), and x0 ∈ RN . Given a matrix
C ∈MN,N , and some z ∈ RN , consider the optimal control problem

(2.2) min
u

JT (u) =
1
2

∫ T

0

(|u(t)|2 + |Cx(t)− z|2)dt .

Note that we could as well add a forcing term f in the dynamics (2.1), however this would
not bring any significant novelty to our study, especially for time independent sources f .
Since this term could be removed up to a translation, eventually changing the values of x0

and z, there is no loss of generality if we restrict to the case f = 0.

By standard arguments, problem (2.2) admits a unique optimal control uT (t) in L2(0, T ; RM ),
which satisfies the optimality condition

(2.3) uT = −B∗pT ,

{
−pTt +A∗pT = C∗(CxT − z)
pT (T ) = 0

where xT is the optimal state.

Concerning the dynamics, we assume that

(2.4) The pair (A,B) is controllable.

It is well known that this is equivalent to require that the matrices A, B satisfy the Kalman
rank condition

(2.5) Rank
[
B AB A2B . . . AN−1B

]
= N.

Concerning the cost functional, we assume that

(2.6) The pair (A,C) is observable
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which is equivalent to the algebraic condition:

(2.7) Rank
[
C CA CA2 . . . CAN−1

]
= N .

Of course, by duality this means that (A∗, C∗) satisfy (2.5), and in particular that (A∗, C∗) is
controllable. Similarly, assumption (2.4) implies that (A∗, B∗) is observable. For the notions
of controllability, observability and such dual correspondence in the finite dimensional case,
we refer the readers to e.g. [19]. We point out an observability inequality which will be used
later.

Remark 2.1. We note that, if (A,C) is observable in the sense of (2.7), then there exists
c, independent of T , such that

(2.8) |y(T )|2 ≤ c

{∫ T

T−1

|Cy|2dt+
∫ T

T−1

|f |2 dt

}
,

for every y solution of
yt +Ay = f in (0, T ),

and every T ≥ 1.
Indeed, set ỹ = y − w, where w satisfies{

wt +Aw = f in (T − 1, T ),
w(T − 1) = 0 .

Then ỹ satisfies the homogeneous equation and, (A,C) being observable, we have

|ỹ(T )|2 ≤ c
∫ T

T−1

|Cỹ|2dt ,

where c > 0 is the observability constant in the time interval [0, 1]. This is a simple and well
known fact (see [19] or [24]).

On the other hand, by the well-posedness of the evolution problem, we have

|w(τ)|2 ≤ c
∫ τ

T−1

|f |2 dt ∀τ ∈ [T − 1, T ] ,

hence

|y(T )|2 ≤ 2(|ỹ(T )|2 + |w(T )|2) ≤ c

{∫ T

T−1

[|Cy|2 + |Cw|2]dt+ |w(T )|2
}

which yields (2.8).

Notice that (2.8) also implies the stationary inequality

(2.9) |z|2 ≤ β [|Az|2 + |Cz|2] ∀z ∈ RN ,

for all z.
Using (2.9), it is easy to show that there exists a unique optimal state x̄, and a unique

minimum ū, of the stationary “control problem”

(2.10) min
u

Js(u) =
1
2

(|u|2 + |Cx− z|2) , Ax = Bu ,

which is nothing but a constrained minimization problem in RN .

A first basic relation between the evolution and the stationary control problems is the
following.

Theorem 2.2. Assume that (2.5) and (2.7) hold true. Then we have

1
T

min
u∈L2(0,T )

JT
T→∞−→ min

u∈RN
Js
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and

(2.11)
1
T

∫ T

0

(
|uT (t)− ū|2 + |C(xT (t)− x̄)|2

)
dt = O

(
1
T

)
T→∞→ 0 .

In particular, we have

1
(b− a)T

∫ bT

aT

xT (t) dt→ x̄ ,
1

(b− a)T

∫ bT

aT

uT (t) dt→ ū

for every a, b ∈ [0, 1], a 6= b.

Proof. First of all, observe that the stationary optimal control and state (ū, x̄) satisfy

Ax̄ = Bū , ū · v + (Cx̄− z) · Cϕ = 0 for every v, ϕ: Aϕ = Bv.

In particular, C∗(Cx̄− z) ∈ Ker(A)⊥ hence there exist some p̄ such that

(2.12) A∗p̄ = C∗(Cx̄− z) .
Note that p̄ may not be unique, since it is defined up to elements of Ker(A∗). However, for
any p̄ satisfying (2.12), we deduce that

(2.13) ū · v + p̄ ·Bv = 0 for every v such that ∃ϕ : Aϕ = Bv

From the optimality systems{
(xT − x̄)t +A(xT − x̄) = B(uT − ū)
−(pT − p̄)t +A∗(pT − p̄) = C∗C(xT − x̄)

we now obtain∫ T

0

|C(xT − x̄)|2 dt = [(x0 − x̄)(pT (0)− p̄)] + [(xT (T )− x̄)p̄] +
∫ T

0

B(uT − ū) (pT − p̄) dt ,

which yields, using B∗pT = −uT ,

(2.14)

∫ T
0

(
|uT − ū|2 + |C(xT − x̄)|2

)
dt =

= [(x0 − x̄)(pT (0)− p̄)] + [(xT (T )− x̄)p̄]−
∫ T

0
uT (ū+B∗p̄) dt .

Applying inequality (2.8) we have

(2.15) |xT (T )− x̄| ≤ c

(∫ T

0

|u− ū|2dt+
∫ T

0

|C(xT − x̄)|2dt

) 1
2

.

for some c independent of T ≥ 1. Similarly, since (A∗, B∗) is observable due to (2.5), we
have

|(pT (0)− p̄)| ≤ c

(∫ T

0

|C(xT − x̄)|2 dt+
∫ T

0

|B∗(pT − p̄)|2 dt

) 1
2

,

which implies in particular

(2.16) |(pT (0)− p̄)| ≤ c

(∫ T

0

|C(xT − x̄)|2 dt+
∫ T

0

|uT − ū|2 dt+
∫ T

0

|ū+B∗p̄|2 dt

) 1
2

.

Using (2.15) and (2.16) in (2.14), we deduce in particular that

(2.17)
∫ T

0

(
|uT − ū|2 + |C(xT − x̄)|2

)
dt ≤ C T

hence the averages 1
T

∫ T
0
uT (t) dt and 1

T

∫ T
0
CxT (t) dt are bounded in RN . Moreover, the

state equation implies

A

(
1
T

∫ T

0

xT dt

)
=

1
T

∫ T

0

BuT dt− xT (T )− x0

T



6 A. PORRETTA AND E. ZUAZUA

and since last term is vanishing as T → ∞ (because of estimates (2.15) and (2.17)), we
deduce that 1

T

∫ T
0
AxT (t) dt is also bounded. Applying (2.9), we conclude that 1

T

∫ T
0
xT (t) dt

is bounded as well. In addition, we deduce that Aϕ = Bv for any ϕ, v such that (possibly
for a subsequence) 1

T

∫ T
0
xT (t) dt → ϕ and 1

T

∫ T
0
uT (t) dt → v; in particular, this implies,

thanks to (2.13), that

1
T

∫ T

0

uT (ū+B∗p̄) dt T→∞→ 0

for any p̄ satisfying (2.12). We conclude from (2.14) that

1
T

∫ T

0

(
|uT − ū|2 + |C(xT − x̄)|2

)
dt ≤ C√

T
− 1
T

∫ T

0

uT (ū+B∗p̄) dt T→∞→ 0 .

This immediately implies that

(2.18)
1
T

∫ T

0

CxT (t) dt→ Cx̄ ,
1
T

∫ T

0

uT (t) dt→ ū .

The convergence of xT to x̄ follows now from the averaged state equation and (2.9).
Finally, in a similar way as we did before for xT , using now (2.9) for (A∗, B∗), we prove

that the average 1
T

∫ T
0
pT dt is bounded in RN and, up to subsequences, converges to some

p̄ ∈ RN . Passing to the limit in the averaged equation

A∗

(
1
T

∫ T

0

pT dt

)
=

1
T

∫ T

0

C∗(CxT − z) dt− pT (0)
T

we realize that p̄ is a solution of (2.12); and since uT = −B∗pT , from the convergence of
the average we deduce that ū = −B∗p̄. We have thus proved that there exists a solution p̄
of (2.12) such that ū = −B∗p̄. Note that such a p̄ is unique since (A∗, B∗) is observable.
Moreover, going back to (2.14) and (2.15)–(2.16) with this p̄, we improve the estimate
obtaining

(2.19)
∫ T

0

(
|u− ū|2 + |C(x− x̄)|2

)
dt ≤ C .

Now we describe more precisely the convergence of (uT , xT ) to (ū, x̄). This is our main
result, showing that this convergence holds at exponential rate in the transient time.

Theorem 2.3. Assume that (2.5) and (2.7) hold. Then, there exist positive constants λ
and K, independent on T , such that

|uT (t)− ū|+ |xT (t)− x̄| ≤ K(e−λt + e−λ(T−t)) ∀t ∈ [0, T ] .

Remark 2.4. The rate λ is given in the proof of Theorem 2.3; it is the exponential rate of
the stabilized dynamics A+BB∗Ê, where Ê is the solution of the algebraic Riccati equation.

Remark 2.5. It should be not surprising that the assumptions of controllability and ob-
servability are crucial in order to have some long time convergence, as for the existence
of the infinite horizon problem itself. Without the Kalman rank condition, one or more
components of the system may be insensitive to the action of the control (take for instance

A =
(
−1 0
0 0

)
and B =

(
0 0
0 1

)
) and therefore cannot be stabilized in any way.

The proof of Theorem 2.3 relies on the fact that the optimal control is actually given by
an affine feedback law, which becomes linear when the target is z = 0, namely when we
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consider:

JT0 (u) = inf

{
1
2

∫ T

0

(|u(t)|2 + |Cx(t)|2)dt ,

u ∈ L2(0, T ; RM ) , xt +Ax = Bu , x(0) = x0

}
.

(2.20)

In this case, as it is well known, the feedback law is constructed through the use of the
Riccati equation. We recall the following lemma, which can be essentially found in [19] in
the case that C is coercive. However, the proof can be easily adapted to the case that (A,C)
is observable; we give it here shortly for the reader’s convenience, as well as a guideline for
the infinite dimensional case, since most of the arguments admit a natural generalization in
that setting.

Lemma 2.6. Assume that (2.5) and (2.7) hold. Then, there exists a unique symmetric
matrix E, belonging to C1([0,∞);MN,N ), which solves

(2.21)

{
Et = C∗C − (EA+A∗E)− EBB∗E in (0,+∞)
E(0) = 0

and uT (t, x) = −B∗E(T − t)x defines an optimal feedback law for (2.20).
Moreover, we have

(i) There exists M > 0 such that 0 < E(t) ≤M for every t > 0.
(ii) E(t1) ≤ E(t2) for every t1 ≤ t2.
(iii) E(t) t→∞→ Ê, where Ê is the unique symmetric, positive definite matrix satisfying

(2.22) (ÊA+A∗Ê) + ÊBB∗Ê = C∗C .

(iv) The linear system

(2.23)

{
xt + (A+BB∗Ê)x = 0
x(0) = x0

is globally asymptotically stable.

Proof. The existence and uniqueness, locally in time, of E(t) is standard, and clearly it is
symmetric.

Moreover, if ν(t) is the optimal control associated to the minimization problem (2.20),
and if κ(t) denotes the optimal trajectory, a straightforward computation shows that π(t) :=
E(T − t)κ(t) is the adjoint state.

Since
[κ · π]t = −|B∗π|2 − |Cκ|2

we deduce

(2.24) E(T )x0 · x0 = −
∫ T

0

[E(T − t)κ(t) · κ(t)]tdt =
∫ T

0

(|B∗π|2 + |Cκ|2)dt .

In particular, we have E(T )x0 ·x0 ≥ 0, and E(T )x0 ·x0 = 0 implies B∗π(t) = 0 and Cκ(t) = 0
for every t ∈ [0, T ]. This means that{

κt +Aκ = 0 in (0, T )
Cκ = 0 in (0, T )

which implies, since (A,C) is observable, that κ(t) = 0 in (0, T ), hence x0 = 0. We have
proved so far that E(T ) > 0.

Moreover, we know (since (A,B) is controllable, the system can be steered to zero at any
finite time) that there exists some M > 0, independent on T , such that

inf JT0 ≤M |x0|2 .
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We get then from (2.24)
E(T )x0 · x0 = inf JT0 ≤M |x0|2

which completes the proof of (i) (since T is arbitrary).
In order to show (ii), let t1 ≤ t2; we just proved that E(t2)x0 ·x0 = inf J t20 , corresponding

to the optimal control u2 and the optimal trajectory κ2 in [0, t2], starting from x0. Of course
we have

E(t2)x0 · x0 = inf J t20 =
∫ t2

0

(|u2|2 + |Cκ2|2)dt

≥
∫ t1

0

(|u2|2 + |Cκ2|2)dt ≥ inf J t10 = E(t1)x0 · x0

hence E(t2) ≥ E(t1).
Since, for any x0 ∈ RN , E(t)x0 · x0 is increasing and bounded, there exists a matrix Ê,

symmetric and positive definite, such that E(t)→ Ê as t→∞. Clearly Ê satisfies (2.22).
Now we show (iv). To this purpose, we prove that V (x) := Êx · x defines a Lyapunov

function for the system (2.23). Indeed, we have

(Êx(t) · x(t))t = 2Êxt · x = −2(ÊBB∗Êx · x)− 2ÊAx · x

and since 2ÊAx · x = (ÊA+A∗Ê)x · x, using the equation (2.22) we get

(2.25) (Êx(t) · x(t))t = −|B∗Êx|2 − |Cx|2 .

Therefore, for any t1 < t2 we have

V (x(t1))− V (x(t2)) =
∫ t2

t1

(|B∗Êx|2 + |Cx|2)dt ≥ 0

and the equality holds if and only if B∗Êx = Cx = 0 in (t1, t2); since (A,C) is observable,
this would imply x(t) = 0 in (t1, t2), hence x(t1) = x(t2) = 0. Therefore, V is a strict
Lyapunov function for the linear system (2.22), which implies that the system is globally
asymptotically stable.

Finally, note that this property would be true for any such matrix Ê satisfying (2.22);
therefore (2.25) implies

(2.26) Êx0 · x0 =
∫ ∞

0

(|B∗Êx|2 + |Cx|2)dt

and this allows us to deduce that

(2.27) Êx0 · x0 = inf J∞0

where J∞0 is the optimal control problem (2.20) with T =∞ (note that this problem makes
sense since (A,B) is controllable). Therefore, (2.27) characterizes the positive matrix Ê
satisfying (2.22), showing its uniqueness.

Thanks to the above properties, especially due to (iv), we deduce the following:

Corollary 2.7. There exist positive constants C, µ > 0 such that

‖E(t)− Ê‖ ≤ Ce−2µt ∀t > 0 .

In particular, µ can be taken as the exponential rate of the linear system (2.23).

Proof. Set M = A + BB∗Ê. Subtracting the equations of E(t) and Ê, we notice that the
difference satisfies

(2.28) (E − Ê)t = −
(

(E − Ê)M +M∗(E − Ê)
)
− (E − Ê)BB∗(E − Ê) .
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By Lemma 2.6, (iv), we know that ‖e−tM‖ ≤ e−µt for some µ > 0. Let us consider the set

X =
{
L ∈ C0([0,∞),MN,N ) ; ‖L(t)‖ ≤ δ e−2µt ∀ t > 0

}
,

with δ > 0 to be made precise later.
Given L ∈ X , we consider the matrix Z ∈ C1 ([0,∞)) which is solution of the differential

system {
Zt = − (ZM +M∗Z)− LBB∗L in (0,+∞)
Z(0) = Λ

where Λ is some matrix to be fixed later. Since Duhamel’s formula implies

Z(t) = e−tM
∗
Λe−tM +

∫ t

0

e−(t−s)M∗LBB∗Le−(t−s)M ds

we have
‖Z(t)‖ ≤ ‖Λ‖ ‖e−tM‖2 + Cδ2 e−2µt ≤ (‖Λ‖+ C δ2)e−2µt .

If ‖Λ‖ < δ/2 and δ is chosen suitably small so that δ/2 + C δ2 ≤ δ, we deduce that X is an
invariant set for the map T : L 7→ Z. Moreover, as it is easy to check, T transforms bounded
sets into relatively compact sets (in the standard uniform topology). Accordingly, T admits
a fixed point. Choose now Λ = E(t0) − Ê, where t0 is chosen so that ‖E(t0) − Ê‖ < δ/2,
which is possible thanks to Lemma 2.6, (iii). The corresponding fixed point then solves{

Zt = − (ZM +M∗Z)− ZBB∗Z in (0,+∞)
Z(0) = E(t0)− Ê

which is the same equation as (2.28), so we deduce that E(t+ t0)− Ê = Z(t). Since Z ∈ X ,
we conclude that

‖E(t)− Ê‖ ≤ δ e−2µ(t−t0) ∀ t > t0 ,

which yields the conclusion.

We are in the position to prove Theorem 2.3.

Proof of Theorem 2.3. For shortness, we drop the dependence on T in the optimal
couple (u(t), x(t)). Let us set h(t) := p(t)− p̄− E(T − t)(x(t)− x̄), where p̄ is the solution
of (2.12) such that ū = −B∗p̄ (which is given in Theorem 2.2). From the equations of p and
(2.21) we have

ht = (p− p̄)t + Et(T − t)(x− x̄)− E(T − t)(x− x̄)t
= A∗(p− p̄)−A∗E(T − t)(x− x̄)

− (E(T − t)BB∗E(T − t))(x− x̄) + E(T − t)BB∗(p− p̄)

hence h is solution of the linear system{
ht = (A∗ + E(T − t)BB∗)h in (0, T )
h(T ) = −p̄.

As in the previous Corollary we set M = A+BB∗Ê; then h solves

ht = M∗ h+ (E(T − t)− Ê)BB∗h

and the Duhamel’s formula implies

h(t) = −e−(T−t)M∗ p̄+
∫ T

t

e−(s−t)M∗
(

(E(T − s)− Ê)BB∗h(s)
)
ds .
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Therefore, we get, using Corollary 2.7,

‖h(t)‖ ≤ ‖p̄‖ e−µ(T−t) + C

∫ T

t

e−µ(s−t)e−2µ(T−s)‖h(s)‖ds

≤ Ce−µ(T−t)[1 +
∫ T

t

e−µ(T−s)‖h(s)‖ds] ,

so that

(2.29) ‖h(t)‖ ≤ Ce−µ(T−t) ∀t ∈ [0, T ] ,

with C > 0 independent of T .
The equation of x− x̄ now reads as

(x− x̄)t + (A+BB∗Ê)(x− x̄) = BB∗(Ê − E(T − t))(x− x̄)−BB∗h(t)

hence

x− x̄ = e−tM (x0 − x̄) +
∫ t

0

e−(t−s)MK(s) ds

where K(t) = BB∗(Ê − E(T − t))(x − x̄) − BB∗h(t). Using Corollary 2.7 and (2.29) we
obtain

‖x(t)− x̄‖ ≤ Ce−µt +
∫ t

0

e−µ(t−s)e−2µ(T−s)‖x(s)− x̄‖ds+ C

∫ t

0

e−µ(t−s)e−µ(T−s)ds

≤ C(e−µt + e−µ(T−t)) + e−µ(T−t)
∫ t

0

e−2µ(t−s)e−µ(T−s)‖x(s)− x̄‖ds

which implies that

‖x(t)− x̄‖ ≤ C(e−µt + e−µ(T−t)) ∀t ∈ [0, T ]

for some C > 0.

Recalling that p− p̄ = E(T − t)(x− x̄) + h(t), we finally get

‖p(t)− p̄‖ ≤ C‖x(t)− x̄‖+ ‖h(t)‖ ≤ C(e−µt + e−µ(T−t)) ,

which of course implies a similar estimate for u− ū.

3. The parabolic case

The above finite-dimensional approach can be generalized to infinite dimensional systems
in an appropriate functional setting. Following the classical framework given in [14], we con-
sider separately two main situations, corresponding to first or second order time evolutions.
In this section we develop the abstract parabolic theory and give an example of application
to the case of localized distributed control.

3.1. Abstract setting: Convergence of averages. We assume that X, H are Hilbert
spaces such that X ⊂ H ⊂ X ′ (with dense embedding), H being identified with its dual.

We assume that A ∈ L(X,X ′) is a linear continuous operator such that R(A) is closed
(R(A) and Ker(A) denote the range and kernel of A). Then we consider:

(i) A control operator B ∈ L(U,X ′), where U is a Hilbert space.

(ii) An observation operator C ∈ L(X,V ) going from X into some Hilbert space V .
Such assumptions on B and C could be relaxed (see the example given at the end of

this Section, when the domain of C is only a dense subset of X), though a systematic
generalization would require the more complex setting of abstract semigroup theory.

Under the above assumptions, the adjoint operators B∗ and C∗ are defined and belong
to L(X,U ′) and to L(V ′, X ′) respectively.
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We consider the control problem

(3.1)

{
xt +Ax = Bu in (0, T ),
x(0) = x0

where u ∈ L2(0, T ;U).

We assume the following conditions on A. First of all, we require

(3.2) ∃λ , µ > 0 : 〈Ax, x〉X′,X + µ|x|2H ≥ λ ‖x‖2X ∀x ∈ X.

Note that A+ µI is supposed to be coercive at least for large µ although A itself does not
necessarily fulfill the coercivity condition. In particular, A is the generator of a semigroup
and the evolution problem

(3.3)

{
xt +Ax = f in (0, T )
x(0) = x0

is well posed: for every x0 ∈ H and f ∈ L2(0, T ;X ′) there exists a unique solution x ∈
C([0, T ];H) ∩ L2(0, T ;X) (see e.g. [14]). The same can be said about the time-evolution
control problem with u ∈ L2(0, T ;U).

We make the following assumption on the evolution system:

Hypothesis 3.1. There exists γ > 0 such that for every x ∈ L2(0, T ;X), f ∈ L2(0, T ;X ′),
x0 ∈ H such that {

xt +Ax = f in (0, T )
x(0) = x0

we have

(3.4) |x(T )|2H ≤ γ

[∫ T

0

(‖f‖2X′ + ‖Cx‖2V )dt+ |x0|2H

]
,

for every T > 0.

Remark 3.2. Let us make a few remarks concerning the previous assumption.

(1) Hypothesis 3.1 holds trivially whenever A is coercive on X, i.e. when (3.2) is satisfied
with µ = 0; in this case (3.4) is satisfied even with C ≡ 0. This can be seen by
standard energy estimates, taking the scalar product of the equation with x in H and
integrating in time.

In general, when A is not coercive, the contribution due to the observation oper-
ator C is necessary to have the inequality fulfilled.

(2) Hypothesis 3.1 holds whenever the operators (A,C) satisfy an observability inequality
of the type

(3.5) |x(T0)|2H ≤ γT0

[∫ T0

0

(‖f‖2X′ + ‖Cx‖2V )dt

]
for every x solution of xt = Ax + f in (0, T0). In this case, applying (3.5) in
(T − T0, T ) one has

|x(T )|2H ≤ γ1

[∫ T

T−T0

(‖f‖2X′ + ‖Cx‖2V )dt

]
and therefore (3.4) holds for every T ≥ T0. The local well-posedness of the evolution
problem clearly implies (3.4) for T ≤ T0 as well.
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Notice that, by a trivial superposition principle, and the local well-posedness, (3.5)
holds if and only if

|x(T0)|2H ≤ γ̃T0

∫ t0

0

‖Cx‖2V dt

for some γ̃T0 > 0, whenever

xt +Ax = 0 in (0, T0).

This is the standard way in which observability is formulated in the context of
controllability problems (see [24]).

(3) Hypothesis 3.1 implies the stationary inequality

(3.6) ‖x‖2X ≤ β
[
‖Ax‖2X′ + ‖Cx‖2V

]
for every x ∈ X.

Indeed, applying (3.4) to x̃ := t x, for x ∈ X, we get

T 2 ‖x‖2H ≤ γ
T 3

3
[
‖Ax‖2X′ + ‖Cx‖2V

]
+ γ T ‖x‖2X′ .

Using the embedding of H into X ′ and choosing some T > γ we deduce

‖x‖2H ≤ γ̃
[
‖Ax‖2X′ + ‖Cx‖2V

]
.

Due to assumption (3.2), we deduce (3.6).

We also require a similar “observability” estimate for the adjoint state equation.

Hypothesis 3.3. There exists c0 > 0 such that, for every p ∈ L2(0, T ;X), f ∈ L2(0, T ;X ′),
p0 ∈ H such that {

−pt +A∗p = f in (0, T )
p(T ) = p0

we have

(3.7) |p(0)|2H ≤ c0

[∫ T

0

|B∗p|2U ′dt+
∫ T

0

‖f‖2X′ dt+ |p0|2H

]
for every T > 0.

Similar remarks which were done for Hypothesis 3.1 may be adapted and apply for Hy-
pothesis 3.3 too. In particular, Hypothesis 3.3 holds immediately in two main situations,
either when A∗ is coercive, or when (A∗, B∗) is observable.

These assumptions can also be written in terms of the stabilizability of the systems
involved. In particular, consider the assumption:

Hypothesis 3.4. There exists L ∈ L(X,U) and δ > 0 such that any solution x of{
xt +Ax = B(Lx)
x(0) = x0

satisfies

(3.8)
∫ T

0

‖x(t)‖2X dt ≤ δ |x0|2H for every T > 0 .

A necessary and sufficient condition for (3.8) to be satisfied is that the corresponding
semigroup decays exponentially (see [8]).

We claim that Hypothesis 3.4 implies Hypothesis 3.3. More precisely, the following holds.

Lemma 3.5. If (A,B) is stabilizable, in the sense of Hypothesis 3.4, then Hypothesis 3.3
holds.
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Proof. Take ϕ ∈ L2(0, T ;X) solution of{
ϕt +Aϕ = B(Lϕ)
ϕ(0) = ϕ0.

Multiplying by ϕ the equation of p we have

(p(0), ϕ0)H +
∫ T

0

〈p, ϕt +Aϕ〉 dt =
∫ T

0

〈f, ϕ〉 dt+ (p0, ϕ(T ))H

hence
(p(0), ϕ0)H = −

∫ T
0
〈B∗p, Lϕ〉 dt+

∫ T
0
〈f, ϕ〉 dt+ (p0, ϕ(T ))H

≤ C
(∫ T

0
‖ϕ‖2Xdt

) 1
2
{∫ T

0
|B∗p|2U ′dt+

∫ T
0
‖f‖2X′ dt

} 1
2

+ (p0, ϕ(T ))H

≤ C|ϕ0|H
{∫ T

0
|B∗p|2U ′dt+

∫ T
0
‖f‖2X′ dt

} 1
2

+ (p0, ϕ(T ))H .

On the other hand we also have
1
2 |ϕ(T )|2H = 1

2 |ϕ0|2H +
∫ T

0
〈B(Lϕ)−Aϕ,ϕ〉 dt

≤ 1
2 |ϕ0|2H + C

∫ T
0
‖ϕ‖2X dt ≤ C|ϕ0|2H ,

hence we conclude

(p(0), ϕ0)H ≤ C|ϕ0|H
{∫ T

0
|B∗p|2U ′dt+

∫ T
0
‖f‖2X′ dt

} 1
2

+ C |p0|H |ϕ0|H ,

and choosing ϕ0 = p(0) we deduce (3.7).

In this functional setting and under the above assumptions, we consider the time depen-
dent control problem and the corresponding stationary one. Namely, we consider

(3.9) min

{
JT (u) =

1
2

∫ T

0

(|u(t)|2U + |Cx(t)− z|2V )dt, u ∈ L2(0, T ;U) , x solves (3.1)

}
and

(3.10) min
{
Js(u) =

1
2
[
|u|2U + |Cx− z|2V

]
, u ∈ U , x ∈ X : Ax = Bu

}
where z ∈ V is a fixed target. Note that Js is defined on the closed subspace

D = {u ∈ U : Bu ∈ R(A)} .
Thanks to (3.6), the steady state problem is well posed.

Lemma 3.6. The functional Js admits a unique minimizer ū ∈ U , and there exists a unique
state x̄ ∈ X such that Ax̄ = Bū. Moreover, there exists p̄ ∈ X which satisfies

(3.11) A∗p̄ = C∗jv(Cx̄− z),
jv being the natural inclusion of V into V ′, and we have

(3.12) (ū, v)U + 〈p̄, Bv〉X,X′ = 0 , ∀v ∈ D .

Remark 3.7. The solution of the adjoint equation (3.11) is not unique, since it is only
defined up to elements of Ker(A∗). However, we will show later (see the proof of Theorem
3.8) that there exists a unique p̄, solution of (3.11), such that ū = −juB∗p̄, being ju the
natural inclusion of U ′ into U .

This would follow straightforwardly from (3.12) whenever the domain of Js is the whole
space U , e.g. if R(B) ⊂ R(A). But this may not be the case if, for example, Ker(A∗) is not
empty. Nevertheless, the well-posedness of the steady state control problem (which strongly
relies on (3.6)) and the stability of the evolution control problem will allow us to select a
solution p̄ of (3.11) such that ū = −juB∗p̄. Note that this selection is unique, since (A∗, B∗)
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also satisfy (3.6). There may possibly be different ways to construct such a unique adjoint
state p̄; taking the limit from the evolution control problem, as in our proof of Theorem 3.8
below, is indeed a natural one.

Proof. Due to (3.6) and the constraint Ax = Bu, the level sets {Js(u) ≤ C} are bounded
in X. Therefore, the existence of minima is a standard consequence of weak compactness.
By the strict convexity, we have both uniqueness of the minimum ū and that Cx1 = Cx2

for any two possible states associated to ū, i.e. such that Ax1 = Ax2 = Bū. It follows from
(3.6) that x1 = x2, hence the optimal state x̄ is also unique. Now, the first order optimality
condition reads as:

(3.13)
(ū, v)U + (Cx̄− z, Cϕ)V = 0

for every v ∈ D and every ϕ ∈ X: Aϕ = Bv.

Let jv denote the inclusion from V into V ′; by taking v = 0 we deduce that 〈C∗jv(Cx̄ −
z), ϕ〉X′,X = 0 for every ϕ ∈ Ker(A), hence C∗jv(Cx̄ − z) ∈ Ker(A)⊥ = R(A∗). There
exists then an adjoint state p̄ ∈ X satisfying (3.11). We have then, for every ϕ ∈ X such
that Aϕ = Bv,

(Cx̄− z, Cϕ)V = 〈A∗p̄, ϕ〉X′,X = 〈p̄, Bv〉X,X′
which implies (3.12) (note that this is true for any p̄ solution of (3.11)).

As far as the evolution problem is concerned, there exists a unique optimal control uT ∈
L2(0, T ;U) and a unique state xT ∈ L2(0, T ;X), and we have uT = −juB∗pT , where
pT ∈ L2(0, T ;X) is the unique solution of

(3.14)

{
−pTt +A∗pT = C∗jv(CxT − z) in (0, T )
pT (T ) = 0.

As in the finite dimensional case, we have a basic general result on the convergence of the
long time averages. Let us point out that similar results can be found in [6], [22] at least for
a coercive observation operator.

Theorem 3.8. Assume (3.2) and Hypotheses 3.1 and 3.3. Then we have

1
T

min JT
T→∞−→ min Js

and

(3.15)
1
T

∫ T

0

(
|uT (t)− ū|2U + |C(xT (t)− x̄)|2V

)
dt = O

(
1
T

)
→ 0 .

Moreover, we have

1
(b− a)T

∫ bT

aT

xT (t) dt→ x̄ ,
1

(b− a)T

∫ bT

aT

uT (t) dt→ ū

for every a, b ∈ [0, 1].

Proof. Using Hypothesis 3.3 on equation (3.14), and recalling that uT = −B∗pT , we have

(3.16) |pT (0)|2H ≤ K

{∫ T

0

(|uT |2U + |CxT − z|2V )dt

}
.

Similarly, for the state equation (3.1), Hypothesis 3.1 and the continuity of B imply

(3.17) |xT (T )|2H ≤ K

{∫ T

0

(|uT |2U + |CxT |2V )dt+ |x0|2H

}
.
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Coupling the equations of xT and pT we deduce∫ T

0

(
|uT |2U + |CxT − z|2V

)
dt = (x0, p

T (0))H −
∫ T

0

(z, (CxT − z))V dt

so using (3.16) we deduce by now that

(3.18)
∫ T

0

(
|uT |2U + |CxT − z|2V

)
dt ≤ C T

and in turn from (3.16) and (3.17):

(3.19) |pT (0)|H + |xT (T )|H ≤ C
√
T .

We deduce from (3.18) and Jensen inequality that 1
T

∫ T
0
uT dt and 1

T

∫ T
0
CxT dt are bounded,

respectively, in U and in V . Since

(3.20) A

(
1
T

∫ T

0

xT dt

)
=

1
T

∫ T

0

BuT dt+
x0 − xT (T )

T

appllying (3.6) we get that 1
T

∫ T
0
xT dt is also bounded in X. Similarly we reason for pT ,

obtaining that its average is bounded in X.
Now take any p̄ satisfying (3.11); subtracting the optimality systems for the evolution

and the stationary minima, we have{
(xT − x̄)t +A(xT − x̄) = B(uT − ū)
−(pT − p̄)t +A∗(pT − p̄) = C∗jvC(xT − x̄).

Using that uT = −B∗pT , we obtain
(3.21) ∫ T

0

(
|uT − ū|2 + |C(xT − x̄)|2

)
dt =

= −[(xT (T )− x̄) · (pT (T )− p̄)] + [(x0 − x̄) · (pT (0)− p̄)]−
∫ T

0
(uT , (ū+ juB

∗p̄))U dt.

which yields, thanks to (3.19):

1
T

∫ T

0

(
|uT − ū|2 + |C(xT − x̄)|2

)
dt ≤ C√

T
− 1
T

∫ T

0

(uT , (ū+ juB
∗p̄))U dt .

Notice from (3.20), and due to (3.19), that any weak limit of 1
T

∫ T
0
uT dt will belong to

D = {u ∈ U : Bu ∈ R(A)}. Since (3.12) implies ū+ juB
∗p̄ ∈ D⊥, we have

lim
T→∞

1
T

∫ T

0

(uT , (ū+ juB
∗p̄))U dt = 0 .

Therefore, we conclude that

lim
T→∞

1
T

∫ T

0

(
|uT − ū|2 + |C(xT − x̄)|2

)
dt = 0 .

In particular, this identifies the limits of the averages: now we know that 1
T

∫ T
0
uT dt con-

verges to ū (strongly in U) and 1
T

∫ T
0
CxT dt to Cx̄ (strongly in V ). Moreover, again from

(3.20) and (3.19) we also deduce

(3.22) ‖A

(
1
T

∫ T

0

(xT − x̄)dt

)
‖2X′ ≤

c

T
+
c

T

∫ T

0

‖(uT − ū)‖2U dt .

Therefore, since (3.6) implies

‖ 1
T

∫ T

0

(xT − x̄)dt‖2 ≤ β‖ 1
T

∫ T

0

A(xT − x̄)dt‖2X′ + β‖ 1
T

∫ T

0

C(xT − x̄)dt‖2V ,
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we conclude the convergence of 1
T

∫ T
0
xT dt to x̄. Of course, one can reason similarly for the

average in (aT, bT ).
Finally, in the same way one can prove that 1

T

∫ T
0
pT dt converges to some p̄ solution of

(3.11). Since uT = −juB∗pT , taking average and the limit we deduce that ū = −juB∗p̄,
thus proving our claim in Remark 3.7.

By using this latter information, observe that the above estimates are all improved;
indeed, using now the adjoint state such that ū = −juB∗p̄, (3.21) becomes∫ T

0

(
|uT − ū|2 + |C(xT − x̄)|2

)
dt = −[(xT (T )− x̄) · (pT (T )− p̄)] + [(x0 − x̄) · (pT (0)− p̄)]

and Hypotheses 3.1 and 3.3 applied to the difference xT − x̄, pT − p̄ yield∫ T
0

(
|uT − ū|2 + |C(xT − x̄)|2

)
dt ≤ K

{
|xT (T )− x̄|H + |pT (0)− p̄|H

}
≤ K

{∫ T
0

[|uT − ū|2U + |C(xT − x̄)|2V ]dt+ 1
} 1

2
,

which implies

(3.23)
∫ T

0

(
|uT − ū|2 + |C(xT − x̄)|2

)
dt ≤ K .

In particular, (3.19) can now be improved and both pT (t) and xT (t) turn out to be bounded
in H uniformly in time.

3.2. Exponential convergence: a reference case. As far as the exponential convergence
of (uT , xT ) to (ū, x̄) is concerned, a similar strategy as for the finite dimensional case could
be followed. As we have shown, this strategy relies on two main steps: the definition
and properties of the linear feedback law when the target is z = 0 (Lemma 2.6) and the
exponential estimate given in Corollary 2.7.

The first step is the classical procedure, described e.g. in [14], [15], which allows to
uncouple the optimality system, at least in abstract terms. The construction of the feedback
law extends in a natural way the finite dimensional case: we consider the control problem
(3.9) with z = 0, and we define an operator on H by setting

E(T )x0 := pT (0) .

It is immediate to check that E(T ) is linear, continuous and nonnegative, being (see the
proof of Theorem 3.8 in case z = x̄ = p̄ = 0):

(E(T )x0, x0)H = min JT0 ,

where JT0 is the functional JT with target z = 0.
The variational characterization readily implies that E(t1) ≤ E(t2) for every t1 ≤ t2.

Since, in addition, E(t) is uniformly bounded, there exists limT→∞(E(T )x0, x0)H which is
characterized in terms of the regulator problem, defining a limit operator Ê. In fact, if
Tn → ∞, and we denote (xn, pn) := (xTn , pTn) the optimal couple for JTn , we know from
Theorem 3.8 that ∫ Tn

0

[|B∗pn|2 + |Cxn|2]dt ≤ K .

So, from Hypotheses 3.1 and 3.3, xn, pn are bounded in H uniformly in time, and bounded
in L2

loc(0, T ;X) as well. By standard weak compactness, xn and pn converge to a couple
(x̂, p̂) which satisfies

(3.24)
∫ ∞

0

[|B∗p̂|2 + |Cx̂|2]dt ≤ K .
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On one hand, this gives sense to the control problem J∞ (since at least some u ∈ L2(0,∞;U)
exists for which the functional is finite). On the other hand, since (xn, pn) were optimal in
(0, Tn), it is easy to see that (x̂, p̂) is the unique optimal couple for J∞ and satisfies

(3.25)


x̂t +Ax̂ = −BjuB∗p̂

−p̂t +A∗p̂ = C∗jvCx̂

x̂(0) = x0 , p̂(t) t→∞→ 0 ,

where last condition should be meant in weak sense. We set now

Êx0 = p̂(0)

Clearly we have Ê ∈ L(H,H), moreover we know that pn(0) converges to p̂(0) weakly in H,
hence E(t)x0

t→∞→ Êx0 for any x0 ∈ H.
Thus, we have so far defined the feedback laws E(t) and Ê. The semigroup property

of the equation implies that the optimal control uT is then defined through the backward
feedback

uT (t) = −juB∗E(T − t)x(t) , ∀t ∈ [0, T ] .

Some technical issues may arise here concerning the measurability and continuity of the
mapping t 7→ E(t), and the meaning itself of the composition operator B∗E(T − t); in
principle, E goes from H into H, whereas B∗ is defined on X. To achieve the most generality,
such technical issues are to be handled inside the semigroup theory for unbounded operators,
a huge literature concerns this delicate issue (see e.g. [2]. [12]).

In order to avoid unnecessary technicalities, we confine here ourselves to the simplest
case, assuming that B ∈ L(U,H), so B∗ can be defined directly as the adjoint in H. This is
typically the case of distributed controls. Moreover, we assume that the embedding X ⊂ H
is compact; in this case, one can easily prove that, for every x0 ∈ H, E(t)x0 is continuous
in [0,∞) and that E(t)x0

t→∞→ Êx0 strongly in H. Now, by the semigroup property, we have
p̂(t) = Êx̂(t) for every t ∈ (0,∞), and so x̂ is the unique solution of the linear evolution
problem

(3.26)

{
xt + (A+BjuB

∗Ê)x = 0
x(0) = x0 .

Note that this system has a unique strong solution, since, under the above conditions,
BjuB

∗Ê is a bounded operator in H. Moreover, as in the finite dimensional case, (Êx, x)H
is a Lyapunov function for (3.26); indeed, we have

(3.27)
d

dt

(
(Êx̂(t), x̂(t))H

)
=

d

dt
((x̂(t), p̂(t))H) = −|B∗Êx̂|2 − |Cx̂|2 .

Thanks to (3.27), we can prove that (3.26) is exponentially stable and that E(t) converges
to Ê with exponential rate. We collect these informations in the following result, giving a
self contained proof of the exponential convergence only based on Hypotheses 3.1 and 3.3.

Lemma 3.9. Assume that Hypotheses 3.1 and 3.3 hold, and that X ⊂ H is compact and
B ∈ L(U,H). Then, the linear system (3.26) is exponentially stable, and there exists µ > 0
such that ‖E(t)− Ê‖L(H,H) ≤ Ce−µt, for any t > 0.

Proof. We first prove the exponential stability of problem (3.26). As before, we denote
by x̂ the unique strong solution of (3.26), which we also may denote as e−tMx0, being
M = A+BjuB

∗Ê.
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We start by showing the following observability property, which is consequence of Hy-
pothesis 3.1:

(3.28)


zt +Az = 0 in (−∞, 0),
Cz = 0 in (−∞, 0),
z ∈ L∞((−∞, 0);H)

⇒ z(t) ≡ 0 in (−∞, 0).

To prove (3.28), we consider z̃ = eλtz and apply (3.4) to z̃ in the interval (τ, t), obtaining

|z̃(t)|2H ≤ γ
[
λ2

∫ t

τ

‖z̃‖2X′ds+ |z̃(τ)|2H
]

since Cz = 0. Using the embedding X ′ ⊂ H we get

|z̃(t)|2H ≤ γ̃
[
λ2

∫ t

τ

‖z̃‖2Hds+ |z̃(τ)|2H
]

which implies ∫ t

τ

|z̃(s)|2Hds ≤
1
λ2
e−γ̃ λ

2(τ−t)|z̃(τ)|2H .

Recalling the definition of z̃, and since z(t) is bounded uniformly in H, we deduce∫ t

t−1

|z(s)|2H ds ≤ Ce(2λ−γ̃ λ2)(τ−t) .

Choosing λ sufficiently small and letting τ → −∞ we conclude that z(t) = 0. Thus (3.28)
is proved. We claim next that

(3.29) sup
|x0|H≤1

(Êx̂(t), x̂(t))H
t→∞→ 0 .

Observe that, due to (3.27), the quantity

l(t) := sup
|x0|H≤1

(Êx̂(t), x̂(t))H

is nonincreasing, hence it admits a limit as t → ∞. In order to show (3.29), take some
tn →∞ and x0n ∈ H such that x̂n := e−tMx0n satisfies

(3.30) (Êx̂n(tn), x̂n(tn))H ≥ l(tn)− 1
n
.

The sequence zn(t) := x̂n(t+ tn) satisfies

(zn)t +Mzn = 0 in (−tn,+∞).

Moreover, due to (3.24) and Hypothesis 3.1, we have zn bounded in H uniformly in time.
Since the embedding X ⊂ H is compact, standard arguments imply that zn is relatively
compact in L2((a, b);X), and then in C0([a, b];H) as well, for any interval (a, b) ⊂ R. Up
to subsequences, zn(t) converges in H, pointwise and locally uniformly, to some function z
which satisfies

zt +Mz = 0 in (−∞,+∞).

Moreover, since the definition of l(t) and its monotone character imply

(Êx̂n(tn), x̂n(tn))H ≤ (Êx̂n(t+ tn), x̂n(t+ tn))H ≤ l(t+ tn) ∀t < 0 ,

due to (3.30), we conclude that (Êz(t), z(t))H is constant in (−∞, 0) and equal to lim
t→∞

l(t).

On account of (3.27), we deduce that

B∗Êz = Cz = 0 in (−∞, 0),
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and so z solves 
zt +Az = 0 in (−∞, 0),
Cz = 0 in (−∞, 0),
z ∈ L∞((−∞, 0);H)

hence, by (3.28), z = 0. This implies that (Êz(t), z(t))H = 0, hence lim
t→∞

l(t) = 0, which

proves (3.29). Similarly one proves that

(3.31) sup
|x0|H≤1

|x̂(t)|H
t→∞→ 0 .

Indeed, reasoning by contradiction, if (3.31) were not true there would exist x0n ∈ H such
that |x0n|H ≤ 1, and tn →∞ such that x̂n := e−tMx0n satisfies |x̂n(tn)|H ≥ ε > 0 for every
n, for some ε > 0. Since, by (3.29), (Êx̂n(t+ tn), x̂n(t+ tn))H → 0 for any t, one can repeat
the same reasoning as before on the rescaled function zn(t) = x̂(t + tn), thus proving that
|x̂n(tn)|H → 0 and so obtaining a contradiction. Therefore, (3.31) holds true, which implies
the exponential decay of x̂(t). Hence, there exists µ > 0 such that

(3.32) |e−tMx0|H = |x̂(t)|H ≤ e−µt |x0|H .

We are left with the estimate of ‖E(t)−Ê‖. To this purpose, consider the optimality systems
satisfied by (xT , pT ) and (x̂, p̂) respectively. Subtracting the equations and integrating in
(0, T ), one obtains∫ T

0

(
|B∗(pT − p̂)|2 + |C(xT − x̂)|2

)
dt ≤ |p̂(T )|H |xT (T )− x̂(T )|H .

On the other hand, by Hypothesis 3.1 applied to xT − x̂, one has

|xT (T )− x̂(T )|2H ≤ γ
∫ T

0

(
|B∗(pT − p̂)|2 + |C(xT − x̂)|2

)
dt.

Hence we deduce ∫ T

0

(
|B∗(pT − p̂)|2 + |C(xT − x̂)|2

)
dt ≤ C |p̂(T )|2H .

Since p̂(t) = Êx̂(t), using the above inequality, (3.32) and Hypothesis 3.3, we deduce

|pT (0)− p̂(0)|2H ≤ C
{∫ T

0

(
|B∗(pT − p̂)|2 + |C(xT − x̂)|2

)
dt+ |p̂(T )|2H

}
≤ C |p̂(T )|2H ≤ C e−2µT |x0|2H .

By definition of E(T ) and Ê, this yields

‖E(T )− Ê‖L(H,H) ≤ Ce−µT .

Note that the exponential estimate for E(t) − Ê obtained in Lemma 3.9 is less accurate
than what we found in Corollary 2.7 in the finite dimensional case. Indeed, the estimate in
Lemma 3.9 is obtained through only energy estimates relying on Hypotheses 3.1 and 3.3,
without an explicit use of the differential Riccati equation. An alternative would have been
to proceed again as in Corollary 2.7, namely through a fixed point argument, which however
would require the existence and uniqueness of solutions to the differential Riccati equation.
Under the assumptions made, this is still possible using the results known in the literature
(see e.g. [2], [12] and references therein), although it requires a more delicate functional
setting. On the other hand, the conclusion of Lemma 3.9, obtained with self contained
arguments, is enough in order to deduce the exponential stability for the control problem
(3.9).
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Theorem 3.10. Assume that Hypotheses 3.1 and 3.3 hold, and that X ⊂ H is compact and
B ∈ L(U,H). Then, the optimal control uT of (3.9) is given by the affine law

uT = ū− juB∗
[
E(T − t)(xT (t)− x̄) + hT (t)

]
where hT solves the evolution problem

(3.33)

{
−ht + (A∗ + E(T − t)BjuB∗)h = 0 in (0, T )
h(T ) = −p̄ .

and there exists K,µ > 0 such that we have

‖xT (t)− x̄‖H + ‖uT (t)− ū‖H ≤ K(e−µt + e−µ(T−t)) ∀t ∈ [0, T ] .

Remark 3.11. The constant µ is the exponential rate of the stabilized dynamics (3.26),
given by Lemma 3.9. The constant K only depends on x0 and on the target z, eventually
through the stationary states x̄, p̄, as well as on the operators A,B,C, through the constants
in Hypotheses 3.1, 3.3.

Proof. Let hT denote the solution of (3.33). As in the proof of Theorem 2.3, one can deduce
from Lemma 3.9 and Gronwall’s lemma that |hT (t)|H ≤ Ce−µ(T−t) for t ∈ (0, T ). Now, by
the only definition of the feedback E(t), one can see that

(3.34) pT (t)− p̄ = E(T − t)(xT (t)− x̄) + hT (t) .

Indeed, this is just verifying a duality argument; for any ϕ ∈ H, we have

(pT (t)− p̄, ϕ)H = (xT (t)− x̄, E(T − t)ϕ)H + (hT (t), ϕ)H
as it is readily seen by using (3.33) and recalling that q(t) := E(T − t)ϕ is the adjoint state
solving 

−qt +A∗q = C∗jCz in (t, T ),
zt +Az = −BjuB∗q in (t, T ),
z(t) = ϕ , q(T ) = 0 .

Once the affine feedback law (3.34) is given, one can go back to the equation satisfied by
xT−x̄; using the exponential estimates for E(T−t)−Ê as well as for hT , and the exponential
decay of A+BjuB

∗Ê, the conclusion follows as in Theorem 2.3.

As a model example of the previous abstract results, we may consider the Dirichlet
problem for a parabolic equation with internal control and observation. In a bounded
domain Ω ⊂ RN , let us consider the equation

(3.35)


yt − div(M(x)∇y) + c(x)y +B(x) · ∇y = uχω in Ω× (0, T )
y = 0 on (0, T )× ∂Ω
y(0) = y0 ∈ L2(Ω) ,

where M(x) ∈ L∞(Ω,RN × RN ) satisfies (a.e. in Ω) λI ≤ M(x) ≤ ΛI for some λ,Λ > 0,
and where c(x) ∈ L∞(Ω), c(x) ≥ 0, and B(x) ∈ L∞(Ω)N (though we could assume some
more general integrability condition).

Then, consider the associated control problem

(3.36) min JT (u) =
1
2

∫ T

0

[
|u(t)|2L2(ω) + |y(t)− z|2L2(ω0)

]
dt ,

where u ∈ L2(0, T ;L2(ω)) and y solves (3.35). Here ω and ω0 are two open subsets of Ω.
Setting X = H1

0 (Ω), X ′ = H−1(Ω) and H = L2(Ω), and

A(y) = −div(M(x)∇y) + c(x)y +B(x) · ∇y
we have A ∈ L(H1

0 (Ω), H−1(Ω)), and actually A is an isomorphism, since we have

‖y‖X ≤ K‖Ay‖X′ .
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Moreover, observe that, since A has positive first eigenvalue (as consequence of maximum
principle, see e.g. [3]), both A and A∗ are exponentially stable, in particular Hypothesis 3.3
and 3.1 would hold for any choice of the control operator B and the observation operator
C. In the suggested example, we have taken U = L2(ω) and V = L2(ω0). Then, we deduce
from Theorem 3.10 the following stability result.

Corollary 3.12. Let us consider the control problem (3.36) and let (uT , yT ) be the optimal
control and state. Then, there exists λ > 0 such that

‖yT (t)− ȳ‖L2(Ω) + ‖uT (t)− ū‖L2(Ω) ≤ K(e−λt + e−λ(T−t)) ∀t ∈ [0, T ] ,

where ū and ȳ are the optimal control and state of the corresponding stationary control
problem.

In the above example, C is the restriction operator to ω0 and, in particular, it is a bounded
operator. But it may happen C to be defined on some domain D(C) which is dense in X
but, eventually, C not to be continuous in the topology of X. A typical situation of this
kind may happen when the observation is taken on boundary traces. In this case, it is not
possible to define the adjoint state p̄ by using C∗ and (3.11) or (3.14). However, as in [14],
one can often define the adjoint state through a duality or transposition argument as follows.

Assume that there is some space M ⊂ X such that C ∈ L(M,V ) and, at the same time,
that A is an isomorphism from M into H and B ∈ L(U,H). In this case the adjoint state p̄
can be defined by the equation

(3.37) p̄ ∈ H , (p̄, Aϕ)H = (Cx̄− g, Cϕ)V ∀ϕ ∈M .

We argue similarly for the evolution problem. We define

W := {ϕ ∈ L2(0, T ;M) : ϕt +Aϕ ∈ L2(H) , ϕ(0) = 0}

and then, as before, there exists a unique p ∈ L2(0, T ;H) such that

(3.38)
∫ T

0

(p, ϕt +Aϕ)Hdt =
∫ T

0

(Cx− g, Cϕ)V dt for every ϕ ∈W ,

and we have u = −juB∗p.
One can modify now Hypothesis 3.3 as follows: ∃c0 > 0 such that, for every f ∈

L2(0, T ;V ), p0 ∈ H, and any solution p of{
p ∈ L2(0, T ;H) ,∫ T

0
(p, ϕt +Aϕ)Hdt =

∫ T
0

(f, Cϕ)V dt+ (p0, ϕ(T ))H for every ϕ ∈W ,

we have

(3.39) |p(t)|2H ≤ c0

[∫ T

0

|B∗p|2U ′dt+
∫ T

0

‖f‖2V dt+ |p0|2H

]
for a.e. t ∈ (0, T )

where B∗ denotes the adjoint of B as a mapping from L2(0, T ;U) to L2(0, T ;H).
Under such premises, we can extend Theorem 3.8 to this setting too. The only variation

to the previous proof consists in the use of the optimality system, which now requires (3.37)
and (3.38). In this case we get

(3.40)
∫ T

0

(p− p̄, ϕt +Aϕ)Hdt =
∫ T

0

(C(x− x̄), Cϕ)V dt− (p̄, ϕ(T ))H

for every ϕ ∈W . Then (3.39) implies

(3.41) |p(t)− p̄|2H ≤ c0

[∫ T

0

|B∗(p− p̄)|2U ′dt+
∫ T

0

‖C(x− x̄)‖2V dt+ |p̄|2H

]
.
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Let ξε(t) = min(t/ε, 1), and observe that

(ξε(x− x̄))t +A(ξε(x− x̄)) = ξεB(u− ū) +
1
ε

(x− x̄)χ(0,ε) .

In particular ξε(x− x̄) ∈W and we have, using (3.40),∫ T
0
ξε(p− p̄, B(u− ū))Hdt+

∫ ε
0

1
ε (p− p̄, (x− x̄))Hdt

=
∫ T

0
ξε(C(x− x̄), C(x− x̄))V dt− (p̄, x(T )− x̄)H .

Denoting o(1) quantities which converge to zero as ε→ 0, we deduce that∫ T

0

|u− ū|2Udt+
∫ T

0

|C(x− x̄)|2V dt =
∫ ε

0

1
ε

(p− p̄, (x− x̄))Hdt+ (p̄, x(T )− x̄)H + o(1) .

Since (3.41) implies
1
ε

∫ ε
0

(p− p̄, (x− x̄))Hdt ≤

≤ c0
(

1
ε

∫ ε
0
|x− x̄|2dt

) 1
2
[∫ T

0
|B∗(p− p̄)|2U ′dt+

∫ T
0
‖C(x− x̄)‖2V dt+ |p̄|2H

] 1
2

by letting ε→ 0 we obtain ∫ T
0
|u− ū|2Udt+

∫ T
0
|C(x− x̄)|2V dt ≤

≤ c0 |x0 − x̄|H
[∫ T

0
|u− ū|2Udt+

∫ T
0
‖C(x− x̄)‖2V dt+ |p̄|2H

] 1
2

+ (p̄, x(T )− x̄)H .

Using Hypothesis 3.1 to estimate the last term, we conclude as in Theorem 3.8.

As an example, the above setting can be used with the control problem (3.35) where the
observation operator is taken at the boundary: Cy = ∂y

∂ν . In this case we have X = H1
0 (Ω)

and M = H2(Ω) ∩H1
0 (Ω).

4. The wave equation

4.1. The abstract setting. We now consider in a similar way the case of second order
problems in time, namely

(4.1)

{
ytt +Ay + Fyt = Bu in (0, T )
y(0) = y0 , yt(0) = y1 .

We assume that X, H, A satisfy the same basic assumptions as before (X ⊂ H ⊂ X ′,
A ∈ L(X,X ′) has closed range and satisfies (3.2)). In addition, we now assume that A is
symmetric.

As far as the control and the observation operators are concerned, for simplicity we assume
that B ∈ L(U,H) and C ∈ L(X,V ), where U , V , are Hilbert spaces. We also assume that
F ∈ L(H,H).

Under these assumptions, for (y0, y1) ∈ X×H and u ∈ L2(0, T ;U), problem (4.1) admits
a unique solution y ∈ C0([0, T ];X) ∩ C1([0, T ];H). We refer e.g. to [14, Chapter IV, Thm
1.1]. We then consider

min

{
J(u) =

1
2

∫ T

0

[
|u(t)|2U + |Cy(t)− g|2V

]
dt , u ∈ L2(0, T ;U)

}
where y is the solution of (4.1).

In this context, we replace Hypothesis 3.1 by the following one.

Hypothesis 4.1. There exists γ > 0 such that

(4.2) |y(T )|2H + ‖yt(T )‖2X′ ≤ γ

[∫ T

0

(‖f‖2X′ + ‖Cy‖2V )dt+ |y0|2X + |y1|2H

]
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for every f ∈ L2(0, T ;H), every y0 ∈ X, y1 ∈ H, and every y solution of{
ytt +Ay + Fyt = f

y(0) = y0 , yt(0) = y1 .

Similarly as in the parabolic case, Hypothesis 4.1 implies the validity of the stationary
inequality (3.6). To see this fact, one can take y = t2 x in the previous inequality obtaining

T 4|x|2H + 4T 2‖x‖2X′ ≤ γ
∫ T

0

[
(t4‖Ax‖2X′ + t4‖Cx‖2V ) + 4‖x‖2X′ + ‖F (2tx)‖2X′

]
dt .

Using that H ⊂ X ′, and so ‖F (2tx)‖2X′ ≤ ct2|x|2H , and choosing T sufficiently large, one
deduces inequality (3.6).

Finally, Hypothesis 3.3 may be replaced by

Hypothesis 4.2. There exists C > 0 such that

(4.3) ‖p(0)‖2H + ‖pt(0)‖2X′ ≤ C

(
|pT |2X +

∫ T

0

‖B∗p‖2U ′ dt+
∫ T

0

‖f‖2X′ dt

)
for every f ∈ L2(0, T ;H), every pT ∈ X, and every p solution of{

ptt +Ap− F ∗pt = f

p(T ) = pT , pt(T ) = 0 .

As in the parabolic case, instead of the previous assumption, one could alternatively ask
for the existence of a stabilizing feedback.

Hypothesis 4.3. There exists L1 ∈ L(X,U), L2 ∈ L(H,U) and δ, µ > 0 such that any
solution y of

(4.4)

{
ytt +Ay + Fyt = B(L1y + L2yt)
y(0) = y0 , yt(0) = y1

satisfies

(4.5)
∫ T

0

[‖y‖2X + |yt|2H ]dt ≤ δ[‖y0‖2X + |y1|2H ] ∀T > 0

for every given y0 ∈ X, y1 ∈ H.

Again, we stress that Hypothesis 4.3 implies Hypothesis 4.2.

Lemma 4.4. If (A,B) is stabilizable, in the sense of Hypothesis 4.3, then Hypothesis 4.2
holds.

Proof. By duality we get

(pt − F ∗(p), y)H
T

|
0
−(p, yt)H

T

|
0

+
∫ T

0

〈p, ytt +Ay + Fyt〉 dt =
∫ T

0

(f, y)H dt .

Let y solve (4.4). Then∣∣∣∣∣
∫ T

0

〈p, ytt +Ay + Fyt〉 dt

∣∣∣∣∣ ≤ C
(∫ T

0

‖B∗p‖2U ′ dt

) 1
2

[‖y0‖2X + |y1|2H ]
1
2 .

Moreover, we have

|y(T )|2H + |yt(T )|2H ≤ C
∫ T

0
[‖y(t)‖2X + |yt|2H ]dt+ |y0|2H + |y1|2H

≤ C[‖y0‖2X + |y1|2H ]
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so that
|(p(0), y1)H − (pt(0)− F ∗p(0), y0)H | ≤

≤ C
(
|pT |2H +

∫ T
0
‖B∗p‖2U ′ dt+

∫ T
0
‖f‖2X′ dt

) 1
2

[‖y0‖2X + |y1|2H ]
1
2 .

If we choose y0 = 0 and y1 = p(0), we deduce

‖p(0)‖2H ≤ C

(
|pT |2H +

∫ T

0

‖B∗p‖2U ′ dt+
∫ T

0

‖f‖2X′ dt

)
and next we estimate pt(0) obtaining (4.3).

Hypotheses 4.1 and 4.2 are enough to deduce the long time convergence in average.

Theorem 4.5. Assume (3.2) and Hypotheses 4.1 and 4.2. Then the conclusions of Theorem
3.8 hold true.

Proof. The proof is similar to that of Theorem 3.8. For simplicity, we drop the dependence
on T for the optimal evolution pair (uT (t), xT (t)). The optimality system now takes the
form1 

(x− x̄)tt +A(x− x̄) + F (xt) = B(u− ū)
u− ū = −juB∗(p− p̄)
(p− p̄)tt +A(p− p̄)− (F ∗(p))t = C∗jvC(x− x̄)

where p̄ is the unique adjoint state satisfying (3.11) and such that ū = −juB∗p̄ (see Remark
3.7). We have ∫ T

0
|C(x− x̄)|V dt−

∫ T
0

(B(u− ū), p− p̄)H dt =

−(F ∗(p− p̄), x− x̄)H
T

|
0

+((p− p̄)t, (x− x̄))H
T

|
0
−((x− x̄)t, (p− p̄))H

T

|
0
.

Using Hypotheses 4.1 and 4.2 we estimate the right hand side and we obtain∫ T

0

|C(x− x̄)|2V dt+
∫ T

0

|u− ū|2U dt ≤ C

which proves (3.15).

Let us now deduce the convergence in average for the optimal states. First of all, us-
ing either Hypothesis 4.1 or Hypothesis 4.2, the previous bound implies that |x(t)|H and
‖xt(t)‖X′ are bounded, as well as |p(t)|H and ‖pt(t)‖X′ . From the equation we have∫ T

0

A(x− x̄) =
∫ T

0

B(u− ū)dt−
∫ T

0

F (xt)dt+ [x1 − xt(T )]

the equality being valid in X ′. Since∫ T

0

F (xt)dt = F

∫ T

0

xt dt = F (x(T )− x0) ,

the continuity of F in H and the bound established before imply

|
∫ T

0

F (xt)dt|H ≤ c .

Therefore we have

‖ 1
T

∫ T

0

A(x− x̄)‖X′ ≤
c

T
+

1
T

∫ T

0

‖B(u− ū)‖X′dt ≤
c

T
+
c

T

∫ T

0

‖u− ū‖Udt .

1eventually, since C∗jvC(x− x̄) belongs to L2(0, T ; X′) and not in general to L2(0, T ; H), the equation

of the adjoint state should be defined by transposition. This is however a minor detail, see also [14].
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Using (3.6), we get

‖ 1
T

∫ T

0

(x− x̄)dt‖2X ≤ β

{
‖ 1
T

∫ T

0

A(x− x̄)‖2X′ + ‖ 1
T

∫ T

0

C(x− x̄)‖2V

}
and then

‖ 1
T

∫ T

0

(x− x̄)dt‖2X ≤
c

T 2
+
c

T

∫ T

0

‖u− ū‖2Udt+
1
T

∫ T

0

‖C(x− x̄)‖2V dt ≤
c

T
,

which gives the convergence in mean of the optimal trajectories. The same argument can
be applied in any interval (aT, bT ), with 0 ≤ a < b ≤ 1. With a similar reasoning on the
dual state equation, the same conclusion also holds for p− p̄.

4.2. Examples. As examples, we consider two control problems for the wave equation, with
or without damping, with localized distributed control.

Example 4.6. Consider the damped wave equation

(4.6)


ytt −∆y + yt = uχω in (0, T )× Ω
y = 0 on (0, T )× ∂Ω
y(0) = y0 , yt(0) = y1 .

where ω ⊂ Ω as before, and consider the internal observation Cy = yχω0 , ω0 ⊂ Ω. Thanks
to the damping term, Hypothesis 4.1 is satisfied (even with C = 0) and so is Hypothesis 4.3
with L1 = L2 = 0 (and therefore Hypothesis 4.2 holds too).

Example 4.7. Here we consider the pure wave equation

(4.7)


ytt −∆y = uχω in (0, T )× Ω
y = 0 on (0, T )× ∂Ω
y(0) = y0 , yt(0) = y1,

with again the internal observation Cy = yχω0 . If we assume that ω, ω0 satisfy the so-called
Geometric Control Condition (GCC) (see [24]), then Hypotheses 4.1 and 4.3 are satisfied.

Indeed, recall that if a subset O ⊂ Ω verifies the GCC, then the solution of

(4.8)


ytt −∆y + ytχO = 0 in (0, T )× Ω
y = 0 on (0, T )× ∂Ω
y(0) = y0 , yt(0) = y1,

satisfies

(4.9) E(t) :=
∫

Ω

[yt(t)2 + |∇y(t)|2]dx ≤ Ce−µtE(0) ∀t > 0

for some µ > 0.
In particular, if ω satisfies the GCC, then Hypothesis 4.3 holds true with L2(yt) = −yt

and L1 = 0, and therefore Lemma 4.4 applies to (A,B). On the other hand, since ω0 also
satisfies the GCC, (A,C∗) is also stabilizable in the sense of Hypothesis 4.3, and so, by
Lemma 4.4, (A,C) satisfies Hypothesis 4.1.

Moreover, in both Examples 4.6 and 4.7 the convergence rate is exponential, namely there
exist λ > 0 and K > 0 such that

(4.10) ‖yT (t)− ȳ‖H1
0 (Ω) + ‖uT (t)− ū‖L2(Ω) ≤ K(e−λt + e−λ(T−t)) ∀t ∈ [0, T ] ,

where (yT , uT ) and (ȳ, ū) are the optimal trajectories and controls for the wave equation and
for the stationary problem, respectively. The proof of (4.10) follows the same strategy as for
Theorem 3.10, suitably adapted to the hyperbolic problem. In particular, one first considers
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the linear feedback defined for the target z = 0, which corresponds to the optimality system
(written in abstract form)

yTtt +AyT + F (yTt ) = −BjuB∗qT t ∈ (0, T )
qTtt +AqT − (F ∗(qT ))t = C∗jvCy

T t ∈ (0, T )
yT (0) = y0 , y

T
t (0) = y1 , qT (T ) = 0 , qTt (T ) = 0 .

This defines an operator E(T ) on H1
0 (Ω) × L2(Ω) by setting E(T )(y0, y1) := (F ∗(qT (0)) −

qTt (0), qT (0)). In particular, the range of E(T ) is included in
(
H1

0 (Ω)× L2(Ω)
)′ and E(T )

is a nonnegative, uniformly bounded operator from H1
0 (Ω)× L2(Ω) into its dual, as well as

monotone with respect to T , since

〈E(T )(y0, y1), (y0, y1)〉 = (F ∗(qT (0))− qTt (0), y0)H + (qT (0), y1)H = min JT0 ,

where JT0 is the cost functional with target z = 0. Thanks to the monotone character and
the uniform bound of E , and using local compactness properties of solutions of the wave
equation, the operator E(T ) is proved to have a limit Ê such that Ê(y0, y1) = (F ∗(q̂T (0))−
q̂t(0), q̂(0)), where q̂ is the adjoint state for the regulator problem, i.e. the problem with
infinite horizon. Then, as in the parabolic case, the exponential decrease for the regulator
problem is established using the quadratic form defined by Ê as Lyapunov functional and
the conclusion follows using the Hypotheses 4.1 and 4.2. Let us note that in Examples 4.6
and 4.7, such hypotheses hold in a strong form, since y(t) and yt(t) are uniformly estimated
in H1

0 (Ω) and in L2(Ω) respectively, while (4.2) and (4.3) only require, a priori, an estimate
for weaker norms. This makes the proof of the exponential stability (4.10) easier to achieve,
following the same approach as in the previous section apart from suitable adaptation of the
energy estimates.

4.3. Slow convergence. Let us conclude by observing that a different decay estimate in
(4.9) may yield similar convergence results although affecting the rate of convergence. To
be more precise, we recall that whenever O is a general open nonempty subset of Ω, not
necessarily satisfying the GCC, then the energy satisfies a log-decay, namely we have for the
solution of (4.8) (see [17], [23] and [16] for an extension to wave equations with nonlinear
damping)

(4.11)
∫

Ω

[yt(t)2 + |∇y(t)|2]dx ≤ C0

[log(2 + t)]2
(
‖y0‖2H2 + ‖y1‖2H1

)
∀t > 0 .

Therefore, proceeding by duality as in Lemma 4.4, any solution p of{
ptt −∆p = f

p(T ) = pT , pt(T ) = 0

satisfies

‖p(0)‖2H−1(Ω) + ‖pt(0)‖2(H1
0∩H2(Ω))′

≤ C T

[log(2 + T )]2

(
‖pT ‖2L2(Ω) +

∫ T

0

∫
O
|p|2dxdt+

∫ T

0

‖f‖2L2(Ω) dt

)
,

which is a weaker version of (4.3). Nevertheless, if we start in (4.7) with initial data y0 ∈
H2 ∩ H1

0 (Ω) and y1 ∈ H1
0 (Ω), we can still follow the proof of Theorem 4.5 obtaining now

(note that p̄ ∈ H2(Ω) by regularity of the Laplace operator)∫ T

0

∫
ω0

|y − ȳ|2 dxdt+
∫ T

0

∫
ω

|u− ū|2 dxdt

≤ C T

[log(2 + T )]2
(
‖y0‖2H2 + ‖y1‖2H1 + ‖p̄‖2H2

)
.

(4.12)

Thanks to (4.12), we deduce the convergence of the average with a rate O
(

1
[log(T )]2

)
.
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5. Further comments and open problems

• The control problem for the evolution equation

xt +Ax = f in (0, T )

can be reduced to a fixed time interval (0, 1) by a simple change in the time variable
t = Ts so that the state equation becomes

1
T
x̃t +Ax̃ = f in (0, 1).

But this does not seem to simplify the problems under consideration.
The singular limit behavior of parabolic-parabolic systems towards parabolic-

elliptic systems of this kind has been recently analyzed in the context of null-
controllability in [1].
• Our analysis is restricted to linear problems. The same questions arise in the non-

linear context as well. As mentioned in the introduction, in the theory of Mean
Field Games these questions arise for bilinear problems, while, in aeronautics, they
emerge naturally in the nonlinear models of Fluid Mechanics. A systematic analysis
of these issues is to be developed. Some results for nonlinear models exist with
respect to the turnpike property (see [21]); it would be natural to analyze how the
results of this paper extend to the nonlinear setting, e.g. to semilinear heat and
wave equations.
• In the nonlinear context it is also natural to address the same issues for the linearized

equations around the optimal states and controls so to analyze the proximity of
steady state sensitivity with respect to the time-evolution one.
• As indicated in the introduction it would be worth trying to obtain the results in

this paper from the point of view of Hamilton-Jacobi equations (finite or infinite
dimensional).
• In the heat and wave equations considered in this paper the control entered in the

system in a localized manner, in an open subset of the domain where the equation
evolves. But often in control theoretical applications the control enters through the
boundary and the same can occur to the observation operator. Although most of the
techniques employed in this paper can be adapted to that case, special attention has
to be paid to the unboundedness of the control and observation operators and the
details have to be worked out in each specific setting either in the general context of
abstract semigroups or in specific examples using transposition. We refer for instance
to [12], [20] for a systematic presentation of the abstract theory of observation and
control of infinite-dimensional systems.
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