
ar
X

iv
:1

10
2.

09
39

v1
  [

m
at

h.
D

S]
  4

 F
eb

 2
01

1

Spherically symmetric solutions to a model for phase

transitions driven by configurational forces

Yaobin Ou
1∗
and Peicheng Zhu

1,2†

1 Basque Center for Applied Mathematics (BCAM)

Building 500, Bizkaia Technology Park

E-48160 Derio, Spain
2 IKERBASQUE, Basque Foundation for Science

E-48011 Bilbao, Spain

Abstract

We prove the global in time existence of spherically symmetric solutions to an
initial-boundary value problem for a system of partial differential equations, which
consists of the equations of linear elasticity and a nonlinear, non-uniformly parabolic
equation of second order. The problem models the behavior in time of materials
in which martensitic phase transitions, driven by configurational forces, take place,
and can be considered to be a regularization of the corresponding sharp interface
model. By assuming that the solutions are spherically symmetric, we reduce the
original multidimensional problem to the one in one space dimension, then prove the
existence of spherically symmetric solutions. Our proof is valid due to the essential
feature that the reduced problem is one space dimensional.

1 Introduction

Many inhomogeneous systems can be characterized by domains of different phases sep-
arated by a distinct interface. When driven out of equilibrium, their dynamics result in
the evolution of those interfaces, and the systems might develop into structures (com-
positional and structural inhomogeneities) with characteristic length scales at the nano-,
micro- or meso-scale. To a large extent, the material properties of such systems are de-
termined by those structures of small-scale. Thus it is important to understand precisely
the mechanisms that drive the evolution of those structures. Materials microstructures
may consist of spatially distributed phases of different compositions and/or crystal struc-
tures, grains of different orientations, domains of different structural variants, domains
of different electrical or magnetic polarizations, and structural defects. These structural
features usually have an intermediate mesoscopic length scale in the range of nanometers
to microns. The size, shape, and spatial arrangement of the local structural features in
a microstructure play a critical role in determining the physical properties of a mate-
rial. Because of the complex and nonlinear nature of microstructure evolution, numerical
approaches are often employed. For more details, see e.g. [13, 14, 22].
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In this article we are interested in a model for the evolution, driven by configurational
forces, of microstructures in elastically deformable solids. There are two main types of
modeling for the evolution of microstructures. In the conventional approach, the regions
separating the domains are treated as mathematically sharp interfaces. The local interfa-
cial velocity is then determined as part of the boundary conditions, or is calculated from
the driving force for interface motion and the interfacial mobility. This approach requires
the explicit tracking of the interface positions. Such an interface-tracking approach can
be successful in one-dimensional systems, however it will be impractical for complicated
three-dimensional microstructures. Therefore, during the past decades, another approach
has been invented, namely, the phase-field approach in which the interface is not of zero
thickness, instead an interfacial region with thickness of certain order of a small regular-
ization parameter. Though it is still a young discipline in condensed matter physics, this
approach has emerged to be one of the most powerful methods for modeling the evolu-
tion of microstructures. It can be traced back the theory of diffuse-interface description,
which is developed, independently, more than a century ago by van der Waals [26] and
some half century ago by Cahn and Hilliard [11].

The two well-known models for temporal evolution of microstructures are the Cahn-
Hilliard/Allen-Cahn equations corresponding, respectively, to the case that the order
parameter is conserved and not conserved. These phase field models describe microstruc-
ture phenomena at the mesoscale (see e.g. [22]), and one suitable limit of it may be the
corresponding sharp- or thin-interface descriptions. In this article we study a model for
the behavior in time of materials with diffusionless phase transitions. The model has
diffusive interfaces and consists of the partial differential equations of linear elasticity
coupled to a quasilinear, non-uniformly parabolic equation of second order that differs
from the Allen-Cahn equation (the Cahn-Hilliard equation in the case that the order
parameter is conserved) by a gradient term. It is derived in [2, 4] from a sharp interface
model for diffusionless phase transitions and can be considered to be a regularization of
that model. To verify the validity of the new model, mathematical analysis has been car-
ried out for the existence/regularity of weak solutions to initial boundary value problems
in one space dimension, [3, 5, 7, 27, 28], the motion of interfaces [6], and the existence
of traveling waves [19]. In the present article, the existence of spherically symmetric
solutions to an initial-boundary value problem will be studied. We first formulate this
initial-boundary value problem in the three-dimensional case, then reduce it, by assuming
that the solution is spherically symmetric, to the one-dimensional case. The existence of
weak solutions to this one dimensional problem is proved.

Let Ω ⊂ R
3 be an open set. It represents the material points of a solid body. The

different phases are characterized by the order parameter S(t, x) ∈ R. A value of S(t, x)
close to zero indicates that the material is in the matrix phase at the point x ∈ Ω at
time t, a value close to one indicates that the material is in the second phase. The other
unknowns are the displacement u(t, x) ∈ R

3 of the material point x at time t and the
Cauchy stress tensor T (t, x) ∈ S3, where S3 denotes the set of symmetric 3× 3-matrices.
The unknowns must satisfy the quasi-static equations

− divx T (t, x) = b(t, x), (1.1)

T (t, x) = D
(

ε(∇x u(t, x)) − ε̄S(t, x)
)

, (1.2)

St(t, x) = −c
(

ψS(ε(∇xu(t, x)), S(t, x)) − ν∆xS(t, x)
)

|∇xS(t, x)| (1.3)
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for (t, x) ∈ (0,∞) × Ω. The boundary and initial conditions are

u(t, x) = γ(t, x), S(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω, (1.4)

S(0, x) = S0(x), x ∈ Ω. (1.5)

Here∇xu denotes the 3×3-matrix of first order derivatives of u, the deformation gradient,
(∇xu)

T denotes the transposed matrix and

ε(∇xu) =
1

2

(

∇xu+ (∇xu)
T
)

is the strain tensor. ε̄ ∈ S3 is a given matrix, the misfit strain, and D : S3 → S3 is the
elasticity tensor, a linear, symmetric, positive definite mapping. In the free energy

ψ(ε, S) =
1

2

(

D(ε− ε̄S)
)

· (ε− ε̄S) + ψ̂(S), (1.6)

we assume that ψ̂ ∈ C2(R, [0,∞)), choose ψ̂ as a double well potential with minima at
S = 0 and S = 1. ψS is the partial derivative. The scalar product of two matrices A and
B is denoted by A ·B =

∑

aijbij. c > 0 is a constant and ν is a small positive constant.
Given are the volume force b : [0,∞) × Ω → R

3 and the data γ : [0,∞) × ∂Ω → R
3,

S0 : Ω → R.
This completes the formulation of the initial-boundary value problem. Equations

(1.1) and (1.2) differ from the system of linear elasticity only by the term ε̄S. The
evolution equation (1.3) for the order parameter S is non-uniformly parabolic because of
the term ν∆S|∇xS|. Since this initial-boundary value problem is derived from a sharp
interface model, to verify that it is indeed a diffusive interface model regularizing the
sharp interface model, it must be shown that the equations (1.1) – (1.5) with positive ν
have solutions which exist globally in time, and that these solutions tend to solutions of
the sharp interface model for ν → 0. This would also be a method to prove existence of
solutions to the original sharp interface model.

We only contribute to the first part of this program in this work and show that there
exist some special solutions to the initial-boundary value problem that is essentially in one
space dimension. Up to now we still can’t solve the following problem: either solutions
in three space dimensions exist or these solutions converge to a solution of the sharp
interface model for ν → 0. We shall see later that the existence result of spherically
symmetric solutions is of interest because the problem has a stronger nonlinear term
(compared with the problem by assuming all unknowns depend on only one component
of space variable x which is studied in [3]), despite it is essentially one space dimensional.

Related to our investigations is the model for diffusion dominated phase transforma-
tions obtained by coupling the elasticity equations (1.1), (1.2) with the Allen-Cahn/Cahn-
Hilliard equations. They have recently been studied in [9, 12, 16].

Statement of the main result. Since we shall look for solutions, which are spherically
symmetric, to problem (1.1) – (1.5), the problem can be reduced to the one which is one
space dimensional. To this end we now assume that the body force boundary and initial
data and the unknowns, which are defined in the domain Ω× (0, Te), have the following
form

b(t, x) = b̂(t, r)
x

r
, γ(t, x) = γ̂(t, r), S0(x) = Ŝ0(r)
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and
u(t, x) = û(t, r)

x

r
, S(t, x) = Ŝ(t, r),

respectively, where Te is a positive constant which denotes the life-span of weak solutions,
r = |x|, Ω = {x ∈ R

3 | a < r < d } for two positive constant a, d satisfying a < d, and
b̂, γ̂, Ŝ0 are given functions and û, Ŝ are scalar functions to be determined, which depend
only on t, r. We write

x = (xi), u = (ui), T = (Tij), D = (Dij
kl).

Here and hereafter, i, j, k, l = 1, 2, 3, and we assume that D satisfies the properties of
symmetry:

D
ij
kl = Dkl

ij = D
ij
lk = D

ji
kl. (1.7)

Moreover we assume that D satisfies

Dkl
ij = 0, if k 6= j; (1.8)

D
jl
ij = 0, if i 6= l, for any fixed j. Assume that Djl

ij is independent of j; (1.9)

Cil := D
jl
ij . Assume that Cll is independent of l and is equal to µ. (1.10)

Ekl :=

3
∑

i,j=1

Dkl
ij ε̄ij = 0, if k 6= l, and (1.11)

Ekk is independent of k and is equal to λ. (1.12)

Under these assumptions equations (1.1) – (1.3) are reduced to

∂2

∂r2
û+

2

r

∂

∂r
û−

2

r2
û = G, (1.13)

∂

∂t
Ŝ +

(

−c ν
∂2

∂r2
Ŝ + F

)

|
∂

∂r
Ŝ| = 0. (1.14)

Here F ,G are nonlinear functions defined by

G = G(
∂

∂r
Ŝ, b̂) =

λ

µ

∂

∂r
Ŝ +

b̂

µ
, (1.15)

F1 = F1

(

û,
∂

∂r
û, Ŝ,

)

= c

(

−λ
( ∂

∂r
û+

2

r
û
)

+Dε̄ · ε̄Ŝ + ψ̂′(Ŝ)

)

, (1.16)

F = F
(

û,
∂

∂r
û, Ŝ,

∂

∂r
Ŝ
)

= F1 −
2c ν

r

∂

∂r
Ŝ. (1.17)

The boundary and initial conditions become

û(t, r) = γ̂(t, r), Ŝ(t, r) = 0, (t, r) ∈ [0, Te]× ∂Ω, (1.18)

Ŝ(0, r) = Ŝ0(r), r ∈ Ω, (1.19)
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where γ̂(t, r) is defined by γ(t, r) = γ̂(t, r)xr .

Remark 1. One can easily find an example which meets the above assumptions: The
media is isotropic and homogenous. These assumptions still lead to an elliptic-parabolic
coupled system, thus the reduced system possesses the main difficulties in the proof of
existence of weak solutions as in [3].

To what follows, except Section 2 in which we reduce the problem to one dimensional
form, we shall change the independent variable r to x, and drop the hat ˆ for all quantities
(except ψ̂), namely, û → u, b̂ → b, etc. Denote fx = ∂

∂xf , fxx = ∂2

∂x2 f , etc. The domain
Ω is reduced to an interval: Ω = (a, d) is a bounded open interval with constants a < d.
We write QTe := (0, Te)× Ω, where Te is a positive constant, and define

(v, ϕ)Z =

∫

Z
v(y)ϕ(y) dy ,

for Z = Ω or Z = QTe . If v is a function defined on QTe we denote the mapping
x → v(t, x) by v(t). If no confusion is possible we sometimes drop the argument t and
write v = v(t). Since equation (1.13) is linear, the inhomogeneous Dirichlet boundary
condition for û can be reduced in the standard way to the homogeneous condition. For
simplicity we thus assume that

γ̂ = 0.

Then with these simplifications, equations (1.13) – (1.14) can be written in the form

uxx +
2

x
ux −

2

x2
u = G, (1.20)

∂

∂t
S + (F − c νSxx) |Sx| = 0. (1.21)

The boundary and initial conditions turn out to be

u(t, x) = 0, S(t, x) = 0, (t, x) ∈ [0, Te]× ∂Ω, (1.22)

S(0, x) = S0(x), x ∈ Ω. (1.23)

To define weak solutions of this initial-boundary value problem we note that because
of 1

2(|y|y)
′ = |y| equation (1.21) is equivalent to

∂

∂t
S −

c ν

2
(Sx|Sx|)x + F|Sx| = 0. (1.24)

Definition 1.1. Let b ∈ L∞(0, Te, L
2(Ω)), S0 ∈ L∞(Ω). A function (u, S) with

u ∈ L∞(0, Te;W
1,∞
0 (Ω)), (1.25)

S ∈ L∞(QTe) ∩ L
∞(0, Te,H

1
0 (Ω)), (1.26)

is a weak solution to the problem (1.20) – (1.23), if the equation (1.20) is satisfied weakly
and if for all ϕ ∈ C∞

0 ((−∞, Te)× Ω)

(S,ϕt)QTe
−
c ν

2
(|Sx|Sx, ϕx)QTe

− (F|Sx|, ϕ)QTe
+ (S0, ϕ(0))Ω = 0. (1.27)

The main result of this article is
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Theorem 1.1 To all S0 ∈ H1
0 (Ω) and b ∈ C(QTe

) with bt ∈ C(QTe
) there exists a weak

solution (u, S) of problem (1.20) – (1.23), which in addition to (1.25) – (1.27) satisfies

St ∈ L
4

3 (QTe), Sx ∈ L
8

3 (0, Te;L
∞(Ω)), (1.28)

and
(|Sx|Sx)x ∈ L

4

3 (QTe), Sxt ∈ L
4

3 (0, Te;W
−1, 4

3 (Ω)). (1.29)

Consequently we find spherically symmetric solution (û(t, r) x
r , Ŝ(t, r)) to the original

problem (1.1) – (1.5).

The remaining sections are devoted to the proof of Theorem 1.1. The difficulties
in the proof of existence of weak solutions to the one dimensional problem are due to
the following features: The system is of elliptic-parabolic type, it consists of a linear
second order elliptic equation coupled with a nonlinear equation for the order parameter
equation. The nonlinearity of this nonlinear equation is stronger than the one in [3],
where a one-dimensional initial boundary value problem is investigated. Moreover, this
equation is degenerate and the nonlinearity depends non-smoothly on the gradient of
unknown S. This can be judged easily from the fact that the coefficient ν|Sx| of the
highest order derivative Sxx in the order parameter equation is not bounded away from
zero and that it is not differentiable with respect to Sx.

The rest of this article is organized as follows: In Section 2, assuming that the domain
Ω, the elasticity tensor D and the misfit stain tensor satisfy suitable conditions, and
that the solutions (u, S) to problem (1.1) – (1.5) and the initial and boundary data are
spherically symmetric, we reduce the original problem to the one dimensional form.

Then to prove Theorem 1.1 we first consider in Section 3 a modified initial-boundary
value problem which consists of (1.20) and the equation

St − c ν|Sx|κSxx + F · (|Sx|κ − κ) = 0, x ∈ Ω, t > 0 (1.30)

with a constant κ > 0. Here we use the notation

|p|κ :=
√

κ2 + p2. (1.31)

Since (1.30) is a uniformly parabolic equation we can use a standard theorem to con-
clude that the modified initial-boundary value problem has a sufficiently smooth solution
(uκ, Sκ). For this solution we derive in Section 4 a-priori estimates that are uniform
in κ for κ ∈ (0, 1]. The assumption κ ∈ (0, 1] is reasonable since we consider limits of
approximate solutions for κ → 0. We shall see that the selection of a function in the
form (1.31) results in a simpler proof of the existence of weak solutions than that in [3].

To select a subsequence converging to a solution for κ → 0 we need a compactness
result. However, our a-priori estimates are not strong enough to show that the sequence
Sκ
x is compact; instead, we can only show that the sequence

∫ Sκ
x

0 |y|dy = 1
2S

κ
x |S

κ
x | has

bounded derivatives, with respect to both x and t, in some suitable spaces, and thus
can be proved to be compact. It turns out that this is enough to prove existence of
a solution. For the compactness proof in Section 5 we use the Aubin-Lions Lemma;
since one of our a-priori estimates for derivatives of the approximate solutions is only
valid in L1(0, Te;H

−2(Ω)), we must use the generalized form of this lemma given by
Roub́ıcěk [24], which is valid in L1.
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Despite we prove the existence of spherically symmetric solutions, the existence of
weak solutions to the original problem (1.1) – (1.5) is still open. The method of the proof
in this article and [3] (in which problem (1.1) – (1.5) in one dimensional case is studied)
is limited to one space dimension, since for the a-priori estimates it is crucial that the
term |Sx|Sxx in (1.21) can be written in the form 1

2 (|Sx|Sx)x. In the higher dimensional
case the corresponding term |∇xS|∆xS cannot be rewritten in this way. Yet, we believe
that these essentially one-dimensional existence results can also be helpful in an existence
proof for higher space dimensions.

2 Reduction to one dimensional problem

We shall prove in this section that under suitable assumptions, the original problem can
be reduced to a one dimensional problem. We now assume that the body force and the
unknowns, which are defined in the domain Ω× (0, Te), have the following form

b(t, x) = b̂(t, r)
x

r
, (2.1)

and

u(t, x) = û(t, r)
x

r
, S(t, x) = Ŝ(t, r), (2.2)

respectively, where Te is a positive constant, r = |x|, Ω = {x ∈ R
3 | a < r < d} for two

positive constant a, d satisfying a < d, and û, Ŝ are scalar functions to be determined,
which depend only on t, r, and b̂ is a given function in t, r.

Theorem 2.1 Suppose that the tensors D and ε̄ satisfy (1.7) – (1.12). Then the following
two statements are equivalent:

1. (u, S)(t, x) of the form (2.2) is a classical solution to the problem (1.1) – (1.5) with
b chosen in (2.1),

2. (û, Ŝ)(t, r) solves classically the problem (1.13) – (1.19).

Proof. To simplify notations, the Einstein summation convention applies to the rest of
this section: When an index variable (e.g. i, j, k, l, but with an exception r in this article,
for instance, Ŝ,r

xi
r in (2.6) does not mean that we take the sum for the index r) appears

twice in a single term that is a product of two or more numbers, it implies that we are
summing over all of its possible values. However we shall still use the symbol Σ to avoid
some possible confusion when in a single term, an index appears more than two times.
Recalling

x = (xi), u = (ui), T = (Tij), D = (Dij
kl).

where i, j, k, l = 1, 2, 3.
For partial derivatives, we denote for a function f̂ = f̂(t, r)

f̂,r =
∂f̂

∂r
, f̂,rr =

∂2f̂

∂r2
.

An index j (or i, k, l,) after a comma in subscript of a quantity (for example, a function
f = f(t, x), a vector u = u(t, x) and tensor T = T (t, x), etc.) indicates the partial
derivative with respect to xj, namely

f,j =
∂f

∂xj
, ui,j =

∂ui

∂xj
, Tik,j =

∂Tik

∂xj
, · · · .
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Similar convention applies to multiple indices after a comma in subscript of a quantity.
We can thus write

r,i =
xi

r
,
(xi

r

)

,j
=
δijr

2 − xixj

r3
, (2.3)

ui,j =
(

û
xi

r

)

,j
= û,r

xixj

r2
+ û

δijr
2 − xixj

r3
, (2.4)

ui,jk = û,rr
xixjxk

r3
+ û,r

r2 ((xixj),k + δijxk)− 3xixjxk
r4

+û
r2 (−δijxk − (xixj),k) + 3xixjxk

r5
, (2.5)

S,i = Ŝ,r
xi

r
. (2.6)

Here δij is the Kronecker delta.
Hence, the first two equations (1.1) – (1.2) can be rewritten as

b̂
xl

r
=

1

2
Dkl

ijuj,ik +
1

2
Dkl

ijui,jk −Dkl
ij ε̄ijS,k

= û,rrD
kl
ij

xixjxk

r3
+ û,r

(

Dkl
ij

(xixj),k
r2

+Dkl
ij

δijxk

r2
−Dkl

ij

3xixjxk
r4

)

+
û

r5

(

−r2
(

Dkl
ij δijxk +Dkl

ij (xixj),k

)

+ 3Dkl
ijxixjxk

)

−Dkl
ij ε̄ij Ŝ,r

xk

r
. (2.7)

From now on we take one l from {1, 2, 3}. Invoking assumptions (1.8) – (1.12) we
obtain

Dkl
ij

xixjxk

r3
=

3
∑

j=1

D
jl
ij

xixjxj

r3
= Cil

xi

r
= Cll

xl

r
= µ

xl

r
. (2.8)

Since (xixj),k = δikxj + xiδjk, one has

Dkl
ij

(xixj),k
r2

+Dkl
ij

δijxk

r2
−Dkl

ij

3xixjxk
r4

=
3
∑

j=1

(

D
jl
ij

δijxj + xiδjj

r2
+D

jl
ij

δijxj

r2
−D

jl
ij

3xixjxj
r4

)

=

3
∑

i=1

Cil
r2 (3xi + 2xi)− 3xir

2

r4
= Cil

2r2xi
r4

= 2µ
xl

r2
, (2.9)
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and

−
1

r3

(

Dkl
ij δijxk +Dkl

ij (xixj),k

)

+Dkl
ij

3xixjxk
r5

=

3
∑

j=1

D
jl
ij

−r2 (δijxj + (xixj),j) + 3xixjxj
r5

=

3
∑

j=1

D
jl
ij

−r2 (2δijxj + xiδjj) + 3xixjxj
r5

=
3
∑

i=1

Cil
−r2(2xi + 3xi)+3r2xi

r5
= Cil

−2xi
r3

= −2µ
xl

r3
. (2.10)

Using (2.8) – (2.10), we are in a position to rewrite equation (2.7) as

b̂
xl

r
=

xl

r

(

µ
(

û,rr +
2

r
û,r −

2

r2
û
)

− λŜ,r

)

. (2.11)

This holds, for r ≥ a > 0, if and only if the following equation is satisfied

µ
(

û,rr +
2

r
û,r −

2

r2
û
)

− λŜ,r = b̂, (2.12)

which is just (1.13).

Next, to deal with the order parameter equation we make use of the following formula

ψS(ε, S) = −T · ε̄+ ψ̂′(S) = −Dε(∇u) · ε̄+Dε̄ · ε̄S + ψ̂′(S).

We evaluate Dε(∇u) · ε̄. Invoking (1.12),

Dε(∇u) · ε̄ =
1

2
Dkl

ijui,j ε̄kl +
1

2
Dkl

ijuj,iε̄kl

= û,rD
kl
ij

xixj

r2
ε̄kl + û

(

Dkl
ij

δij

r
ε̄kl −Dkl

ij

xixj

r3
ε̄kl

)

= û,rEij
xixj

r2
+ û

(

Eij
δij

r
− Eij

xixj

r3

)

=

3
∑

i=1

Eii

(

û,r
xixi

r2
+ û

δiir
2 − xixi

r3

)

= λ

(

û,r +
2

r
û

)

, (2.13)

where λ is a constant as in (1.12). Thus (1.3) turns out to be

Ŝt + (−c νŜ,rr + F)|Ŝ,r| = 0, (2.14)

where F is the same function as in (1.17). Thus we obtain (1.14).
To finish the reduction of the problem, we write the initial boundary conditions in the

following form: γ(t, x) = γ̂(t, r)xr , S0(x) = Ŝ0(r). Thus we obtain the one dimensional
problem and the proof of Theorem 2.1 is complete.
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3 Existence of solutions to the modified problem

In this section, we study the modified initial-boundary value problem and show that
it has a Hölder continuous classical solution, consequently we construct approximate
solutions whose limit is a solution to the original problem (1.20) – (1.23). To formulate
this problem, let χ ∈ C∞

0 (R, [0,∞)) satisfy
∫∞
−∞ χ(t)dt = 1. For κ > 0, we set

χκ(t) :=
1

κ
χ

(

t

κ

)

,

and for S ∈ L∞(QTe ,R) we define

(χκ ∗ S)(t, x) =

∫ Te

0
χκ(t− s)S(s, x)ds. (3.1)

The modified initial-boundary value problem consists of the equations

uxx +
2

x
ux −

2

x2
u = G((χκ ∗ S)x, b), (3.2)

St − c ν|Sx|κSxx = −F · (|Sx|κ − κ), (3.3)

which must hold in QTe , and of the boundary and initial conditions

u(t, x) = 0, S(t, x) = 0, (t, x) ∈ (0, Te)× ∂Ω, (3.4)

S(0, x) = S0(x), x ∈ Ω̄. (3.5)

Now we want to rewrite the system as an equation with a nonlocal term. Applying
the Sturm-Liouville theory for ordinary differential equations of the form

d

dx
(p(x)yx(x)) + q(x)y(x) = 0,

with suitable boundary conditions at x = a, d, we first solve u in terms of Sx and b. To
this end, we rewrite, by multiplying it by x2, (2.12) as

L[u] :=
d

dx
(p(x)ux) + q(x)u, (3.6)

L[u](x) = x2G((χκ ∗ S)x, b), (3.7)

and the boundary conditions are chosen as u(t, x) = 0 at x = a, d. Here

p(x) = x2, q(x) = −2.

Consider the eigen-problem L[u] = σu with σ = 0 and with u(t, x) = 0 at x = a, d.
It is easy to show from (3.7) that

0 =

∫ d

a
L[u] · udx =

∫ d

a

(

d

dx
(p(x)ux) u+ q(x)u2

)

dx = −

∫ d

a

(

x2u2x + 2u2
)

dx,

whence u ≡ 0, and 0 is not an eigenvalue of this operator. One asserts that for any fixed
t ∈ [0, Te], there exists a unique solution u to (3.2), which can be represented by

u(t, x) =

∫ d

a
G(x, y)

(

y2

µ
b(t, y) +

λ

µ
y2(χκ ∗ S(t, y))y

)

dy. (3.8)

10



Here G(x, y) is the Green function, associated with the operator L, such that
1. G(x, y) is continuous in x and y;
2. For x 6= y, L[G(x, y)] = 0;
3. G(x, ·) = 0 at x = a, d;
4. Derivative jump: G′(y+0, y)−G′(y−0, y) =

1
p(y) ;

5. Symmetry: G(x, y) = G(y, x).
Recalling the boundary condition (3.4) and integrating by parts we infer from (3.8)

that

u(t, x) =
1

µ

∫ d

a
G(x, y)y2b(t, y)dy −

λ

µ

∫ d

a

(

G(x, y)y2
)

y
χκ ∗ S(t, y)dy

=
1

µ

∫ d

a
G(x, y)y2b(t, y)dy −

λ

µ

∫

{x 6=y}
2G(x, y)yχκ ∗ S(t, y)dy

−
λ

µ

∫

{x 6=y}
G(x, y)yy

2χκ ∗ S(t, y)dy. (3.9)

Thus u(t, x) depends linearly on S and a nonlocal term of S.

To formulate an existence theorem for this problem we need some function spaces: For
nonnegative integers m,n and a real number α ∈ (0, 1) we denote by Cm+α(Ω) the space
of m−times differentiable functions on Ω, whose m−th derivative is Hölder continuous
with exponent α. The space Cα,α/2(QTe

) consists of all functions on QTe
, which are

Hölder continuous in the parabolic distance

d((t, x), (s, y)) :=
√

|t− s|+ |x− y|2.

Cm,n(QTe
) and Cm+α,n+α/2(QTe

), respectively, are the spaces of functions, whose x–
derivatives up to order m and t–derivatives up to order n belong to C(QTe

) or to

Cα,α/2(QTe
), respectively.

Theorem 3.1 Let ν, κ > 0, Te > 0, suppose that the function b ∈ C(QTe
) has the

derivative bt ∈ C(QTe
) and that the initial data S0 ∈ C2+α(Ω) satisfy S0|∂Ω = S0,x|∂Ω =

S0,xx|∂Ω = 0. Then there is a solution

(u, S) ∈ C2,1(QTe
)× C2+α,1+α/2(QTe

)

of the modified initial-boundary value problem (3.2) – (3.5). This solution satisfies Stx ∈
L2(QTe) and

max
QTe

|S| ≤ max
Ω

|S0|. (3.10)

Proof. Making use of (3.9), we rewrite the system (3.2) – (3.3) as a single equation

St = a1(Sx)Sxx

+a2

(

t, x, S, Sx, S̃,

∫

{x 6=y}
G(x, y)yS̃(t, y)dy,

∫

{x 6=y}
G(x, y)yy

2S̃(t, y)dy

)

(3.11)

in QTe , where S̃ = χκ ∗ S,

a1(p) = c ν|p|κ

11



and

a2(t, x, S, p, r, s) = cF(t, x, S, p, r, s1, s2)(|p|κ − κ).

Here F is obtained by using formula (3.9) and inserting u, ux into the formula of F .
Equation (3.11) is quasilinear, uniformly parabolic equation, which contains nonlocal

terms. Then we can apply, with a little modification, [20, Theorem 2.9, p.23] to (3.11) to
prove the existence of classical solution Sκ, and conclude that the estimate (3.10) holds
by applying the maximum principle to (3.11). We refer the reader to the paper [3] for
the details. Thus we complete the proof of Theorem 3.1.

4 A priori estimates

This section is devoted to the derivation of a-priori estimates for solutions of the modified
problem, which are uniform with respect to κ ∈ (0, 1]. We remark that the estimates
in Lemma 4.1 and Corollary 3.1, though stated in the one-dimensional case, can be
generalized to higher space dimensions.

In what follows we assume that

0 < κ ≤ 1, (4.1)

since we consider the limit κ→ 0. The L2(Ω)-norm is denoted by ‖ · ‖, and the letter C
stands for varies positive constants independent of κ. We start by constructing a family
of approximate solutions to the modified problem. To this end let Te be a fixed positive
number and choose for every κ a function Sκ

0 ∈ C∞
0 (Ω) such that

‖Sκ
0 − S0‖H1

0
(Ω) → 0, κ→ 0, (4.2)

where S0 ∈ H
1
0 (Ω) are the initial data given in Theorem 1.1. We insert for S0 in (3.5) the

function Sκ
0 and choose for b in (3.2) the function given in Theorem 1.1. These functions

satisfy the assumptions of Theorem 3.1, hence there exists a solution (uκ, Sκ) of the
modified problem (3.2) – (3.5), which exists in QTe . The inequality (3.10) and Sobolev’s
embedding theorem yield for this solution

sup
0<κ≤1

‖Sκ‖L∞(QTe )
≤ sup

0<κ≤1
‖Sκ

0 ‖L∞(Ω) ≤ C. (4.3)

Remembering the formula (3.9) and assumptions of b, we show easily that uκ be-
longs to C1,1(Q̄Te), and conclude from (3.2) that also ‖uκx‖L∞(QTe )

≤ C, and invoke the
definition of F1 to get

max
QTe

|F1(u
κ, uκx, S

κ)| ≤ C. (4.4)

With the help of this estimate, we can evaluate derivatives of Sκ.

Lemma 4.1 There holds for any t ∈ [0, Te]

‖Sκ
x (t)‖

2 + c ν

∫ t

0

∫

Ω
|Sκ

x |κ|S
κ
xx|

2dxdτ ≤ C. (4.5)
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Proof. From the assertion that Sκ
tx ∈ L2(QTe) in Theorem 3.1, it follows that there holds

for almost all t
1

2

d

dt
‖Sκ

x(t)‖
2 =

∫

Ω
Sκ
x(t)S

κ
xt(t)dx.

Making use of this relation and (4.4) we obtain by multiplication of (3.3) by −Sκ
xx and

integration by parts with respect to x, where we take the boundary condition (3.4) into
account, that for almost all t

1

2

d

dt
‖Sκ

x‖
2 +

∫

Ω
cν|Sκ

x |κ|S
κ
xx|

2dx =

∫

Ω
F(|Sx|κ − κ)Sκ

xxdx

≤ C

∫

Ω
(1 + |Sκ

x |)(|S
κ
x |κ + κ)|Sκ

xx|dx

= C

(
∫

Ω
|Sκ

x |κ|S
κ
xx|dx+

∫

Ω
κ|Sκ

xx|dx+

∫

Ω
|Sκ

x | |S
κ
x |κ|S

κ
xx|dx+

∫

Ω
κ|Sκ

x | |S
κ
xx|dx

)

= C(I1 + I2 + I3 + I4) (4.6)

Now we estimate Ii (i = 1, 2, 3, 4). For I1, we have

I1 ≤ C

∫

Ω
|Sκ

x |
1

2
κ (|S

κ
x |

1

2
κ |S

κ
xx|)dx

≤
cν

8

∫

Ω
|Sκ

x |κ|S
κ
xx|

2dx+ Cν

∫

Ω
(|Sκ

x |κ)
2dx+C, (4.7)

where we denote Cν a constant depending on ν. By definition, there holds

|Sκ
x |κ ≥ κ. (4.8)

Thus we can use the second term on the left hand side of (4.6) to absorb I2. By the
Cauchy-Schwarz and Young inequalities,

I2 ≤ C

∫

Ω
κ

1

2 (κ
1

2 |Sκ
xx|)dx ≤ C

(
∫

Ω
κdx

)
1

2

(
∫

Ω
κ|Sκ

xx|
2dx

)
1

2

≤
cνκ

8

∫

Ω
|Sκ

xx|
2dx+ Cν . (4.9)

Here we have used the fact that 0 < a ≤ x ≤ d which implies the term 1
x contained in F

is uniformly bounded from below and above, and Cν,κ is a constant depending on ν, κ.
Moreover, I3 is evaluated by

I4 ≤ C

∫

Ω
κ|Sκ

x | |S
κ
xx|dx ≤ C

(
∫

Ω
κ|Sκ

x |
2dx

)
1

2

(
∫

Ω
κ|Sκ

xx|
2dx

)
1

2

. (4.10)

Using the Nirenberg inequality in the following form

‖fx‖ ≤ C‖fxx‖
1

3‖f‖
2

3

L∞(Ω) +C ′‖f‖L∞(Ω), (4.11)
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one infers from (4.10) that

I4 ≤ Cκ
1

2

(

‖Sκ
xx‖

1

3‖Sκ‖
2

3

L∞(Ω) + C ′‖Sκ‖L∞(Ω)

)(
∫

Ω
κ|Sκ

xx|
2dx

)
1

2

≤ Cκ
1

2

(

‖Sκ
xx‖

1

3 + 1
)

(
∫

Ω
κ|Sκ

xx|
2dx

)
1

2

= Cκ
(

‖Sκ
xx‖

1

3
+1 + ‖Sκ

xx‖
)

≤
cνκ

8

∫

Ω
|Sκ

xx|
2dx+ Cν , (4.12)

where we used the Young inequality of the form ab ≤ δa
4

3 + Cδb
4 for non-negative real

numbers a, b. Here Cδ is a constant depending on δ.
I3 is the most difficult term to deal with. Again by the Cauchy-Schwarz inequality

one gets

I3 = C

∫

Ω
(|Sκ

x ||S
κ
x |

1

2
κ )(|S

κ
x |

1

2
κ |S

κ
xx|)dx

≤ C

(
∫

Ω
|Sκ

x |
2|Sκ

x |κdx

)
1

2

(
∫

Ω
|Sκ

x |κ|S
κ
xx|

2dx

)
1

2

= CJ
1

2 ·

(
∫

Ω
|Sκ

x |κ|S
κ
xx|

2dx

)
1

2

(4.13)

To deal with J , we recall the boundary conditions for Sκ and rewrite by integration by
parts

J =

∫

Ω
(Sκ

x)
2|Sκ

x |κdx =

∫

Ω
Sκ
x(S

κ
x |S

κ
x |κ)dx

= −

∫

Ω
SκSκ

xx

(

|Sκ
x |κ + Sκ

x(|y|κ)
′|y=Sκ

x

)

dx

= −

∫

Ω
SκSκ

xx

(

|Sκ
x |κ +

(Sκ
x)

2

|Sκ
x |κ

)

dx

(4.14)

Applying estimate (4.3) and invoking the definition of |y|κ, from (4.14) one obtains

J ≤ C

∫

Ω
2|Sκ

x |κ|S
κ
xx|dx

≤ C

(
∫

Ω
|Sκ

x |κ|S
κ
xx|

2dx

)
1

2

(
∫

Ω
|Sκ

x |κdx

)
1

2

≤ C

(
∫

Ω
|Sκ

x |κ|S
κ
xx|

2dx

)
1

2

(‖Sκ
x‖+ 1) . (4.15)

Therefore, (4.13) becomes

I3 ≤ C(‖Sκ
x‖+ 1)

1

2

(
∫

Ω
|Sκ

x |κ|S
κ
xx|

2dx

)
1

4
+ 1

2

≤
cν

8

∫

Ω
|Sκ

x |κ|S
κ
xx|

2dx+ Cν(‖S
κ
x‖

2 + 1). (4.16)
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Here we have again used the Young inequality: ab ≤ δa
4

3 + Cδb
4.

Combining estimates (4.7) – (4.16), subtracting the terms cν
4

∫

Ω |Sκ
x |κ|S

κ
xx|

2dx and
cνκ
4

∫

Ω |Sκ
xx|

2dx on both sides of inequality (4.6), splitting the second term on the left
hand side of (4.6) into two equal terms, and recalling the property (4.8), we derive

1

2

d

dt
‖Sκ

x‖
2 +

cν

4

∫

Ω
|Sκ

x |κ|S
κ
xx|

2dx+
cνκ

4

∫

Ω
|Sκ

xx|
2dx ≤ C‖Sκ

x‖
2 + Cν . (4.17)

Then using the Gronwall inequality, one gets (4.5), noting also (4.2). And the proof of
this lemma is thus complete.

Furthermore, we obtain

Corollary 4.1 There holds for any t ∈ [0, Te]

∫ t

0

∫

Ω
(|Sκ

x |κ|S
κ
xx|)

4

3 dxdτ ≤ C, (4.18)

∫ t

0

∫

Ω
(|Sκ

xS
κ
xx|)

4

3 dxdτ ≤ C, (4.19)

∫ t

0

∥

∥

∥

∥

∫ Sκ
x

0
|y|κdy

∥

∥

∥

∥

4

3

W 1, 4
3 (Ω)

dτ ≤ C, (4.20)

∫ t

0

∥

∥

∥

∥

∫ Sκ
x

0
|y|κdy

∥

∥

∥

∥

4

3

L∞(Ω)

dτ ≤ C, (4.21)

‖ |Sκ
x |S

κ
x‖L

4
3 (0,Te;L∞(Ω))

≤ C, (4.22)

∫ t

0
‖Sκ

x‖
8

3

L∞(Ω) dτ ≤ C. (4.23)

Proof. For some 2 > p ≥ 1 we choose q, q′ such that

q =
2

p
,

1

q
+

1

q′
= 1.

By Hölder’s inequality, we have

∫ t

0

∫

Ω
(|Sκ

x |κ|S
κ
xx|)

p dxdτ

=

∫ t

0

∫

Ω
(|Sκ

x |κ)
p
2

(

(|Sκ
x |κ)

p
2 |Sκ

xx|
p
)

dxdτ

≤

(
∫ t

0

∫

Ω
(|Sκ

x |κ)
pq′

2 dxdτ

)

1

q′
(
∫ t

0

∫

Ω
(|Sκ

x |κ)
pq
2 |Sκ

xx|
pqdxdτ

)

1

q

≤

(
∫ t

0

∫

Ω
(|Sκ

x |κ)
p

2−p dxdτ

)

2−p
2
(
∫ t

0

∫

Ω
|Sκ

x |κ|S
κ
xx|

2dxdτ

)

p
2

. (4.24)

Estimate (4.5) implies that if p satisfies p
2−p ≤ 2 (i.e. p ≤ 4

3) then the right hand side of
(4.24) is bounded. This yields estimate (4.18). Then (4.19) follows from (4.18) and the
estimate (4.5), and the fact that |Sκ

x | < |Sκ
x |κ.
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Next we are going to prove (4.20). Writing

|Sκ
x |κS

κ
xx =

(
∫ Sκ

x

0
|y|κdy

)

x

, (4.25)

and invoking that the primitive of |y|κ is equal to

1

2

(

y
√

y2 + κ2 + κ2 log
(

y +
√

y2 + κ2
))

,

which, thanks to log x ≤ x − 1 for all x > 0, is bounded by C(y2 + 1), we then show
easily that

∫

Ω

∫ Sκ
x

0
|y|κdydx ≤ C

∫

Ω
(|Sκ

x |
2 + 1)dx ≤ C.

To apply the Poincaré inequality of the form

‖f − f̄‖Lp(Ω) ≤ C‖fx‖Lp(Ω)

where f̄ := 1
|Ω|

∫

Ω f(x)dx, we choose

p =
4

3
, f =

∫ Sκ
x

0
|y|κdy,

and obtain

∫ t

0

∥

∥

∥

∥

∫ Sκ
x

0
|y|κdy

∥

∥

∥

∥

4

3

L
4
3 (Ω)

dτ

≤ C

∫ t

0

∥

∥

∥

∥

(
∫ Sκ

x

0
|y|κdy

)

x

∥

∥

∥

∥

4

3

L
4
3 (Ω)

dτ + C

∫ t

0

∥

∥

∥

∥

∥

∫ Sκ
x

0
|y|κdy

∥

∥

∥

∥

∥

4

3

L
4
3 (Ω)

dτ

≤ C

∫ t

0
‖ |Sκ

x |κS
κ
xx‖

4

3

L
4
3 (Ω)

dτ + C

∫ t

0
1 dτ, (4.26)

which implies, by (4.18), that

∫ t

0

∥

∥

∥

∥

∫ Sκ
x

0
|y|κdy

∥

∥

∥

∥

4

3

L
4
3 (Ω)

dτ ≤ C. (4.27)

Hence (4.20) follows, and we get
∫ Sκ

x

0 |y|κdy ∈ L
4

3 (0, Te;W
1, 4

3 (Ω)). Making use of the
Sobolev embedding theorem, we get (4.21).

It remains to prove estimate (4.22), since (4.23) is equivalent to (4.22). We rewrite
∫ Sκ

x

0 |y|κdy as

∫ Sκ
x

0
|y|κdy =

∫ Sκ
x

0
|y|dy +

∫ Sκ
x

0
(|y|κ − |y|)dy

=
1

2
|y|y

∣

∣

∣

∣

Sκ
x

0

+

∫ Sκ
x

0

κ2

|y|κ + |y|
dy

=
1

2
|Sκ

x |S
κ
x +

∫ Sκ
x

0

κ2

|y|κ + |y|
dy. (4.28)
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Thus

1

2
(|Sκ

x |S
κ
x)x =

(
∫ Sκ

x

0
|y|κdy

)

x

−
κ2Sκ

xx

|Sκ
x |κ + |Sκ

x |
. (4.29)

By (4.8) and the Young inequality we obtain from (4.5) and the assumption that k ≤ 1
that

∣

∣

∣

∣

κ2Sκ
xx

|Sκ
x |κ + |Sκ

x |

∣

∣

∣

∣

≤ |κSκ
xx|, thus

‖κSκ
xx‖L

4
3 (QTe )

≤

(

∫

QTe

(

κ2 + κ|Sκ
xx|

2
)

dxdτ

)
3

4

≤ C. (4.30)

Combination with (4.20) and (4.29) yields

‖(|Sκ
x |S

κ
x )x‖L

4
3 (QTe )

≤ C

∥

∥

∥

∥

(
∫ Sκ

x

0
|y|κdy

)

x

∥

∥

∥

∥

L
4
3 (QTe )

+ C‖κSκ
xx‖L

4
3 (QTe )

≤ C. (4.31)

It is clear that |Sκ
x |S

κ
x ≤ C

∫

Ω |Sκ
x |

2dx ≤ C. Applying again the Poincaré inequality
to the function f = |Sκ

x |S
κ
x , we arrive at

‖ |Sκ
x |S

κ
x‖L

4
3 (QTe )

≤ C.

Hence this, combined with (4.31), implies that

‖ |Sκ
x |S

κ
x‖L

4
3 (0,Te;W

1,4
3 (Ω))

≤ C,

one concludes by using the Sobolev embedding theorem that

‖ |Sκ
x |S

κ
x‖L

4
3 (0,Te;L∞(Ω))

≤ C,

which is
‖Sκ

x‖L
8
3 (0,Te;L∞(Ω))

≤ C.

This completes the proof of the corollary.

To apply some compactness lemma to the approximate solutions, we need estimates
on the time derivative of the unknown Sκ and also |Sκ

x |S
κ
x .

Lemma 4.2 The function Sκ
t belongs to L

4

3 (QTe) and we have the estimates

‖Sκ
t ‖L4/3(QTe )

≤ C , (4.32)

‖(|Sκ
x |S

κ
x)t‖L1(0,Te;H−2(Ω)) ≤ C . (4.33)

Proof. From equation (3.3) and the estimates (4.18), and (4.5) we immediately see

that Sκ
t ∈ L

4

3 (QTe) and that (4.32) holds. Therefore we only need to prove the second
estimate.
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To verify (4.33) we must show that there exists a constant C, which is independent
of κ, such that

∣

∣

∣
((|Sκ

x |S
κ
x)t , ϕ)QTe

∣

∣

∣
≤ C‖ϕ‖L∞(0,Te;H2(Ω)) (4.34)

for all functions ϕ ∈ L∞(0, Te;H
2
0 (Ω)). To prove (4.34), we first prove that for any

1 ≥ δ > 0 there holds
∣

∣

∣

∣

∣

((
∫ Sκ

x

0
|y|δdy

)

t

, ϕ

)

QTe

∣

∣

∣

∣

∣

≤ C‖ϕ‖L∞(0,Te;H2(Ω)) (4.35)

for all functions ϕ ∈ L∞(0, Te;H
2
0 (Ω)). Here δ is independent of κ. Inequality (4.34) is

obtained from this estimate as follows: From Sκ
x ∈ L∞(0, Te, L

2(Ω)) ⊂ L2(QTe), S
κ
xt ∈

L2(QTe) and | |y|δ − |y| | ≤ δ → 0 as δ → 0 we infer that ‖ |Sκ
x |δ − |Sκ

x | ‖L∞(QTe )
→ 0. A

straightforward computation yields that

(
∫ Sκ

x

0
|y|δdy

)

t

= |Sκ
x |δS

κ
xt . (4.36)

Therefore,
(

∫ Sκ
x

0 |y|δdy
)

t
= |Sκ

x |δS
κ
xt → |Sκ

x |S
κ
xt strongly in L2(QTe). Whence, as δ → 0,

((
∫ Sκ

x

0
|y|δdy

)

t

, ϕ

)

→
1

2
((|Sκ

x |S
κ
x)t , ϕ)QTe

for all ϕ ∈ L∞(0, Te;H
2
0 (Ω)) ⊂ L∞(QTe). This relation together with (4.35) implies

(4.34).
Thus it suffices to prove (4.35). To simplify the notations we define

Rκ := cν|Sκ
x |κS

κ
xx −Fκ(|Sκ

x |κ − κ). (4.37)

Here Fκ = F(uκ, uκx, S
κ, Sκ

x ). Recalling estimate (4.4), we have

|Rκ| ≤ C
(

|Sκ
x |κ|S

κ
xx|+ (1 + |Sκ

x |)(|S
κ
x |κ + κ)

)

. (4.38)

Multiplying equation (3.3) by (|Sκ
x |δϕ)x , integrating the resulting equation with respect

to (t, x) over QTe , using integration by parts for the term with the time derivative and
noting (4.36), we obtain

0 = (Sκ
t −Rκ, (|S

κ
x |δϕ)x)QTe

= − (Sκ
xt, |S

κ
x |δϕ)QTe

− (Rκ, (|S
κ
x |δϕ)x)QTe

= −

((
∫ Sκ

x

0
|y|δdy

)

t

, ϕ

)

QTe

−
(

Rκ, (|y|δ)
′
∣

∣

y=Sκ
x
Sκ
xxϕ
)

− (Rκ, |S
κ
x |δϕx) .(4.39)

Remembering that Sκ
xt ∈ L2(QTe) for any fixed κ, we see that the first term in the second

equality of (4.39) is properly defined.
To estimate the last two terms on the right hand side of inequality (4.39), we note

that there holds
∣

∣(|y|δ)
′
∣

∣ =

∣

∣

∣

∣

y

|y|δ

∣

∣

∣

∣

≤ 1 and |y|δ ≤ |y|+ 1,
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which yields the estimates
∣

∣

∣

∣

(

Rκ, (|y|δ)
′
∣

∣

y=Sκ
x
Sκ
xxϕ
)

QTe

∣

∣

∣

∣

≤ (|Rκ|, |S
κ
xxϕ|)QTe

≤
(

|Sκ
x |κ|S

κ
xx|

2, |ϕ|
)

QTe
+ ((1 + |Sκ

x |)(|S
κ
x |κ + κ), |Sκ

xxϕ|)QTe

≤ C‖ϕ‖L∞(QTe )
+ I ≤ C‖ϕ‖L∞(0,Te;H2(Ω)) + I, (4.40)

and
∣

∣

∣
(Rκ, |S

κ
x |δ ϕx)QTe

∣

∣

∣
≤ C

∫

QTe

(|Sκ
x |+ 1) |Sκ

x |κ|S
κ
xxϕx|d(τ, x)

+C

∫

QTe

(1 + |Sκ
x |)

2(|Sκ
x |κ + κ) |ϕx| d(τ, x)

= J1 + J2. (4.41)

We estimate I first. Write

I = C (|Sκ
x |κ + κ+ |Sκ

x | |S
κ
x |κ + κ|Sκ

x |, |S
κ
xxϕ|)QTe

= I1 + I2 + I3 + I4. (4.42)

One needs to estimate Ii (i = 1, 2, 3, 4). By estimate (4.5), I1 can be treated as

I1 = C (|Sκ
x |κ, |S

κ
xxϕ|)QTe

≤ C

∫

QTe

|Sκ
x |

1

2

κ |S
κ
x |

1

2

κ |S
κ
xx| |ϕ| d(t, x)

≤ C

∫ Te

0
‖ |Sκ

x |
1

2
κ ‖L4(Ω)‖ |S

κ
x |

1

2
κS

κ
xx‖ ‖ϕ‖L4(Ω)dτ

≤ C

(
∫ Te

0
‖ |Sκ

x |
1

2
κS

κ
xx‖

2dτ

)

1

2
(
∫ Te

0
‖ϕ‖2L4(Ω)dτ

)

1

2

≤ C‖ϕ‖L2(0,Te;L4(Ω)), (4.43)

and

I2 = C (κ, |Sκ
xxϕ|)QTe

≤ C

∫

QTe

κ|Sκ
xx| |ϕ| d(t, x)

≤ Cκ‖Sκ
xx‖L2(QTe )

‖ϕ‖L2(QTe )

≤ C‖ϕ‖L2(0,Te;L2(Ω)). (4.44)

With the help of (4.19) and of the Cauchy-Schwarz inequality, we deal with I4 as follows

I4 = C (κ|Sκ
x |, |S

κ
xxϕ|)QTe

≤ C

∫ Te

0

(
∫

Ω
|Sκ

xS
κ
xx|

4

3dx

)
3

4

(
∫

Ω
|ϕ|4dx

)
1

4

dt

≤ C‖Sκ
xS

κ
xx‖L

4
3 (QTe )

‖ϕ‖L4(QTe )

≤ C‖ϕ‖L4(0,Te;L4(Ω)). (4.45)
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The remaining term I3 is the most difficult to evaluate. Making use of estimates (4.5)
and (4.23), we have

I3 = C (|Sκ
x ||S

κ
x |κ, |S

κ
xxϕ|)QTe

≤ C‖ϕ‖L∞(QTe )

∫ Te

0

(
∫

Ω
|Sκ

x |
2|Sκ

x |κdx

)
1

2

(
∫

Ω
|Sκ

x |κ|S
κ
xx|

2dx

)
1

2

dt

≤ C‖ϕ‖L∞(QTe )

∫ Te

0
(‖Sκ

x‖
1

2

L∞(Ω) + 1)

(
∫

Ω
|Sκ

x |
2dx

)
1

2

(
∫

Ω
|Sκ

x |κ|S
κ
xx|

2dx

)
1

2

dt

≤ C‖ϕ‖L∞(QTe )

(
∫ Te

0
(‖Sκ

x‖
1

2

L∞(Ω) + 1)2dt

)

1

2
(
∫ Te

0

∫

Ω
|Sκ

x |κ|S
κ
xx|

2dxdt

)

1

2

dt

≤ C‖ϕ‖L∞(QTe )
. (4.46)

Next, we consider J1, J2. The term J1 can be handled as

J1 = C

∫

QTe

(|Sκ
x |+ 1) |Sκ

x |κ|S
κ
xxϕx|d(τ, x)

≤ C‖ϕx‖L∞(QTe )

∫ t

0

(
∫

Ω
(1 + |Sκ

x |)
4dx

)
1

4

(
∫

Ω
(|Sκ

x |κ|S
κ
xx|)

4

3 dx

)
3

4

dτ

≤ C‖ϕx‖L∞(QTe )

∫ t

0

(

1 + ‖Sκ
x‖

2
L∞(Ω)‖S

κ
x‖

2
)

1

4

(
∫

Ω
(|Sκ

x |κ|S
κ
xx|)

4

3 dx

)
3

4

dτ

≤ C‖ϕx‖L∞(QTe )

(
∫ t

0
(1 + ‖Sκ

x‖
2
L∞(Ω))dτ

)

1

4
(
∫ t

0

∫

Ω
(|Sκ

x |κ|S
κ
xx|)

4

3 dxdτ

)

3

4

≤ C‖ϕ‖L∞(0,Te;H2(Ω)). (4.47)

Here we used the estimates in (4.5) and Corollary 4.1, which will also be used to evaluate
the term J2. Invoking inequality (4.38), we obtain that

J2 ≤ C

∫

QTe

(1 + |Sκ
x |)

2(|Sκ
x |κ + κ) |ϕx| d(τ, x)

≤ C‖ϕx‖L∞(QTe )

∫

QTe

(1 + |Sκ
x |

3)d(τ, x)

≤ C‖ϕx‖L∞(QTe )

∫ Te

0

(

1 + ‖Sκ
x‖L∞(Ω)

∫

Ω
|Sκ

x |
2dx

)

dτ

≤ C‖ϕx‖L∞(QTe )

(

1 +

∫ Te

0
‖Sκ

x‖L∞(Ω)dτ

)

≤ C‖ϕ‖L∞(0,Te;H2(Ω)). (4.48)

Combination of (4.39) – (4.48) and using the Sovolev embedding theorem yield
∣

∣

∣

∣

∣

((
∫ Sκ

x

0
|y|δdy

)

t

, ϕ

)

QTe

∣

∣

∣

∣

∣

≤ C
(

‖ϕ‖L∞(0,Te;H2

0
(Ω)) + ‖ϕ‖L∞(QTe )

+ ‖ϕ‖L4(0,Te;L4(Ω))

)

≤ C‖ϕ‖L∞(0,Te;H2

0
(Ω)) , (4.49)

which implies (4.35) and we complete the proof.
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5 Existence of solutions to the phase field model

We shall use in this section the a priori estimates established in the previous section to
study the convergence of (uκ, Sκ) as κ → 0. We shall show that there is a subsequence,
which converges to a weak solution of the initial-boundary value problem (1.20) – (1.23),
thereby proving Theorem 1.1.

Note first that the estimates in Corollary 4.1 and Lemma 4.2, the fact that Ω is bounded,
and Poincaré’s inequality imply

‖Sκ‖W 1,4/3(QTe )
≤ C , (5.1)

for a constant C independent of κ. Hence, we can select a sequence κn → 0 and a function
S ∈W 1,4/3(QTe), such that the sequence Sκn , which we again denote by Sκ, satisfies

‖Sκ − S‖L4/3(QTe )
→ 0, Sκ

x ⇀ Sx , Sκ
t ⇀ St , (5.2)

where the weak convergence is in L4/3(QTe) .
As usual, since equation (3.3) is nonlinear, the weak convergence of Sκ

x is not enough
to prove that the limit function solves this equation. In the following lemma we therefore
show that Sκ

x converges pointwise almost everywhere:

Lemma 5.1 There exists a subsequence of Sκ
x , we still denote it by Sκ

x , such that

Sκ
x → Sx, a.e. in QTe , (5.3)

|Sκ
x |κ → |Sx|, a.e. in QTe , (5.4)

|Sκ
x |κ ⇀ |Sx|, weakly in L

4

3 (QTe), (5.5)
∫ Sκ

x

0
|y|dy →

1

2
Sx|Sx|, strongly in L

4

3 (0, Te;L
2(Ω)), (5.6)

∫ Sκ
x

0
|y|κdy →

1

2
Sx|Sx|, strongly in L

4

3 (0, Te;L
2(Ω)), (5.7)

as κ→ 0.

The proof is based on the following two results:

Theorem 5.1 Let B0 be a normed linear space imbedded compactly into another normed
linear space B which is continuously imbedded into a Hausdorff locally convex space
B1. Assume that 1 ≤ p < +∞, that v, vi ∈ Lp(0, Te;B0) for all i ∈ IN, that the se-
quence {vi}i∈IN converges weakly to v in Lp(0, Te;B0) and that {∂vi

∂t }i∈IN is bounded in
L1(0, Te;B1). Then vi converges to v strongly in Lp(0, Te;B).

Lemma 5.2 Let (0, Te) × Ω be an open set in R
+ × R

n and assume that 1 < q < ∞.
Suppose that the functions gn, g ∈ Lq((0, Te)× Ω) satisfy

‖gn‖Lq((0,Te)×Ω) ≤ C, gn → g almost everywhere in (0, Te)× Ω.

Then gn converges to g weakly in Lq((0, Te)× Ω).
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Theorem 5.1 is a general version of Aubin-Lions lemma valid under the weak assumption
∂tvi ∈ L1(0, Te;B1). This version, which we need here, is proved in Simon [25] and in
Roub́ıcěk [24]. A proof of Lemma 5.2 can be found in [21, p.12].

Proof of Lemma 5.1: We choose p = 4
3 and

B0 =W 1, 4
3 (Ω), B = L2(Ω), B1 = H−2(Ω).

These spaces satisfy the assumptions of the theorem. Since the estimates (4.18), (4.20)

and (4.33) imply that the sequence
∫ Sκ

x
0 |y|dy is uniformly bounded in Lp(0, Te;B0) for

κ → 0 and
(

∫ Sκ
x

0 |y|dy
)

t
is uniformly bounded in L1(0, Te;B1), it follows from Theo-

rem 3.1 that there is a subsequence, still denoted by
∫ Sκ

x

0 |y|dy, which converges strongly

in Lp(0, Te;B) = L
4

3 (0, Te;L
2(Ω)) to a limit function G ∈ L

4

3 (0, Te;L
2(Ω)). Conse-

quently, from this sequence we can select another subsequence, denoted in the same
way, which converges almost everywhere in QTe . Using that the mapping y 7→ f(y) :=
∫ y
0 |ξ|dξ = 1

2y|y| has a continuous inverse f−1 : R → R, we infer that also the sequence

Sκ
x = f−1

(

∫ Sκ
x

0 |y|dy
)

converges pointwisely almost everywhere to f−1(G) in QTe . From

the uniqueness of the weak limit we conclude that f−1(G) = Sx almost everywhere in
QTe .

For the proof of (5.7) we write

∫ Sκ
x

0
|y|κdy =

∫ Sκ
x

0
|y|dy +

∫ Sκ
x

0
(|y|κ − |y|)dy = I1 + I2.

It is easy to estimate I2 as ‖I2‖L2(QTe )
≤ ‖κSκ

x‖L2(QTe )
≤ Cκ‖Sκ

x‖L∞(0,Te;L2(Ω)) ≤ Cκ→

0. Therefore,
∫ Sκ

x
0 |y|κdy → limκ→0 I1 = 1

2 |Sx|Sx strongly in L
4

3 (0, Te;L
2(Ω). This is

(5.7).
To prove (5.5) we note that the estimate |Sκ

x |κ ≤ |Sκ
x | + κ and the inequality (5.1)

together imply that the sequence |Sκ
x |κ is uniformly bounded in L

4

3 (QTe). Thus, (5.5) is
a consequence of (5.4) and Lemma 5.2.

Proof of Theorem 1.1: Define the function u by inserting S into (3.9) where S is the limit
function of the sequence Sκ. We shall prove that (u, S) is a weak solution of problem
(1.20) – (1.23).

Remember first that by Lemma 4.1 we have S ∈ L∞(QTe). From this relation, from
the above definition of u we immediately see that u satisfies (1.25). Observe next that
‖Sκ‖L∞(0,Te;H1

0
(Ω)) ≤ C, by Lemma 4.1 and Sobolev’s embedding theorem. This implies

S ∈ L∞(0, Te;H
1
0 (Ω)), since we can select a subsequence of Sκ which converges weakly

to S in this space. Thus, S satisfies (1.26).
Noting that from (3.1) and (5.2)

‖χκ ∗ S
κ − S‖

L
4
3 (QTe )

≤ ‖χκ ∗ (S
κ − S)‖

L
4
3 (QTe )

+ ‖(S − χκ ∗ S)‖
L

4
3 (QTe )

≤ ‖(S − χκ ∗ S)‖
L

4
3 (QTe )

+ ‖Sκ − S‖
L

4
3 (QTe )

→ 0, (5.8)

for κ → 0, we conclude easily that the function u defined in this way satisfy wealkly
equation (1.20). It is thus enough to prove that the equation (1.20) – (1.21) are fulfilled
in the weak sense. By definition, these equation are satisfied in the weak sense if the
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relation (1.27) holds. To verify (1.27) we use that by construction Sκ solves (3.3). Now
we multiply equation (3.3) by a test function ϕ ∈ C∞

0 ((−∞, Te) × Ω) and integrate the
resulting equation over QTe , then obtain

0 = (Sκ
t , ϕ)QTe

+ (−c ν|Sκ
x |κS

κ
xx + Fκ(|Sκ

x |κ − κ), ϕ)QT

= −(Sκ
0 , ϕ(0))Ω − (Sκ, ϕt)QTe

+

(

c ν

∫ Sκ
x

0
|y|κdy, ϕx

)

QTe

+(Fκ(|Sκ
x |κ − κ), ϕ)QT

.

Equation (1.27) follows from this relation if we show that

(Sκ
0 , ϕ(0))Ω → (S0, ϕ(0))Ω, (5.9)

(Sκ, ϕt)QTe
→ (S,ϕt)QTe

, (5.10)

(
∫ Sκ

x

0
|y|κdy, ϕx

)

QTe

→

(

1

2
|Sx|Sx, ϕx

)

QTe

, (5.11)

(Fκ(|Sκ
x |κ − κ), ϕ)QTe

→ (F , ϕ)QTe
, (5.12)

for κ → 0. Now, the relation (5.9) follows from (4.2), and the relation (5.10) is a
consequence of (5.2). By (5.7), one has (5.11).

To verify (5.12) we note that (5.8), (4.23) and the definition of Fκ yield

‖Fκ(|Sκ
x |κ − κ)‖

L
4
3 (QTe )

≤ C, (5.13)

Fκ(|Sκ
x |κ − κ) → F|Sx|, almost everywhere. (5.14)

Then by Lemma 5.2,
Fκ(|Sκ

x |κ − κ)⇀ F|Sκ
x |,

weakly in L
4

3 (QTe), which implies (5.12). Consequently (1.27) holds.
It remains to prove that the solution has the regularity properties stated in (1.28)

and (1.29). The relation St ∈ L
4

3 (QTe) is implied by (5.2). To verify the second assertion
in (1.28), we use estimate (4.23) to get

∫ Te

0
‖Sκ

x‖
8

3

L∞(Ω)dt ≤ C.

This inequality and Sκ
x ⇀ Sx in L

8

3 (0, Te;L
∞(Ω)) imply Sx ∈ L

8

3 (0, Te;L
∞(Ω)).

To prove (1.29), we recall that
∫ Sκ

x

0 |y|κdy converges to |Sx|Sx strongly in the space

L
4

3 (0, Te;L
2(Ω)) ⊂ L

4

3 (QTe) and that
(

∫ Sκ
x

0 |y|κdy
)

x
is uniformly bounded in L

4

3 (QTe)

for κ → 0, by (4.18). This together implies that (|Sx|Sx)x ∈ L
4

3 (QTe). Finally, to prove

the second assertion of (1.29) we choose a test function ϕ ∈ L4(0, Te,W
1,4
0 (Ω)), multiply

equation (3.3) by −ϕx and integrate the resulting equation over QTe to obtain

0 = (Sκ
t −Rκ,−ϕx)QTe

= (Sκ
xt, ϕ)QTe

+ (Rκ, ϕx)QTe
, (5.15)

with Rκ defined in (4.37). Invoking the estimates (4.5) and (4.23) we deduce that

‖Rκ‖
L

4
3 (QTe )

≤ C,
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hence equation (5.15) yields

(Sκ
xt, ϕ)QTe

≤ ‖Rκ‖
L

4
3 (QTe )

‖ϕx‖L4(QTe )
≤ C‖ϕ‖L4(0,Te;W

1,4
0

(Ω)) ,

and this means that Sκ
xt is uniformly bounded in L

4

3 (0, Te;W
−1, 4

3 (Ω)). From this estimate

and from Sκ
t ⇀ St in L

4

3 (QTe) we deduce easily that Sxt belongs to the dual space of

L4(0, Te;W
1,4
0 (Ω)), which is L

4

3 (0, Te;W
−1, 4

3 (Ω)).
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