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Abstract

This article is concerned with an initial boundary value problem for an elliptic-
parabolic coupled system arising in martensitic phase transition theory of elastically
deformable solid materials, e.g., steel. This model was proposed in [4], and inves-
tigated in [3] the existence of weak solutions which are defined in a standard way,
however the key technique used in [3] is not applicable to multi-dimensional problem.
One of the motivations of this study is to solve this multi-dimensional problem, and
another is to investigate the sharp interface limits. Thus we define weak solutions in
a way, which is different from [3], by using the notion of viscosity solution. We do
prove successfully the existence of weak solutions in this sense for one dimensional
problem, yet the multi-dimensional problem is still open.

1 Introduction

In this article we shall investigate an initial-boundary value problem of a new model which
describes martensitic phase transitions in elastically deformable solid materials, and such
phase transitions are driven by configurational forces. To formulate this problem, we
firstly introduce some notations. Let Ω be an open bounded domain in R3 with smooth
boundary ∂Ω. It represents the points of a material body. Define Qt = (0, t) × Ω. We
use unknown functions: u = u(t, x) is the displacement at time t and position x, T is the
Cauchy stress tensor, and S is an order parameter which means that if S takes the values
that are approximately equal to 0 and 1, then the material is in two different phases, say
γ and γ′, respectively. Then the system reads

−divx T (t, x) = b(t, x), (1.1)

T (t, x) = D (ε(∇xu)− ε̄S) (t, x), (1.2)

St(t, x) = −c
(
−T · ε̄+ ψ̂′(S)− ν∆xS

)
|∇xS|(t, x) (1.3)
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which must be satisfied in Qt. We prescribe the following Dirichlet boundary and initial
conditions

u|[0,t]×∂Ω = 0, (1.4)

S|[0,t]×∂Ω = 0, (1.5)

S|{t=0}×Ω̄ = S0. (1.6)

In this model, c, ν are positive constants, D is the linear, positive definite symmetric
elasticity tensor. We have chosen the free energy ψ = ψ(ε, S,∇xS) given by

ψ(ε, S,∇xS) =
1

2
D(ε− ε̄S) · (ε− ε̄S) + ψ̂(S) +

ν

2
|∇xS|2, (1.7)

and ψS is the derivative, with respect to S, of ψ. The scalar product of two matrices σ, τ
is denoted by σ · τ =

∑3
i,j=1 σijτij . There holds the relation ψS(ε, S) = −T · ε̄ + ψ̂′(S).

ε is the strain tensor defined by ε = ε(∇xu) =
1
2

(
∇xu+ t(∇xu)

)
, and the upper-script t

denotes the transpose of a matrix. ε̄ is called the misfit strain. The function ψ̂(S) is
chosen as a double-well potential for which we assume that

ψ̂(S) is smooth and has two minima at S = 0 and S = 1, and

one maximum at Ŝ between 0 and 1, (1.8)

ψ̂′(S) > 0, if S ∈ (0, Ŝ) ∪ (1,∞); ψ̂′(S) < 0, if S ∈ (Ŝ, 1) ∪ (−∞, 0).

Finally, b = b(t, x) is a given volume force.

This model was formulated in [4] by employing the second law of thermodynamics
and a formula (see e.g. [1, 25, 35]) of configurational forces. Our model differs from
the celebrated Allen-Cahn model (which is also called Ginzburg-Landau) by the gradient
term |∇xS|. The reason is that in the Allen-Cahn model, the driving force for the motion
of interfaces is the mean curvature, while the motion of interfaces considered in this paper
is driven by configurational forces. We mention the key ideas of the derivation. There are
two main types of phase transition models: sharp interface model and phase field model.
Our model is derived from a sharp interface model: Assuming that the jump of S,
across the interface of two phases, becomes smaller and smaller, we see that the equation
governing the interface approaches to a Hamilton-Jacobi equation St = −c ψS |∇xS| which
is a fully nonlinear equation, thus is difficult to deal with and its solution may develop
singularities. A usual way for regularizing it is to add an artificial term (for instance,
ν∆xS) as in the theory of conservation laws, but this technique does not work in our
case. We then think of another type of models, i.e. phase field model, to regularize such
an equation. To formulate a phase field model, we choose the free energy (1.7), and also
need a suitable flux which can be chosen in the form

q = q(ut, T,∇xS, St) = T · ut + νSt∇xS. (1.9)

Then by straightforward computations, we see that if the equations (1.1) – (1.3) are
satisfied, then the following Clausius-Duhem inequality is satisfied

d

dt
ψ(ε, S,∇xS)− divx q − b · ut ≤ 0. (1.10)
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Hence, we assert the validity of the second law of thermodynamics. For the details of the
formulation of this model, we refer to the appendix of this paper, or the articles [2, 3, 4].

The aim of this article is to propose a suitable concept of weak solutions that works
for multi-dimensional problem and that makes the investigation of sharp interface limit
(as ν goes to 0) easier, then to prove the existence of such defined weak solutions for
problem (1.1) – (1.6). There are two most well-known concepts of weak solutions to
partial differential equations: The first one is the notion of usual weak solutions that
are defined by employing test functions and the technique of integration by parts, and
the second one is the conception of viscosity solutions developed by Crandall and Lions
in 1983, see [15], etc. In this article, we define a weak solution by combining these two
notions of weak solutions. To understand why we need two concepts of weak solutions,
we first investigate the features of this model. Our model consists of a subsystem of linear
elasticity and a partial differential equation that is degenerate and has strong nonlinearity
and non-smooth coefficients. The one space dimensional initial-boundary value problem
for this model has been studied in [3], in which we define a weak solution in a usual way
by using a simple technique that makes us possible to rewrite the principle part of the
equation of the order parameter in a divergence form, i.e. νSxx|Sx| = ν

2 (Sx|Sx|)x.
However such a technique fails for the corresponding multi-dimensional problem of

this model, namely ν∆xS|∇xS| can’t be rewritten in a divergence form. Thus the notion
of usual weak solutions is not suitable for this problem because we can not reduce the
order of weak derivatives of the unknown by integration by parts. This is one of the
difficulties in solving our model. Another one is that the maximum principle, which
plays a crucial role in the theory of viscosity solutions, is not valid for the whole system
of equations considered here. So it is not suitable to define weak solutions by using
the notion of viscosity solutions only. Therefore one of two purposes of this article is
to propose a suitable notion of weak solutions to this multi-dimensional problem. The
second purpose is that we shall use our new notion of weak solutions to study, in the
future, a very interesting problem, i.e. the sharp interface limit of our model. Such a
problem however may be difficult under the framework of the standard weak solution,
since the sharp interface problem has a fully nonlinear equation of the order parameter.

The above consideration leads us to propose a suitable notion of generalized solutions
to our system by using both notions of weak solutions: we define weak solutions in the
usual sense for the subsystem of elasticity, and use viscosity solutions to define weak
solutions to the order parameter equation. Then we construct a sequence of solutions
to an approximate initial boundary value problem of the system. Applying some com-
pactness lemma we can show that the limit of the approximate solutions is just weak
solutions in our sense. Though only the one space dimensional problem is solved up
to now, we believe this technique works for the multi-dimensional case too. The other
interesting open problems in this field include: The sharp interface limit of our model,
and the relationship between weak solutions defined in this article and the ones in [3],
respectively.

We are now going to study the definition and existence of weak solutions in a suitable
sense to problem (1.1) – (1.6) in one space dimension, though the definition and some
a-priori estimates are still valid for multi-dimensional problem. We shall see later on
that the proof of the existence of weak solutions in this article is significantly simpler
than that in [3].

3



Statement of the main result. From now on we assume that all functions only depend
on the variables x1 and t, and, to simplify the notation, denote x1 by x. The set Ω = (a, d)
is a bounded open interval with constants a < d. We write Qte := (0, te) × Ω, where te
is a positive constant, and define

(v, φ)Z =

∫
Z
v(y)φ(y) dy ,

for Z = Ω or Z = Qte . If v is a function defined on Qte we denote the mapping
x 7→ v(t, x) by v(t). If no confusion is possible we sometimes drop the argument t and
write v = v(t). We still allow that the material points can be displaced in three directions,
hence u(t, x) ∈ R3, T (t, x) ∈ S3 and S(t, x) ∈ R, where S3 is the set of 3× 3 symmetric
matrices. If we denote the first column of the matrix T (t, x) by T 1(t, x) and set

ε(ux) =
1

2

(
(ux, 0, 0) +

t(ux, 0, 0)
)
∈ S3,

then with these definitions the equations (1.1) – (1.3) in the case of one space dimension
can be written in the form

−T 1
x = b, (1.11)

T = D(ε(ux)− ε̄S), (1.12)

St = c
(
T · ε̄− ψ̂′(S) + νSxx

)
|Sx|, (1.13)

which must be satisfied in Qte . The boundary and initial conditions therefore are

u(t, x) = 0, (t, x) ∈ [0, te]× ∂Ω, (1.14)

S(t, x) = 0, (t, x) ∈ [0, te]× ∂Ω, (1.15)

S(0, x) = S0(x), x ∈ Ω. (1.16)

To define weak solutions to problem (1.11) – (1.16), we first introduce some definitions
on semi-continuous functions. Let f = f(x) be a real function defined in U ⊂ RN with
N ∈ {1, 2, 5}. We denote the so-called upper semi-continuous envelope of f by

f∗(x) : U → R ∪ {−∞,+∞} (1.17)

which is defined by

f∗(x) := lim
r↓0

ess supy{f(y) | y ∈ U, |x− y| ≤ r}. (1.18)

Obviously, f∗(x) is upper semi-continuous. And f∗(x) := −(−f)∗(x) is called lower
semi-continuous envelope of f .

We define the Hamiltonian HT which depends on the unknown T by

HT (t, x, p, q, r) = c
(
T (t, x) · ε̄− ψ̂′(p) + ν r

)
|q|, (1.19)

where, (t, x) ∈ Qte , p, q, r ∈ R, so (t, x, p, q, r) ∈ R5. It is easy to show that if T is a
continuous function in (t, x) and ψ̂′ is continuous in S, then we have thatHT is continuous
in (t, x, p, q, r), thus

(HT )
∗(t, x, p, q, r) = (HT )∗(t, x, p, q, r) = HT (t, x, p, q, r). (1.20)
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We now can introduce the notion of weak solutions for our problem. In what follows
we shall assume that p is a real number such that

p > 1. (1.21)

Definition 1.1 A function (u, T, S) which satisfies that

(u, T, S) ∈ L∞(0, te;H
1
0 (Ω))× L∞(0, te;L

2(Ω))× L∞(Q̄te), (1.22)

is called a weak solution to system (1.11) – (1.16) if

I) for almost every t ∈ [0, te], equations (1.11), (1.12) and the boundary condition
(1.14) are satisfied weakly.

II) S is a viscosity solution to equation (1.13), if S satisfies both i) and ii) below:

i) S is a sub-viscosity solution to equation (1.13), i.e. for any function ϕ(t, x)
in C1,2(Q̄te), if S

∗ − ϕ attains its local maximum at (τ, y), then

ϕt(τ, y) ≤ (HT )∗(τ, y, S
∗(τ, y), ϕx(τ, y), ϕxx(τ, y)), (1.23)

and S∗(0, x) ≤ S0(x);

ii) S is a super-viscosity solution to Eq. (1.3), i.e. for any function ϕ(t, x) in
C1,2(Q̄te), if S∗ − ϕ attains its local minimum at (τ, y), then

ϕt(τ, y) ≥ (HT )
∗(τ, y, S∗(τ, y), ϕx(τ, y), ϕxx(τ, y)), (1.24)

and S∗(0, x) ≥ S0(x).

Now we are able to state our main result as follows.

Theorem 1.2 Suppose that b, bt ∈ C([0, te];L
2(Ω)) for any given positive constant te,

and that S0 ∈ H1
0 (Ω). Furthermore, we assume that the function ψ̂ satisfies the assump-

tion (1.8).
Then there exists a weak solution (u, T, S) to problem (1.11) – (1.16) in the sense of

Definition 1.1, and in addition to (1.22), we have that the solution satisfies

S ∈ C(Q̄te).

Our notion of generalized solutions is a combination of the concept of usual weak
solutions and the notion of viscosity solutions. This idea comes partly from some discus-
sions with Prof. Alber and partly from the paper by Giga, Goto and Ishii [24] which is
concerned with the global existence of weak solutions, however without uniqueness, to
the system consisting of a semi-linear diffusion equation in two disjoint open sub-domains
denoted by Ω±(t) of one simply connected domain Ω (The complement of union of these
two parts is so-called the interface Γ(t)), and a nonlinear interface equation. The system
is composed of the interface equation

V =W (v)− c κ, on Γ(t) (1.25)
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and the diffusion equations

vt = ν∆v + g±(v), for x ∈ Ω±(t), t > 0.

Here, V = V (t, x) is the speed of Γ(t) at x ∈ Γ(t) in the normal direction of n from
Ω+(t) to Ω−(t). κ is the mean curvature of Γ(t) at x ∈ Γ(t), v is the density. And
c, ν are positive constants, W, g± are given bounded continuous functions over R. Note
that in the work [24], the driving force for the motion of an interface is due to the mean
curvature (see formula (1.25)), while the motion of an interface considered in this article
is driven by configurational forces and the motion is governed by V [S] = cn · [E]n (the
sharp interface case), where E is the Eshelby tensor, an energy-momentum tensor, see
[19, pp. 753-767].

We recall the literature related to our results. There have been many papers on the
theory of viscosity solutions since the notion of viscosity solution was proposed in 1983 by
Crandall and Lions [15]. This notion is applicable to the scalar equations or the weakly
coupled systems, for which the maximum principle holds. Hence, the comparison theorem
is valid, this plays an important role in the proof of uniqueness of viscosity solution. For
an overview of the theory, we refer for instance to Capuzzo Dolcetta and Lions[12],
Ishii and Lions[29], Crandall, Ishii and Lions[14], Jensen[31], Crandall and Lions [16],
Ishii[27], Souganidis[40] for the scalar equation case, and to Engler and Lenhart[18], Ishii
and Koike[28], etc. for the system case, and the references are cited therein. For the
background of our model and mathematical results related this article, we refer the reader
to work by Alber and/or Zhu [2, 3, 4, 5, 6, 7], Kawashima and Zhu [32].

The main difficulties and our strategies in the proof of Theorem 1.2 are as follows:
Firstly, the definition of weak solutions is a new problem since our system comprises of
a linear elliptic system of u and a nonlinear equation of S which can not be rewritten
in the divergence form. Secondly, the equation for the order parameter is degenerate
and its coefficients is not smooth. To overcome these difficulties, we make a suitable
smooth approximation of the non-smooth term which leads the equation of the order
parameter to a uniformly parabolic equation with smooth coefficients. We employ the
energy estimates to discuss the limits of approximate solutions.

The remaining of this article is organized as follows. In Section 2 we state an ap-
proximate initial boundary value problem, and apply the existence theorem in the book
by Ladyzenskaya et al. [33] to prove existence of classical solution to this approximate
problem. Then we derive in Section 3 the uniform a priori estimates which are indepen-
dent of a small parameter κ for the approximate solutions. Then we apply the a priori
estimates, a lemma of the Aubin-Lions type and a theorem on the stability of viscosity
solutions to discuss the limits and prove the existence of weak solutions in the sense of
Definition 1.1. Finally Section 4 we present briefly in the appendix the derivation of our
model.

2 Existence of solutions to the modified problem

In this section, we are going to study an approximate initial-boundary value problem and
show that it has a classical solution for any fixed positive constant κ. Since we shall let
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κ go to zero, we may assume, without loss of generality, that

0 < κ < 1.

Let χ ∈ C∞
0 (R2, [0,∞)) be a function satisfying

∫∞
−∞ χ(t, x)dtdx = 1. We set

χκ(t, x) :=
1

κ2
χ

(
t

κ
,
x

κ

)
,

and for b ∈ L∞(Qte ,R) we define

(χκ ∗ b)(t, x) =
∫ te

0
χκ(t− s, x− y)b(s, y)dsdy. (2.1)

We smooth the term |Sx| as follows

|Sx|κ =
√

|Sx|2 + κ2, (2.2)

and choose a sequence Sκ
0 such that

Sκ
0 ∈ C∞

0 (Ω), ∥Sκ
0 − S0∥H1(Ω) → 0 (2.3)

as κ→ 0 since C∞
0 (Ω) is dense in H1

0 (Ω).
Then the smoothed initial boundary value problem of (1.11) – (1.16) turns out to be

−T 1
x = χκ ∗ b, (2.4)

T = D (ε(ux)− ε̄S) , (2.5)

St = cν|Sx|κSxx + c
(
T · ε̄− ψ̂′(S)

)
(|Sx|κ − κ). (2.6)

and the boundary and initial conditions become

u|[0,te]×∂Ω = 0, (2.7)

S|[0,te]×∂Ω = 0, (2.8)

S|{0}×Ω̄ = Sκ
0 . (2.9)

By the choice of Sκ
0 , we see that the compatibility condition Sκ

0 |∂Ω = 0 is met.

Remark 2.1. There are some other ways, which are different from (2.2), to smooth
the function |p|. We need only to require that the smoothed equation (2.6) for the order
parameter meets the assumptions of the maximum principle.

To prove the existence of classical solution to the approximate problem (2.4) – (2.9),
we employ the Leray-Schauder fixed-point theorem (see, e.g. [33]) and define for any
Ŝ ∈ C1+α

2
,2+α(Q̄te) (here 0 < α < 1) a mapping P : [0, 1]×B → B; Ŝ 7→ S where S is

a solution obtained by the following procedure:
i) For any fixed Ŝ, it is easy to find a unique solution (u, T ) which depends on Ŝ, to

the following boundary value problem for almost every given t

−T 1
x = χκ ∗ b, (2.10)

T = D
(
ε(ux)− ε̄Ŝ

)
, (2.11)

u|∂Ω = 0. (2.12)

ii) Then inserting this T into equation (2.6) we can obtain a unique classical solution
S to problem (2.6), (2.8) and (2.9).

Therefore we conclude that
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Theorem 2.1 Suppose that all the assumptions in Theorem 1.2 are met, and the com-
patibility conditions S0 = S0,x = S0,xx = 0 at x = a, d are satisfied.

Then for any fixed κ > 0, there exists a unique classical solution (u, T, S) ∈ C2,1(Q̄te)×
C1,1(Q̄te)× C2+α,1+α/2(Q̄te) to problem (2.4) – (2.9) which satisfies

Stx ∈ L2(Qte). (2.13)

Remark 2.2. The compatibility conditions in Theorem 2.1 are different from usual ones
and they are derived as follows: From the system and initial data, there must hold

T (0, x)|x=a,d − Dε(ux(0, x))|x=a,d = 0,

(2.14)

ν|S0,x|κS0,xx + T (0, x) · ε̄(|S0,x|κ − κ)|x=a,d = 0.

Note that the values of ux(0, x) at boundary can be arbitrary, so is T (0, x). Thus from the
definition of the function | · |κ we see that the second term of (2.14) is satisfied provided
that S0,x = S0,xx = 0 at x = a, d.

We need the following estimates, stated in Lemma 2.2 – Lemma 2.5 and Lemma 2.7,
to prove this theorem. To derive the a priori estimates, we assume that there exists a
classical solution (u, T, S) ∈ C2,1(Q̄te)× C1,1(Q̄te)× C2+α,1+α/2(Q̄te) to problem (2.4) –
(2.9) such that Stx ∈ L2(Qte).

Firstly, applying the maximum principle to (2.6) to obtain

Lemma 2.2 There holds for te > 0

∥S∥L∞(Qte )
≤ C̄. (2.15)

In this lemma and the follows context, we denote by C̄ a constant which is independent
of κ, but may depend on ν, while a constant C may depend on both κ and ν.

Proof. To make use of the maximum principle, we solve (u, T ) in terms of S from the
first two equations, provided that S is given. Then the whole system can be reduced
into a single equation, but with a nonlocal term. We need some notations as used in
[4]. Let Ŝ3 be the subspace of all matrices A ∈ S3 with Aij = 0 for i, j = 2, 3. The
orthogonal space to Ŝ3 is denoted by S̃3. It consists of A ∈ S3 satisfying Ai1 = A1i = 0
for all i = 1, 2, 3. Note that ε(ux) ∈ Ŝ3. Let P̂ be the canonical projection of S3 into Ŝ3.
Since D : S3 → S3 is a positive definite linear mapping, ⟨σ, τ⟩ = Dσ · τ defines a scalar
product on S3. The projection of S3 onto Ŝ3, which is orthogonal with respect to this
scalar product is denoted by Q̂. These definitions imply that

ker Q̂ = D−1S̃3 = D−1ker P̂ .

Define further that
ε∗ = Q̂ε̄, u∗ = (ε∗11, 2ε

∗
21, 2ε

∗
31),

we then obtain

u(t, x) = u∗
(∫ x

a
S(t, y)dy − x− a

d− a

∫ d

a
S(t, y)dy

)
+ w(t, x), (2.16)

T (t, x) = D(ε∗ − ε̄)S(t, x)

(∫ x

a
S(t, y)dy − x− a

d− a

∫ d

a
S(t, y)dy

)
+ σ(t, x),(2.17)
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where the function (w(t, ·), σ(t, ·)) (here t is regarded as a parameter) is the unique
solution of the following boundary value problem

−σ1x(x) = b̂(x) in Ω, (2.18)

σ(x) = Dε(wx(x)) in Ω, (2.19)

w(a) = f̂(a), w(d) = f̂(d) (2.20)

and b̂ = b(t), f̂ ≡ 0. Note that u∗ ∈ R3, ε∗ ∈ S3 depend only on the misfit strain
ε̄. Inserting the formula of u, T into equation (2.6) yields that system (2.4) – (2.6) is
reduced into a single equation for S with a nonlocal term. Invoking the definition of |p|κ,
we see that the assumptions required by the maximum principle are satisfied. Thus we
can apply the maximum principle to this single equation and the proof of this lemma is
complete.

Next we can derive the following estimates for the derivatives of S.

Lemma 2.3 There holds for any t ∈ [0, te] that

∥Sx(t)∥2 +
∫ t

0

∫
Ω
|Sx|κ|Sxx|2dxdτ ≤ C̄, (2.21)∫ t

0

∫
Ω

(
(|Sx|κ|Sxx|)

4
3 + |St|

4
3

)
dxdτ ≤ C̄. (2.22)

Here and hereafter, we denote the L2-norm over Ω by ∥ · ∥.

Proof. By definition we have the property |p|κ ≥ κ, from which we obtain

0 ≤ |p|κ − κ ≤ |p|κ + κ ≤ 2|p|κ.

Using estimate (2.15) and formula (2.17), recalling the assumptions on b, one concludes
that

∥T∥L∞(Qte )
≤ C̄. (2.23)

Note that Stx ∈ L2(Qte), for any fixed κ, implies that

1

2

d

dt
∥Sx∥2 = (Sx, Sxt).

Multiplying (2.6) by −Sxx and integrating the resulting equation with respect to x, using
integration by parts, and invoking the estimates (2.15) and (2.23) we get

1

2

d

dt
∥Sx∥2 + cν (|Sx|κSxx, Sxx) = c

((
T · ε̄− ψ̂′(S)

)
(|Sx|κ − κ),−Sxx

)
≤ C̄

(
|Sx|

1
2
κ , |Sx|

1
2
κ |Sxx|

)
, (2.24)

where we used the notation (f, g) =
∫
Ω f(x)g(x)dx. Applying the Cauchy-Schwarz in-

equality, we infer from (2.24) that

1

2

d

dt
∥Sx∥2 + cν (|Sx|κSxx, Sxx) ≤ C̄∥ |Sx|

1
2
κ ∥L1(Ω)∥ |Sx|

1
2
κSxx∥

≤ C̄(∥Sx∥
1
2 + 1)∥ |Sx|

1
2
κSxx∥ (2.25)
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By the Young inequality and the property that |p|κ ≤ |p| + κ for any κ ≥ 0, we derive
from (2.25) that

1

2

d

dt
∥Sx∥2 + cν (|Sx|κSxx, Sxx) ≤ cν

2
∥ |Sx|

1
2
κSxx∥2 + C̄ν(∥Sx∥+ 1)

≤ cν

2

∫
Ω
|Sx|κ|Sxx|2dx+ C̄ν∥Sx∥2 + C̄. (2.26)

Thus we arrive at

d

dt
∥Sx∥2 + cν

∫
Ω
|Sx|κ|Sxx|2dx ≤ C̄ν∥Sx∥2 + C̄. (2.27)

Using the Gronwall inequality to (2.27) one can easily obtain (2.21).
By the interpolation technique and (2.21), we have that for some 2 > p ≥ 1, q = 2

p

and 1
q +

1
q′ = 1 that∫ t

0

∫
Ω
(|Sx|κ|Sxx|)p dxdτ

=

∫ t

0

∫
Ω
(|Sx|κ)

p
2

(
(|Sx|κ)

p
2 |Sxx|p

)
dxdτ

≤
(∫ t

0

∫
Ω
(|Sx|κ)

pq′
2 dxdτ

) 1
q′
(∫ t

0

∫
Ω
(|Sx|κ)

pq
2 |Sxx|pqdxdτ

) 1
q

≤
(∫ t

0

∫
Ω
(|Sx|κ)

p
2−p dxdτ

) 2−p
2
(∫ t

0

∫
Ω
|Sx|κ|Sxx|2dxdτ

) p
2

. (2.28)

Invoking the property that |p|κ ≤ |p|+κ and inequality (2.21) yield that for p
2−p ≤ 2,

i.e. p ≤ 4
3 , the right hand side of (2.28) is bounded.

Making use of (2.28) (with p = 4
3) and equation (2.6) we have for any test function

φ ∈ L4(Qte) ∣∣(St, φ)Qte

∣∣ = c

∣∣∣∣(ν|Sx|κSxx + (T · ε̄− ψ̂′(S))(|Sx|κ − κ), φ
)
Qte

∣∣∣∣
≤ C̄ ∥|Sx|κSxx∥

L
4
3 (Qte )

∥φ∥L4(Qte )

+C̄
∥∥∥(T · ε̄− ψ̂′(S))

∥∥∥
L4(Qte )

(∥Sx∥+ 1)∥φ∥L4(Qte )

≤ C̄
(
∥|Sx|κSxx∥

L
4
3 (Qte )

+ ∥Sx∥+ 1
)
∥φ∥L4(Qte )

≤ C̄∥φ∥L4(Qte )
, (2.29)

where we applied the Hölder and Young inequalities. Thus we arrive at ∥St∥
L

4
3 (Qte )

≤ C̄,

thus prove (2.22). And the proof of this lemma is complete.

For the solution to the elliptic part of the system, i.e. (2.10) – (2.12), we have

Lemma 2.4 There hold for almost every t ∈ [0, te] that

∥u(t)∥W 1,p(Ω) + ∥T (t)∥Lp(Ω) ≤ C̄, (2.30)

∥u(t)∥H2(Ω) + ∥T (t)∥H1(Ω) ≤ C̄. (2.31)

10



Proof. Using the estimate (2.15), we get S(t) ∈ Lp(Ω) for almost every t ∈ [0, te] since
the domain Ω is bounded. Recalling estimate (2.21), we obtain easily (2.30) – (2.31),
by the regularity theory of elliptic systems (or just using the formula (2.17) since our
problem is one dimensional). This completes the proof of the lemma.

Now we differentiate (2.4) once formally with respect to t and recall the assumption
on bt, then use again the theory of the elliptic system to get

Lemma 2.5 There hold for almost every t ∈ [0, te] that

∥Tt∥Lp(Ω) ≤ C̄
(
1 + ∥St∥Lp(Ω)

)
, ∥Tt∥

L
4
3 (Qte )

≤ C̄, (2.32)

T ∈ C([0, te];C
α(Ω̄)), and ∥T∥C(Q̄te )

≤ C̄. (2.33)

To prove the above lemma, we shall make use of the following lemma which is of
Aubin-Lions type, see, for instance, Lions [34], and for the case r = 1, see Simon [38],
Roub́ıcek [37].

Lemma 2.6 Let B0, B, B1 be Banach spaces which satisfy that B0, B1 are reflexive
and that

B0 ⊂⊂ B ⊂ B1.

Here, by ⊂⊂ we denote the compact imbedding. Define

W =

{
f | f ∈ L∞(0, te;B0),

df

dt
∈ Lr(0, te;B1)

}
with te being a given positive number and 1 < r <∞.

Then the embedding of W in C([0, te];B) is compact.

Proof of Lemma 2.5. We need only to prove (2.33). From (2.32) and Lemma 2.4, we
assert that

T ∈ L∞(0, te;H
1(Ω)), and Tt ∈ L

4
3 (0, te;L

4
3 (Ω)). (2.34)

Thus we can choose

B0 = H1(Ω), B = Cα(Ω̄), B1 = L
4
3 (Ω), r =

4

3
,

which meet the requirements of Lemma 2.6, and α ∈ (0, 12 ]. Whence (2.33) holds. And
the proof of Lemma 2.5 is complete.

Furthermore, for any fixed κ, we have

Lemma 2.7 There hold for any t ∈ [0, te] that

∥St(t)∥2 +
∫ t

0

∫
Ω
(|Sx|κ + 1) |Sxt|2dxdτ ≤ C, (2.35)

∥Sxx(t)∥ ≤ C. (2.36)

11



Proof. We prove firstly (2.35). To this end, we differentiate equation (2.6) formally with
respect to t, then multiply the resulting equation by St and integrate it with respect to
x to get

1

2

d

dt
∥St∥2 − c ν

∫
Ω
(|Sx|κSxx)t St dx− c

∫
Ω

(
(T · ε̄− ψ̂′(S))(|Sx|κ − κ)

)
t
St dx = 0.(2.37)

It is easy to see that

(|Sx|κSxx)t =

(∫ Sx

|ξ|κdξ
)

xt

, (2.38)∫
Ω

(∫ Sx

|ξ|κdξ
)

t

Sxt dx =

∫
Ω
|Sx|κ|Sxt|2dx. (2.39)

Thus (2.37) becomes

1

2

d

dt
∥St∥2 + c ν

∫
Ω
|Sx|κ|Sxt|2dx− c

∫
Ω

(
(T · ε̄− ψ̂′(S))(|Sx|κ − κ)

)
t
St dx = 0. (2.40)

We now handle the last term on the left-hand side of (2.40) as∣∣∣∣c∫
Ω

((
T · ε̄− ψ̂′(S)

)
(|Sx|κ − κ)

)
t
St dx

∣∣∣∣
≤ C

∫
Ω

∣∣∣Tt · ε̄− ψ̂′′(S)St

∣∣∣ (|Sx|κ + 1)|St|dx+ C

∫
Ω

∣∣∣T · ε̄− ψ̂′(S)
∣∣∣ ∣∣(|Sx|κ)′SxtSt∣∣ dx

≤ C (∥Tt∥+ ∥St∥) (∥ |Sx|κ∥L∞(Ω) + 1)∥St∥+ C∥St∥ ∥Sxt∥

≤ C
( (

1 + ∥ |Sx|κ∥L∞(Ω)

)
∥St∥2 + (∥ |Sx|κ∥L∞(Ω) + 1)∥Tt∥ ∥St∥

)
+
κ

2
∥Sxt∥2. (2.41)

Here we used the estimates ∥(T, S)∥L∞(Qte )
≤ C, ∥Tt∥ ≤ C(1+ ∥St∥), |(|y|κ)′| ≤ C, and

the Hölder, Young inequalities. By the Sobolev imbedding theorem, we have

∥ |Sx(t)|κ∥L∞(Ω) ≤ C(∥Sx(t)∥L∞(Ω) + 1) ≤ C(∥Sx(t)∥H1(Ω) + 1). (2.42)

Applying the estimate (2.32), which is valid for p = 2, combining (2.41) and (2.40), we
arrive at

d

dt
∥St(t)∥2 ≤ C

(
1 + ∥Sx(t)∥H1(Ω)

)
∥St(t)∥2 + C

(
∥Sx(t)∥2H1(Ω) + 1

)
. (2.43)

We shall make use of the Gronwall inequality in the following form

y′(t) ≤ A(t)y(t) +B(t) implies y(t) ≤ y(0)e
∫ t
0 A(τ)dτ +

∫ t

0
B(s)e

∫ t
s A(τ)dτds, (2.44)

where y, A, B are functions satisfying that y(t) ≥ 0, A(t), B(t) are integrable over [0, te].
Defining

y(t) = ∥St(t)∥2, A(t) = C
(
1 + ∥Sx∥H1(Ω)

)
, B(t) = C

(
1 + ∥Sx∥2H1(Ω)

)
,

from the estimate ∥Sx∥H1(Qte )
≤ C which is a consequence of (2.21) and the fact |p|κ ≥ κ,

it follows that the above defined A(t), B(t) are integrable over [0, te]. Thus we can apply
(2.44) to (2.43) and obtain

∥St(t)∥2 ≤ C,

12



whence

∥St(t)∥2 +
∫ t

0

∫
Ω
|Sx|κ|Sxt|2dxdτ ≤ C. (2.45)

From which we obtain easily (2.35) since κ at this moment is a given number. Therefore
we can use the equation to get easily (2.36). Thus the proof of this lemma is complete.

Remark 2.3. Since we use the imbedding (2.42) which is valid only in one dimensional
case, thus this lemma is only true for this one dimensional problem.

Remark 2.4. To derive (2.35) rigorously, we employ the technique of finite difference as,
e.g., in [17]. We assume that there exists a unique classical solution (u, T, S) to problem
(2.4) – (2.9) such that

(u, T, S) ∈ C2,1(Q̄te)× C1,1(Q̄te)× C2+α,1+α/2(Q̄te), Sxt ∈ L2(Qte).

Define Sh(t, x) = (S(t+ h, x)− S(t, x))/h for any h > 0. Then from (2.6) we obtain

Sht =
cν

h

(∫ Sx(t+h,x)

Sx(t,x)
|ξ|κdξ

)
x

+
c

h
(T · ε̄− ψ̂′(S))(|Sx|κ − κ)

∣∣∣(t+h,x)

(t,x)
, (2.46)

for any [t ∈ [0, te − δ], where δ is a fixed number such that δ ≥ h. Here and hereafter, we

use the notations f
∣∣(t+h,x)

(t,x)
= f(t+ h, x)− f(t, x) and f |(t,x) = f(t, x). Multiplying (2.46)

by Sh and integrating the resulting equation with respect to t, x over Qt yield

∥Sh(t)∥2 + cν

∫ te−δ

0

∫
Ω

1

h

∫ Sx(t+h,x)

Sx(t,x)
|ξ|κdξShxdxdt

= ∥Sh(0)∥2 + c

∫ te−δ

0

∫
Ω
(Th · ε̄− ψ̂′′(S∗)Sh)(|Sx|κ − κ)|(t+h,x)Shdxdt

+ c

∫ te−δ

0

∫
Ω
(T · ε̄− ψ̂′(S))|(t,x)

Sx(t+ h, x) + Sx(t, x)

|Sx(t+ h, x)|κ + |Sx(t, x)|κ
SxhShdxdt.(2.47)

Here S∗ is a number between S(t + h, x) and S(t, x). Note that the second term on the
left hand side of (2.47) is equal to

cν

∫ te−δ

0

∫
Ω
|Sx(η, x)|κ|Shx|2dxdt ≥ C∥Shx∥2L2(Qte−δ)

,

where η ∈ [t, t+ h] and we used |p|κ ≥ κ. By definition, we have

|Sx(t+ h, x) + Sx(t, x)|
|Sx(t+ h, x)|κ + |Sx(t, x)|κ

≤ 1.

So the second and third terms on the right hand side of (2.47) are of lower orders and
can be estimated in a similar way to (2.41). We thus arrive at

∥Shx∥2L2(Qte−δ)
≤ C.

13



Further, we write∫ te−δ

0

∫
Ω
|Sx(η, x)|κ|Shx|2dxdt

=

∫ te−δ

0

∫
Ω

(
(|Sx(η, x)|κ − |Sx(t, x)|κ) + |Sx(t, x)|κ

)
|Shx|2dxdt. (2.48)

Invoking the Hölder continuity of Sx, applying the Fatou lemma for any fixed δ, we take
the limit as h→ 0. Then letting δ → 0, we justify (2.35) and omit details.

We now turn back to prove Theorem 2.1.
Proof of Theorem 2.1. To complete the proof of the global existence of classical solution,
we need to prove that ∥Sx∥Cα/2,α(Q̄te ) ≤ C. To this end we make use of the estimates
listed in Lemmas 2.2 – 2.5 and Lemma 2.7. To prove this, we invoke the following lemma
see, e.g. [33]

Lemma 2.8 Let f(t, x) be a function on Qte such that
i) f is uniformly (with respect to x) Hölder continuous in t, with exponent
0 < α ≤ 1, that is |f(t, x)− f(s, x)| ≤ C|t− s|α,
and
ii) fx is uniformly (with respect to t) Hölder continuous in x, with exponent
0 < β ≤ 1, that is |fx(t, x)− fx(t, y)| ≤ C ′|y − x|β.
Then fx is uniformly Hölder continuous in t with exponent γ = αβ/(1+β), such that

|fx(t, x)− fx(s, x)| ≤ C ′′|t− s|γ , ∀x ∈ Ω̄, 0 ≤ s ≤ t ≤ te.

where C ′′ is a constant which may depend on C,C ′ and α, β.

By applying this lemma we assert that there exists a constant 0 < α < 1 such that
∥Sx∥Cα/2,α ≤ C. By the a priori estimate of the Schauder type for parabolic equations,
we thus obtain that

∥S∥C1+α/2,2+α(Q̄te) ≤ C,

which ensures us to apply the Leray-Schauder fixed point theorem, and the proof of global
existence of classical solution is complete. Using the technique of difference quotient with
respect to t to this classical solution see e.g. [33] we can prove (2.13). And the proof of
Theorem 2.1 is thus complete.

3 Existence of weak solutions

3.1 Uniform a priori estimates

This subsection is devoted to derivation of some uniform a priori estimates, which are
independent of κ ∈ (0, 1], for the approximate solution to (2.4) – (2.9). However these
estimates may depend on ν, this thus makes it difficult to discuss the sharp interface
limit ν → 0. To investigate such a sharp interface limit, we need new techniques.

We now denote the approximate solution by (uκ, T κ, Sκ). Therefore we collect a priori
estimates, which have been established in Section 2 and are independent of κ.
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Lemma 3.1 There hold for any t ∈ [0, te] that

∥Sκ
x(t)∥2 +

∫ t

0

∫
Ω
|Sκ

x |κ|Sκ
xx|2dxdτ ≤ C̄, (3.1)∫ t

0

∫
Ω

(
(|Sκ

x |κ|Sκ
xx|)

4
3 + |Sκ

t |
4
3

)
dxdτ ≤ C̄, (3.2)∫ t

0
∥Sκ∥2H1(Ω)dτ ≤ C̄. (3.3)

Remark 3.1. From (2.25) we see that the constant C̄ depends on ν.

3.2 Limits

With the help of Lemma 2.6, applying the uniform a priori estimates established in
Subsection 3.1, we shall investigate in this section the limits, as κ→ 0, of the approximate
solutions and complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Firstly we apply again Lemma 2.6 to show that the sequence of
the approximate solution Sκ has a subsequence which converges strongly. To this end,
we choose

B0 = H1(Ω), B = Cα(Ω̄), B1 = L
4
3 (Ω),

and

0 < α <
1

2
, p1 =

4

3
.

It is easy to see that such defined B0, B1 are reflexive. Therefore we apply Lemma 2.6
and conclude that the sequence {Sκ}κ is a compact in C([0, te];C

α(Ω̄)). Thus we can
select a subsequence of it, and denote it by {Sκn}n, such that, as n→ ∞,

κn → 0,

and

Sκn → S, in C([0, te];C
α(Ω̄)), (3.4)

from which we obtain that

∥Sκn − S∥C([0,te]×Ω̄) → 0. (3.5)

On the other hand, by Lemma 2.5, we assert that there exists a subsequence of T κ such
that

T κn → T in Cα(Q̄te), (3.6)

from this, (3.5) and (2.16), we obtain consequently that

(uκn , T κn) → (u, T ), uniformly in Cα(Q̄te), (3.7)

as n→ ∞.

In what follows, we are going to prove that the limit function (u, T, S) is just a weak
solution to problem (1.11) – (1.16) in the sense of Definition 1.1. It is not difficult to
show that (1.11) and (1.12) are satisfied by the linearity of those two equations and the
uniform convergence of uκ, T κ. The remaining part of this section is to prove that (1.13)
is satisfied.

We shall make use of the theorem on the stability of viscosity solutions, see e.g. [23].
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Theorem 3.2 (Stability of viscosity solutions) Assume that Fn converges to F lo-
cally uniformly (as n → ∞) in the domain of definition of F . Assume that vn is a
viscosity solution to

(vn)t + Fn(t, x, vn,∇vn,∇2vn) ≤ 0 (resp. ≥ 0) in Qte ,

and that vn converges to v locally uniformly in Qte as n → ∞. Then v is a viscosity
solution to

vt + F (t, x, v,∇v,∇2v) ≤ 0 (resp. ≥ 0) in Qte .

To apply this theorem, we define vn = Sκn and

Fn(t, x, p, q, r) = HTκn (t, x, p, q, r) = c
(
T κn(t, x) · ε̄− ψ̂′(p) + νr

)
(|q|κn − κn).

Invoking (3.7) and (3.5) we conclude that

i) Sκn converges to S locally uniformly in any compact subset in Qte .

ii) HTκn (t, x, p, q, r) converges to HT locally uniformly in any compact subset in (0, te)×
Ω× R× R× R.
iii) Since Sκn is a classical solution to equation (2.6) when T κn is regarded temporarily
fixed, Sκn is also a viscosity solution to (2.6).

Therefore, we can apply Theorem 4.1 and conclude that the limit S is a viscosity solu-
tion to St = HT (t, x, Sx, Sxx). Hence, recalling the properties S

∗(t, x) = S∗(t, x) = S(t, x)
and (HT )

∗(t, x, p, q, r) = (HT )∗(t, x, p, q, r) = HT (t, x, p, q, r), we assert that (u, T, S) is
a weak solution to problem (1.11) – (1.16) in the sense of Definition 1.1, and the proof
of Theorem 1.2 is thus complete.

4 Appendix

Since our model is quite new, we briefly sketch, for the sake of readers’ convenience, the
physical background and the derivation of the diffusive interface model (1.1) – (1.6) from
a sharp interface model. We also refer the reader to [3, 4, 5]. Our model differs from the
Allen-Cahn model by a gradient term. The main reason is: In the Allen-Cahn model,
the driving force for the motion of interface is the mean curvature, while the motion of
interface considered in this article is driven by configurational forces, see e.g. [25, 35].

Material phases are characterized by the structure of the crystal lattice, in which the
atoms are arranged. An interface between different material phases moves if the crystal
lattice in front of the interface is transformed from one structure to the other. Often phase
transformations are triggered by diffusion processes. A well-known model for diffusion
dominated transformations is the Allen-Cahn equation when the order parameter is not
conserved (or the Cahn-Hilliard equation if the order parameter is conserved). We derive
our model (1.1) – (1.6) from a sharp interface model for diffusionless transformations, also
called martensitic transformations, see e.g. [26, p. 162]. This sharp interface model is
an initial-boundary value problem for the unknown functions u, T and for the unknown
interface Γ(t) ⊂ Ω between two material phases, which is a free boundary. It consists of
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(1.1) – (1.2) and the interface conditions

V (t, x)[S](t, x) = c
(
−⟨T ⟩(t, x) · ε̄[S](t, x) + [ψ̂(S)](t, x)

)
, (4.1)

[u](t, x) = 0, [T ](t, x)n(t, x) = 0, (4.2)

which must hold for x ∈ Γ(t), and of a Dirichlet boundary condition for u the initial
condition (1.6). We use the notation [f ] = f+ − f− and ⟨f⟩ = 1

2(f+ + f−), where f+, f−
are the limit values of the function f on both sides of Γ(t). Moreover, V (t, x) ∈ R3

denotes the normal speed of the interface Γ(t), which is measured as positive in the
direction for which [S](t, x) is positive. Here c is a positive constant. Equation (4.1), a
constitutive equation, determines the normal speed V of the phase interface as a function
of the term −⟨T ⟩ · ε̄[S] + [ψ̂(S)]. Some computations show that this term is equal to the
expression n·[E]n with the Eshelby tensor E (an energy-momentum tensor, see [19, p753-
p767]) and the normal vector n to Γ(t) (cf. [4]) and thus is a configurational force. We
assume that V depends linearly on the configurational force, which is the most simple
constitutive assumption. Thus, in this model the evolution of the phase interface is
driven by the configurational force along the interface, an assumption appropriate for
martensitic transformations.

Though configurational forces were introduced in the first half of the last century,
it was clearly stated for the first time in [1] that (1.1), (1.2), (4.1), (4.2) form a closed
initial-boundary value problem. Applications of this model can be found, for example,
in [11, 36, 39], where equilibrium configurations for materials with phase transitions are
determined, and in [30], where the evolution of phase interfaces in ferroelectric materials
is modeled. In a sense, this free initial-boundary value problem from solid mechanics is
comparable to the Stefan problem in fluid mechanics.

The initial-boundary value problem (1.1) – (1.6) can be considered to be a regulariza-
tion of this sharp interface model, which could be used to prove existence of solutions of
the sharp interface model, and it can also be considered to be a diffusive interface model
for martensitic phase transitions, which is useful by itself and avoids some disadvantages
of the model with sharp interfaces. We are interested in both aspects.

The derivation of (1.1) – (1.6) given in [2, 4] uses a rigorous method. To make the
model plausible, we derive the model here in a different, short, but formal way. To this
end we replace the phase interface Γ(t), across which the order parameter jumps from 0 to
1, by finitely many interfaces parallel to the original interface, and consider a new order
parameter, again denoted by S, with small jumps across these interfaces, such that the
sum of the jumps is equal to 1. We assume that the new order parameter satisfies (4.1)
and (4.2) along all interfaces. If we increase the number of interfaces and decrease the
jump height, the new order parameter will converge to a continuous or even differentiable
order parameter, for which the normal speed of the level manifolds is equal to the limit
of the normal speed of the interfaces. For this limit speed we obtain from (4.1)

V (t, x) = c lim
[S]→0

(⟨T ⟩ · ε̄+ ψ̂′(S∗)) = c (−T · ε̄+ ψ̂′(S)) = c ψS(ε(∇xu), S). (4.3)

The limit order parameter thus satisfies the Hamilton-Jacobi transport equation

St = −c ψS(ε(∇xu), S)|∇xS|, (4.4)

since the level manifolds of solutions of equation (4.4) have this normal speed. The
idea suggests itself to approximate the solution of the sharp interface model by smooth
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solutions (u, T, S) of the system (1.1), (1.3), (4.4). Yet, examples in one space dimension
show that in general the function S in such a smooth solution develops a jump after finite
time. The reason for this is that the function ψ̂′ appearing in ψS is not monotone, since
ψ̂ is a double well potential. After S has developed a jump, (4.4) can no longer be used to
govern the evolution of S. To avoid this problem and to force solutions to stay smooth,
(4.4) has been replaced by (1.3), which contains the regularizing term ν|∇xS|∆xS with
the small positive parameter ν. This yields the model (1.1) – (1.6).

The choice of this special regularizing term follows from the second law of thermody-
namics, which every model must satisfy. This law requires that there exist a free energy
ψ and a flux q such that ∂

∂tψ + divx q ≤ b · ut holds; cf. [8]. If we choose a free-energy
and a flux as (1.7) and (1.9), it follows by a short computation for solutions (u, T, S) of
(1.1), (1.3) that

∂

∂t
ψ − divx (Tut + νSt∇xS)− b · ut = (ψS(ε, S)− ν∆xS)St.

Inserting (1.6) into this equation shows that the right-hand side is non-positive, whence
the second law is fulfilled. However this would not be true by using, as in the theory of
conservation laws, the standard regularization (i.e. adding an artificial viscosity term)
St = −c ψS(ε(∇xu), S)|∇xS|+ ν∆xS of (4.4).
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