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compressible Navier-Stokes in larger spaces
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Abstract

This paper is dedicated to the study of viscous compressible barotropic fluids in
dimension N > 2. We address the question of well-posedness for large data having
critical Besov regularity. Our result improves the analysis of R. Danchin in [13]

N
and of B. Haspot in [15], by the fact that we may take initial density in BE , with
1 < p < 400. Our result relies on a new a priori estimate for the velocity, where
we introduce a new structure to weaken one the coupling between the density and
the velocity. In particular our result is the first where we obtain uniqueness without
imposing hypothesis on the gradient of the density.

1 Introduction
The motion of a general barotropic compressible fluid is described by the following system:

Op + div(pu) =0,
Bulpu) + div(pu @ u) — div(u(p) D(w) — V(A(p)divu) + VP(p) = pf,  (L1)
(p, u)/t:O = (po,uo)-

Here u = u(t,z) € RN stands for the velocity field and p = p(t,z) € R* is the density.
The pressure P is a suitable smooth function of p. We denote by A and p the two viscosity
coefficients of the fluid, which are assumed to satisfy p > 0 and A+ 24 > 0 (in the sequel
to simplify the calculus we will assume the viscosity coefficients are constant functions).
Such a conditions ensures ellipticity for the momentum equation and is satisfied in the
physical cases where A + QW“ > 0. We supplement the problem with initial condition
(po, up) and an outer force f. Throughout the paper, we assume that the space variable
z is in RY or to the periodic box 7.V with period a;, in the i-th direction. We restrict
ourselves to the case N > 2.

The problem of existence of global solution in time for Navier-Stokes equations was
addressed in one dimension for smooth enough data by Kazhikov and Shelukin in [29],
and for discontinuous ones, but still with densities away from zero, by Serre in [36] and
Hoff in [20]. Those results have been generalized to higher dimension by Matsumura
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and Nishida in [32] for smooth data close to equilibrium and by Hoff in the case of
discontinuous data in [23, 26]. The existence and uniqueness of local classical solutions
for (1.1) with smooth initial data such that the density pg is bounded and bounded away
from zero (i.e., 0 < p < pg < M) has been stated by Nash in [34]. Let us emphasize
that no stability condition was required there. On the other hand, for small smooth
perturbations of a stable equilibrium with constant positive density, global well-posedness
has been proved in [32]. Many works on the case of the one dimension have been devoted
to the qualitative behavior of solutions for large time (see for example [20, 29]). Refined
functional analysis has been used for the last decades, ranging from Sobolev, Besov,
Lorentz and Triebel spaces to describe the regularity and long time behavior of solutions
to the compressible model [37], [38], [22], [28]. For results of weak-strong uniqueness, we
refer to the work of P. Germain [14].

Guided in our approach by numerous works dedicated to the incompressible Navier-Stokes
equation (see e.g [33]):
NS) {@v—i—v-Vv—,uAv%—VH—O,

dive = 0,

we aim at solving (1.1) in the case where the data (pg, ug, f) have critical regularity.
By critical, we mean that we want to solve the system in functional spaces with norm
independent of the changes of scales which leave (1.1) invariant. In the case of barotropic
fluids, it is easy to see that the transformations:

(p(t,x),u(t,x)) — (p(%t,1x), lu(l’t,lz)), 1R, (1.2)

have that property, provided that the pressure term has been changed accordingly.
The use of critical functional frameworks led to several new well-posedness results for
compressible fluids (see [10, 11, 13]). In addition to have a norm invariant by (1.2),
appropriate functional space for solving (1.1) must provide a control on the L* norm
of the density (in order to avoid vacuum and loss of ellipticity). For that reason, we
restricted our study to the case where the initial data (pg,up) and external force f are
such that, for some positive constant p:

N N

P1

N 2] -1
(pO - ﬁ) € szjlv Uo € B;)ll,l and f S Llloc(R+v € Bpl,l )

for suitable choice of (p,p1) € [1,+o0[. In [13], however, we hand to have p = p; with

the limitation p < 2N for the existence of solutions and p < N for the uniqueness,

indeed in this article there exists a very strong coupling between the pressure and the

velocity. To be more precise, the pressure term is considered as a remainder for the

elliptic operator in the momentum equation of (1.1).This present paper improves the

results of R. Danchin in [10, 13], in the sense that the initial density belongs to larger
N

spaces Bgl with larger value p € [1,+oo[. The main idea of this paper is to introduce
a new variable than the velocity in the goal to kill the relation of coupling between
the velocity and the density. In the present paper, we address the question of local
well-posedness in the critical functional framework under the assumption that the initial
density belongs to critical Besov space with a index of integrability different of that the



velocity. We adapt the spirit of the results of [1] and [17] concerning dependent density
incompressible Navier-Stokes system(at the difference that in these works the velocity
and the density are naturally decoupled). To simplify the notation, we assume from now
on that p = 1. Hence as long as p does not vanish, the equations for (a = p= — 1,u)
read:

{ 815@ +u-Va= (1 + a)diVU, (13)

Ou+u-Vu—(1+a)Au+V(g(a)) = f,
In the sequel we will note A = pA + (A + p)Vdiv and g a smooth function which may

be computed from the pressure function P.
One can now state our main result.

Theorem 1.1 Assume that P is a suitably smooth functzon of the density and that 1 <

-1
p1 < p < +oo such that —1 < N + f. Let ug € Bp f e L} (R*,B;'ll’l ) and

P11’
N

ag € B pl wzth 1+ ag bounded away from zero.

loc

If —|— = > N there exists a positive time T such that system (1.1) has a solution (a,w)
wzth 1 + a bounded away from zero,

N ~ I{V Noq 1 L |
aGC([O T], B, ), ueC([0,T; B, + B )N L*([0,T7, B ).
1, 1
Moreover this solution is unique if 2 NS5+t

Remark 1 We refer the reader for the notation of EP(B;T) (with s € R, (p,r,p) €
[1,4+0c]?) to the definition 2.2.

Remark 2 It means that this theorem allow us to reach very critical spaces, in fact we
are very close to get solution for initial data (ag,ugy) in ngl X le\f,l' This space is
absolutely critical for compressible Navier-Stokes system in the sense that B?V’l is close

from LY which is critical for incompressible Navier-Stokes. Moreover in this case we do
not ask any information on the derivatives of the initial density when ag is in ngl (this
1s really new compared with the different previous results existing in the literature of the
topic). In passing we can remark that B 1 is not far of L*° (L being in some sense the
more general space to control the non lmeamtzes appearing on the density, for example
the pressure). In this sense, we can consider that our result is quite optimal.

Remark 3 It seems possible to improve the theorem 1.1 in choosing initial data ag in
N

By N Bc>O 1, for this we could use some arguments of density to deal with the variable
coefficients of the heat equation , however some supplementary conditions appear on pi
in this case.

The key to theorem 1.1 is to introduce a new auxiliary velocity v; to control the velocity
u. By this way we avoid the coupling between the density and the velocity, as the pressure
term is included in the velocity vi. More precisely we write the gradient of the pressure
as a Laplacian of a variable v, and we want to treat the variable v1 = u — v. We can
check easily that vy verifies a heat equation with some remainders where the pressure



has disappeared. We are able then to get a control on v; which can write roughly as
v = u — GP(p) where G is a pseudodifferential operator of order —1. By this way, we
have canceled out the coupling between v; and the density, we next verify easily that we
have a control Lipschitz of the gradient of u (it is crucial to estimate the density by the
transport equation).

Remark 4 In the present paper we did not strive for unnecessary generality which may
hide the new ideas of our analysis. Hence we focused on the somewhat academic model
of barotropic fluids. In physical contexts however, a coupling with the energy equation
has to be introduced. Besides, the viscosity coefficients may depend on the density. We
believe that our analysis may be carried out to these more general models. (See [15, 16]).
The main point is only to define an effective velocity adapted to the problem and we refer
for more details to [19].

In [21], D. Hoff shows a very strong theorem of uniqueness for weak solutions when the
pressure is of the specific form P(p) = Kp with K > 0. Similarly in [23], [26], [22], D.
Hoff gets global weak solutions and point out regularizing effects on the velocity when
the initial data are small. In particular when the pressure has this form, he does not
need estimate on the gradient of the initial density. In the following corollary, we will
observe that this type of pressure ensures a specific structure and avoid to impose some
extra conditions for the uniqueness. In the following corollary, we will assume that:

Corollary 1 Assume that P(p) = Kp with K > 0. Let 1 < p; < p < 400 such that
N N N

N N _q N
L <Ly %D. Assume that ug € B)! ), f € L, (RT, B} ) and ag € B with 1 + ag

P1 1, loc
bounded away from zero.

o If % + % > % there exists a positive time T such that system (1.1) has a solution
(a,u) with 1 + a bounded away from zero,

2 B ~ il gyt 1 i
ac C([OvT]’Bp,l)’ u € C([OuT];Bpl,l + Bp,l )ﬂ €L ([O’T]aBp,l )

e If moreover we assume that \/pouo € L% po—p € Li, ug € H® with s >0 if N =2
and s > % if N = 3. Finally we need to assume that ug belongs to L**¢ if N = 2
and to LF¢ if N = 3 with ¢ > 0. Moreover we assume that 0 < \ < %u if N =3.
Then the solution (a,u) is unique.

Remark 5 In the previous corollary we did not want strive with generalities which may
hide the main functional spaces used on the initial data. But in fact we need of additional
reqularity on the source term f when N = 3 to obtain the previous corollary, we refer to
the conditions (1.13) and (1.14) of [24].

Remark 6 Here L) defines the corresponding Orlicz space ( see definition in [30]).

Remark 7 This corollary improves theorem 1.1 in the sense we do not need of the con-
dition % < }D + p% to get uniqueness.



Remark 8 Up to my knowledge, it seems that it is the first time that we get strong
solution without any control on the gradient of the initial density Vpgy. Indeed in [12],

we have Vpg € B%N. In our case Vpgy has a negative index of reqularity, more precisely
N

Voo € B withN —1<0
po € By with :

Remark 9 Moreover we can observe that with this type of pressure we are very close to
N
N1
have existence of strong solution in finite time for initial data (ag,ug) in BgO,1 X 32271

It means that this theorem bridges the gap between the result of D. Hoff (see [21]) where
the initial density is assumed L™ but where we have no uniqueness in dimension N = 3
and the results of R. Danchin in [13] where the initial density is far from L.

In fact we are slightly surcritical on the initial velocity and with an additional condition
of type ug € LT with € > 0 in dimension N = 3. However it is the first result of type
strong solution where it is possible to reach the critical case ag € Bgo,l'

Our paper is structured as follows. In section 2, we give a few notation and briefly
introduce the basic Fourier analysis techniques needed to prove our result. Sections 3
and 4 are devoted to the proof of key estimates for the linearized system (1.1). In section
5, we prove the theorem 1.1 and corollary 1 .Two inescapable technical commutator
estimates and some theorems of ellipticity are postponed in an appendix.

2 Littlewood-Paley theory and Besov spaces

Throughout the paper, C' stands for a constant whose exact meaning depends on the
context. The notation A < B means that A < CB. For all Banach space X, we
denote by C([0,7],X) the set of continuous functions on [0,7] with values in X. For

€ [1, +o0], the notation LP(0, 7, X) or L.(X) stands for the set of measurable functions
on (0,7T) with values in X such that ¢ — || f(¢)||x belongs to LP(0,T"). Littlewood-Paley
decomposition corresponds to a dyadic decomposition of the space in Fourier variables.
Let « > 1 and (i, x) be a couple of smooth functions valued in [0, 1], such that ¢ is
supported in the shell supported in {¢ € RY /a~! < [¢] < 2a}, x is supported in the ball
{¢ e RV /|¢| < a} such that:

VEERN, Xx(&)+D p(27l) =1
lEN

Denoting h = F 1, we then define the dyadic blocks by:
A_ju=x(D)u=hxu with h=F 'y,

A= p(27'Dyu = 2’N/ h(2'y)u(z — y)dy with h=F 1y, if 1 >0,
RN
Siu = Z Apu .
k<l-1

Formally, one can write that:

U = Z Apu.

k>—1

This decomposition is called nonhomogeneous Littlewood-Paley decomposition.



2.1 Nonhomogeneous Besov spaces and first properties

Definition 2.1 For s € R, p € [1,400], ¢ € [1,+0], andu € S (RN) we set:

1
lullgg,, = (D 2% Awl|Le)?)s.

>-1
The Besov space By, is the set of temperate distribution u such that ||ul|ps < +oo.

Remark 10 The above definition is a natural generalization of the monhomogeneous
Sobolev and Holder spaces: one can show that B3, ., is the monhomogeneous Holder
space C* and that Bj 5 is the nonhomogeneous space H®.

Proposition 2.1 The following properties hold:

1. there exists a constant universal C' such that:
CHullps, < IVull gs-1 < Cllulps,,-
2. If p1 <p2 and r1 <1y then B, , < B;;g(l/mfl/pz)‘

1,71

3. BS < Bs

. ’ . !/
. o if s >sorifs=s andry <.
b b

Before going further into the paraproduct for Besov spaces, let us state an important
proposition.

Proposition 2.2 Let s € R and 1 < p,r < 400. Let (uq)g>—1 be a sequence of functions
such that

(3 297 lugllfe) < +oc.
g=—1

If suppt; C C(0,29Ry,29Ry) for some 0 < Ry < Ro then u = Zqul ug belongs to By,
and there exists a universal constant C' such that:

lullgy, < G (2% lugl2e)")

g>—1

S =

Let now recall a few product laws in Besov spaces coming directly from the paradifferen-
tial calculus of J-M. Bony (see [4]) and rewrite on a generalized form in [1] by H. Abidi
and M. Paicu (in this article the results are written in the case of homogeneous spaces
but it can easily generalize for the nonhomogeneous Besov spaces).

Proposition 2.3 We have the following laws of product:

e Forall s € R, (p,r) € [1,+00]? we have:

|luv||ps < C(

5o < Clllullze<llollBg, + lvllzeelluliB;,, ) - (2.4)



o Let (p7p1,p2,7” A A2) € [1,+00]? such that:h < -+ -, p1 < Ao, p2 < A, 5 <
i + )\11 and < 1 + )\ We have then the following inequalities:
zf31+32+N1nf(0 1—17—1——)>0 31—1—)\ <—1 and52+/\ <— then:

lwoll o veponita 1) Sl vllBg s (2.5)
p,r

when s1 + % = pﬁl (resp so + /\ﬂl = ﬂ) we replace HuH351 HvHBsz (resp HUHBZ%,OO)

by Hu||B;}‘1Hv||B;§’ (resp H’UHBS2 ooﬂL‘X’) if s1+ )\2 p—l and sg + )\ = p% we take
r=1.
If s1+ 59 =0, 816(/\—1—pﬂ2 pﬂl—%] cmdp%—i—p%gl then:
luvll vegep - S llullgs ollgsz .- (2.6)
B

Pp,0

If |s| < = forp> 2 and - < s <3 N else, we have:

HUUHB,?,T < Cllullsg, vl x - (2.7)

p,00

Remark 11 In the sequel p will be either p1 or ps and in this case % = p% — /p% if p1 < po,

1_ 1 _ 1
resp x = 55— py W2 < p1

Corollary 2 Letr € [1,400], 1 <p <p; < 400 and s such that:

o sc (- Ny zf +1l<

pl p1 pl_
. sG(———i—N( +——1) —) zf +f>1

N
then we have if u € By . and v € By} o N L>:

luvllsg, < Cllullsg, vl

Pl ,oom
We recall now a result concerning the composition for Besov spaces:

Proposition 2.4 Let I be an open interval of R. Let s > 0 and o be the smallest integer
such that o > s. Let F : I — R satisfy F(0) = 0 and F' € W%*(I;R). Assume that
v € By, has values in J CC I. Then F(v) € By, and there exists a constant C depending
only on s, I, J, and N, and such that

I ()ll55, < C(1+ [vllzoe) I E lwees [[v]l 5,

The study of non stationary PDE’s requires spaces of type L?(0,7T, X) for appropriate
Banach spaces X . In our case, we expect X to be a Besov space, so that it is natural to lo-
calize the equation through Littlewood-Paley decomposition. But, in doing so, we obtain
bounds in spaces which are not type LP(0, T, X) (except if r = p). We are now going to de-
fine the spaces of Chemin-Lerner (see [8]) in which we will work, which are a refinement of
the spaces L.(B3 ).



Definition 2.2 Let p € [1,400], T € [1,+0o0] and s; € R. We set:

ol ey = (32 24 |l 1)
I>-1

3=

We then define the space E%(B;}T) as the set of temperate distribution u over (0,T) x RV
such that ||u||ZpT(B;1r) < 4o00.

We set éT(E;}T) = Z%O(Egl,,) N C([0,7T], ByL). Let us emphasize that, according to
Minkowski inequality, we have:

lellze g,y < lllg sy 1 r 2o Nullze gy = lull g sy 1 7 < pe

Remark 12 [t is easy to generalize proposition 2.3, to Z%(B;}T) spaces. The indices sq,
p, T behave just as in the stationary case whereas the time exponent p behaves according
to Holder inequality.

Here we recall a result of interpolation which explains the link of the space By ; with the
space B3 , see [9)].

p,00?

Proposition 2.5 There exists a constant C' such that for all s € R, e >0 and 1 <p <
+00,

1+4+¢
HUHEPT(BZJ) =0 € HUHZ'%(BS,OO) (1 o

”“”i%(B;,tS))

HUHZ‘}(B;?,OO)
Now we give some result on the behavior of the Besov spaces via some pseudodifferential
operator (see [9]).

Definition 2.3 Let m € R. A smooth function function f: RN — R is said to be a S™
multiplier if for all muti-index o, there exists a constant C, such that:

VEE RN, |07F(€)] < Cal(l+ €)™,

Proposition 2.6 Let m € R and f be a 8™ multiplier. Then for all s € R and 1 <
p,7 < 400 the operator f(D) is continuous from B, . to B,.™.

3 Estimates for a parabolic system with variable coeffi-
cients
Let us first state estimates for the following constant coefficient parabolic system:

{ Oru — pAu — (A + p)Vdivu = f, (3.8)

u/t:O = Ug.



Proposition 3.7 Lets € R and 1 < p,r < +00. Assume that > 0 and that A42u > 0.
Then there exists a universal constant k such that for all s € Z and T € R,

lellze sy < Clluollsy , + 115, )

_ 21
wollully ey < 30250 = P (| Aol + [ Al o)
>0

T([luollzy, + I1f1lLL(Bs,)»
with v = min(p, A + 2u).

We now consider the following parabolic system which is obtained by linearizing the
momentum equation:

(3.9)

Ou — b(pAu + (A + p)Vdive = f + g,
U/t=0 = Uo-

Above u is the unknown function. We assume that ug € B, ;, [ € LY(0,T; Bj 1),
g€ LY 0,T; 352,1)7 that b is bounded by below by a positive constant b and b belongs to
N

L*(0,T; BYy) with p € [1, +00].
Proposition 3.8 Let g = O Let v = bmin(,u, A+2u) and U = p+ | A+ p|. Assume that

s € (—— 1nf(§ 171)] zf +o<1landse (—F,mf(5 p—l)] @f + 5 1 >1. LetmeZbe

such that b, =1+ Sma satzsﬁes

inf b (t, ) >
(t,2)€[0,T) xRN

N | IS

(3.10)

There exist three constants ¢, C and k (with ¢, C, depending only on N and on s, and k
universal) such that if in addition we have:

Il — Spall ~ <c

Le°(0,T; Bffl)

(3.11)

IR

then setting:

Tunlt) = 22752 /HMPNdT

Bpl

we have for all t € [0,T],
< SO+ ZnTD) (1 4 T ||ug|| s

P11

t
VIO TP}

||u||Z°°((0,T)><B;l’1) + ffﬂ”““zl((O,T)XB;ti)

N

Remark 13 Let us stress the fact that if a € L>((0,T) x BJ) then assumption (3.10)
and (8.11) are satisfied for m large enough. This will be used in the proof of theorem 1.1.
Indeed, according to Bernstein inequality, we have:

la — Small ooy xan) < Y I18gall e (o, yxmy S D 2° 7 1la, Ao (ze).

qg=m qg=m



~ N
Because a € L>((0,T)x B, ), the right-hand side is the remainder of a convergent series

hence tends to zero when m goes to infinity. For a similar reason, (3.11) is satisfied for
m large enough.

Proof: In the sequel, we will treat only the case p; < p, the other case is similar. Let
us first rewrite (3) as follows:

Ou — by (pAU+ (X + p)Vdivu) = f + Ep, (3.12)

with Em = (pAu+ (A + u)Vdivu)(Id S )a Note that, because s € (—;,mf(g p—l)] if

% + 1L p <landse€ (—?,mf( L] if + - > 1, the error term F,, may be estimated
by:

1EmliB;, , < lla—Small x|ID%ulB;, |, (3.13)
Bl
Now applying A, to equation (3.12) yields for ¢ > 0:
— 1div (b, Vg) — (A + 1)V (bdivig) = fy + Emg + Ry (3.14)

at'

where we denote by u, = Aju and with:
Ry = 11(Ag(bmAu) — div(bn Vug)) + (A + p) (Ag(by Vdivu) — V(bydivag)).

Next multiplying both sides by ]uq\pI*Quq, and integrating by parts in the second, third
and last term in the left-hand side, we get:

1d

1
dt” q| Tp1 pl/ (|uq]p1divv + udiv(meuq)|uq|p172uq + &V (bmdivuq)|uq|p172uq))d:z

-1 ~

< NlugllZor (1 fall oy + 1A Emlle + [ Bql o).

Hence denoting £ = p+ A, v = min(u, A + 2u) and using (3.10), lemma [A5] of [10] and
Young’s inequalities we get:

1d vb(p1 — 1)

-1 =~
n dtHuqHLm 22q|| q”Lm > || q”%m (quHLpl + ||Em,qHLP1 =+ ||RqHLP1)a

pl

which leads, after time integration to:

vb(pr — 1 ! !
fulln + =050 [ e < 1ol + [ 1Syl + | Bl
0 0

+ ||§qHL”1)dT>

(3.15)

where v = bv. For commutator Eq, we have the following estimate (see lemma 2 in the
appendix) N
1Bylln S cop2 ®|Small ., 1Dulls,
p1,1
where (cg)qez is a positive sequence such that > ., c; = 1, and ¥ = p + |\ + pl|. Note
that, owing to Bernstein inequality, we have:

(3.16)

17

1Small x5 2mllall

P1 Pl,l

10



Hence, plugging these latter estimates and (3.13) in (3.15), then multiplying by 2%° and
summing up on g > 0, we discover that, for all ¢ € [0, T:
vb(p1 — 1)
lu = Avull g s ) + THU — Bvull gz < lluollsy, , + 112y s, )
t (3.17)
= _ m
+09 [(la=Snal_y lulgzez +2"al_y lllgzss)ar

p,1 p,1

We need now to control the block Aju corresponding to the low frequencies.To treat the
term Aju similarly we apply the operator A_; to the equation and by energy inequalities,
we get:

t
[A—1u(®)]| L SIIA1uo||m1+||f||p(m)+/ (la=Small ~ [lul| gs+2+2"{lal] x [[ull gs+1)ds.
0 BP r1,1 BP p1,1

p,1 p,1

and:

t
IIAw(t)HLg(Lm)St(IIA1UOIILP1+||f||L1(Lm)+/O (la=Small_x [lull gz +2" ol x Jull gy1)ds)-

p,1 p,1
So we have by the two previous inequalities and (3.17):
vb(p1 — 1)
lellgeems, ) + T”“”L%(B;jﬁ) < CA+t)(lluollsy, , + 1l )

t
+7 [ la=Suall_y sz +2"lal_y el )ar).

p,1 p,1

for a constant C' depending only on N and s. Let X(t) = |lullzoo(ps ) + vollull 1 ps+2y-
t Lt (Bpl,l)

r1,1
Assuming that m has been chosen so large as to satisfy:

Cvlla — Small y <v,

LT (sz,)l)
and using that by interpolation, we have:
) c2p22m
Cvllal p%l”“”B;ff < Ky + WII@IIB%IIUIIB;J,
s p,

we end up with:

72" o2
X() <O+ 0ol + Iy, o +C [ 27 al? 3 X(r)ir)

p,1

Gronwall lemma then leads to the desired inequality O

In the following corollary, we generalize proposition 3.9 when g # 0 and g € Zl( ;2’1).

!
Moreover here ug = uq + us with uy € B;l 1 and ug € B;Z 1-

11



Corollary 3 Letv = bmin(pu, A 2u) and v = pc+|)\—|—u| Assume that s € (—— inf(1, L)

P’ D1
zf +o; < lands € (—E,lnf(;J p—l)] if L 5+ p—l > 1. Moreover we assume that:
s € (—— mf(p p—g)] Zf —i—— <1landse€ (—%,inf(%,p%)] z’f}l7 —1—1%2 > 1 Let m € Z be

such that b, = 1 + Sma satzsﬁes.

l\.’JHO“

inf b (t, ) >

(3.18)
(t,z)€[0,T) xRN

There exist three constants ¢, C' and k (with ¢, C, depending only on N and on s, and k
universal) such that if in addition we have:

11— Sal| y <c (3.19)

L2 (0,T;B

IR

p,1

then setting:
t
Zn(®) =270 [ alf? y dr,
0 Bp’jl

We have for all t € [0,T],

el s sy < OO Tl +
P2,

HUHE%O(B;LﬁB;;J)

T+ llg@)l 0 Ydr).

p1,1
b p2,1

t
sl )+ [ OO
PQ

Proof: We split the solution u in two parts u1 and us which verify the following equations:

{ Owur +v - Vuy +uy - Vw — b(pAug + (A + p)Vdivu; = f,

U/jt=0 = u(l)a
and:

Opug + v - Vug + ug - Vw — b(puAug + (A + p)Vdivug = g,

U/t:[) = Ug
We have then u = u; + us and we conclude by applying proposition 3.8. (I
Proposition 3.8 fails in the limit case s = —%. The reason why is that proposition 2.3

cannot be applied any longer. One can however state the following result which will be
the key to the proof of uniqueness in dimension two.

Proposition 3.9 Under condition (3.10), there exists three constants ¢, C and k (with
¢, C, depending only on N, and r universal) such that if:

la—Smal|_ x <=, (3.20)
Lpmr) 7

then we have:

bl < OO0l I k),
too p1,00 t( Ploo) ploo t( P1»(X>)
whenever t € [0,T] satisfies:

2t(1+ ) |al?
L(B,)

< c27my, (3.21)

[z
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Proof: We just point out the changes that have to be be done compare to the proof
of proposition 3.8. The first one is that instead of (3.13), we have in accordance with
proposition 2.3:
1Bull_ _x Sla=Smal_ n |D%u_ _x, (3.22)
L} (Bp, 7 L (B, 1 (Bp,"%)
The second change concerns the estimate of commutator }Niq. According remark 15, we
now have for all g € Z:

~ N
IRl < 7277 ||Small_ n,
Lo P

t p,1

IDul| . (3.23)
) L}(Bp,'%)

Plugging all these estimates in (3.15) then taking the supremum over g € Z, we get:

lull o +2ful] o <@ HH(uoll _y +CP(la—Small__ x flull_ o, x
[e'S) 1 1 P1 P1 Loo( P) 1( é’ol
t P1,00 t \Ppy,00 p1,1 t p,1 t\Pp1,
+2%all ol oy L ).
L?o sz,)l t1 P17£01 L% Plng)
Using that:
1 1
bl oo <VERIZ o )l
% Bplaool L%(Bpl,gc}) L(t)o(Bppll,oo)

and taking advantage of assumption (3.20) and (3.21), it is now easy to complete the
proof. O

4 The mass conservation equation
Let us first recall standard estimates in Besov spaces for the following linear transport

equation:

oia+u-Va=g,
(H) {

a/t:() = ap.

Proposition 4.10 Let 1 <p; <p < +oo, r € [1,400] and s € R be such that:

11 N
—Nmin(—, =) <s<14+ —.
p1 p b1

There exists a constant C depending only on N, p, p1, r and s such that for all a €
L>([0,T], Bg,) of (H) with initial data ao in B, and g € L*([0,T], BS,), we have for
a.ete[0,T]:

t
1l ) < eV (Ilolls;,, + /0 e VOIF(T) |y, ,d7), (4.24)

with: U(t) = [ [|Vu(r)| ¥ dr.

BPLonL>
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For the proof of proposition 4.10, see [3]. We now focus on the mass equation associated
to (1.3):

oa+v-Va = (1+a)divo, (4.25)
a’/t:O = ap. ’
Here we generalize a proof of R. Danchin in [13].
Proposition 4.11 Letr € 1,400, 1 <p; <p < +oo and s € (— min(pﬂl, g, %] Assume

| ~
that ag € Bs, N L>, v e L'(0,T; By, ) and that a € LEF(B,,) N LE satisfies (4.25).
Let V(t) = fg \Vo(T)|| ~ dr. There exists a constant C depending only on N such that
Bt

p1,1

for all t € [0,T] and m € Z, we have:

C 20V
HGHE?(B;TQLOO) <é? V(t)‘|a0HB;7TmL°<> + 20V 1, (4.26)
1
la—Smallps, < ||ao—5mao||B;,7T+§(1+||a0||BgmmL°o)(€20V(t)—1)+C||a||L°°V(t)> (4.27)

1
(D 2"l A(a — ao)llzgerry) ™ < (1+ a0l sy, ) (e = 1)

I<m

‘ (4.28)
+02m||a0||3577\/ vl ~ dr.
0 Bff,l

Proof: Applying A; to (4.25) yields:
hAja+v-VAa= R+ Ai((1+a)dive) with R = [v-V,A]a.

Multipling by Aja|A;alP~2 then performing a time integration, we easily get:

t
[Aa(t)|zr S |Avaol| e +/ (1Rl e + [[divo|| Lo | Asal e + [|A((1 + a)dive) | z» ) dr.
0

According to proposition 2.3 and interpolation, there exists a constant C' and a positive
sequence (¢;)ien in " with norm 1 such that:

1A:((1 + a)divo)||zr < Ce27(1+ [|al|ps, Aze<)|divo] N
B

P11

Next the term ||R;||z» may be bounded according to lemma 1 in appendix. We end up
with:

t
vt e [0,T], VI € Z, 2| Aa(t)|zr < 2lsHAzaolleJrC/ a(l+lallBg ,nL=)V dr, (4.29)
0
hence, summing up on Z in I,

t t
vt e [0,T], VI € Z, |a®)|B;, < ||a0||B;7T—|—/ cv ||a(7')||B;,rd7'—|—/ C(1+|lallLg)V dr.
0 0

14



Next we have:

’

lallzge < /0 (14 ||a(7)|| )V (7)dT.

By summing the two previous inequalities, applying Gronwall lemma and proposition 2.2
yields inequality (4.26). Let us now prove inequality (4.27). Starting from (4.29) and
summing up over [ > m in I", we get:

t
1 1 /
(> 2 Al e )™ < (D 2 1 Avao] )T + C / V(€*Vlaol By Lo + €27V —1)dr
0

[>m [>m

t
+/ C(1+||al|p=)V dr.
0

Straightforward calculations then leads to (4.27). In order to prove (4.28), we use the
fact that @ = a — ag satisfies:

oa+v-Va= (1+a)divv + apdive — v - Vag, aj—o=0.

Therefore, arguing as for proving (4.29), we get for all ¢t € [0,7] and [ € Z,
XA~ Lo .
51| Ao g/ 2% (| Araodive) e + A - Vao) | 1) dr
0

t
—I-C/ a(l+a]| ~)V dr.
0 B,

p,1
N N N_ N_
Since B/, is an algebra and the product maps B, x B} in B} , we discover that:

t t
¥ ~ !
2% (| Agdl| oo ) < C( /0 Zeflaol| |0l s dr+ / a(t+laoll x +llall x)V'dr),

p,1 prl 0 p,1 p,1
hence, summing up on [ < m,
N t t )
> 2 1Al oo ory < C(/ 2" [|laoll x [lv]] NdT+/ 1+ llaoll v +llall x)Vdr),
I<m 0 B, P 0 B, B,

Plugging (4.26) in the right-hand side yields (4.28).

5 The proof of theorem 1.1

5.1 Strategy of the proof

To improve the results of R. Danchin in [10], [13], it is crucial to kill the coupling between
the velocity and the pressure which intervene in the works of R. Danchin. In this goal,
we need to integrate the pressure term in the study of the linearized equation of the
momentum equation. For making, we will try to express the gradient of the pressure as
a Laplacian term, so we set for p > 0 a constant state:

dive = P(p) — P(p).

15



Let £ the fundamental solution of the Laplace operator.

We will set in the sequel: v = V&« (P(p) — P(p)) = V(£ [P(p) — P(p)]) ( * here means
the operator of convolution). We verify next that:

Vdive = VA(E % [P(p) — P(p)]) = AV(E * [P(p) — P(p)]) = Av = VP(p).

By this way we can now rewrite the momentum equation of (1.3). We obtain the following
equation where we have set v = 2 + A:

Osu +u-Vu — HA(u — lv) — deiv(u — lv) = f.
p v p v

We want now calculate d;v, by the transport equation we get:
A = VE * 8, P(p) = —VE * (P (p)div(pu)).

We have finally:
A(OF) = =P (p)div(pu).

Notation 1 To simplify the notation, we will note in the sequel
VE « (P (p)div(pu)) = V(A) (P (p)div(pu)).

Finally we can now rewritte the system (1.3) as follows:

Ora + (v1 + %U) -Va = (1+a)div(v; + %U)’
o1 — (1 +a)Avy = f—u-Vu+ %V(A)*l (P/(p)div(pu)), (5.30)
as—o = ao, (v1)i=0 = (v1)o-

where v1 = u — %v. In the sequel we will study this system by exctracting some uniform
bounds in Besov spaces on (a,v1) as the in the following works [1], [17]. The advantage
of the system (5.30) is that we have kill the coupling between v, and a term of pressure.
Indeed in the works of R. Danchin [10], [13], the pressure was considered as a term of
rest in the momentum equation, so it implied a strong relationship between the density
and the velocity. In particular it was impossible to distinguish the index of integration
for the Besov spaces.

5.2 Proof of the existence
Construction of approximate solutions
We use a standard scheme:

1. We smooth out the data and get a sequence of smooth solutions (a”,u"),en to
(1.3) on a bounded interval [0,7™] which may depend on n. We set v = u" — "
where divo™ = P(p") — P(p) with v = VE % P(p™) — P(p).

16



2. We exhibit a positive lower bound 7" for 7", and prove uniform estimates on (a", u™)
in the space

~ N ~ N Nq ~ N q N9
Er = Cr(B)y) x (Cr(Byly + By )NLp(B)ry + By ).

More precisely to get this bounds we will need to study the behavior of (a”,v7).

3. We use compactness to prove that the sequence (a”, u™) converges, up to extraction,
to a solution of (5.30).

Througout the proof, we denote v = bmin(p, A+2u) and 7 = p+ |pu+ Al, and we assume

N
(with no loss of generality) that f belongs to LlT(B;il).
First step

We smooth out the data as follows:
ag = Spag, ufj = Spug and [ =S, f.
Note that we have:

VieZ, |Awglle < |[Ajaollr and flag] ~ <flaol| » ,

N
P
By, Byp,o

and similar properties for uf and f", a fact which will be used repeatedly during the
next steps. Now, according [13], one can solve (1.3) with the smooth data (af,ug, f*).
We get a solution (a”,u™) on a non trivial time interval [0, T},] such that:

~ ~ N _ ~ N
a" € C([0,T,), BY)) and u" € C([0,T,), B2 )N Lk (BE). (5.31)
Uniform bounds

Let T), be the lifespan of (ay,u,), that is the supremum of all 7' > 0 such that (1.1) with
initial data (a(,uq) has a solution which satisfies (5.31). Let T" be in (0,73,). We aim at
getting uniform estimates in Er for T small enough. For that, we need to introduce the
solution v’} to the linear system:
1._
oy — Auf = ", u(0) =y — Yo

Now, we set @" = u" —u]} and the vectorfield o} = u" — 13" with diva™ = P(p") — P(p).
We can check that v satisfies the parabolic system:

O — (14 a™) AT = —(u} +

(5.32)

17



which has been studied in proposition 3.8. Define m € Z by:

m =inf{p € N/ 203" 2% | Ayao| v < e} (5.33)

I>p

where ¢ is small enough positive constant (depending only N) to be fixed hereafter. In
the sequel we will need of a control on a — S,,a small to apply proposition 3.8, so here
m is enough big (we explain how in the sequel). Let:

b=1+ sup ap(z), Ao =1+2[aoll ~, Up=luol ~ ,+laoll ~ +[fl  ~,,

z€RN Bzfl :11,1 sz,)l T ;11,1 )

and (70 = 2CUy + 4Cv Ay (where C' is a constant embedding and C' stands for a large
enough constant depending only N which will be determined when applying proposi-
tion 2.3, 3.8 and 4.10 in the following computations.) We assume that the following
inequalities are fulfilled for some 7 > 0:

(H1) |a" — Sma™|| .~ <cwp !,
LE(BLF)
(Hs) CPAT|a"*> N <2777y,
L%O(Bppl)
1 _
(H3) ib <1+4a"(t,x) <2b for all (¢t,x) € [0,T] x RN,
(Ha) la"|.  ~ < Ao,
IF(B)
(Hs) Mufll . vy o~y <Uo, llupll  xyy vy <o
T( P11 p1,71+ T(Bzfll,l +sz,71 )
(Ho) il o~y o~ +eforl o o~ Ny, < Uon,
LT (Bmll + Ppl) L%"(Bmll JrBzfl )
(H7) 0"~y <C A,
T(sz,Jl
(Hs) IVur(| - v < (@ 'Us+1)n
L’%(sz:)l

Remark that since:
1+ Sma” =14 a” + (Sman - an)v
N
assumptions (1) and (H3) combined with the embedding By < L insure that:

1
inf 1+ Sna™)(t,z) > -b, 5.34
(t,x)e[lng]xRN( + Sma”) (t,) 4= ( )

provided c¢ has been chosen small enough (note that £ < b).

We are going to prove that under suitable assumptions on 7" and 7 (to be specified
below) if condition (#;) to (H7) are satisfied, then they are actually satisfied with strict
inequalities. Since all those conditions depend continuously on the time variable and
are strictly satisfied initially, a basic bootstrap argument insures that (H;) to (Hs) are
indeed satisfied for T' enough small (with a 7" which could depend of n). In the sequel, we
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will see that these conditions on 7' do not depend of n and by a criterion of continuation
we will see that our T" check T' < T,,.
First we shall assume that 1 and T satisfies:

!

C(1+v 'Uo)n+ %AOT < log2 (5.35)

so that denoting V(¢ fo VO ~ AT, V() =1 fo Vo "|| v dr and Ur(t) =

p
p11+ p,1 pl

fot |Vuf | N %+3d7', we have, according to (Hs) and (Hg):

r1.1 p,1

CWEHVIHV(T) 9 ang (CURH+V(T) _ 4 <1. (5.36)
_ N
In order to bound a™ in L%O(Bp’jl), we apply inequality (4.26) and get:
la™| . ~ <1+42[aoll ~ = Ao. (5.37)
202 BY

Hence (H4) is satisfied with a strict inequality. (#7) verifies a strict inequality, it follows
from proposition 2.6 and (H4). Next, applying proposition 3.7 and proposition 2.6 yields:

[z |l N Ny S Vo, (5.38)
T(Bp 1 +By1 )
—1) _ 21
vl xa <§PP1 (1= ™2 T) (| Apuollzon + |1 Asao | o
Ly(Byla +Bys 1>0 (5.39)

+ \|AlfHL1(R+,Lp1)) + TUyp.
Hence taking T such that:
1 02l
L aa<zy%1 (1= e ) (| Aol + | Avaol| o
Lyp(Byly +B ) 130 (5.40)
+ ||Alf”L1(]R+,Lp1)) + TUy. < knr,

insures that (H5) is strictly verified. Since (H1), (Hz2), (H5), (Hs), (H7) and (5.34) are
satisfied, proposition 3.8 may be applied, we obtain:

o7~y ~ +yfo7 N N
7 T0 Ty S S AP TR
T
< 0D [ (ol skl
0 Bml +B p1,1 zf,]l
+luy - VO o~ n A [O" V"J"H x +[V(A)” LP (p)div(p™u™)||
pr1 +BP Bp
pl,l p,1 pl p,1

1 n
HICuz + 20" - Vor|| o, +Hv1 Vu'll o~ g)dt

B!, +B B”l1 +B)

As E + E 1> 0 and P'(p")div(p™u™) = VP(p") - u" + P'(p")p"divu™, we can take
advantage of proposition 2.3, 2.1 2.6. ( In passing, we want mention that here a crucial
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N N

point is that A} belongs to z}(B P B;'ll 1 1) , it means that we are able to give sense to
the product a” Av} with the conditlon =4 —1 — 1> 0. It is the main novelty compared
with the works of R. Danchin in [10, 13], indeed we are able to "kill” in some sense
the coupling between the pressure term and the velocity. It means that by this way
the constraints are less concerning the law of paraproduct for the term aAwu. In other
words, we are able to ask no more that the hypothesis on p and p; used in the case of
Navier-Stokes with dependent density (see [1] and [17]).)

We get then with h and h; regular function checking the conditions of proposition 2.4:

V) (P (v DI

7(Bp1)
< C(IV(A) (@) div(h (@) x + (V) div@™)[| )
L%“(Bpl,)l) L%“(Bpljl)
<Cp(lu™_ x L+ a"? )
1 p 1 P
T( p,l) T( p,l)
<COp(VT(E ., w xow TIFN, j wy 4TIy )+ 0]
%" Bp,ll pl,Jl %“ p,ll pz,)l ) L%O(BPJ L%O(Bp,l)
N AN
The next term v" - Vo™ determines the choice of working in the space B i1 T Bp’jl ),
indeed we recall here that at the differnce of the works in [10, 13], we have no coupling
between the density and the velocity. So in this sense this term is crucial in the sense of
the regularity of v7.
-Vt oy <OiTfa"|?
%‘ pl T( p{?1)

We proceed similarly for the other terms and we end up with:

o7 ~_ N~ +u|o7 N N, SCeC(HT)(CHTlla”H2 N
L (B, +BF) L2 87" (B2,
I S A P (R C )
T(BpitB,1 ) T(Byi+By1 ) L%Q(Bp{’l)
+la™|. o~ Uil o~ N Tl o~ N HULH x Nos)
TEm)) U TR A U s Sy A NI TR
VTG x wa o x 4TI x, e s
%( p,ll pzjl L%O(Bp,l) L%o pll,l +Bp1:1 T(BPJ)
P,y #VTRCL ORI, x
2B B2 LpBr) LB +Bh )
+0T . N~ u(HWH N N, TluZll. N~ N.os)
S R S TN A HB 4B
(5.41)

with C = C(N)and Cp = (N, P,b,b). Now, using assumptions (#4), (Hs) and (Hs), and
inserting (5.36) in (5.41) gives:

R s FI s 20040+ 0n+ Uy + CTAo(1 + A0) + VT A
T p1,1 T p1,1

hence (Hg) is satisfied with a strict inequality provided when T and 7 verifies:

2C (7 Ay + Uy 4 Udn)n + C1T Ag(1 + Ag) + VT AgUy < Cim. (5.42)
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(Hg) verifies a strict inequality, it follows from proposition (Hs), (He) and (H7). We
now have to check whether (#;) is satisfied with strict inequality. For that we apply
proposition (4.11) which yields for all m € Z,

N N n_rm
> 2% | A" ey < D27 [ Asaoll e + (1+ ||a0HBg)(€C(UL+U M —1). (543)

>m I>m p,1

Using (5.35) and (#s5), (Hs), we thus get:

N C i~
la"™ — Sma"HLOO Sy 2" || Avaol| Lo + @(1 + HaollB% )(1+v " Lo)n.

P

T p,l) I>m p,1

Hence (H1) is strictly satisfied provided that n further satisfies:

C
log 2

cv
20"

(L+ flaoll_x)(1+27 Ul < (5.44)

p,1

In order to check whether (#3) is satisfied, we use the fact that:

a" —ap = Sn(a" —ap) + (Id — Sp)(a" —ag) + Z Ajayg,

I>n

N
whence, using B,’; < L> and assuming (with no loss of generality) that n > m,

la™ = aol| oo ((0,1)x ) < C([[Sm(a™ = ao)|| v+ [la” = Sma®|| >
LT (By1) LF(By4)
N
+ 2 Z Ql; ||Ala0HLp).
I>m

Changing the constant ¢ in the definition of m and in (5.44) if necessary, one can, in view
of the previous computations, assume that:

N b
Cla™ = Sma™|  x +2> 2% [Ajagll1e) < n
LEBL) S
As for the term |[|.S,,(a™ — ap)|| ~ , it may be bounded according proposition 4.11:
L(B7)

ISm(@” —ao)ll _x < (14 [l ) (e HDD —1) 4 022"V Tao]|
p,1 p,1 P,

X Jlu™]

-

N N -
L3 (Bylat+Byl)
Note that under assumptions (Hs), (Hs), (5.35) and (5.44) ( and changing c if necessary),

the first term in the right-hand side may be bounded by %. Hence using interpolation,
(5.38) and the assumptions (5.35) and (5.44), we end up with:

HSm(a” — aO)HLOO( % <=4 CQm\/THGOHBQ} \/77(U0 + [70?7)(1 —|-£—1[70.
21
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Assuming in addition that T satisfies:

- — 0}
C2"VTlaoll x \/n(Us + Tom)(1 + 2100 < 2. (5.45)
Bzfl

and using the assumption b < 1+ ag < b yields (H3) with a strict inequality.

One can now conclude that if 7' < 7™ has been chosen so that conditions (5.40), (5.42)
and (5.45) are satisfied (with 7 verifying (5.35) and (5.44), and m defined in (5.33) and
n > m then (a",u") satisfies (H1) to (Hg), thus is bounded independently of n on [0, 7.
We still have to state that 7" may be bounded by below by the supremum 7T of all
times T" such that (5.40), (5.42) and (5.45) are satisfied. This is actually a consequence
of the uniform bounds we have just obtained, and of remark ?? and proposition 4.10.
Indeed, by combining all these informations, one can prove that if 7" < T then (a™,u")
is actually in:

o BY 0B (T (B 08P 4 By Y LB B+ Ba )
Ly (B N By) x ( Lin (B N (B, + By ) N Lpa(Byy N (B + By )

hence may be continued beyond T (see the remark on the lifespan following the statement
n [10]). We thus have T™ > T.

Compactness arguments

We now have to prove that (a”,u"),cn tends (up to a subsequence) to some function
(a,u) which belongs to Ep. Here we recall that:

~ % T oo %71 %—H 71 %+
Er =C([0,T],B}) x (L*(By'y + B, )NL'(B}',

1 N2
+BS )

The proof is based on Ascoli’s theorem and compact embedding for Besov spaces. As

similar arguments have been employed in [10] or [13], we only give the outlines of the

proof.

e Convergence of (a")pen:
We use the fact that a" = a™ — aj satisfies:

oa" = —u" - Va" + (14 a")divu™.

. . . | | N1 N1 o,
Since (u”)nen is uniformly bounded in L7.(B!;, +B); )NLF (B, +B); ), it

N

N_142
is by interpolation and the fact that p; < p, also bounded in LTT(B; . ) for any
r € [1,+400]. By using the standard product laws in Besov spaces, we thus easily

~ N_q
gather that (9,a™) is uniformly bounded in L%(Bp‘: 1 ). Hence (a")nen is bounded
~ N_q N N_q
in L¥(B,; N B,) and equicontinuous on [0, T] with values in B, . Since the
N N

N_q N N
embedding B)); N B is (locally) compact, and (ag)nen tends to ag in B, we
conclude that (a™),en tends (up to extraction) to some distribution a. Given that

N

~ N ~ N
(a™)nen is bounded in LF(B,;), we actually have a € LF(B,).

22



e Convergence of (u} )nen:
From the definition of u} and proposition 3.7, it is clear that (u})nen tends to
solution uj, to:

1
Our, — Aup = f, ur(0) =ug — "
oL Nyl o~ ol N3
in L%O(B;il + Bp’il )N L%(B;il + szjl ).
e Convergence of (0])pen:
We use the fact that:
1 1
O} = —(uh + 5) - VI — TV — (uf - VI — S5 V) + (1 4+ a") AT
v v

1 /
- an A — Va4 V()P (o) div(p"a"),

N
As (a")nen is uniformly bounded in L (B,/;) and (u"),en is uniformly bounded in

N_q ﬂ+1 ﬁ+]_
L¥(Byt, +Br )NLY(B

L. :
o1l 1 B ), it is easy to see that the the right-hand
N

3

~4 ~ N_q
side is uniformly bounded in L}(B,} 4 Y+ L™ (B,1 )-Hence (07 )nen is bounded
N N N _ 3

~ = 1 ﬂ—l—l 1
: oo ( RP1 P ; : : : P1 P12
in LF(B,'; +B,; ) and equicontinuous on [0, T] with values in By, +B, -

This enables to conclude that (v]),en converges (up to extraction) to some function
v € L¥(By', +B)y )NLy(Byy +B)y ).

By interpolating with the bounds provided by the previous step, one obtains better

results of convergence so that one can pass to the limit in the mass equation and in the

momentum equation. Finally by setting u = 01 + v+ uy,, we conclude that (a,u) satisfies

(1.3).

In order to prove continuity in time for a it suffices to make use of proposition 4.10.
N N

i ~ N - N
Indeed, ag is in szjl, and having a € L%O(sz:ﬂ and u € L%(Bm

X1
o1+ DB,y ) insure that

- N
dia+u - Va belongs to LlT(Bpf 1)- Similarly, continuity for v may be proved by using that

N _q - N _q N
(v1)o € By'; and that (01 — pluvy) € LlT(B;il + B,;). We conclude by using the

fact that v = vy + %v.

5.3 The proof of the uniqueness

In this section, we are interested in proving the results of uniqueness of theorem 1.1, we
will use similar arguments as in [10, 13, 16].

Uniqueness when 1 < p; < N, % < %—i— p% and N >3

In this section, we focus on the cases 1 < p; < N, % < % + p%, N > 3 and postpone the
analysis of the other cases (which turns out to be critical) to the next section. Throughout
the proof, we assume that we are given two solutions (a',u!) and (a?,u?) of (1.3). In
the sequel we will show that a! = a? and v{ = v? where u’ = v} + ¥ (for the notation,
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we adapt the same as in the previous section). It will imply in particular that u! = u?).
We know that (a!,v1) and (a?,v?) belongs to:

~ N ~ N _q N ~ N o4 q N9 N
C([OﬂT];szjl) X (C([OaT]SB;11,1 "'Bp’ﬁ )ﬂLl(O,T; 351171 +Bp€1 )) .

Let 6a = a® — a', dv = v? — v'and vy = v? — vi. The system for (da, dv1) reads:

)
drba +u? - Via = dadivu® + (dvy + 151)) -Va' + (1 + a')div(dv; + 151}),
14 14

Odv1 + u? - Vg + dvy - Vul — (1+ al)Aévl = 5a.,4v% — %(u2 -Vév

/ / / (5'46)
— 67 V) + V()" ((P (6?) — P (p")div(p?u2) + P (p")div(p'5u)
+ P v - ) ).
\
The function da may be estimated by taking advantage of proposition 4.10 with s = % -1

Denoting U'(t) = [|[Vu!]| . ~,, ~,, fori=1,2, we get forallte [0,T],
Ll( P1 P

p1,1 p,1 )

¢
l|0a(t)|| vy, < CeCU* ) / e_CUQ(T)Héadivu2 + (dv1 + %51}) -Va'
B 0

p,1

1
+ (1 4+ ah)div(dvy + —6v)|| ~_,dr,
v BP

p,1

Next using proposition 2.3 and 2.6 we obtain:

t
C 2 —C 2
I6a(0)] y -, < €T [[eCUONaal y (1] o w142l x)

p,1 p,1 p1,1 + p,1 p,1
+(1+2Ha1HB%)H5v1H Xy,
p,1 p1,1 p,1

Hence applying Gronwall lemma, we get:
t
lsa@®)]| x_, < CeOVO / OO 4 | o]l & w,dr (5.47)
Bzfl 0 szjl Bzfll,l Bzf1

For bounding dv;, we aim at applying proposition 4.8 of [16] to the second equation of
(5.46). So let us fix an integer m such that:

b
1+ inf  Spa'>2 and [la' — Spal| x < cE. (5.48)
(t,x)€[0,T] xRN 2 L%O(Bpljl) 1%
~ N_
Note since a'! satisfies a transport equation with right-hand side in L%(Bp’: . ), broposi-

. N
tion 4.10 guarantees that a' is in CT(B;I)- Hence such an integer does exist (see remark
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13). Now applying proposition 4.8 of [16] with s = & — 2 and " = %

m — 1 insures that
for all time ¢ € [0, 7], we have:

¢
1
H&HHLI(BN B?)’H) < Cec(1+t)U(1t)/O e_C(l-FT)U(T)(H(SaA/U% — ;(51} Vi + vi - Vov)
Pl 1t
1
— =@ Vév+6v- Vo) x_, n )dr,
V Bpll +BP
with U(t) = UL(t) + U(t) + 22mv =152 [} ||at]|?  dr.
D
1
Hence, applying proposition 2.3 we get: ’
t
||5U1|| N N §C€C(1+t)U(t)/ e—C(l—i-T)U(T)(l_i_HalH x +Ha2” x
LB +BF, ) 0 Byl Bor (5.49)
=+ ||v N N dall ~_.dr
H 1” ;11’1“ szjl+2 H HB,fl 1
Finally plugging (5.47) in (5.49), we get for all t € [0,77],
dvy N ox <C/1+a1 ﬂ+a2ﬂ+v N N
ool g o+l IRy
X H(5’1)1H N N+1 dr

Since a' and a? are in L°°(B
lemma yields dv; = 0, an [0,

2
) and v? belongs to LT(B pll + B4 vt ), applying Gronwall

J

ﬂ“ﬂ‘z

Uniqueness when:% = p% + % or p=N or N =2.

The above proof fails in dimension two. One of the reasons why is that the product of
N N _g N _g N _

functions does not map B’} x B’ in B

. 1 5.1 but only in the larger space By . ThlS

-1 N _o N N
induces us to bound da in L (Bpfjoo ) and dvy in L (Bpl e +Bpfjoo) NLL(BE! +Bp’joo )
(or rather, in the widetilde version of those spaces, see below). Yet, we are in trouble

N

because due to By~ is not embedded in L, the term vy - Va! in the right hand-side of
the first equation of (5.46) cannot be estimated properly. As noticed in [12], this second
difficulty may be overcome by making use of logarithmic interpolation and Osgood lemma
( a substitute for Gronwall inequality). Let us now tackle the proof. Fix an integer m
such that:

b
1+ inf Spal > = and |a' — Spalll. 9~ < c%, (5.50)
(t,w)E[O,T]XRN 2 L%o Bpl,)l) 1
and define T; as the supremum of all positive times ¢ such that:
t<T and ti?|al]|. ~ <c27%Mw. (5.51)

Ly (Bp{’l)
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. N
Remark that the proposition 4.10 ensures that a' belongs to Cr(B,) so that the above

two assumptions are satisfied if m has been chosen large enough. For bounding da in

L]
LY (By~ ), we apply proposition 4.10 with » = 400 and s = 0. We get (with the
notation of the previous section):

t
1
vt € [0,7], [a(t)] x_, < CeCU ) / e~ CU* (M) |sadivu® + (Sv1 + ~6v) - Va'!

Bp,oo 0
1
+ (1 4 a')div(dvy + —6v)|| ~_,dr,
v P
p,00

N _ N N 1
hence using that the product of two functions maps By X B 11 in By~ , and applying

Gronwall lemma,
2 _
l6a(®)]| x-, < CeV t)/ UK (1+||a1|! x)[ov]l Ldr (5.52)
Bp,oo pl Bpl 1t pl

Next, using proposition 4.8 of [16] combined with proposition 2.3 and corollary 2 in order
to bound the nonlinear terms, we get for all t € [0,77],:

t
C 1 2
| 6v1] N N < CelUHU+U )(t)/ (1+ ||a!| o + [la?| N
L3 (Bpt oo +Bylos ) 0 b1 By (5.53)
+otl ~ xp)ldall xy_ydr.
+ o
p1,1 pl p

In order to control the term ||dvi] «~ which appears in the right-hand side of

N

&9
Pl P
BP1 1+BP71

(5.52), we make use of the following logarithmic interpolation inequality whose proof
may be found in [12], page 120:

[ov1]l S

N >
Ll(Bp11+Bp+ )
||5U1H N 1 +||5'U1”~1( %+1)
HMH ~  log(e+ o1 o0 t (Bpg,00
Ll ”5”1”51(3% | ) -
t pq1,00
ouy ~ F v w
I LA
+ |0v1]| .~ log (e+ : )
Li (Bl

" 9 ~ - Xt X1 Nyo
Because v; and v belong to Lg® (B o1 + By )N LT(B '1 + By, ), the numerator
in the right-hand side may be bounded by some constant CT depending only on T and
on the norms of v{ and v?. Therefore inserting (5.52) in (5.53) and taking advantage of
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(5.54), we end up for all t € [0,T7] with:

)

gorl . x  w,, SCOA+laf|_
LlT(BIfl{ﬁBp{’l ) LF(B)
t
At fatl x Fle?) xRl xy w)oull
/O Bprjl Bpljl 511,:—1+ pl,)l+2 Z%(Bzgllﬁoo)

x log(e + C'T||51’1H:1 N Ny )dr.
LL(Bp} cot+Byloo )

is integrable on

Since the function ¢t — Hal(t)HB% + Ha2(t)HB% + lv2 (@)l Ny N,
p,1 p,1 r1,1 p,1
[0, 7], and:
/1 dr N
= 400
o rlog(e+ Cpr—1)
Osgood lemma yields [[dv1] ~ = 0. Note that the definition of m depends

1 P1 %Jrl
LT(Bp1,1+Bp,1 )

only on 7" and that (5.48) is satisfied on [0,7]. Hence, the above arguments may be
repeated on [T7,2T1], [2T4,3T1],etc. until the whole interval [0,77] is exhausted. This
yields uniqueness on [0, 7] for a and v; which implies uniqueness for w.

5.4 Proof of corollary 1

The proof follows the same line as theorem 1.1 except concerning the uniqueness. In the
sequel we will concentrate us only the result of uniqueness. For that we use the main
theorem of D. Hoff in [21] which is a result of weak-strong uniqueness. More precisely,
we recall the result of D. Hoff.

Let (p,u) a weak solution (see the definition of D. Hoff in [21]) with the following prop-
erties:

ue C(0,T) x RMYN L™ ((0,T) x RNy n LY(0, T, WH°(RN)) N LS (L2(RY)),  (5.55)

p—pyu, f e L*((0,T) x RY), (5.56)
1
ZelL™ 5.57
SEL”, (5.57)
and
ue L7((0,T) x RY), (5.58)

with r > N . Let (p1,u1) a strong solution such that (5.55), (5.56) and (5.57) are verified
and:

T
/ [lur (-, 8)|| Lo + t||Vur (-, )| oo + (t||VF1(-,t),Vw1||%4)a]dt < 400, (5.59)
0

with F} = divuy — P(p1) + P(p) the effective pressure, wy the curl of u; and with a = %

if N=2and a= % for N = 3. We assume in the sequel that:

f e L(0,T), L*Y(RY), (5.60)
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for some ¢ € [1,400]. And finally D. Hoff need to assume that:
po—pEL*NL*. (5.61)
We can now state the result that D. Hoff obtains in [21]:

Theorem 5.2 Assuming that (p,u) and (p1,u1) are weak solution (for the precise defi-
nition see [21]), moreover (p,w) verify (5.55), (5.56), (5.57), (5.58) and (p1,u1) verify
(5.55), (5.59) and (5.60) . The initial data are chosen as in the corollary 1 with the
additional condition (5.61). Let P(p) = Kp with K > 0. Then under the previous
hypothesis:

u=u; on (0,T).

Remark 14 Here (p1,u1) have to consider as the strong solution and (p,u) as the weak
solution.

Moreover in [24, 24], D. Hoff prove the existence of a solution (p,u) satisfying all the
conditions (5.55), (5.59) and (5.60) except that u € L*((0,T), WLH°(RY)) if we have the
following conditions on the initial data (po,ug):

poGLm,po—ﬁeL%,
inf pg > 0,
1 (5.62)
ug € H® with s >0 if N=2or s>§ifN:3.
ug € L9, with ¢ =2 if N=2or ¢ =6 if N =3 (here ¢ > 0).

For proving these results D. Hoff uses essentially inequalities of energy (in his case the
initial data are assumed small and he obtains existence of global weak solutions, for a
similar case with large initial data see [18]). The main difficulty is so to control the norm
of uy in LY((0,T), WH(RN)).

In our context, we want to verify that a solution (p,u) constructed in 1.1 with the
additional conditions on the initial data of 1 verify all the hypothesis of theorem 5.2 (it
means that (p,u) have to check the hypothesis of the strong solution and of the weak
solution). In this case, we will be able to conclude that if we choose two solutions (p, @)
and (p1,u) in the class of the solutions of theorem 1.1 then (p,u) = (p1,u1).

As we explain previously, the regularizing effects on the velocity in [24, 24] result from
energy inequalities combined with an argument of smallness to apply a bootstrap (see [18]
for more details in the case of large initial data). It means that we can obtain the same
regularizing effects on the velocity @ (where (p, @) is a solution coming from theorem 1.1)
with our choice of initial data. Indeed we have combined for the initial data conditions,
these of theorem 1.1 and these of [24, 24].

Then to achieve the proof of uniqueness we only have to prove that @ is in L1 (W1 (RYN))
and that (py,u) verify the condition of the weak solution of theorem 5.2. The fact that

Nq
a € LY(0,T), Wh*(RY)) is just a consequence that @ belongs to L%F(Bp”’l ). For the
same reason that previously, we can easily show that (p1, ;) verify (5.55), (5.56), (5.57),
(5.58).
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6 Appendix

This section is devoted to the proof of commutator estimates which have been used in
section 2 and 3. They are based on paradifferentiel calculus, a tool introduced by J.-
M. Bony in [4]. The basic idea of paradifferential calculus is that any product of two
distributions v and v can be formally decomposed into:

w = Tyv + Tyu + R(u,v) = Tyo + Tou

where the paraproduct operator is defined by T,v = ) q Sq—1ul4v, the remainder oper-
ator R, by R(u,v) =3, Aqu(Ag—1v + Agv + Agy1v) and Tou = Tyu + R(u,v).
The following lemma is useful to get estimate for the transport equation.

Lemma 1 Letl <p; <p<+4ooando € (— min(%, p—J\,]), %4—1]. There exists a sequence
1

cg € IN(Z) such that ||cgllp =1 and a constant C' depending only on N and o such that:

Vg€ Z, |[v-V,AdallLm < CCqTq”IIVUHB% lellsg, - (6.63)
oA
In the limit case o0 = — min(%, %), we have:
Vo ez, lo-, Adalin < Oe2's Vel ol . (6.64)
.1 p,oo
Finally, for allc > 0 and ~ = L — 1 there exists a constant C' depending only on N

p2 _p1i P
and on o and a sequence cq € I*(Z) with norm 1 such that:

Vq € Z, |[v-V,Aqvllre = Ceg27([|Vollze<lollsg, , +[[Volle2|[Vol goa). (6.65)

Inequality (3.16) is a consequence of the following lemma:

Lemma 2 Let 1 < p; < p < 400 and a € (1 — %,1], ke {l,---,N} and R, =
Ag(adkw) — O (aAqw). There exists ¢ = c(a, N, o) such that:

> 2| Ryll < Cllall x., wllgrs1-a (6.66)
B P1,

q p,1

whenever —% <oc<a+ %.

In the limit case o0 = —%, we have for some constant C' = C(a, N):
_gN
sup2 "7 || Ryllzes < Cllaf| w, o fwl _xoy (6.67)
q

p,1 P1,00

Proof The proof is almost the same as the one of lemma A3 in [10].It is based on Bony’s
decomposition which enables us to split R, into:

~————

R2 R3 R} RS

Ry = 0k[Ag, Ta)w — AT, a0 + AT, ww + Ay R(Ow, a) — O Th pa -

1
Rq q
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Using the fact that:
q+4

Ry= Y O[S, A w,
¢ =q—4

and the mean value theorem, we readily get under the hypothesis that o < 1,

S 2Bl S el gt rse (6.65)
q

Standard continuity results for the paraproduct insure that RZ satisfies (6.68) and that:

> 27| Ryllee S IVwll oo llal

q Boo,l

. N (6.69)
p,1
provided ¢ — o — % < 0. Next, standard continuity result for the remainder insure that

under the hypothesis o > —%, we have:

o 1
> 29| Ryllom S IIV@UIIB;;;MIICLHB%M- (6.70)

q p,1

For bounding RS we use the decomposition: R;;’ => N k(S 2

AqwA ya), which
leads (after a suitable use of Bernstein and Holder inequalities) to:

o — Y+ 1) o(or1— NN
24 HRSHLP1 < Z 2(q Q)(Oé-i-pl )2q( +1 a)”AquLPqu(p+a)HAq’aHL7’-

~

q'>q-2

Hence, since a + % — 1> 0, we have:

5
> 2R S IIVwIIB;ﬁ—aHaHBglM.
q P,

Combining this latter inequality with (6.68), (6.69) and (6.70), and using the embedding
N N

Bgl — B;_f for r = % + a — 1, 0, completes the proof of (6.66).
The proof of (6.67) is almost the same: for bounding Rcll, RZ, Rg and Rg, it is just a
matter of changing ), into sup,. O

Remark 15 For proving proposition 3.9, we shall actually use the following non-stationary
version of inequality (6.67):
2795 |R <C
p
sup [ Rqll L1 (rrny < Hallz%o Bﬁ-m Hw”~1T ;ﬁjl_a ;

which may be easily proved by following the computations of the previous proof, dealing
with the time dependence according to Holder inequality.
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