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DISPERSION FOR THE SCHRÖDINGER EQUATION ON

NETWORKS

VALERIA BANICA AND LIVIU I. IGNAT

Abstract. In this paper we consider the Schrödinger equation on a network
formed by a tree with the last generation of edges formed by infinite strips. We
give an explicit description of the solution of the linear Schrödinger equation
with constant coefficients. This allows us to prove dispersive estimates, which
in turn are useful for solving the nonlinear Schrödinger equation. The proof
extends also to the laminar case of positive step-function coefficients having a

finite number of discontinuities.

1. Introduction

Let us first consider the linear Schrödinger equation (LSE) on R:

(1)

{

iut + uxx = 0, x ∈ R, t ∈ R,

u(0, x) = u0(x), x ∈ R.

The linear semigroup eit∆ has two important properties, that can be easily seen
via the Fourier transform. First, the conservation of the L2-norm:

(2) ‖eit∆u0‖L2(R) = ‖u0‖L2(R)

and a dispersive estimate of the form:

(3) ‖eit∆u0‖L∞(R) ≤
C
√

|t|
‖u0‖L1(R), t 6= 0.

From these two inequalities, by using the classical TT ∗ argument, space-time esti-
mates follow, known as Strichartz estimates ([29],[16]):

(4) ‖eit∆u0‖Lq
t (R, L

r
x(R))

≤ C‖u0‖L2(R),

where (q, r) are so-called admissible pairs:

(5)
2

q
+

1

r
=

1

2
, 2 ≤ q, r ≤ ∞.

These dispersive estimates have been successfully applied to obtain well-posedness
results for the nonlinear Schrödinger equation (see [10], [30] and the reference
therein).

In this article we prove the dispersion inequality for the linear Schrödinger op-
erator defined on a tree (bounded, connected graph without closed paths) with
the external edges infinite. We assume that the tree does not contain vertices of
multiplicity two, since they are irrelevant for our model. Let us notice that in this
context we cannot use Fourier analysis as done on R for getting the dispersion
inequality.

The presentation of the Laplace operator will be given in full details in the next
section. Let us just say here that the Laplacian operator ∆Γ acts as the usual
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Laplacian on R on each edge, and that at vertices the Kirchhoff conditions must
be fulfilled: continuity condition for the functions on the graph and transmission
condition at the level of their first derivative. So our analysis will be a 1-D ramified
analysis. More general coupling conditions are discussed in Section 5.

In [18] the second author proved the same result in the case of regular trees.
This means some restrictions on the shape of the trees: all the vertices of the
same generation have the same number of descendants and all the edges of the
same generation are of the same length. These restrictions allow to define some
average functions on the edges of the same generation and to analyze some 1-D
laminar Schrödinger equation (depending on the shape of the tree), where dispersion
estimates were available from the first author’s paper [3]. The strategy used in [18]
cannot be applied in the case of a general tree and the scope of this article is to
extend the class of trees where the dispersion estimate holds. In the case of a graph
with a closed path, in general there exist compact supported eigenfunctions for the
considered Laplace operator and then the dispersion estimate fails.

The motivation for studying thin structures comes from mesoscopic physics and
nanotechnology. Mesoscopic systems are those that have some dimensions which
are too small to be treated using classical physics while they are too large to be
considered on the quantum level only. The quantum wires are physical systems
with two dimensions reduced to a few nanometers. We refer to [23] and references
therein for more details on such type of structures.

The simplest model describing conduction in quantum wires is a Hamiltonian on
a planar graph, i.e. a one-dimensional object. Throughtout the paper we consider a
class of idealized quantum wires, where the configuration space is a planar graph and
the Hamiltonian is minus the Laplacian with Kirchhoff’s boundary conditions at
the vertices of the graph. This condition makes the Hamiltonian to be a self-adjoint
operator. More general coupling conditions that guarantee the self-adjointness are
given in [20].

The problems addressed here enter in the framework of metric graphs or net-
works. Those are metric spaces which can be written as the union of finitely many
intervals, which are compact or [0,∞) and any two of these intervals are either dis-
joint or intersect only in one or both of their endpoints. Differential operators on
metric graphs arise in a variety of applications. We mention some of them: carbon
nano-structures [26], photonic crystals [14], high-temperature granular supercon-
ductors [1], quantum waveguides [8], free-electron theory of conjugated molecules
in chemistry, quantum chaos, etc. For more details we refer the reader to review
papers [23], [24], [17] and [13].

The linear and cubic Schrödinger equation on simple networks with Kirchhoff
connection conditions and particular type of data has been analyzed in [9]. The
symmetry imposed on the initial data and the shape of the networks allow to reduce
the problem to a Schrödinger equation on the half-line with appropriate boundary
conditions, for which a detailed study is done by inverse scattering. Some numeri-
cal experiments are also presented in [9]. The propagation of solitons for the cubic
Schrödinger equation on simple networks but with connection conditions in link
with the mass and energy conservation is analyzed in [28].

The main result is the following, where by {Ie}e∈E we shall denote the edges of
the tree.

Theorem 1.1. The solution of the linear Schrödinger equation on a tree is of the

form

(6) eit∆Γu0(x) =
∑

λ∈R

aλ
√

|t|

∫

Iλ

ei
φλ(x,y)

t u0(y) dy.
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with φλ(x, y) ∈ R, Iλ ∈ {Ie}e∈E,
∑

λ∈R
|aλ| < ∞, and it satisfies the dispersion

inequality

(7) ‖eit∆Γu0‖L∞(Γ) ≤
C
√

|t|
‖u0‖L1(Γ), t 6= 0.

The proof uses the method in [3] in an appropriate way related to the ramified
analysis on the tree, by recursion on the number of vertices. It consists in writing
the solution in terms of the resolvent of the Laplacian, which in turn is computed
in the framework of almost-periodic functions.

As mentioned before, Strichartz estimates (4) can be derived from the dispersion
inequality and have been used intensively to obtain well-posedness results for the
nonlinear Schrödinger equation (NSE). The arguments used in the context of NSE
on R can also be used here to obtain the following as a typical result.

Theorem 1.2. Let p ∈ (0, 4). For any u0 ∈ L2(Γ) there exists a unique solution

u ∈ C(R, L2(Γ)) ∩
⋂

(q,r)admissible

L
q
loc(R, L

r(Γ)),

of the nonlinear Schrödinger equation

(8)







iut +∆Γu± |u|pu = 0, t 6= 0,

u(0) = u0, t = 0.

Moreover, the L2(Γ)-norm of u is conserved along the time

‖u(t)‖L2(Γ) = ‖u0‖L2(Γ).

The proof is standard once the dispersion property is obtained and it follows as
in [10], p. 109, Theorem 4.6.1.

With the same method we obtain the same results in the case of the Laplacian
on the graph with laminar coefficients (piecewise constants, bounded between two
positive constants- the details on the laminar Laplacian are given in Section 3).
This might be of physical interest when the wire on a edge is composed of different
pieces. Equations with variable coefficients on networks have been previously ana-
lyzed in [4] for the heat equation and in [2] for the wave equations. For clearness
we prefer to treat separately the two cases even if the laminar case includes the
constant coefficient case.

The paper is organized as follows. In Section 2 we introduce the Laplacian on
a graph and write the systems we want to analyze. In Section 3 we present in full
details the proof of Theorem 1.1. Section 4 contains the proof of the results of
Theorem 1.1 in the laminar case. Some open problems are discussed in Section 5.

2. Notations and Preliminaries

In this section we present some generalities about metric graphs and introduce
the Laplace operator on such structure. Let Γ = (V,E) be a graph where V is a set
of vertices and E the set of edges. For each v ∈ V we denote Ev = {e ∈ E : v ∈ e}.
We assume that Γ is a countable connected locally finite graph, i.e. the degree of
each vertex v of Γ is finite: d(v) = |Ev| <∞. The edges could be of finite length and
then their ends are vertices of V or they have infinite length and then we assume
that each infinite edge is a ray with a single vertex belonging to V (see [25] for
more details on graphs with infinite edges).
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We fix an orientation of Γ and for each oriented edge e, we denote by I(e) the
initial vertex and by T (e) the terminal one. Of course in the case of infinite edges
we have only initial vertices.

We identify every edge e of Γ with an interval Ie, where Ie = [0, le] if the edge
is finite and Ie = [0,∞) if the edge is infinite. This identification introduces a
coordinate xe along the edge e. In this way Γ is a metric space and is often named
metric graph [25].

Let v be a vertex of V and e be an edge in Ev. We set for finite edges e

j(v, e) =







0 if v = I(e),

le if v = T (e)

and

j(v, e) = 0, if v = I(e)

for infinite edges.
We identify any function u on Γ with a collection {ue}e∈E of functions ue defined

on the edges e of Γ. Each ue can be considered as a function on the interval Ie.
In fact, we use the same notation ue for both the function on the edge e and the
function on the interval Ie identified with e. For a function u : Γ → C, u = {ue}e∈E ,
we denote by f(u) : Γ → C the family {f(ue)}e∈E , where f(ue) : e→ C.

A function u = {ue}e∈E it is continuous if and only if ue is continuous on Ie for
every e ∈ E, and moreover, is continuous at the vertices of Γ:

ue(j(v, e)) = ue
′

(j(v, e′)), ∀ e, e′ ∈ Ev.

The space Lp(Γ), 1 ≤ p < ∞ consists of all functions u = {ue}e∈E on Γ that
belong to Lp(Ie) for each edge e ∈ E and

‖u‖p
Lp(Γ) =

∑

e∈E

‖ue‖p
Lp(Ie)

<∞.

Similarly, the space L∞(Γ) consists of all functions that belong to L∞(Ie) for each
edge e ∈ E and

‖u‖L∞(Γ) = sup
e∈E

‖ue‖L∞(Ie) <∞.

The Sobolev space Hm(Γ), m ≥ 1 an integer, consists in all continuous functions
on Γ that belong to Hm(Ie) for each e ∈ E and

‖u‖2Hm(Γ) =
∑

e∈E

‖ue‖2Hm(e) <∞.

The above spaces are Hilbert spaces with the inner products

(u,v)L2(Γ) =
∑

e∈E

(ue, ve)L2(Ie) =
∑

e∈E

∫

Ie

ue(x)ve(x)dx

and

(u,v)Hm(Γ) =
∑

e∈E

(ue, ve)Hm(Ie) =
∑

e∈E

m
∑

k=0

∫

Ie

dkue

dxk
dkve

dxk
dx.

We now introduce the Laplace operator ∆Γ on the graph Γ. Even if it is a
standard procedure we prefer for the sake of completeness to follow [11]. Consider
the sesquilinear continuous form ϕ on H1(Γ) defined by

ϕ(u,v) = (ux,vx)L2(Γ) =
∑

e∈E

∫

Ie

uex(x)v
e
x(x)dx.
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We denote by D(∆Γ) the set of all the functions u ∈ H1(Γ) such that the linear
map v ∈ H1(Γ) → ϕu(v) = ϕ(u,v) satisfies

|ϕ(u,v)| ≤ C‖v‖L2(Γ) for all v ∈ H1(Γ).

For u ∈ D(∆Γ), we can extend ϕu to a linear continuous mapping on L2(Γ). There
is a unique element in L2(Γ) denoted by ∆Γu, such that,

ϕ(u,v) = −(∆Γu,v) for all v ∈ H1(Γ).

We now define the normal exterior derivative of a function u = {ue}e∈E at the
endpoints of the edges. For each e ∈ E and v an endpoint of e we consider the
normal derivative of the restriction of u to the edge e of Ev evaluated at i(v, e) to
be defined by:

∂ue

∂ne
(j(v, e)) =







−uex(0+) if j(v, e) = 0,

uex(le−) if j(v, e) = le.

With this notation it is easy to characterise D(∆Γ) (see [11]):

D(∆Γ) =
{

u = {ue}e∈E ∈ H2(Γ) :
∑

e∈Ev

∂ue

∂ne
(j(v, e)) = 0 for all v ∈ V

}

and

(∆Γu)
e = (ue)xx for all e ∈ E,u ∈ D(∆Γ).

In other words D(∆Γ) is the space of all continuous functions on Γ, u = {ue}e∈E ,
such that for every edge e ∈ E, ue ∈ H2(Ie), and satisfying the following Kirchhoff-
type condition:

∑

e∈E:T (e)=v

uex(le−)−
∑

e∈E:I(e)=v

uex(0+) = 0 for all v ∈ V.

It is easy to verify that (∆Γ, D(∆Γ)) is a linear, unbounded, self-adjoint, dissipative
operator on L2(Γ), i.e. ℜ(∆Γu,u)L2(Γ) ≤ 0 for all u ∈ D(∆Γ).

Let us consider the LSE on Γ:

(9)







iut(t, x) + ∆Γu(t, x) = 0, x ∈ Γ, t 6= 0,

u(0) = u0, x ∈ Γ.

Using the properties of the operator i∆Γ we obtain as a consequence of the
Hille-Yosida theorem the following well-posedness result.

Theorem 2.1. For any u0 ∈ D(∆Γ) there exists a unique solution u(t) of system
(9) that satisfies

u ∈ C(R, D(∆Γ)) ∩C1(R, L2(Γ)).

Moreover, for any u0 ∈ L2(Γ), there exists a unique solution u ∈ C(R, L2(Γ)) that

satisfies

‖u(t)‖L2(Γ) = ‖u0‖L2(Γ) for all t ∈ R.

The L2(Γ)-isometry property is a consequence of the fact that the operator i∆Γ

satisfies ℜ(i∆Γu,u)L2(Γ) = 0 for all u ∈ D(∆Γ).
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For any u0 ∈ D(∆Γ) system (9) can be written in an explicit way as follows:

(10)











































ue ∈ C(R, H2(Ie)) ∩ C1(R, L2(Ie)), e ∈ E,

iuet (t, x) + ∆ue(t, x) = 0, x ∈ Ie, t 6= 0,

for all v ∈ V, ue(t, j(v, e)) = ue
′

(t, j(v, e′)), ∀e, e′ ∈ Ev, t 6= 0,

∑

e∈E:T (e)=v

uex(t, le−)−
∑

e∈E:I(e)=v

uex(t, 0+) = 0 for all v ∈ V.

Let us now consider the laminar case. We consider σ a piecewise constant func-
tion on each edge of the tree such that there exist two positive constants σ1 and σ2
such that

0 < σ1 < σ(x) < σ2, ∀ x ∈ Ie, ∀e ∈ E.

With a similar argument as before we introduce the operator ∆σ,Γ as follows

D(∆σ,Γ) =
{

u = {ue}e∈E ∈ H2(Γ) :
∑

e∈Ev

σ(j(v, e))
∂ue

∂ne
(j(v, e)) = 0 for all v ∈ V

}

and

(∆σ,Γu)
e = ∂x(σ(·)∂x(ue)) for all e ∈ E,u ∈ D(∂x(σ∂x)).

It follows that for any u0 ∈ D(∆σ,Γ) the following system is well-posed
(11)










































ue ∈ C(R, H2(Ie)) ∩ C1(R, L2(Ie)), e ∈ E,

iuet (t, x) + ∂x(σ(x)∂xu
e)(t, x) = 0, x ∈ Ie, t 6= 0,

for all v ∈ V, ue(t, j(v, e)) = ue
′

(t, j(v, e′)), ∀e, e′ ∈ Ev, t 6= 0,

∑

e∈E:T (e)=v

σ(le−)uex(t, le−) =
∑

e∈E:I(e)=v

σ(0+)uex(t, 0+) for all v ∈ V.

We remark that when function σ is identically equal to one we obtain the previous
system (10).

3. The constant coefficient case

3.1. The description of the solution. For ω ≥ 0 let Rω be the resolvent of the
Laplacian on a tree

Rωf = (−∆Γ + ω2I)−1f .

We shall prove in Lemma 3.3 that ωRωf(x) can be analytically continued in
a region containing the imaginary axis. Therefore we can use a spectral calculus
argument to write the solution of the Schrödinger equation with initial data u0 as

(12) eit∆Γu0(x) =

∫ ∞

−∞

eitτ
2

τRiτu0(x)
dτ

π
.

We shall also obtain in Lemma 3.4 that the following decomposition holds

(13) τRiτu0(x) =
∑

λ∈R

bλe
iτψλ(x)

∫

Iλ

u0(y)e
iτβλydy,

with ψλ(x), βλ ∈ R, Iλ ∈ {Ie}e∈E and
∑

λ∈R
|bλ| < ∞. Then decomposition (6) is

implied by (12), (13) and the fact that for t > 0 and r ∈ R

∫ ∞

−∞

eitτ
2

eiτrdτ = ei
π
4
√
π
e−

r2

4t

√
t
.
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From (6) the dispersion estimate (7) of Theorem 1.1 follows immediately since
∑

λ∈R
|αλ| <∞.

Above and in what follows the integration of function f = (fe)e∈E on interval Ie
means the integral of fe on the considered interval.

Remark 3.1. As in [3] we notice that since we can express the solution of the wave

equation vtt −∆Γv = 0 with initial data (v0, 0) as

v(t, x) =

∫ ∞

−∞

eitτRiτv0(x)iτ
dτ

2π
,

the property

sup
x∈Γ

∫ ∞

−∞

|v(t, x)|dt ≤ C‖v0‖L1(Γ)

follows similarly. Let us mention here that the wellposedness of a class of non-

linear dispersive waves on trees, the Benjamin-Bona-Mahony equation, has been

investigated in [5].

3.2. Structure of the resolvent. In order to obtain the expression of the resol-
vent second-order equations

(Rωf)
′′ = ω2Rωf − f

must be solved on each edge of the tree together with coupling conditions at each
vertex. Then, on each edge parametrized by Ie,

Rωf(x) = ceωx + c̃e−ωx +
1

2ω

∫

Ie

f(y) e−ω|x−y|dy, x ∈ Ie.

Since Rωf belongs to L2(Γ) the coefficients c’s are zero on the infinite edges e ∈ E ,
parametrized by [0,∞). If we denote by I the set of internal edges, we have 2|I|+|E|
coefficients. The Kirchhoff conditions of continuity of Rωf and of transmission of
∂xRωf at the vertices of the tree give the system of equations on the coefficients.
We have the same number of equations as the number of unknowns. We denote DΓ

the matrix of the system, whose elements are real powers of eω.
Therefore the resolvent Rωf(x) is a finite sum of terms :

(14)

Rωf(x) =
1

ω detDΓ(ω)

N(Γ)
∑

λ=1

cλe
±ωΦλ(x)

∫

Iλ

f(y) e±ωydy +
1

2ω

∫

Ie

f(y) e−ω|x−y|dy,

where x ∈ Ie, Φλ(x) ∈ R, Iλ ∈ {Ie}e∈E and |N(Γ)| <∞. We shall prove the follow-
ing proposition that will imply Lemma 3.3 and 3.4 needed for obtaining Theorem
1.1.

Proposition 3.2. Function detDΓ(ω) is lower bounded by a positive constant on

a strip containing the imaginary axis:

∃cΓ, ǫΓ > 0, | detDΓ(ω)| > cΓ, ∀ω ∈ C, |ℜω| < ǫΓ.

Lemma 3.3. Function ωRωf(x) can be analytically continued in a region contain-

ing the imaginary axis.

Proof. The proof is an immediate consequence of decomposition (14) and of Propo-
sition 3.2. �

Lemma 3.4. The following decomposition holds

τRiτu0(x) =
∑

λ∈R

bλe
iτψλ(x)

∫

Iλ

u0(y)e
iτβλydy,

with ψλ(x), βλ ∈ R, Iλ ∈ {Ie}e∈E and
∑

β∈R
|bλ| <∞.
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Proof. We notice that for τ ∈ R, detDΓ(iτ) is a finite sum of powers of eiτ . Then,
by Proposition 3.2 we are in the framework of a classical theorem in representation
theory (§29, Cor.1 of [15]) that asserts that the inverse of detDΓ(iτ) is

∑

λ∈R
dλe

iτλ

with
∑

λ∈R
|dλ| <∞, and from (14) the Lemma follows. �

The rest of this section is the proof of Proposition 3.2. We shall show by recursion
on the number of vertices the following stronger “double” property:

P (n) : If Γ has n vertices, we have the property P ,

P : ∃cΓ, ǫΓ > 0, ∃0 < rΓ < 1, | detDΓ(ω)| > cΓ,

∣

∣

∣

∣

∣

det D̃Γ(ω)

detDΓ(ω)

∣

∣

∣

∣

∣

< rΓ, ∀ω ∈ C, |ℜω| < ǫΓ.

We have denoted by D̃Γ(ω) the matrix of the system verified by the coefficients, if
we impose that on one of the last infinite edges l ∈ E we replace in the expression
of the resolvent c̃e−ωx by ceωx.

3.3. Proof of P (1). In this case we have a star-shaped tree with m ≥ 3 of edges.
All the edges are parametrized by [0,∞). In particular DΓ(ω) = DΓ. We shall
actually prove a stronger property, which implies the property P for any ǫΓ > 0:

P (1,m) : If Γ has 1 vertex and m edges, detDΓ(ω) = m and det D̃Γ(ω) = m− 2.

The resolvent contains c̃je
−ωx, 1 ≤ j ≤ m, on each of the external edges. We

write matrix DΓm
such that the last line is coming from Kirchhoff derivative con-

dition, and that the other lines are coming from Kirchhoff continuity condition. So
matrix DΓm

can be written such that it has components 1 on the last line, and on
the principal diagonal, di,i+1 = −1 for 1 ≤ j ≤ m− 1, and zeros elsewhere

DΓm =

























1 −1
1 −1

. .

. .

. .

1 −1
1 −1

1 1 1 1 1 1 1 1

























.

By developement with respect to the last column and P (1,m− 1),

detDΓm = 1 + detDΓm−1 = m.

Similarly,

det D̃Γm =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1
1 −1

. .

. .

. .

1 −1
1 −1

1 1 1 1 1 1 1 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1 + det D̃Γm−1 = m− 2,

so P (1,m) is proven for any m ≥ 3 and implicitly P (1).
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v

v
~

c1e
-ωx∼

c2e
-ωx∼

c
3

e
-ωx∼

ce 
-ωx∼

+ce
ωx

l

v
~

c e
-ωx∼

Figure 1. With vertex v we obtain tree Γ4 (left) from Γ3 (right).

3.4. Proof of P (n− 1) ⇒ P (n). Any tree Γn with n vertices, n ≥ 2, can be seen
as a tree Γn−1 with n−1 vertices on which we add an extra-vertex. More precisely,
let us consider a vertex v from which there start m ≥ 2 external infinite edges and
one internal edge connecting it to the rest of the tree (see Fig. 1). Let us notice
that such a choice is possible since the graph has no cycles. In particular the edge
whose lower extremity is this vertex v is an internal edge l, whose length should be
denoted by a, and whose upper vertex we denote by ṽ. Now we remove this vertex
and transform the internal edge l into an external infinite one. The new graph Γn−1

has n− 1 vertices.
With respect to the problem on Γn−1, the resolvent on Γn involves a new term

ceωx aside from c̃e−ωx on the interval edge l, and on the external edges emerging
from the vertex v it involves terms c̃je

−ωx, 1 ≤ j ≤ m. We have also the Kirchhoff
conditions at the vertex v, which give m+ 1 equations on the coefficients.

We write the square N × N matrix DΓn
such that the last m + 2 column cor-

responds to the unknowns c̃, c, c̃1, ..., c̃m . On the last line we write the Kirchhoff
derivative condition at the vertex v, and on the N − j lines, 1 ≤ j ≤ m the Kirch-
hoff continuity conditions at the vertex v. Also, on the N −m − 1 line we write
the derivative condition in the vertex ṽ and on the N −m− 2 line the continuity
condition in ṽ relating c̃, and now also c, to the others coefficients. So DΓn

is a
matrix obtained from the (N −m − 1) × (N −m − 1) matrix DΓn−1 (whose last
column corresponds to the unknown c̃) and from DΓm (see previous subsection) in
the following way

(DΓn
)i,j =



















































(DΓn−1)i,j , 1 ≤ i, j ≤ N −m− 1,

−1, (i, j) ∈ {(N −m− 2, N −m), (N −m− 1, N −m), (N −m,N −m+ 1)},

eωa, (i, j) ∈ {(N −m,N −m), (N,N −m)},

e−ωa, (i, j) = (N −m,N −m− 1),

−e−ωa, (i, j) = (N,N −m− 1),

(DΓm)i,j , N −m+ 1 ≤ i, j ≤ N,
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DΓn
=













































DΓn−1

−1
−1

e−ωa eωa −1
1 −1

1 −1
. .

. .

. .

1 −1
1 −1

−e−ωa eωa 1 1 1 1 1 1 1 1













































.

In the case n = 1 we have that DΓ1 = DΓm̃ for some m̃ ≥ 3. Also, we emphasize

that with the above recursion, matrix D̃Γn
is obtained from DΓn

by replacing its
N ×N element with −1.

We develop detDΓn
with respect to the last m+1 lines, that is as an alternated

sum of determinants of m+ 1×m+ 1 minors composed from the last m+ 1 lines
of DΓn

times the determinant of DΓn
without the lines and columns the minor is

made of. The only possibility to obtain a m+1×m+1 minor composed from the
lastm+1 lines of DΓn

different from zero is to choose one of the columns N−m−1
and N −m, together with all last m columns. This follows from the fact that if we
eliminate from detDΓn

both columns N −m− 1 and N −m, together with m− 1
columns among the last m columns, we obtain a block-diagonal type matrix, with
first diagonal block DΓn−1 with its last column replaced by zeros, so its determinant
vanishes. Therefore

detDΓn
= detDΓn−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

eωa −1
1 −1

1 −1
. .

. .

. .

1 −1
1 −1

eωa 1 1 1 1 1 1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− det D̃Γn−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e−ωa −1
1 −1

1 −1
. .

. .

. .

1 −1
1 −1

−e−ωa 1 1 1 1 1 1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

By developing with respect to the first column the m+ 1×m+ 1 minors,

detDΓn
= detDΓn−1(e

ωa detDΓm + (−1)m+2eωa(−1)m)

− det D̃Γn−1(e
−ωa detDΓm − (−1)m+2e−ωa(−1)m),
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so using from the previous subsection that detDΓm = m, det D̃Γm(ω) = m− 2, we
find

detDΓn
(ω) = (m+ 1)eωa detDΓn−1(ω)− (m− 1)e−ωa det D̃Γn−1(ω)

= (m+ 1)eωa detDΓn−1(ω)

(

1− e−2ωam− 1

m+ 1

det D̃Γn−1(ω)

detDΓn−1(ω)

)

.

Now, from P (n− 1) we have for |ℜω| small enough

1− e−2ωam− 1

m+ 1

det D̃Γn−1(ω)

detDΓn−1(ω)
> c0 > 0.

Also, P (n−1) gives us the existence of two positive constants cΓn−1 and ǫΓn−1 such
that | detDΓn−1(ω)| > cΓn−1 , ∀ω ∈ C, |ℜω| < ǫΓn−1 , so eventually we get

∃cΓn
, ǫΓn

> 0, | detDΓn
(ω)| > cΓn

, ∀ω ∈ C, |ℜω| < ǫΓn
,

and the first part of property P is proved for P (n).
In a similar way we get

det D̃Γn
(ω) = (m− 1)eωa detDΓn−1(ω)− (m− 3)e−ωa det D̃Γn−1(ω),

so

det D̃Γn
(ω)

detDΓn
(ω)

=

m−1
m+1 − m−3

m+1e
−2ωa det D̃Γn−1

(ω)

detDΓn−1
(ω)

1− m−1
m+1e

−2ωa
det D̃Γn−1

(ω)

detDΓn−1
(ω)

.

Thus we also get the second part of P for P (n) since
∣

∣

∣

∣

∣

m−1
m+1 − m−3

m+1z

1− m−1
m+1z

∣

∣

∣

∣

∣

< 1 ⇐⇒ 0 < (m− 2)(|z|2 − 1) + 2(m− 1)(1−ℜz).

4. The laminar coefficient case

For ω ≥ 0 let Rω be the resolvent of the operator ∆σ,Γ defined in Section 2

Rωf = (−∆σ,Γ + ω2I)−1f .

We shall proceed as in the previous section, and the main point will be the proof
of Proposition 3.2 in the laminar coefficient case. On each side of the edge,
parametrized by x ∈ I ⊂ R, where the coefficient in the laminar Laplacian is
σ(x) = 1

b2
, the resolvent writes

Rωf(x) = ceωbx + c̃e−ωbx +
1

2ω

∫

I

f(y) e−ωb|x−y|dy, x ∈ I.

As in the previous section, and using the same notations, we shall show by recursion
on the number of vertices property P (n) which leads to the dispersion estimate.

4.1. Proof of P (1). We prove property P (1) on a star-shaped tree by recursion
on the number of discontinuities in the laminar structure:

P (1, p) : If Γ has 1 vertex and p discontinuities along its edges we have property P .

We denote by m ≥ 3 the number of edges.
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We start with P (1, 0). We denote by 1
b2
j

, 1 ≤ j ≤ m the coefficients of the laminar

Laplacian on each edge. The resolvent contains the terms c̃je
−ωbjx, 1 ≤ j ≤ m (and

cme
ωb3x on the last edge for the computation of D̃Γ) on each edge. We have

DΓm,0 =

























1 −1
1 −1

. .

. .

. .

1 −1
1 −1

1
b1

1
b2

1
b3

.. .. 1
bm−2

1
bm−1

1
bm

























.

By developing with respect to the last column,

detDΓm,0 =
1

bm
+ detDΓm−1,0 =

m
∑

j=1

1

bj
.

Similarly we obtain

det D̃Γm,0 =

m−1
∑

j=1

1

bj
− 1

bm
,

so the property P follows immediately.
Now we shall prove that P (1, p−1) implies P (1, p). Without loss of generality we

can suppose that on the last m-th edge of Γm,p there is at least one discontinuity.
We denote by xf the last discontinuity point on this edge, and by xi the previous
discontinuity if there is one, or xi = 0 otherwise. We denote a the length xf − xi,
by 1

b2
i

the coefficient of the laminar Laplacian on (xi, xf ) and by 1
b2
f

the coefficient

of the laminar Laplacian on (xf ,∞). We call Γm,p−1 the graph obtained from Γm,p

by removing the last discontinuity xf on the last edge, and we extend the laminar
Laplacian on it on [xf ,∞) by 1

b2
i

.

With respect to the problem on Γm,p−1, in the expression of the resolvent we
have on [xi, xf ] aside from the term c̃ie

−ωbix, the extra term cie
ωbix, and on [xf ,∞)

a term c̃fe
−ωbfx. Also, there are two connection conditions at the new discontinuity

point xf . We write the matrix DΓm,p such that the last three columns correspond
to the unknowns (c̃i, ci, c̃f ), the last two lines come from the connection condition
at xf , and the previous last two lines come from the connection condition at xi, if
xi is a discontinuity point, and from the Kirchhoff conditions concerning ci, c̃i if it
is the vertex.

We have

DΓm,p =



















DΓm,p−1

−eωbixi

− eωbixi

bi

e−ωbixf eωbixf −e−ωbfxf

− e
−ωbixf

bi

e
ωbixf

bi
− e

−ωbf xf

bf



















.

By developing with respect to the last two lines,

detDΓm,p = eωbixf e−ωbfxf

(

1

bf
+

1

bi

)

detDΓm,p−1−e−ωbixf e−ωbfxf

(

1

bf
− 1

bi

)

det D̃Γm,p−1

= eωbixf e−ωbfxf

(

1

bf
+

1

bi

)

detDΓm,p−1

(

1− e−2ωbixf

1
bf

− 1
bi

1
bf

+ 1
bi

det D̃Γm,p−1

detDΓm,p−1

)

.
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Therefore P (1, p− 1) implies the first part of property P (1, p). In a similar way we
compute

det D̃Γm,p = eωbixf eωbfxf

(

− 1

bf
+

1

bi

)

detDΓm,p−1−e−ωbixf eωbfxf

(

− 1

bf
− 1

bi

)

det D̃Γm,p−1 ,

so

det D̃Γm,p

detDΓm,p

= e2ωbfxf

− 1
bf

+ 1
bi

1
bf

+ 1
bi

+ e−2ωbixf
det D̃

Γm,p−1

detDΓm,p−1

1 + e−2ωbixf

− 1
bf

+ 1
bi

1
bf

+ 1
bi

e−2ωbixf
det D̃Γm,p−1

detD
Γm,p−1

,

and the second part of P (1, p) follows also from P (1, p− 1) by noticing that for a
real

∣

∣

∣

∣

a+ z

1 + az

∣

∣

∣

∣

< 1 ⇐⇒ 0 < (1 − a2)(1− |z|2).

In conclusion P (1) is proved.

4.2. Proof of P (n− 1) ⇒ P (n). Let us consider a vertex v from which there start
m ≥ 2 external infinite edges and one internal edge connecting it to the rest of the
graph. The proof of P (1, p− 1) ⇒ P (1, p), of eliminating discontinuities on infinite
edges also works for trees with n ≥ 1 vertices. So it is enough to prove P (n) for
a graph Γn with no discontinuities on the infinite edges emanating from vertex v.
We call 1

b2
j

, 1 ≤ j ≤ m the coefficients of the laminar Laplacian on the m edges

emerging from v. With the notations of the previous subsection and from §3.4 we
have

DΓn
=















































DΓn−1

−eωbixi

−−eωbixi

bi

e−ωbixf eωbixf −1
1 −1

...

...

...

1 −1
1 −1

− e
−ωbixf

bi

e
ωbixf

bi

1
b1

1
b2

... ... ... 1
bm−2

1
bm−1

1
bm















































.

By developing with respect to the first column the m+ 1×m+ 1 minors,

detDΓn
= detDΓn−1(e

ωbixf detDΓm + (−1)m+2 e
ωbixf

bi
(−1)m)

− det D̃Γn−1(e
−ωbixf detDΓm − (−1)m+2 e

−ωbixf

bi
(−1)m),

so using from the previous subsection the values of detDΓm and det D̃Γm ,

detDΓn
(ω) = eωbixf





m
∑

j=1

1

bj
+

1

bi



detDΓn−1 − e−ωbixf





m
∑

j=1

1

bj
− 1

bi



det D̃Γn−1

= eωbixf





m
∑

j=1

1

bj
+

1

bi



detDΓn−1

(

1− e−2ωbixf

∑m

j=1
1
bj

− 1
bi

∑m

j=1
1
bj

+ 1
bi

det D̃Γn−1

detDΓn−1

)

.
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Therefore, using P (n− 1) we get the first part of P (n). In a similar way we get

det D̃Γn
(ω) = eωbixf





m−1
∑

j=1

1

bj
− 1

bm
+

1

bi



 detDΓn−1−e−ωbixf





m−1
∑

j=1

1

bj
− 1

bm
− 1

bi



 det D̃Γn−1 ,

so

det D̃Γn

detDΓn

=

∑m−1
j=1

1
bj

− 1
bm

+ 1
bi∑

m
j=1

1
bj

+ 1
bi

− e−2ωbixf

∑m−1
j=1

1
bj

− 1
bm

− 1
bi∑

m
j=1

1
bj

+ 1
bi

det D̃Γn−1

detDΓn−1

1− e−2ωbixf

∑
m
j=1

1
bj

− 1
bi∑

m
j=1

1
bj

+ 1
bi

det D̃Γn−1

detDΓn−1

.

Since for a, b, c real
∣

∣

∣

∣

∣

a−b+c
a+b+c − a−b−c

a+b+cz

1− a+b−c
a+b+cz

∣

∣

∣

∣

∣

≤ 1 ⇐⇒ 0 < ab(ℑ2z + (ℜz − 1)2) + bc(1− |z|2),

the second part of P (n) follows, completing the proof in the laminar case.

5. Open Problems

In this paper we have analyzed the dispersive properties for the linear Schrödinger
equation on trees. We have assumed that the coupling is given by the classical
Kirchhoff’s conditions. However there are other coupling conditions (see [20]) which
allow to define a “Laplace” operator on a metric graph. To be more precise, let
us consider the operator H that acts on functions on the graph Γ as the second

derivative d2

dx2 , and its domain consists in all functions f that belong to the Sobolev

space H2(e) on each edge e of Γ and satisfy the following boundary condition at
the vertices:

(15) A(v)f(v) +B(v)f ′(v) = 0 for each vertex v.

Here f(v) and f ′(v) are correspondingly the vector of values of f at v attained from
directions of different edges converging at v and the vector of derivatives at v in the
outgoing directions. For each vertex v of the tree we assume that matrices A(v)
and B(v) are of size d(v) and satisfy the following two conditions

(1) the joint matrix (A(v), B(v)) has maximal rank, i.e. d(v),

(2) A(v)B(v)T = B(v)A(v)T .

Under those assumptions it has been proved in [20] that the considered operator,
denoted by ∆(A,B), is self-adjoint. The case considered in this paper, the Kirchhoff
coupling, corresponds to the matrices

A(v) =























1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

0 0 0
... 1 −1

0 0 0
... 0 0























, B(v) =



















0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 0
1 1 1 . . . 1 1



















.

More examples of matrices satisfying the above conditions are given in [20, 19].
The existence of the dispersive properties for the solutions of the Schrödinger on

a graph under general coupling conditions on the vertices iut + ∆Γ(A,B)u = 0 is
mainly an open problem. The resolvent formula obtained in [19] and [22] in terms
of the coupling matrices A and B might help to understand the general problem. In
the same papers there are also some combinatorial formulations of the resolvent in
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terms of walks on graphs. Such combinational aspects could clarify if the dispersion
is possible only on trees or there are graphs (with some of the edges infinite) with
suitable couplings where the dispersion is still true.

It is expected that other results on the Schrödinger equation on R are still valid
on networks. For instance, the smoothing estimate for the linear equation with
constant coefficients is still valid. Although its classical proof on R relies on Fourier
analysis, one may easily adapt the proof in [6] which uses only integrations by
parts and Besovs spaces that can still be defined on a tree using the heat operator.
Strichartz estimates has been used previously to treat controllability issues for
the NSE in [27]. The possible applications of the present results in the control
context remains to be analyzed. We mention here some previous works on the
controllability/stabilization of the wave equation on networks [12], [31].

Finally, another problem of interest is the study of the dispersion properties for
the magnetic operators analyzed in [23], [21]. The analysis in this case is more
difficult since in the presence of an external magnetic field the effect of the topol-
ogy of the graph becomes more pronounced. In contrast with the analysis done
here, in the case of magnetic operators the graphs are viewed as structures in the
three dimensional Euclidean space R3 and the orientation of the edges becomes
important.
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