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1 Introduction: nematic elastomers

Nematic elastomers are polymeric materials with embedded nematic meso-
gens. Their mechanical response is governed by the coupling of rubber elas-
ticity with the orientational order of a liquid crystalline system. Nematic
elastomers exhibit large spontaneous deformations, which can be triggered
and controlled by many different means (temperature, electric fields, irradi-
ation by UV light). These properties make them interesting as materials for
fast soft actuators and justify the considerable attention that they have at-
tracted in recent years. The reader is referred to the monograph by Warner
and Terentjev [24] for a thorough introduction to the physics of nematic
elastomers, and for an extensive list of references.

While commercial applications exploiting their properties are still lack-
ing, nematic elastomers are playing an important role as a model system for
the study of the mechanics of phase transforming materials. In these ma-
terials, because of the symmetries of the phase transformation underlying
their unusual mechanical properties, material instabilities are ubiquitous.
Seen from the point of view of hyperelasticity, this means that the energy
densities capable of reproducing the elastic response of phase transforming
materials lack the convexity properties necessary to guarantee material sta-
bility. On the other hand, recent advances in the Calculus of Variations
allow us to show that suitable convex envelopes of the energy densities (the
so called quasiconvex envelopes) may provide valuable insight on the me-
chanical response of these materials. These techniques have been applied
with considerable success in a variety of physical systems including nematic
elastomers, shape memory alloys, magnetostrictive or ferreolectric materials,
crystal plasticity (see [3] for a review). In this paper, we apply this approach
to nematic elastomers in the small strain regime (geometrically linear the-
ory), restricting our attention to plane strain conditions for simplicity.

The main accomplishments of this paper are the following. First, we
obtain a new explicit formula for the quasiconvex envelope of an anisotropic
energy density proposed to model nematic elastomers within the framework
of geometrically linear theories. As observed already in [4] and [15], the
use of anisotropic energies is crucial to avoid that imposed stretches may be
accommodated at zero stress (ideally soft response), and to obtain results
in agreement with the available experimental evidence (in particular, non
vanishing shear moduli in the natural state of the material, see [21]). The
use of quasiconvex envelopes to interpret mechanical tests is illustrated in
Section 4. There, we discuss in detail the implications of our results for the
understanding of experiments probing the mechanical response of nematic
elastomers. Considerable insight is gained thanks to the availability of ex-
plicit formulas for the relaxed energy. In particular, we are able to give a
simple characterization of stress-strain curves for specimens responding to
the applied loads through deformations that are macroscopically homoge-
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noeus, but are spatially modulated at small length scales by systems of shear
bands (usually called stripe domains in the nematic elastomer literature, see
[23, 16]).

In addition, we discuss the relationship between the energies and quasi-
convex envelopes of the geometrically linear theory with their counterparts
in the fully nonlinear theory. The availability of explicit formulas in both
regimes is a rather unique feature of nematic elastomers, and a fortunate
circumstance. We find that the insight deriving from the possibility of com-
paring them against each other, and with results from experimental evidence
is particularly enlightening.

While the geometrically linear theory has obvious limitations (see, e.g.,
[3]), it is a very valuable conceptual tool in the study of phase transforming
materials. It is simpler in many (though not all) respects, it is familiar to
larger groups of users, the resulting energy landscape has an easier geomet-
ric structure, rigorous mathematical results available for it (some of which
are first proved in this paper) are more complete. Most importantly, the
linear theory lends itself more easily to the exploration of model extensions
such as, for example, accounting for the effects of applied electric fields, in-
cluding curvature elasticity terms typical of liquid crystals, modeling rate
effects and viscous relaxation to equilibrium. All these are easily handled
by simply adding new terms in the governing energy and by introducing
appropriate dissipation potentials (see, e.g., [17]), while exploring deeply
nonlinear regimes may require more complex coupling schemes. In all these
extensions, the insight on energetically optimal states deriving from the ex-
plicit knowledge of the quasiconvex envelope of the elastic energy density
proves to be a very valuable tool.

The rest of the paper is organized as follows. In Section 2 we recall
some model energy densities for nematic elastomers, introduce the notion
of quasiconvex envelope, and illustrate it by comparing two corresponding
isotropic expressions arising from the geometrically linear and the fully non-
linear theory. In Section 3 we consider plane strain conditions, and discuss a
new formula for the quasiconvex envelope of an anisotropic energy density.
This formula is then applied in Section 4, where we simulate some of the
experiments used to probe the mechanical properties of nematic elastomers.

The paper is written in the language of Continuum Mechanics. We have
included also rigorous proofs of our results, which require some familiarity
with advanced tools from the Calculus of Variations. This more mathemat-
ical part is contained in two Appendices, which can be skipped by readers
wishing to concentrate only on the physical significance of our results and on
their implications on the mechanical response of nematic elastomers. Parts
of this material, such as the lamination construction contained in Proposi-
tion 4 of Section 6, are however very useful to gain a deeper understanding
of the material instabilities which make the mechanical response of nematic
elastomers so interesting.
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2 Energies and their quasiconvex envelopes

Following [15], we are interested in three model expressions for the energy
density of a nematic elastomer in the small strain regime (geometrically
linear theory). The first one is

Φ̃(E,n) = µ|Ed −E0(n)|2 +
1
2
κ(tr E)2 , (1)

where Ed = E− 1
3tr (E)I is the deviatoric part of the infinitesimal strain E,

E0(n) =
3
2
γ
(
n⊗ n− 1

3
I
)

(2)

is the (spontaneous or) stress-free strain associated with the orientation n of
the nematic director (a unit vector field: we will emphasize this by writing
|n| = 1 or, equivalently, n ∈ S2). The positive scalars γ, µ, κ are material
parameters controlling the magnitude of the spontaneous strain, the shear
modulus, and the bulk modulus, respectively.

The second model expression is the incompressible version of (1), namely,

Φ(E,n) = µ|Ed −E0(n)|2 , if tr E = div u = 0 (3)

and Φ(E,n) = +∞ if tr E 6= 0. Finally the third one is a correction of (3)
obtained by adding an anisotropic term

Φβ(E,n) = Φ(E,n) + βµ|Ed −E0(e2)|2 , (4)

where β > 0 is a dimensionless parameter quantifying the strength of the
anisotropic correction and ei, i = 1, 2, 3 are the unit vectors of the canonical
orthonormal basis.

The three energies above arise as small strain limits of three correspond-
ing model expressions proposed by Warner, Terentjev, and coworkers to
model nematic elastomers in the large deformation regime [5, 23, 24]. They
can be justified either by Taylor expansion [15], or by Gamma-convergence
arguments [2]. In what follows, we will be mostly concerned with (3) and
(4), describing the incompressible case.

We now consider the smallest energy density achievable by a system
governed by energy (3) if it is allowed to freely adjust n, at fixed E. Setting

ϕ(E) := inf
n∈S2

Φ(E,n) , (5)

it is easy to show that

ϕ(E) = µ

[
(emax − γ)2 + (emid +

1
2
γ)2 + (emin +

1
2
γ)2

]
, if tr E = 0 (6)
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and ϕ(E) = +∞, if tr E 6= 0. Here emax ≥ emid ≥ emin are the ordered
eigenvalues of E (principal strains). Using that emax + emid + emin = 0 for
strains with finite energy, we can rewrite (6) in the following way

ϕ(E) =
3
2
µ

(
emin +

1
2
γ

)2

+
1
2
µ

(
emin + 2emax −

3
2
γ

)2

, if tr E = 0 . (7)

Next, we seek the smallest energy density achievable by the system if it
is allowed to develop microstructure (i.e., displacements that are spatially
modulated at small length scales) at fixed average strain E. This is given
by ϕqc(E), namely, the quasiconvex envelope ϕqc of ϕ evaluated at E. In
formulas,

ϕqc(E) := inf
w

1
|ω|

∫
ω
ϕ (E +∇w(x)) dx , (8)

where ω ⊂ R3 is an arbitrary (Lipschitz) domain (it can be shown that (8)
does not depend on shape and size of the test region ω), |ω| is its volume, and
w is an arbitrary perturbation (a Lipschitz-continuous displacement field
perturbing the affine state with strain E) vanishing on ∂ω and such that
div w = tr∇w = 0. In writing (8), and throughout the paper, the trivial
extension of ϕ to non-symmetric matrices, defined by ϕex(A) = ϕ(symA)
for every matrix A, where symA = (A + AT )/2, is denoted simply by ϕ.

Stable materials are characterized by ϕqc ≡ ϕ. If, for some E, ϕqc(E) <
ϕ(E), then the state of homogeneous deformation E is unstable: the material
shows an energetic preference to develop spatially modulated deformations
(typically, shear bands) at fixed average deformation E. This is the case for
nematic elastomers.

An explicit formula for the quasiconvex envelope of ϕ has been obtained
in [7], see Section 5. According to this formula, ϕqc(E) = +∞, if tr E 6= 0
while, if tr E = 0, we have

ϕqc(E) =


0 if − emin ≤ γ

2 ,

ϕ(E) if emax ≥ −1
2emin + 3

4γ
3
2µ
(
emin + 1

2γ
)2 else.

(9)

Formula (9) above provides the small strain counterpart of the relax-
ation result in [14]. The most basic formula for the analysis of the large
deformation regime is the isotropic energy density

W (F) =
1
2
µa1/3

(
λ2

min + λ2
mid +

1
a
λ2

max − 3a−1/3

)
, if det F = 1 (10)

and W (F) = +∞, if det F 6= 1. Here F is the deformation gradient, λmax ≥
λmid ≥ λmin are the ordered singular values of F (principal stretches), and
a > 1 a material parameter controlling the magnitude of the spontaneous
stretches. This is obtained from the celebrated trace formula proposed in [5]
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by a change of reference configuration and by minimizing over the nematic
degrees of freedom, as first shown in [12]. An equivalent expression for (10)
is

W (F) =
1
2
µtr

(
BB−1

0 (n)
)
, if det F = 1 (11)

where B = FFT ,

B0(n) = (V0(n))2 =
(
a1/3n⊗ n + a−1/6(I− n⊗ n)

)2
, (12)

and I is the identity, see [15, 13]. The instructive comparison between (3)
and (11) shows that they both express an energetic penalty for deformations
relative to a preferred one associated with n. This relative deformation
measure is obtained through the composition with an inverse in the nonlinear
theory, through a difference in the case of linear kinematics. The quasiconvex
envelope of W is W qc(F) = +∞, if det F 6= 1 while, for det F = 1 it is given
by the formula

W qc(F) =


0 if 1/λmin ≤ a1/6

W (F) if λmax ≥ a1/4( 1
λmin

)1/2

1
2µa

1/3
(

2
a1/2λmin

+ λ2
min − 3a−1/3

)
else.

(13)
The energies described above are plotted in figures 1 and 2, together with

their quasiconvex envelopes. The only zero of W in the (λmax, λ
−1
min)-plane

is (a1/3, a1/6). The only zero of ϕ in the (emax,−emin)-plane is (γ, γ/2).
The graphs show that the geometrically linear theory provides a faithful
representation of the energy landscape, provided that all the deformations
involved are small. This requires, in particular, that a1/3 = 1 + γ, γ << 1.

3 Plane strain conditions

We consider now the case of plane strain, with the director moving in the
plane of strain. In formulas,

n ∈ S1 = {n ∈ span{e1, e2}, |n| = 1} (14)
E33 = −γ

2 , E13 = E23 = 0 (15)
tr E = 0 (16)

We can then parametrize E as follows

E = E0(e2) +

 ∆E
0
0

0 0 0

 , (17)
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Figure 1: Level curves of the energy density (10) and of its quasiconvex
envelope (13) (fully nonlinear theory).
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Figure 2: Level curves of the energy density (7) and of its quasiconvex
envelope (9) (geometrically linear theory).
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where ∆E is a 2× 2 symmetric and traceless matrix. More explicitly,

E = E0(e2) +
3
2
γ

 ε δ 0
δ −ε 0
0 0 0

 =
3
2
γ

 ε− 1/3 δ 0
δ 2/3− ε 0
0 0 −1/3

 ; (18)

notice that, for δ = 0, E goes from E0(e2) to E0(e1) as ε spans the interval
from 0 to 1.

In the plane strain conditions described by (15)–(16) one has that either
emin = −γ/2, emid = γ/2 − emax (this is when emax ≤ γ) or emid = −γ/2,
emin = γ/2− emax (this is when emax ≥ γ). We therefore have

ϕ(E) = inf
n∈S1

Φ(E,n) = 2µ(emax − γ)2 , if tr E = 0 (19)

and ϕ(E) = +∞, if tr E 6= 0. Moreover, we have

ϕβ(E) = inf
n∈S1

Φβ(E,n) = ϕ(E) + βµ|E−E0(e2)|2 , if tr E = 0 (20)

and ϕβ(E) = +∞, if tr E 6= 0.
It is useful to write the energies above as functions of the parameters ε

and δ appearing in (18). We observe that

emax(E(ε, δ)) =
3
2
γ

(
1
6

+ r(ε, δ)
)

(21)

where

r(ε, δ) :=

√
(ε− 1

2
)2 + δ2 (22)

is the distance of point (ε, δ) from (1/2, 0), and write

f(ε, δ) = ϕ(E(ε, δ)) =
9
2
µγ2

(
r(ε, δ)− 1

2

)2

, (23)

fβ(ε, δ) = ϕβ(E(ε, δ)) = f(ε, δ) +
9
2
βµγ2(ε2 + δ2) . (24)

We can compute explicit formulas for the quasiconvex envelope of these
two energy densities. The relaxation theorem proved in Section 6 shows that
ϕqcβ (E) = +∞, if tr E 6= 0, while if tr E = 0, then

ϕqcβ (E) =

{
ϕβ(E) if emax ≥ 1

4(1 + 3
1+β )γ

9
2βµγ

2
(
E11−E22

3γ + 1
2 −

1
4

β
1+β

)
else.

(25)

Equivalently,

ϕqcβ (E(ε, δ)) = f cβ(ε, δ) =

{
fβ(ε, δ) if ((ε− 1

2)2 + δ2)1/2 ≥ 1
2

1
1+β

9
2βµγ

2
(
ε− 1

4
β

1+β

)
else

(26)
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Figure 3: Level curves of the isotropic energy density ϕ in (ε,δ) plane, and
section at ε = 1/2.
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Figure 4: Level curves of the anisotropic energy density ϕβ in (ε,δ) plane,
and section at ε = 1/2.
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Figure 5: Level curves of the quasiconvex envelope of the isotropic energy
density ϕ in (ε,δ) plane, and section at δ = 0.

where f cβ is the convex envelope of fβ.
The isotropic case is obtained either from the result for the anisotropic

case, by setting β = 0, or by inserting the plane strain conditions (15)–(16)
in the general relaxation result (9). We thus have that, for tr E = 0,

ϕqc(E) =

{
2µ(emax − γ)2 if emax ≥ γ
0 else.

(27)

Equivalently,

ϕqc(E(ε, δ)) = f c(ε, δ) =

{
f(ε, δ) if ((ε− 1

2)2 + δ2)1/2 ≥ 1
2

0 else
(28)

where f cβ is the convex envelope of fβ.
Level set plots and sections of the energy landscape associated with the

energy densities introduced above are shown in figures 3–6. They provide a
deep and compact view of the behavior of a material governed by energies
(19) and (20), as shown in the next Section.

4 Application: discussion of some mechanical ex-
periments

We apply the results of the previous sections to study the behavior of a
specimen of size L × 1 tested in plane strain conditions. We start with a
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Figure 6: Level curves of the quasiconvex envelope of the anisotropic energy
density ϕβ in (ε,δ) plane, and section at δ = 0.

(laterally) unconstrained extension along e1: a pure shear in the language
of Treloar (notice that a uniaxial extension along e1 requires no confinement
also along x3; since this may be incompatible with plane strain conditions
we will not deal with this case here, and refer the reader to [9, 10] and [4]
for results on uniaxial extension in thin film geometries).

Using as reference configuration the stress-free strain corresponding to
n ≡ e2 (i.e., ε = δ = 0), we impose displacements u1(0, x2) ≡ 0, u1(L, x2) ≡
u on the vertical edges and leave the horizontal edges free (see Figure 4).
We look for homogeneously deformed states, with

ε = ε(u) =
2

3γ
u

L
(29)

and δ a constant to be determined. We use in all our calculations the
anisotropic expressions fβ and f cβ. The results for the isotropic case are
easily obtained by setting β = 0.

The energy (per unit thickness in the x3 direction) stored in the specimen
is L × fβ(ε(u), δ) and it is made stationary by equilibrium states. Solving
for δeq in

∂

∂δ
fβ(ε(u), δ)|δ=δeq = 0

we obtain δeq = 0 (this is a possible equilibrium for any value of ε) and,
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Figure 7: Geometry of plane-strain extension experiments. On the right,
geometry of localized shear band patterns.

provided that

ε−β :=
1
2

β

1 + β
< ε <

1
2

2 + β

1 + β
=: ε+

β (30)

we have in addition sheared equilibrium states with

δeq = ±δ = ±
√

(
1
2

1
1 + β

)2 − (ε− 1
2

)2 , ε−β < ε < ε+
β . (31)

Since

∂2

∂δ2
fβ(ε(u), δ)|δ=0 = 9µγ2(1 + β − 1

2
1

|ε− 1/2|
) < 0 for ε−β < ε < ε+

β , (32)

unsheared homogeneous states are unstable in the range ε−β < ε(u) < ε+
β .

By contrast, when available, sheared homogeneous states are always stable.
These results are easily checked by using the graphs of fβ and f shown in
figures 5 and 6.

If we provisionally assume that suitable constraints can keep the system
in the unstable unsheared equilibria, we can use conservation of energy to
evaluate the force per unit area, σ(u), exerted along e1 on the vertical edges.
From

σ(u) =
d

du
(Lfβ(ε(u), 0)) (33)
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Figure 8: Stress-strain response in plane strain extension: isotropic case.

we obtain

σ(u) =

 4µ(1 + β)
u

L
for u

L <
3
4γ

4µ(1 + β)
u

L
− 6µγ for u

L >
3
4γ .

(34)

The plot of σ against u/L provides the stress-strain response of the (un-
sheared) system in plane-strain extension, and it is shown in figures 8 and
9 (with dashed lines in the unstable regions). We now explore the impact
of material instabilities on the response of the system.

The availability of an explicit formula for the quasiconvex envelope of
the energy density enables us to explore another class of (macroscopically)
homogeneous and unsheared states, in which spatially modulated perturba-
tions are allowed at a macroscopic scale. Let u be the affine displacement
describing an unsheared state in the unstable region

u(x) = Fx , F =
3
2
γ

[
ε 0
0 −ε

]
, ε−β < ε < ε+

β . (35)

We perform a lamination construction to find a perturbation displacement
wh, modulated at a length scale of order 1/h, which lowers the energy of
the system while keeping the (macroscopic) average displacement gradient
equal to F. Using the formulas from Proposition 4 (with the caveat that,
since we are now using as reference configuration the one with ε = δ = 0,
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Figure 9: Stress-strain response in plane strain extension: anisotropic case.

E0(e2) drops out from all formulas), we set

∆E1 =
3
2
γ

[
ε δ

δ −ε

]
, ∆E2 =

3
2
γ

[
ε −δ
−δ −ε

]
, ∆W =

3
2
γ

[
0 δ

−δ 0

]
,

(36)
where δ is given in (31). Moreover, we set

F1 = ∆E1 + ∆W =
3
2
γ

[
ε 2δ
0 −ε

]
= F + 3γδ e1 ⊗ e2 , (37)

F2 = ∆E2 −∆W =
3
2
γ

[
ε −2δ
0 −ε

]
= F− 3γδ e1 ⊗ e2 . (38)

Since F2−F1 = 3γδe1⊗e2 is a rank-one matrix, Hadamard’s kinematic
compatibility condition is satisfied and we can construct a continuous dis-
placement u + wh whose gradient takes only the values F1 and F2. Indeed,
setting

wh(x) =
1
h

3γδe1

∫ hx·e2

0
χ(s)ds , (39)

where χ is the one-periodic function such that

χ(s) =
{

1 if s ∈ [0, 1/2]
−1 if s ∈ (1/2, 1)

we have
∇wh(x) = 3γδe1 ⊗ χ(hx · e2)e2 (40)
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and, in turn,

∇(u+wh) =
{

F1 = F + 3γδe1 ⊗ e2 in layers where x2 mod h ∈ [0, 1/2]
F2 = F− 3γδe1 ⊗ e2 in layers where x2 mod h ∈ (1/2, 1) .

This formula shows that u + wh has constant gradient in bands perpendic-
ular to e2 of thickness 1/2h, with alternating values F1 and F2. Moreover,
(40) shows that ∇wh takes opposite values ±3γδe1 ⊗ e2 on bands of equal
thickness, so that wu converges uniformly to zero as h tends to infinity, see
Figure 4. As a consequence, u + wh → u uniformly in the limit h→∞.

Moving now to energetics, observe that

ϕβ(F1) = ϕβ(F2) = ϕqcβ (F) = f cβ(ε, 0) . (41)

This is clear from the construction of ϕqcβ , but also from the graph of f cβ
in figure 6. Since ∇(u + wh) takes only the values F1 and F2, the energy
associated with u + wh is Lf cβ(ε(u), 0), independent of h. We can thus
attribute the same energy to the macroscopically homogeneous unsheared
state obtained in the limit h → ∞. Proceeding as in (33), the resulting
stress-strain curve is obtained from

σ(u) =
d

du

(
Lf cβ(ε(u), 0)

)
(42)

and plotted in figures 8 and 9 (with continuous lines). The curve in figure
9 shows the typical behavior observed in stretching experiments of nematic
elastomers, with a plateau reached after a finite stress threshold [24]. Figure
8 represents an ideally soft limit, in which the stress threshold has disap-
peared. The curves resulting from (41) can be obtained from those resulting
from (33) through Maxwell’s equal area construction. As it is well known,
this is precisely the result of passing from fβ in equation (33) to its convex
envelope f cβ in (42).

The fine scale modulations wh represent a system of elastic shear bands,
parallel to the direction of e1, and have been observed in stretching experi-
ments on nematic elastomers. This is the stripe-domain instability, first re-
ported in [18] and analyzed in [23]. As shown above, the homogeneously de-
formed, unsheared state is unstable towards formation of both global shears
and finely modulated shear bands. When a system of such fine scale shear
bands develops throughout the specimen, this can be (macroscopically) un-
sheared, and its stress-strain response would be the one shown in figures 8
and 9. It is important to recognize that there are other energetically optimal
microstructures, different from wh, but they lead to the same macroscopic
response at the level of stress-strain curves. For example, by replacing ∆W
in (36) with

∆W∗ =
3
2
γ

[
0 −δ
δ 0

]
,
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and setting

w∗h(x) =
1
h

3γδe2

∫ hx·e1

0
χ(s)ds ,

we can construct a perturbation displacement in the form of vertical shear
bands, as shown in Figure 4. The field u + w∗h resolves the macroscopic
gradient F using displacement gradients

F∗1,2 = F± 3γδ e2 ⊗ e1 ,

and it has exactly the same energy as u + wh. By multiplying wh and
w∗h with suitable cut-off functions one may create local patches with shear
bands oriented either horizontally or vertically, and even combine them to
generate complex textures. For all these complex geometries, the resulting
stress-strain response is still the one described by (42) and shown in figures
8 and 9.

Another important class of plane strain mechanical experiment is simple
shear. We consider a shearing experiment in which a specimen, which has
been previously stretched along e2 and is macroscopically unsheared as in
Figure 4, experiences an additional imposed displacement given by v1 ≡ 0,
v2(x1, x2) = x1v/L at x1 = 0, L, with v/L small. The analysis of the case
of simple shear with v2 ≡ 0 and v1(x1, x2) = x2v at x2 = 0, 1 is analogous.
Thanks to the availability of the explicit formula for ϕqcβ , we can estimate the
shear modulus also for stretched states which are not homogeneous at the
microscopic scale because of shear band texture. The relevant parameters
in this experiment are δ = δ(v) = (1/3γ)(v/L) and ε = ε(u). The shear
modulus is

Gβ(ε) =
1

9γ2

∂2

∂δ2
f cβ(ε(u), δ)|δ=0

and more explicitly, using (32),

Gβ(ε) =

{
0 if ε ∈ [ε−β , ε

+
β ]

µ
(

1 + β − 1
2

1
|ε−1/2|

)
> 0 otherwise

(43)

with initial value
G
‖
β := Gβ(0) = µβ . (44)

The last two equations show that stretching a specimen starting from
ε = 0 causes the shear modulus to decrease from its initial value (44) and
drop to zero at ε = ε−β , when the plateau in the stress-strain response is
reached. This has been observed experimentally in [20]. It is instructive to
compare the initial modulus (44) with the shear modulus G⊥β for shears in
the plane 13, perpendicular to the preferred orientation e2 of the nematic
director. This is easily obtained from (4) as

G⊥β = µ(1 + β)

18



so that the ratio between the two moduli is

G
‖
β

G⊥β
=

β

1 + β
.

Values for this ratio around 0.5 have been measured experimentally in [21],
and this requires values for β of order one.

More complex experiments are of course possible, in which non homo-
geneous states of deformation are induced. A key example is stretching
experiments in which clamps do not allow for lateral contraction. These
type of experiments are harder to interpret (and less suitable to the evalu-
ation of material parameters than the ones inducing homogeneous states of
deformation), but provide stringent tests for the validity of a model. Nu-
merical simulations taking correctly into account the energetics of systems
of energetically optimal microscopic shear bands, without resolving them
explicitly, can be set up by solving numerically the boundary value problem
simulating the relevant experiment using as energy density ϕqcβ , instead of ϕ
(see [9], [10]). These will be pursued in forthcoming work. Theorems 5 and
6 provide a rigorous mathematical proof of the legitimacy of such approach
in the case of the geometrically linear theory.

5 Appendix 1: Calculus of Variations tools

In this paper we deal with several notions of partial convexity of functions
defined on matrices. For this subject our main references are [11], [19].
We denote by Mn×n the set of n × n matrices and by Mn×n

0 the subset of
those with zero trace. We recall that f : Mn×n 7→ R ∪ {+∞} is rank-1
convex if f(sξ1 + (1 − s)ξ2) ≤ sf(ξ1) + (1 − s)f(ξ2) for every s ∈ [0, 1],
ξ1, ξ2 ∈M3×3 with rank(ξ1 − ξ2) ≤ 1. A function f : Mn×n 7→ R ∪ {+∞} is
said to be polyconvex, if there exists a convex function h such that f(F) =
h(M(F)), where M(F) is the vector of all the minors of F. The definition
of quasiconvexity [1] is given below.

Definition 1. A continuous function f : Mn×n 7→ R is quasiconvex if for
every ω open, bounded subset of Rn, A ∈ Mn×n, and w ∈ C1

o (ω,Rn), we
have

f(A) ≤ |ω|−1

∫
ω
f
(
A +∇w(y)

)
dy. (45)

We define the convex envelope of a function f as f c(ξ) := sup{g(ξ) :
g ≤ f, g convex}. In the same way we define the poly-, quasi- and rank-one-
convex envelopes, by requiring that the functions g in the definition above
enjoy the corresponding property of partial convexity. A characterization of
f rc, which is valid also for extended-valued functions and is given in (47)
below, plays a crucial role in our developments. We follow [11, Sect. 6.4]
and we start with some preliminary definitions (see [11, Sect. 5.2.5]).
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Definition. For any integer K, let us write

ΛK :=
{
λ = (λ1, . . . , λK) : λi ≥ 0,

K∑
i

λi = 1
}
. (46)

Consider λ ∈ ΛK and let ξi ∈ Mn×n, 1 ≤ i ≤ K. We say that {λi, ξi}Ki=1

satisfy (HK) if (by induction on the index i)

• when K = 2, then rank(ξ1 − ξ2) ≤ 1;

• when K > 2, then, up to a permutation, rank(ξ1 − ξ2) ≤ 1 and if, for
every 2 ≤ i ≤ K − 1, we define µ1 = λ1 + λ2 η1 =

λ1ξ1 + λ2ξ2

λ1 + λ2
µi = λi+1 ηi = ξi+1

then {µi, ηi}Ki=1 satisfy (HK−1).

For any f : Mn×n 7→ R ∪ {+∞} one can characterize f rc as [11, Thm 6.10]

f rc(ξ) = inf
{ K∑

i

λif(ξi) : λ ∈ ΛK ,
K∑
i

λiξi = ξ, {λi, ξi} satisfy (HK)
}
. (47)

If we restrict our attention to the case of real valued functions, the
following chain of inequalities follows by definition (see [11], page 265)

f c ≤ fpc ≤ f qc ≤ f rc. (48)

If f : Mn×n 7→ R ∪ {+∞} the inequality f qc ≤ f rc needs not hold.

Definition 2. Let F be a functional defined on H1(Ω,Rn). We define the re-
laxation F of F in the weak sequential (in brief, ws) topology of H1(Ω,Rn) as
the largest H1(Ω,Rn)-ws-lower-semicontinuous (in brief, H1(Ω,Rn)-wslsc)
functional below F :

F := sup{G : G is H1(Ω,Rn)-wslsc,G ≤ F}. (49)

We can now recall the main result in [7]. In what follows, for v ∈
H1(Ω,Rn) and Γ an open subset of ∂Ω with positive (n−1)-surface measure,
we denote by v + H1

Γ(Ω,Rn) the functions in the Sobolev space H1(Ω,Rn)
taking the value v on Γ (in the sense of traces).

Theorem 3. Let Ω ⊂ Rn (n = 2, 3) be an open, bounded, connected and
Lipschitz set and denote with Γ ⊆ ∂Ω an open subset with positive (n −
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1)-surface measure. Let f : Mn×n → [0,+∞) be a continuous function
satisfying

c1|symA|2 − c2 ≤ f(A), (50)

f(A) ≤ c3|symA|2 + c4, (51)
|f(A1)− f(A2)| ≤ c5(c6 + |symA1|+ |symA2|

) ∣∣symA1 − symA2

∣∣, (52)

for every A,A1,A2 ∈ Mn×n, where ci = ci(n), i = 1, . . . , 6 are positive
constants. Let κ ∈ N and define on H1(Ω,Rn)

Fκ(u) =
∫

Ω

[
f(∇u)+κ(div u)2

]
dx, F(u) =


∫

Ω
f(∇u)dx if div u = 0,

+∞ otherwise.

Then, we have
F = sup

κ∈N
Fκ,

and

F(u) =


∫

Ω
g(∇u)dx if div u = 0,

+∞ otherwise,

where
g(A) = sup

κ∈N

((
f(A) + κ(tr A)2

)qc)
.

Moreover, let v(x) ∈ H1(Ω,Rn) with div v = 0 a.e. in Ω and define Fv by
setting Fv = F on v +H1

Γ(Ω,Rn) and +∞ outside. Then the relaxation of
Fv is equal to F on v +H1

Γ(Ω,Rn) and +∞ outside. Finally, g satisfies the
following solenoidal quasiconvexification formula: for every A ∈Mn×n

0 ,

g(A) = inf
w∈A

{ 1
|ω|

∫
ω
g
(
A +∇w(y)

)
dy
}

(53)

where
A :=

{
w ∈ H1

0 (ω,Rn) : div w = 0
}

(54)

and ω is any open, bounded, connected and Lipschitz subset of Rn. Formula
(53) holds as well if we replace H1

0 (ω,Rn) in (54) by either W 1,∞
0 (ω,Rn) or

C∞c (ω,Rn).

Proof. The results above can be obtained by repeating the proof of [7, The-
orem 2] in the case n = 3. Moreover, the same proof holds for the case
n = 2 as well, since all the arguments and the technical propositions re-
quired are valid also for a domain in R2 and for two-dimensional vector
fields. The possibility of choosing different spaces of amissible perturbations
(54) is discussed in [7, Remark 6].
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6 Appendix 2: relaxation theorems

In this section, devoted to the proof of two relaxation theorems, we use
notation and tools introduced in Section 5. We always deal here with plane
strain conditions (14)–(16). Hence, we do not introduce new symbols for the
upper 2× 2 submatrices of the matrices E0(n) used in Section 3 and write

E0(e2) =
3
2
γ

[
−1/2 0

0 1/2

]
, E0(n) =

3
2
γ
(
n⊗ n− 1

2
I
)
. (55)

Given any matrix F ∈M2×2 we can uniquely decompose it as

F = E +
tr F

2
I + W (56)

where W = skwF = (F− FT )/2, and E can be parametrized by

E := (symF)d = E0(e2) + ∆E = E0(e2) +
3
2
γ

[
ε δ
δ −ε

]
(57)

with

ε = ε(F) =
1

3γ
(F11 − F22) +

1
2
, δ = δ(F) =

1
3γ

(F12 + F21) . (58)

With the aim of computing the quasiconvex envelope of ϕβ, given by
(20), we introduce the function hβ : M2×2 → [0,+∞) defined as

hβ(F) := ϕβ(E) + κ(tr F)2 = (59)

inf
n∈S1

µ(1 + β)
∣∣∣∆E + E0(e2)− 1

1 + β
E0(n)

∣∣∣2 +

+
9
2
βγ2µ

[
− β

4(1 + β)

]
− 2βµ∆E : E0(e2) + κ(tr F)2.

Here κ is a positive (and finite) constant and hβ is the compressible version
of ϕβ, trivially extended to nonsymmetric matrices. Being independent of
skwF, hβ can be written as a function of ε, δ, tr ∆F. Explicitly:

h̃β(ε, δ, tr ∆F) :=
9
2
µγ2

(
r(ε, δ)− 1

2

)2

+
9
2
βµγ2(ε2 + δ2) + κ(tr F)2 =

9
2
µγ2(1 + β)

(
r(ε, δ)− 1

2
1

1 + β

)2

+
9
2
µβγ2

(
ε− 1

4
β

1 + β

)
+ κ(tr F)2 , (60)

where r(ε, δ) is given by (22). Then, let us define

j̃β(ε, δ, tr F) :=

{
h̃β(ε, δ, tr F) if r(ε, δ) ≥ 1

2
1

1+β
9
2βµγ

2
(
ε− 1

4
β

1+β

)
+ κ(tr F)2 else

(61)
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and, finally,

jβ(∆F) := j̃β(ε(∆F), δ(∆F), tr ∆F). (62)

We remark that the first summand in (60) is proportional to the distance
of point (ε, δ) from the circle of center (1/2, 0) and radius 1

2
1

1+β . Thus, h̃β
(and hence hβ) in non-convex. On the other hand, the function

(ε, δ)→


(
r(ε, δ)− 1

2+2β

)2
if r(ε, δ) ≥ 1

2
1

1+β

0 else,

which is easy to recognize in the definition (61) of j̃β, is precisely the square
of the euclidean distance of the point (ε, δ) from the closed disk of center
(1/2, 0) and radius 1

2
1

1+β . Since the square of the distance from a convex

manifold is a convex function, it turns out that both j̃β and jβ are convex.
In fact, j̃β is the convex envelope of h̃β. In turn, jβ is the convex envelope
of hβ, which coincides with the quasiconvex envelope hqcβ . These facts are
proved in the next proposition.

Proposition 4. Let ∆F ∈ M2×2, hβ as in (59) and jβ as in (62). Then
hqcβ = hcβ = jβ.

Proof. To compute the quasiconvex envelope of hβ we show that(
hβ
)rc ≤ jβ ≤ (hβ)c ≤ (hβ)rc , (63)

which, together with (48), implies that (hβ)qc = (hβ)c = jβ The last inequal-
ity in (63) follows from (48). Then, a straightforward computation shows
that j̃β ≤ h̃β and hence jβ ≤ hβ. Therefore, the second inequality follows
since jβ is convex. We are only left with the proof of the first inequality in
(63), which requires an explicit construction.

First of all, if r(ε, δ) > 1
2

1
1+β , there is nothing to prove. Suppose then

r(ε, δ) =

√
(ε− 1

2
)2 + δ2 ≤ 1

2
1

1 + β
. (64)

In what follows we execute a lamination construction, in other words, we
exhibit two matrices F1, F2 with rank(F1 − F2) ≤ 1 and a real constant
ν ∈ [0, 1] such that

F = (1− ν)F1 + νF2

and jβ(F) = (1− ν)hβ(F1) + νhβ(F2). To this end, let us define

∆E1 =
3
2
γ

[
ε δ

δ −ε

]
, ∆E2 =

3
2
γ

[
ε −δ
−δ −ε

]
, (65)
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∆W =
3
2
γ

[
0 δ

−δ 0

]
, W̃ = W − (1− 2ν)∆W , (66)

where

δ :=

√(
1
2

1
1 + β

)2

−
(
ε− 1

2

)2

(67)

and

ν :=
1
2

(
1− δ

δ

)
. (68)

Notice that, in view of (64), ν ∈ [0, 1]. Moreover, δ = (1− ν)δ + ν(−δ) and
∆E = (1− ν)∆E1 + ν∆E2. Finally, let

F1 := E0(e2) + ∆E1 +
(tr F)

2
I + ∆W + W̃ , (69)

F2 := E0(e2) + ∆E2 +
(tr F)

2
I−∆W + W̃ . (70)

We observe that F = (1 − ν)F1 + νF2 and that rank(F1 − F2) ≤ 1. A
straightforward computation shows that

hβ(F1) = hβ(F2) =
9
2
µβγ2

(
ε− 1

4
β

1 + β

)
+ κ(tr F)2 = jβ(F).

Now, thanks to the representation formula (47), we have(
hβ
)rc(F) ≤ (1− ν)hβ(F1) + νhβ(F2) = jβ(F). (71)

This proves the claim.

6.1 Compressible elastomers

A direct application of Proposition 4 gives the relaxation result for the com-
pressible case.

Theorem 5. Let Ω ⊂ R2 be an open, bounded, connected and Lipschitz
set and denote with Γ ⊆ ∂Ω an open subset with positive measure. Let
hβ, jβ as in (59) and (62) respectively. Let v ∈ H1(Ω,R2) and, for every
u ∈ H1(Ω,R2), define

Hβ(u) :=
∫

Ω
hβ(∇u)dx, Jβ(u) :=

∫
Ω
jβ(∇u)dx, (72)

Hv
β(u) :=

{
Hβ(u) if u ∈ v +H1

Γ(Ω,R2) ,
+∞ otherwise

(73)
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Jv
β(u) :=

{
Jβ(u) if u ∈ v +H1

Γ(Ω,R2) ,
+∞ otherwise.

(74)

Then, the relaxation Hβ and Hv
β of Hβ and Hv

β are given by

Hβ = Jβ, Hv
β = Jv

β . (75)

Moreover,

inf
H1(Ω,R2)

Hv
β = min

H1(Ω,R2)
Jv
β . (76)

Proof. The results above are an application of well-known relaxation theo-
rems (see [1] and [6, Theorem 2.3 ]). The relaxation of Hβ (and of Hvo,∂ΩD

β )
coincides with the integral of the quasiconvex envelope of hβ. By Proposition
4, we have that (hβ)qc = jβ.

6.2 Incompressible elastomers

Theorem 6. Let Ω ⊂ R2 be an open, bounded, connected and Lipschitz set
and denote with Γ ⊆ ∂Ω an open subset with positive measure. Let hβ, jβ
as in (59) and (62), respectively, and Hβ, Jβ as in (72). Let v ∈ H1(Ω,R2)
with div v = 0. We define for every u ∈ H1(Ω,R2)

Hβ(u) :=
{

Hβ(u) if div u = 0,
+∞ otherwise

(77)

Hv
β(u) :=

{
Hv
β(u) if div u = 0,

+∞ otherwise
(78)

Jβ(u) :=
{

Jβ(u) if div u = 0,
+∞ otherwise

(79)

J v
β (u) :=

{
Jv
β(u) if div u = 0,
+∞ otherwise

(80)

Then, the relaxation Hβ and Hv
β of Hβ and Hv

β are given by

Hβ = Jβ, Hv
β = J v

β . (81)

Moreover,

inf
H1(Ω,R2)

Hv
β = min

H1(Ω,R2)
J v
β (82)
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and jβ satisfies the following solenoidal quasiconvexification formula: for
every A ∈M2×2

0 ,

jβ(A) = inf
w∈A

{ 1
|ω|

∫
ω
hβ
(
A +∇w

)
dx
}

(83)

where
A :=

{
w ∈ C∞c (ω,R2) : div w = 0

}
(84)

and ω ⊂ R2 is any open, bounded, connected and Lipschitz set. Formula
(83) holds as well if we replace H1

0 (ω,Rn) in (84) by either W 1,∞
0 (ω,Rn) or

C∞c (ω,Rn).

Proof. It is sufficient to apply Theorem 3 with n = 2. It is easy to check
that hβ satisfies (50 − 51). Moreover, recalling that the euclidean distance
is a Lipschitz function, (52) follows.

6.3 Summary

We summarize here some of the results of this Section, and recast them in
the notation of Section 3. Setting, for any A ∈M2×2,

ϕβ(A) =
{
hβ(A) if tr A = 0,
+∞ if tr A 6= 0

and

(ϕβ)qc(A) =
{
jβ(A) if tr A = 0,
+∞ if tr A 6= 0

we recover formulas (25)–(28).
We have also a formula for the quasiconvex envelope in the compressible

case. Setting, for any A ∈M2×2,

ϕ̃β(A) = µ|(symA)d−E0(n)|2 +βµ|(symA)d−E0(e2)|2 +
κ

2
(tr A)2 = hβ(A)

(85)
we have

(ϕ̃β)qc(A) = (ϕβ)qc(Ad) +
κ

2
(tr A)2 = jβ(A) . (86)

The reader is referred to [22] for results on compressible elastomers within
the fully nonlinear theory.
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