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On the numerical solution of the control problem of switched linear

systems

Alessandro N. Vargas, João Y. Ishihara, and João B. R. do Val

Abstract—This paper presents a method to com-
pute an epsilon-optimal solution of the control prob-
lem of switched linear systems. A difficulty that
emerges in the evalution of the optimal solution
is that the cardinality of the solution set increases
exponentially as long as the time-horizon increases
linearly, which turns the problem intractable when the
horizon is sufficiently large. We propose a numerical
method to overcome such difficulty, in the sense that
our approach allows the evalution of epsilon-optimal
solutions with corresponding sets that do not increase
exponentially.

I. Introduction

The control of switched linear systems is a subject of
intensive investigation over the last few years, with many
contributions spreading in the literature. For instance,
there are many recent monographs and articles dedicated
to the investigation of this theme, see [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], as a small sample.
The formal definition of the system we deal with is

the following. Consider the discrete-time switched linear
system represented by

xk+1 = Avk
xk +Bvk

uk, ∀k ≥ 0, x0 ∈ R
n, (1)

where xk ∈ Rn, uk ∈ Rm, and vk ∈ V := {1, . . . ,σ}, ∀k ≥
0, denote respectively the system state, control input,
and discrete switching control. For each instant of time
k ≥ 0, the matrix pair (Avk

, Bvk
) belongs to the given

finite set {(Av, Bv) : v = 1, . . . ,σ}.
Let us assume that the system (1) evolves within

a fixed, finite-time interval [0, . . . , N ]. A policy π =
{π0, . . . ,πN−1} represents a sequence of control laws in
the form

πk := (uk, vk), k = 0, . . . , N − 1,
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and the set of all admissible policies is denoted by Π. For
a given policy π ∈ Π, let us associate the corresponding
system (1) with a quadratic cost

JN (π, x0) =
N−1
∑

k=0

(x′

kQvk
xk + u′

kRvk
uk) + x′

NQvN
xN ,

where Qv = Q′
v ≥ 0, and Rv = R′

v > 0, for each v =
1, . . . ,σ, are given matrices.

The linear quadratic regulator control problem of N
stages is defined as

J∗

N (x0) := min
π∈Π

JN (π, x0). (2)

The solution of the control problem as in (2) is well-
known in the literature [8], [14], [15], and it is based
on the so-called solution set, as we now explain. In-
deed, to build the solution set, one must start with a
set L0 = {Q1, . . . , Qσ}. In a recursively manner, the
argument determines that Lk must be generated through
a combinatorial design from the elements of the set Lk−1,
that is, each element of Lk−1 acts as a vertice of σ
nodes, and each node corresponds to a Riccati-like matrix
to be aggregated into Lk. Due to this combinatorial
construction, the cardinality of the set LN equals σN ,
i.e., |LN | = σN . The optimal solution for the problem in
(2) is then given by

J∗

N (x0) = min
L∈LN

x′

0Lx0.

An important drawback arises, mainly from the com-
putational point of view, when the horizon N becomes
sufficiently large. Notice that the computation of the
optimal solution becomes intractable when N tends to
infinity. An attempt to overcome such computational
difficulty is made by the authors of [8], [14], and [15]. In
[8] and [14], the authors adopt the strategy of excluding
from the set LN the redundant matrices. The authors
of [15] introduce a relaxation algorithm in the receding
horizon context to evaluate suboptimal solutions for the
problem. However, all of these approaches may suffer
numerically because the cardinality of the respective
evaluation set can increase exponentially as long as N
increases linearly.
The main contribution of this paper is in the computa-

tional front. Indeed, we derive a method to compute an
ε-optimal solution with ε > 0 chosen arbitrarily. Besides,
the method determines and evaluates the corresponding
ε-optimal solution set, and as numerical experiments
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suggest, the cardinality of the solution remains bounded
as long as the horizon N increases to infinity, see Section
III for an account. Thus, our approach can be seen as a
feasible tool to compute the optimal solution, with a clear
numerical advantage when compared with the algorithms
available in the literature.
The remaining part of this paper is structured as

follows. Section II introduces preliminary notation, the
linear quadratic regulator problem and the proposed so-
lution. A numerical example illustrates the effectiveness
of the result in Section III.

II. Definitions and Main Results

Let Rr be the r-dimensional Euclidean space, Rr,s be
the linear space formed by all real matrices of dimension
r × s, and Sr0 (Sr+) be the subspace of Rr,r given by
all symmetric non-negative (positive) matrices such that
{U ∈ Rr,r : U = U ′, U ≥ 0 (> 0)}, where U ′ denotes the
transpose of U .
Let us define the operators Gv : Sn0 &→ Rr,n and Pv :

Sn0 &→ Sn0, v = 1, . . . ,σ, as follows:

Gv(L) = (Rv +B′

vLBv)
−1BvLAv, (3)

Pv(L) = Qv + Gv(L)
′RvGv(L)

+ (Av +BvGv(L))
′L(Av +BvGv(L)), ∀L ∈ S

n0.
(4)

Remark 2.1: Notice that the expressions in (3) and (4)
retrieves the well-known Riccati equation when σ = 1.
It is now necessary to present a set that is resulting

from the rules in (3) and (4). Let M be any enumerable
set of matrices. Let us then define

P(M) = {Pv(M) : ∀v ∈ V, ∀M ∈ M}. (5)

Definition 2.1: (ε-optimality sets). Set j = 1 and
M0 = {Q1, . . . , Qσ}, and consider the following method
to construct M1, . . . ,MN :

• Step 1: Pick the set P(Mj−1) as in (5), and enu-
merate it in the format P(Mj−1) = {U[1], . . . , U[d]}.
Take M[0] = ∅, $ = 0, and s = 0 and go to the next
step.

• Step 2: Set $ = $+ 1, and consider the expression:

P[#] )∈
s
⋃

i=0

Bε

(

M[i]

)

=⇒ s = s+ 1 and M[s] = U[#].

Return to the beginning of Step 2 if $ < d.
• Step 3: TakeMj = {M[1], . . . ,M[s]} and set j = j+1.

Return to the beginning of Step 1 if j < N .
Example 2.1: (Illustrative example: construction of an

ε-optimality set). The aim of this example is to illustrate
how the ε-optimality sets are constructed and the basic
idea is depicted in Fig. 1. In this example we suppose that
σ = 2 andM0 = {Q1, Q2}. Let us identify the elements of
P(M0), say P(M0) = {Z1, Z2, Z3, Z4}. The first element
of P(M0) is always transferred to the new set M1. The
next idea is that the elements from P(M0) must have

Q1

Q2

Z1Z1

Z2Z2

Z3

Z4Z4

T1T1

T2

T3

T4T4

T5

T6

M0 M1 M2P(M0) P(M1)

Fig. 1. Construction of the ε-optimality sets according to the
Example 2.1. III.

a distance of ε from one to another, and only these
elements can be transferred to M1. For instance, let us
assume that ‖Z1 −Z2‖ ≥ ε, hence Z2 can be aggregated
into M1. The next candidate is Z3 and let us assume that
it satisfies ‖Z2 − Z3‖ < ε; hence Z3 fails the distance
condition and can not be aggregated into M1. We now
assume that ‖Z1−Z4‖ ≥ ε and ‖Z2−Z4‖ ≥ ε, and hence
Z4 can be aggregated into M1. The argument proceeds
similarly and the elements T2, T3, T5, T6 are excluded
from M2 because they do not respect the distance either
from T1 or T4.

A. Functionals based on the ε-optimal sets

Let us now define the functional

Wk,N (x) = min
(v,M)∈(V,MN−k−1)

x′Pv(M)x,

k = 0, . . . , N − 1. (6)

Definition 2.1 and the rule in (5) assure that, for every
element (v,M) taken from (V,M#), $ = 0, . . . , N−1, and
applied into (3) and (4) to produce the matrix Pv(M),
this resulting matrix in fact belongs to the set P(M#). It
enables us to conclude that

Wk,N (x) = min
M∈P(MN−k−1)

x′Mx, k = 0, . . . , N−1. (7)

Consider now the next functional:

Vk,N (x) = min
M∈MN−k

x′Mx, k = 0, . . . , N. (8)

The next result introduces a useful inequality.
Lemma 2.1: For each k = 0, . . . , N − 1, there holds

Vk,N (x)− ε‖x‖ < Wk,N (x) ≤ Vk,N (x), ∀x ∈ R
n. (9)

Proof: First of all, let us fix some 0 ≤ $ < N . One
can notice from Definition 2.1 that the set M#+1 is made
up exclusively of elements extracted from P(M#). Hence,

M#+1 ⊆ P(M#), (10)

and as a result we have

min
(v,M)∈(V,M!)

x′Pv(M)x ≤ min
M∈M!+1

x′Mx,

which shows the rigthmost inequality in (9).
Now, we show the validity of the other inequality of

(9). Indeed, we have from Definition 2.1 that, for each
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U ∈ M#+1, there corresponds some Z ∈ P(M#) such that
‖U − Z‖ < ε. Hence

x′Ux = x′(U − Z)x+ x′Zx ≥ −ε‖x‖+ x′Zx (11)

Suppose that we choose U ∈ M#+1 in such a manner
that

min
M∈M!+1

x′Mx = x′Ux. (12)

Since
x′Zx ≥ min

M∈P(M!)
x′Mx, (13)

we can conclude from (11)–(13) that

min
M∈M!+1

x′Mx ≥ −ε‖x‖+ min
M∈P(M!)

x′Mx,

which yields the desired result.
In the sequel, we will present an evaluation that yields

the main result, and for this purpose it is required to defi
the next functional:

Sk,N (x) = min
v∈V,u∈Rr

x′Qvx+u′Rvu+Vk+1,N (Avx+Bvu),

∀x ∈ R
n, k = 0, . . . , N − 1. (14)

Lemma 2.2: For each k = 0, . . . , N − 1, there holds

Sk,N (x) = Wk,N (x), ∀x ∈ R
n. (15)

Proof: From (8), we can write

Sk,N (x) = min
(v,u)∈(V,Rr)

[

x′Qvx+ u′Rvu

+ min
M∈MN−k−1

(Avx+Bvu)
′M(Avx+Bvu)

]

.

Since the two minimizers in the last expression are
interchangeable [16, Th.6S, p.54], we have

Sk,N (x) = min
(v,M)∈(V,MN−k−1)

min
u∈Rr

[

x′Qvx+ u′Rvu

+ (Avx+Bvu)
′M(Avx+Bvu)

]

. (16)

Taking the minimum with respect to u in the expression
inside the square brackets of (16), we obtain [17, p.257]

Sk,N (x) = min
(v,M)∈(V,MN−k−1)

[

x′(Qv+Gv(M)′RvGv(M)

+ (Av +BvGv(M))′M(Av +BvGv(M))x
]

, (17)

where Gv(·) denotes the operator as in (3). It is then clear
from (4) and (17) that

Sk,N (x) = min
(v,M)∈(V,MN−k−1)

x′Pv(M)x,

which is what we wished to show.
Lemma 2.3: Let the control rule πk = (vk, uk), k =

0, . . . , N − 1, be defined as follows.

(vk,Mk) = arg min
(v,M)∈(V,MN−k)

x′

kPv(M)xk

uk = Gvk
(Mk)xk, (18)

where xk represents the trajectory corresponding to πk

as in (1). Then

V0,N (x0) ≥ JN (π, x0), ∀x0 ∈ R
n. (19)

Proof: Let x0, x1, . . . , xN be the trajectory as in
(2) corresponding to the controls π0, . . . ,πN−1. Taking
Lemma 2.2 with k = 0, we have

W0,N (x0) = S0,N (x0) = x′

0Qv0
x0 + u′

0Rv0
u0 + V1,N (x1).

Since, from Lemma 2.1, the quantity W0,N (x0) is
bounded above by V0,N (x0), we get that

V0,N (x0)− V1,N (x1) ≥ x′

0Qv0
x0 + u′

0Rv0
u0.

Proceeding similarly for k = 1, . . . , N − 1, one can show
that

Vk,N (xk)− Vk+1,N (xk+1) ≥ x′

kQvk
xk + u′

kRvk
uk. (20)

Summing up the elements of (20) on k, we obtain

V0,N (x0)− VN,N (xN ) ≥
N−1
∑

k=0

x′

kQvk
xk + u′

kRvk
uk,

which shows the result.
Remark 2.2: An interesting conclusion derived from

Lemma 2.3 is as follows. From optimality, we have
J∗

N (x0) ≤ JN (π, x0) for all policies π ∈ Π, and in
particular if π obeys the rule in (18) then we can use
(19) to write

J∗

N (x0) ≤ JN (π, x0) ≤ V0,N (x0), ∀x0 ∈ R
n. (21)

The inequalities in (21) will be useful in the sequel.
Let us now consider the cost-to-go of the switched

control problem as defined below:

J∗

k,N (x) = min
π∈Π

N−1
∑

#=k

(x′

#Qv!
x# + u′

#Rv!
u#) + x′

NQvN
xN ,

∀xk = x ∈ R
n, k = 0, . . . , N.

Notice, in particular, that J∗

0,N (x0) = J∗

N (x0).
Lemma 2.4: Let {x∗

k}, with x∗
0 = x ∈ Rn, be the

optimal trajectory. Then there holds

Vk,N (x∗

k) ≤ J∗

k,N (x∗

k) + ε

N−1
∑

#=k

‖x∗

#‖, 0 ≤ k ≤ N. (22)

Proof: The proof follows by induction on k. Under
k = N , the result is trivial since VN,N (x∗

N ) = J∗

N,N (x∗

N ).
Now, take k = N − 1 and x = x∗

N−1, and recall from the
dynamic programming argument that [17, Ch. 6], [18],

J∗

N−1,N (x) = min
v∈V,u∈Rr

[

x′Qvx+ u′Rvu

+ J∗

N,N (Avx+Bvu)
]

= min
v∈V,u∈Rr

[

x′Qvx+ u′Rvu

+ VN,N (Avx+Bvu)
]

.
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It follows from Lemma 2.2 that

J∗

N−1,N (x) ≥ VN−1,N (x)− ε‖x‖,

which shows the result for k = N − 1.
Let us assume that the result holds for k = t+ 1, and

for sake of notational simplicity, let us set x = x∗
t . In this

case, we have from the dynamic programming that

J∗

t,N (x) = min
v∈V,u∈Rr

x′Qvx+u′Rvu+J∗

t+1,N (Avx+Bvu).

(23)
If we let (v∗, u∗) to denote the minimizer of the rigth-
hand side of (23), we can employ (22) with k = t+ 1 to
write

J∗

t,N (x) = x′Qv∗x+ u∗′Rv∗u∗ + J∗

t+1,N (Av∗x+Bv∗u∗)

= x′Qv∗x+ u∗′Rv∗u∗ + J∗

t+1,N (x∗

t+1)

≥ x′Qv∗x+ u∗′Rv∗u∗

+ Vt+1,N (x∗

t+1)− ε

N−1
∑

#=t+1

‖x∗

#‖.

Hence,

J∗

t,N (x) + ε

N−1
∑

#=t+1

‖x∗

#‖

≥ x′Qv∗x+ u∗′Rv∗u∗ + Vt+1,N (Av∗x+Bv∗u∗)

≥ min
v∈V,u∈Rr

x′Qvx+ u′Rvu+ Vt+1,N (Avx+Bvu). (24)

Since Lemma 2.2 guarantees that the rightmost expres-
sion in (24) is bounded below by Vk,N (x) − ε‖x‖, and
recalling that x = x∗

t , we can conclude that

J∗

t,N (x∗

t ) + ε

N−1
∑

#=t+1

‖x∗

#‖ ≥ Vk,N (x∗

t )− ε‖x∗

t ‖,

which is what we wished to show.
The next concept recalls the stabilizability concept for

the system (1).
Assumption 2.1: (Stabilizability). There exist a policy

π ∈ Π and a constant γ > 0 such that

JN (π, x0) ≤ γ‖x0‖, ∀x0 ∈ R
n.

The next result is a consequence of the stabilizability
assumption.
Lemma 2.5: Suppose that Assumption 2.1 holds, and

let {x∗

k}, with x∗
0 = x ∈ Rn, be the optimal trajectory. If

the weighting matrices Q1, . . . , Qσ, are positive definite,
then

N
∑

k=0

‖x∗

k‖ ≤
γ‖x‖

λmin(Q)
,

where

λmin(Q) = min{λ(Q1), . . . ,λ(Qσ)}.
Combining the inequality in (21) and the results from

Lemmas 2.3, 2.4, and 2.5, we obtain the next main result.

|Mk|

k
0
0 20 40 60 80

400

800

1200

Fig. 2. Cardinality of the sets Mk, k = 0, . . . , N , according to the
numerical example of Section III.

Theorem 2.1: Let π = {π0, . . . ,πN−1} ∈ Π be the
policy as in (18). If Assumption 2.1 holds, and if the
weighting matrices Q1, . . . , Qσ, are positive definite, then

J∗

N (x0) ≤ JN (π, x0) ≤ J∗

N (x0) + ε
γ‖x0‖

λmin(Q)
, ∀x0 ∈ R

n.

(25)
Remark 2.3: The policy π as announced in Theorem

2.1 depends on the choice of ε, and in view of the
inequalities in (25), it is classified as an ε-optimal policy
[18, Sec. 2.2].
The numerical application of the next section illus-

trates the advantage of using Theorem 2.1 to evaluate
ε-optimal cost instead of the hard computing required
by the optimal one.

III. Numerical example

This numerical example considers the switched linear
system in (1) taking the parameters

Av =











a
(v)
11 a

(v)
12 a

(v)
13 a

(v)
14

a
(v)
21 a

(v)
22 a

(v)
23 a

(v)
24

a
(v)
31 a

(v)
32 a

(v)
33 a

(v)
34

a
(v)
41 a

(v)
42 a

(v)
43 a

(v)
44











, v = 1, 2,

whose values are described in Table II, and

B1 = B2 =
[

0.17637 0.326018 1.82362 1.67398
]′
.

TABLE I

Comparison of the cardinality of the solution set

required to compute the optimal and ε-optimal costs.

Method Cardinality Cost evaluation

[8, Th. 1] |LN | = 65536 J∗

N
(x0) = 0.7733823

Theorem 2.1 |MN | = 1004 JN (π, x0) = 0.7735249
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TABLE II

Parameters of the switched linear system as in numerical

evaluation of Section III.

Parameters v = 1 v = 2

a
(v)
11 0.83912455 0.59642355

a
(v)
12 1.81717842 1.67398131

a
(v)
13 0.16087544 0.40357644

a
(v)
14 0.18282157 0.32601868

a
(v)
21 -0.14709211 -0.33025084

a
(v)
22 0.77375028 0.56690680

a
(v)
23 0.14709211 0.33025084

a
(v)
24 0.22624971 0.43309319

a
(v)
31 0.16087544 0.40357644

a
(v)
32 0.18282157 0.32601868

a
(v)
33 0.83912455 0.59642355

a
(v)
34 1.81717842 1.67398131

a
(v)
41 0.14709211 0.33025084

a
(v)
42 0.22624971 0.43309319

a
(v)
43 -0.14709211 -0.33025084

a
(v)
44 0.77375028 0.56690680

To perform the evaluation, we set N = 16, R1 = R2 =
1, Q1 = Q2 = I, F1 = F2 = 5I, and x0 = [0.2 0.3 −
0.3 − 0.2]′.
Setting ε = 0.01, we obtain the numerical values as

described in Table I. The cardinality of the set LN ,
required to compute the exact optimal solution [8, Th.
1], is |LN | = 2N−1 = 65536. However, the cardinality
|MN | = 1004 is much fewer than that of LN , thus for
sake of computational effort it is better to employ our
approach from Theorem 2.1 because it also provides a
good approximation of the optimal solution (Table I).
Now, we consider a new evaluation for N = 80. It

is observed in the experiment that the cardinality of ε-
optimal solution set does not depend on the time N as
N increases to infinity (Fig. 2).
This example illustrates the usefulness of our approach

(Theorem 2.1) to compute an ε-optimal solution of the

switched linear control problem as in (2).
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