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Abstract. The main goal of this paper is a compactness result for families
of functions in the space SBV (Special functions of Bounded Variation)
defined on periodically perforated domains. Given an open and bounded
set Ω ⊆ Rn, and an open, connected, and (−1/2, 1/2)n-periodic set P ⊆ Rn,
consider for any ε > 0 the perforated domain Ωε := Ω ∩ εP . Let (uε) ⊂
SBV p(Ωε), p > 1, be such that

´

Ωε

|∇uε|p dx+Hn−1(Suε
∩Ωε)+‖uε‖Lp(Ωε)

is bounded. Then, we prove that, up to a subsequence, there exists u ∈
GSBV p ∩ Lp(Ω) satisfying limε ‖u− uε‖L1(Ωε) = 0.

Our analysis avoids the use of any extension procedure in SBV , weakens
the hypothesis on P to minimal ones and simplifies the proof of the re-
sults recently obtained in [18, 14]. Among the arguments we introduce, we
provide a localized version of the Poincaré-Wirtinger inequality in SBV .
As an application we study the asymptotic behavior of a brittle porous
material represented by the perforated domain Ωε.
Finally, we slightly extend the well known homogenization theorem for
Sobolev energies on perforated domains.
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1. Introduction

A new technique for the homogenization of Neumann problems in periodic perforated
domains in the class SBV is the main subject of this paper.

Such a problem arises in a variational model for brittle porous media, as recently studied
in [18]. The model is obtained as the homogenization limit of hyperelastic brittle bodies
Ωε whose material parts are the intersection of an open set Ω ⊆ R
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copy εP of a Q-periodic, connected, open set P ⊆ R
2. with Q = (−1/2, 1/2)2 denoting

the unit cube. The perforation is represented by R
2 \ εP .

In the case of antiplane shear, Ωε := Ω ∩ εP is a section of the reference configuration
of the cylindrical body Ωε × R. According to the weak formulation of Griffith’s theory of
brittle fracture introduced by Ambrosio and Braides [4], it is assumed that the (component
in the direction perpendicular to Ωε of the) displacement u belongs to the class SBV (Ωε)
of Special functions with Bounded Variation. By adopting this functional framework the
crack site is identified by the set Su of (approximate) discontinuities of u, which is an
H1 rectifiable set. The orientation of the crack is then described by the normal νu to
Su. Under suitable boundary conditions, the equilibrium configurations of the system are
reached by minimizing the sum of the elastic energy stored in the uncracked part of the
body, and the surface energy dissipated to enlarge the crack. To take into account possible
inhomogeneities and anisotropies of the material the total energy then takes the form:

Fε(u) :=

ˆ

Ωε

f
(x

ε
,∇u(x)

)

dx+

ˆ

Su∩Ωε

g
(x

ε
, νu(x)

)

dH1, (1.1)

where f : R
2 × R

2 → [0,+∞) and g : R
2 × S

1 → [0,+∞) are Carathéodory integrands,
Q-periodic in the first variable and satisfying suitable growth assumptions (see Section 4).

In this variational framework the asymptotic analysis as ε→ 0+ of the energies Fε can
be performed in terms of Γ-convergence (for its definition and basic properties we refer
to [8]). Indeed, when suitable boundary conditions are imposed, the minimizers of Fε

converge to those of the related minimum problem for the Γ-limit.
Due to the presence of the holes, a major difficult task that arises is to characterize the

domain of the possible Γ-limits, or better to study the compactness properties of families
(uε) with equibounded energies, i.e., supε Fε(uε) <∞.

From a mathematical point of view this question is interesting not only in the 2-
dimensional setting mentioned so far. Hence, in the following we turn to the more general
n-dimensional setting; relevant quantities are then supposed to be redefined accordingly.

Due to the assumptions on the densities f and g above (see Section 4 for the details)
the sequence (uε) is bounded in SBV p(Ωε), p ∈ (1,+∞), that is

sup
ε

(
ˆ

Ωε

|∇u(x)|pdx+ Hn−1(Su ∩ Ωε)

)

<∞.

With an additional bound on ‖uε‖L∞(Ωε), in [18] it has been proved that suitable L∞ ex-

tensions of uε to all of Ω converge (up to subsequences) in L1(Ω) to functions in SBV p(Ω).
The method introduced in [18] consists of two main steps: first, provide extensions (ũε)
having L1 limit u in BV (Ω), and then upgrade the regularity of the limit to SBV p(Ω).
This upgrade is achieved in dimension two via a careful truncation argument (see [18,
Lemma 4.2 and Theorem 4.1] and the comments before Proposition 2), and it is obtained
in higher dimensions thanks to a slicing technique. The previous approach can be car-
ried out only under the restriction Q \ P ⊂⊂ Q, i.e., the reference hole Q \ P is far from
the boundary of Q. Indeed, the idea in [18] is to perform in an annulus around each
perforation a careful truncation so that the truncated function vε has on such annuli os-
cillation controlled in terms of the Lp norm of ∇uε (see [18, Subsection 4.2]). In view of
this Poincaré-Wirtinger type inequality, an SBV p extension ṽε of vε to the whole Ω, with
controlled energies, is obtained by means of a standard cut-off technique. Finally, the
compactness criterion in SBV p implies that (ṽε) still converges to u and u ∈ SBV p(Ω).
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Such result has been subsequently proved in [14] under the only assumption that P is
connected and Lipschitz by using a different technique: the construction of a family of
equibounded extension operators from SBV p(Ωε) to SBV p(Ω) (see [14, Theorem 1.3]).
The construction is carried out first by extending uε in a small neighborhood of Ω∩∂(εP ),
on which the function is regularized afterwards thanks to a powerful tool to investigate
the regularity properties of local minimizers of free-discontinuity problems: the so called
density lower bound or elimination property of the jump set (see [5, Theorem 7.21]). Such
regularity result shows that in case the proportion of the jump set of a local minimizer
in a ball is below a dimensional threshold, there is actually no jump in the concentric
ball with half radius. The extension procedure is completed to all Ω by applying the
techniques developed for the Sobolev case in [1, Theorem 2.1] to the regularization of uε

around Ω ∩ ∂(εP ).
The main goal of this paper is to give an alternative and more elementary approach to

the SBV p compactness issue mentioned above. We do not try to fill the holes of Ωε to
obtain an SBV p extension of uε to all Ω, but rather we use uε as a frame to create new
functions vε in SBV p(Ω) having the same asymptotic behavior. For that, we need just to
require that P is connected.

Assuming ‖uε‖Lp(Ωε) equibounded, a brief outline is as follows: first, we define a suitable

Lp extension ũε of uε to all Ω and we show that (ũε) is strongly convergent in L1(Ω) to
some function u. In this part our approach follows that by Allaire and Murat [2] relying
on the M. Riesz-Fréchet-Kolmogorov compactness criterion.

As a second step, with fixed a ball Br ⊆ Q \ P , we modify uε to make it constant in
each ball (Br)

i
ε := ε(Br + i), i ∈ Z

n, included in Ω. To this aim, the main ingredient is
Proposition 2, a localized version of the Poincaré-Wirtinger type inequality in SBV by
De Giorgi, Carriero and Leaci (see [15, Theorem 3.1] and [5, Theorem 4.14]). The latter
result is the starting point of the regularity topics for free-discontinuity problems quoted
before. We think that Proposition 2 may be of some interest in itself.

The oscillation of the constant values of uε on the balls (Br)
i
ε can be essentially estimated

in term of the Lp norm of ∇uε, being P connected and Hn−1(Suε ∩Ωε) bounded. Finally,
we employ a linear interpolation argument to construct functions vε in SBV p(Ω) having
the same constant values of uε on the balls (Br)

i
ε, the same L1(Ω) limit u, and bounded

energies on Ω. The classical compactness criterion in SBV p then implies that u is in
GSBV p(Ω).

A more detailed description of our strategy is postponed to Section 2 after the statement
of the compactness result Theorem 1.

In view of the compactness properties established in Theorem 1 we can determine the
Γ-limit Fhom of (Fε) with respect to the strong Lp topology. In particular, we show that
the proof of [18, Theorem 5.1] can be suitably modified to work also in the case under
scrutiny. In addition, we change some arguments originally employed in [18, Proposition
5.3] to avoid the extension results [1, Theorem 2.1], and to make the proof self-contained.
Moreover, we fix a technical difficulty overlooked in [18, Step 2 of Proposition 5.3] and
related to a truncation technique contained in [21, Lemma 2.1].

As a byproduct, we derive an alternative proof of the classical homogenization result
for energies defined on Sobolev spaces in perforated domains, i.e., Fε in (1.1) restricted
to W 1,p(Ωε). Our result is stated under assumptions slightly weaker than those in [1,
Theorems 3.1 and 3.6] (see also [10, Theorem 3.1]), and avoids the use of any extension
procedure in W 1,p (see Theorems 2 and 5). In the linear case, following the oscillating
test functions method by Tartar (see [25]), different approaches to this issue have been
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developed, we quote the one by Allaire and Murat [2] related to the M. Riesz-Fréchet-
Kolmogorov compactness criterion, and the spectral approach by Briane [12].

The paper is organized as follows: Sections 2 is devoted to the compactness property
of sequences with equibounded energies, we prove that their limit are GSBV functions.
In Section 3 we adapt the classical Lipschitz approximation of SBV function to the case
of perforated domains. In doing that we deal with fine truncation procedures via the
maximal operator. Finally, we apply the conclusions of the previous sections to prove the
quoted homogenization result in Section 4. In the Appendix we collect some basic results,
but maybe less known, employed in what follows.

To conclude the introduction let us recall the principal notations and the functional
framework which will be employed throughout the whole paper.

Standard notations are used for the Lebesgue n-dimensional measure Ln, for the Haus-
dorff (n − 1)-dimensional measure Hn−1 in R

n, for Lebesgue and Sobolev spaces. The
average of a function u in L1(U) is indicated by uU . Moreover, given a vector h ∈ R

n, we
indicate by τh the traslation operator: τh(u)(x) := u(x+ h).
Q = (−1/2, 1/2)n denotes the unit cube in R

n centered in the origin, and Q := (0, 1)n

its translated copy. Br(x) denotes the open ball of radius r centered in x. If x = 0, we
simply write Br. The set E denotes the canonical base of R

n.
In the whole paper we fix Ω and P open not empty subsets of R

n such that Ω is bounded
and

P is Q-periodic and connected.

In Section 3 we assume in addition P Lipschitz.
Given any set U ⊆ R

n, for every i ∈ Z
n and ε > 0 we set U i

ε := ε(U + i). Eventually,
we define Ωε := Ω ∩ εP .

As already mentioned the functional setting of our analysis is that of special functions
with bounded variation on Ω, in short SBV (Ω). We consider also the larger family of the
generalized special functions with bounded variation on Ω, GSBV (Ω), which is made of
all the measurable functions u : Ω → R whose truncation u ∧ j ∨ −j belongs to SBV (Ω)
for every j ∈ N. In particular, we are involved with the subspaces

SBV p(Ω) :=
{

u ∈ SBV (Ω) : ∇u ∈ Lp(Ω) and Hn−1(Su) < +∞
}

,

GSBV p(Ω) :=
{

u ∈ GSBV (Ω) : ∇u ∈ Lp(Ω) and Hn−1(Su) < +∞
}

,

where p ∈ (1,+∞). We refer to the book [5] for the related theory and relevant results.

2. SBV p compactness

This section is devoted to our main result.
Without loss of generality we assume the origin 0 to belong to P , this is clearly true up

to a translation. Then, we fix some r > 0 for which B4r ⊆ Q ∩ P .

Theorem 1. Let εk → 0+ and let (uk) be a sequence in SBV p(Ωεk
) such that

sup
k

(

ˆ

Ωεk

(

|uk|p + |∇uk|p
)

dx+ Hn−1(Suk
∩ Ωεk

)

)

< +∞. (2.1)
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Consider the following Lp extension of uk to all Ω:

ũk(x) :=



















uk(x) if x ∈ Ωεk
,

 

(Br)i
εk

uk(x) dx if x ∈ (Q \ P )iεk
and (Br)

i
εk

⊆ Ωεk
,

0 elsewhere in Ω.

(2.2)

Then there exists u ∈ GSBV p∩Lp(Ω) such that (up to a subsequence not relabeled) ũk → u
strongly in L1(Ω). Moreover, there is a constant c = c(n, p, P ) such that

ˆ

Ω
|∇u|p dx ≤ c lim inf

k

ˆ

Ωεk

|∇uk|p dx,

Hn−1(Su ∩ Ω) ≤ c lim inf
k

Hn−1(Suk
∩ Ωεk

).

(2.3)

Finally, if supk ‖uk‖L∞(Ωεk
) < +∞, then u ∈ SBV p ∩ L∞(Ω) and ũk → u strongly in

Lp(Ω).

For the proof of Theorem 1 we need several ingredients, subsumed in the following
lemmata.

• Lemma 1, a well known trick that allows to modify a sequence keeping the L1

limit.

• Lemma 2, a cut-off argument that allows to modify (uk), keeping condition (2.1),
into a new sequence (wk) ⊂ SBV p(Ωεk

) assuming constant values on the balls
(Br)

i
εk

and not changing the boundary values on (B4r)
i
εk

. The localized version of
the Poincaré-Wirtinger type inequality in SBV contained in Proposition 2 below
is instrumental to prove Lemma 2.

• Lemma 3 establishes a delicate estimate of the oscillation of the mean values of a
function in SBV (E) in two disjoint balls included in a connected domain E, when
the jump set is too small to isolate these balls from the rest of the domain.

• Lemma 4 is a simple interpolation argument employed to obtain from (wk) a
piecewise affine sequence (vk) ⊂ SBV p(Ω) taking the same constant values on the
balls of radius r centered on vertices of Qi

εk
mentioned before.

Given Lemmata 1-4 for granted the proof of Theorem 1 can be summarized as follows.
Consider (ũk) and (w̃k), with w̃k defined as in (2.2) with wk in place of uk, then both
sequences turn out to converge (up to subsequences) in L1(Ω) in view of the M.Riesz-
Fréchet-Kolmogorov compactness criterion. In addition, because of Lemma 1 the two
sequences have the same limit. To upgrade the regularity of such limit, we prove that (vk)
is weakly pre-compact in GSBV p ∩ Lp(Ω). This follows from the estimates in Lemma 3
and Lemma 4 which imply that the vk’s have equi-bounded energy on the whole of Ω. A
further application of Lemma 1 shows that (ũk) and (vk) converge to the same limits.

To begin with we state an elementary result in functional analysis.

Lemma 1. Let (Uk) be a sequence of Borel sets in Ω such that χUk
⇀ θ, θ ∈ (0, 1], weak*

in L∞(Ω). Given two sequences (uk) and (vk) such that uk → u, vk → v strongly in L1(Ω),
and

uk = vk Ln a.e on Uk,

then u = v Ln a.e. on Ω.
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Next we recall the Poincaré-Wirtinger type inequality in SBV proved by De Giorgi,
Carriero and Leaci (see [15, Theorem 3.1 and Remark 3.3]). To this aim we need some
further notation. Let u ∈ SBV (B4r) be such that

(2γHn−1(Su))n/(n−1) < Ln(B4r)/2, (2.4)

with γ the isoperimetric constant, and n ≥ 2; and define

τ− := inf
{

t ∈ [−∞,+∞] : Ln({x ∈ B4r : u(x) < t}) ≥ (2γHn−1(Su))n/(n−1)
}

,

τ+ := inf
{

t ∈ [−∞,+∞] : Ln({x ∈ B4r : u(x) ≥ t}) ≤ (2γHn−1(Su))n/(n−1)
}

.

Take note that the smallness assumption (2.4) on the jump set of u implies that τ− ≤
m ≤ τ+ for any median m in B4r of u. Finally, the very definitions of τ± give

Ln({x ∈ B4r : u(x) < t}) ≤ (2γHn−1(Su))n/(n−1) for all t ≤ τ−, (2.5)

and
Ln({x ∈ B4r : u(x) > t}) ≤ (2γHn−1(Su))n/(n−1) for all t ≥ τ+. (2.6)

The statement below shows that under condition (2.4), the truncation u ∧ τ+ ∨ τ− of a
function u in SBV p(B4r) has mean oscillation from any median of u controlled only in
terms of the Lp norm of the gradient part of the total variation measure.

Proposition 1. Let u ∈ SBV p(B4r) be satisfying assumption (2.4), for any median m of
u it holds

‖(u ∧ τ+ ∨ τ−) −m‖Lq(B4r) ≤
2γq(n − 1)

n
(Ln(B4r))

1

n
+ 1

q
− 1

p ‖∇u‖Lp(B4r),

for any q ∈ [1, np/(n − p)] if p ∈ [1, n), and q ∈ [1,+∞) if p ∈ [n,+∞).

Below we prove an enhanced version of Proposition 1 in which we confine the previous
truncation argument inside a ball B̺, ̺ ∈ (2r, 3r), not to change the boundary values of
the given function u. Clearly, new discontinuities may arise on ∂B̺ in this procedure; the
main issue is that we are able to control their measure through the measure of the jump
set of the original function u.

In the 2-dimensional case a different truncation technique has been performed in [18,
Lemmata 4.1, 4.2, and Theorem 4.1] (see also [6, Lemma 3.3] for related results). In that
setting a capacitary argument shows that actually no new jump arises when truncating,
provided the starting function has discontinuity set of sufficiently small measure. Such
a result is of genuine 2-dimensional nature (see [18, Remark 4.3]). In addition, it seems
difficult to employ the same arguments introduced in [18] in higher dimensions. Thus, we
infer an analogous conclusion by exploiting directly Proposition 1 (see [18, Subsection 4.2]
for a more detailed comparison of the two truncation methods).

Proposition 2. Let u ∈ SBV p(B4r) be satisfying (2.4), then there exists ̺ ∈ (2r, 3r) such
that the function

v =

{

u on B4r \B̺

u ∧ τ+ ∨ τ− on B̺
(2.7)

belongs to SBV p(B4r). In addition,

(i) for any median m of u and for any q ∈ [1, np/(n − p)] if p ∈ [1, n), q ∈ [1,+∞) if
p ∈ [n,+∞) it holds

‖v −m‖Lq(B̺) ≤
2γq(n − 1)

n
(Ln(B4r))

1

n
+ 1

q
− 1

p ‖∇u‖Lp(B4r), (2.8)
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(ii) for some dimensional constant c1(n) > 1

Hn−1(Sv) ≤ c1(n)Hn−1(Su).

Proof. We suppose the function u to coincide with its precise representative which is
specified Hn−1 a.e. in B4r (see [5, Remark 3.79 and Corollary 3.80]). Take also note that,
being Ln(Su) = 0, for L1 a.e. ρ ∈ (0, 4r) we have

Hn−1(Su ∩ ∂Bρ) = 0. (2.9)

In particular, for all such ρ’s Hn−1 a.e. point x ∈ ∂Bρ is a point of approximate continuity
for u, with value given by u(x) according to our convention.

We use the coarea formula for Lipschitz functions [5, Theorem 2.93] and the mean value
theorem to infer the existence of ̺ ∈ (2r, 3r) for which (2.9) holds true and such that

Hn−1 ({x ∈ ∂B̺ : u(x) < τ− or u(x) > τ+})

≤ 1

r

ˆ 3r

2r
Hn−1 ({x ∈ ∂Bρ : u(x) < τ− or u(x) > τ+}) dρ

≤ 1

r
Ln({x ∈ B4r : u(x) < τ− or u(x) > τ+})

(2.5), (2.6)

≤ 2

r
(2γHn−1(Su))n/(n−1)

(2.4)

≤ 2

r

(Ln(B4r)

2

)1/n

2γHn−1(Su) = 16γ

(Ln(B1)

2

)1/n

Hn−1(Su). (2.10)

To prove that the function v in (2.7) is in SBV (B4r) it suffices to notice that

v = uχB4r\B̺
+ (u ∧ τ+ ∨ τ−)χB̺

and each summand regarded as extended to 0 on B̺ and on B4r \ B̺, respectively, is
SBV (B4r) regular (see for instance [5, Theorem 3.87, Corollary 3.89]). In addition, we
have

Dv = Du (B4r \B̺) + (uext − (u ∧ τ+ ∨ τ−)int) ν∂B̺Hn−1 ∂B̺ +D(u ∧ τ+ ∨ τ−) B̺,

with the boundary of the ball B̺ oriented by the exterior normal ν∂B̺ , and with the
exterior trace with respect to ν∂B̺ labeled by the subscript ext and the interior one by
the subscript int.

By (2.9) it follows that uext(x) = uint(x) = u(x) for Hn−1 a.e. x ∈ ∂B̺ (see [5, Remark
3.79]), and since (u ∧ τ+ ∨ τ−)int(x) = uint(x) ∧ τ+ ∨ τ− for Hn−1 a.e. x ∈ ∂B̺ we have

Sv ⊆ Su ∪ {x ∈ ∂B̺ : u(x) < τ− or u(x) > τ+}
up to a set of null Hn−1 measure. Thus, v ∈ SBV p(B4r), and item (ii) is a consequence

of (2.10) by taking the constant c1(n) := 1 + 16γ(Ln(B1)/2)
1/n.

To conclude, notice that item (i) follows straightforward from Proposition 1 and the
very definition of v. �

Remark 1. Take note that if Hn−1(Su) = 0 then τ− = −∞ and τ+ = +∞; in particular
Proposition 1 and Proposition 2 boil down to the classical Poincaré-Wirtinger inequality
in the Sobolev space W 1,p.

Thanks to Proposition 2 we are able to modify a function u in SBV p(B4r) satisfying
(2.4) into a new function w in the same class, constant on Br, and with gradient and
surface energies controlled (separately) in terms of the same quantities of u.

Lemma 2. Let u ∈ SBV p ∩ Lp(B4r) be satisfying (2.4). Then there exists w ∈ SBV p ∩
Lp(B4r) such that
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(i) w is constant on Br;
(ii) w = u on B4r \B̺, for some ̺ ∈ (2r, 3r);

(iii) ‖w‖Lp(B4r) ≤ c2 ‖u‖Lp(B4r);

(iv) ‖∇w‖Lp(B4r ,Rn) ≤ c2 ‖∇u‖Lp(B4r ,Rn);

(v) Hn−1(Sw) ≤ c1 Hn−1(Su);

where c1 is the dimensional constant in Proposition 2 and c2 = c2(n, p).

Proof. Consider the function v provided by Proposition 2, given a radial cut-off φ ∈
C1

0 (B4r, [0, 1]) such that φ|Br = 0, φ|B4r\B2r
= 1, and ‖∇φ‖L∞(B4r ,Rn) ≤ 2/r set

w(x) := φ(x)[v(x) −m] +m,

with m any median of u. The function w clearly satisfies (i), (ii) with ̺ ∈ (2r, 3r) the
radius in Proposition 2, and (v).

Furthermore, to infer (iv) we note that ∇w = φ∇v + (v − m)∇φ, thus by (2.8) with
q = p we get

‖∇w‖Lp(B4r ,Rn) ≤ ‖∇v‖Lp(B4r ,Rn) + ‖(v −m)∇φ‖Lp(B4r ,Rn)

≤ ‖∇u‖Lp(B4r ,Rn) + ‖∇φ‖L∞(B4r ,Rn) ‖v −m‖Lp(B2r\Br)

≤ ‖∇u‖Lp(B4r ,Rn) +
4γp(n − 1)

n

(Ln(B4r))
1/n

r
‖∇u‖Lp(B4r ,Rn) .

Finally, to infer (iii) it suffices to take into account that any median m in B4r of u
satisfies by its very definition |m| ≤ 2|u|B4r , and thus the conclusion follows,

‖w‖p
Lp(B4r) ≤ |m|p

ˆ

B2r

|1 − ϕ(x)| dx+ ‖v‖p
Lp(B4r) ≤ (2p−n + 1) ‖u‖p

Lp(B4r) .

�

The next result gives an estimate on the oscillation of the mean values on disjoint balls
of functions in SBV provided the jump set is small enough.

This argument is the counterpart in the SBV framework of [2, Lemma 2.2], where the
classical Poincaré-Wirtinger inequality is used to control the oscillation of the mean values
of Sobolev functions on adjacent cubes.

Lemma 3. Let E ⊆ R
n be a connected open set and let Br(x) and Br(y) be two well

separated balls included in E. Then there exist two positive constants c3 an c4, intrinsically
depending only on E, r, x and y, with the following property: for each ε > 0 and for each
u ∈ SBV (εE) such that Hn−1(Su) ≤ c3 ε

n−1,there holds
∣

∣uεBr(x) − uεBr(y)

∣

∣ ≤ c4 ε
1−n
[

|Du|
(

ε(Br(x) ∪Br(y))
)

+ ‖∇u‖L1(εE,Rn)

]

. (2.11)

Proof. Let δ ∈ (0, 1/(
√
n)) and let e be the n-th unit vector in E. Define the open rectangle

Rδ := (Qδ ∪ (Qδ +3e))co and the open set Aδ := B1∪ (B1 +3e)∪Rδ . Since E is connected
and Br(x), Br(y) are well separated, we can find a δ, an open set A ⊆ E and a bi-
Lipschitz application φ : Aδ → A such that, up to a roto-traslation, φ|B1

(resp., φ|B1+3e)
is a homothety on Br(x) (resp., Br(y)). A pictorial idea is given in Figure 1.

Consider the pullback function w(x) := u(εφ(x)), then w belongs to SBV (Aδ) with

∇w(x) = ε∇u(εφ(x))∇φ(x) Ln a.e on Aδ, Sw = (εφ)−1(Su)
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1

r

δ

zn

z′

Figure 1. The sets A and Aδ, both in dark gray.

(see [5, Theorem 3.16 and Exercise 4.5]). Hence, we choose c3 in such a way that
Hn−1(Sw) ≤ δn−1/2 if Hn−1(Su) ≤ c3ε

n−1.
To show (2.11) we argue by a slicing procedure. To this aim we suppose w coinciding

with its precise representative defined as in [5, Remark 3.79 and Corollary 3.80]; and we
introduce the notation

Z ′ := {z′ ∈ (−δ/2, δ/2)n−1 : (z′ × (−δ/2, 3 + δ/2)) ∩ Sw = Ø},
Z = Z ′ × (−δ/2, δ/2), Tz := {(z′, zn + λ) : λ ∈ (0, 3)},

writing z ∈ R
n as (z′, zn) ∈ R

n−1 × R. Take note that we have Ln−1(Z ′) ≥ δn−1/2 since
Hn−1(Sw) ≤ δn−1/2. Moreover, by [5, Theorems 3.28, 3.107 and 3.108], for Ln−1 a.e.
z′ ∈ Z ′ the function w(z′, ·) is absolutely continuous with derivative given by ∂znw(z′, ·).
Then, for z ∈ Z

|w(z) − w(z + 3e)| ≤
ˆ

Tz

∣

∣∂znw(z′, t)
∣

∣ dt

and so, by integrating we infer

‖w − τ3e(w)‖L1(Z) ≤ ‖∇w‖L1(Rδ ,Rn) . (2.12)

By taking into account that Ln−1(Z ′) ≥ δn−1/2, by using the Poincaré-Wirtinger inequal-
ity in BV (Q) in Proposition 5, and inequality (2.12) we get

δn−1

2
|wB1

− wB1+3e| ≤ ‖wB1
− τ3e(w)B1

‖L1(Z)

≤‖w − wB1
‖L1(Z) + ‖w − τ3e(w)‖L1(Z) + ‖τ3e(w) − τ3e(w)B1

‖L1(Z)

≤c4
[

|Dw| (B1) + ‖∇w‖L1(Rδ ,Rn) + |Dw| (B1 + 3e)
]

.

Eventually, going back from w to u through (εφ)−1 we obtain (2.11). �

In the sequel an elementary linear interpolation argument is repeatedly employed to
construct a Sobolev function on a neighborhood of a cube with energy controlled in terms
of the oscillation of the values on the vertices of the cube and on the size of the cube itself.
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Thus, in Lemma 4 below any extension of a given function is always meant to be obtained
via a linear interpolation argument.

Lemma 4. Let r ∈ (0, 1/2) and let p1, . . . , p2n be the vertices of εQ. We define U :=

(
⋃2n

i=1 Qεr(pi))
co, where the superscript co denotes the convex hull and Qεr(pi) is the cube

of size εr centered in pi. Moreover, given a1, . . . , a2n ∈ R, we define O := max{|ai − aj | :
i, j = 1, . . . 2n}. Then there exists a function v ∈W 1,p(U) such that v = ai in Qεr(pi),

ˆ

U
|∇v|p dx ≤ c(n, p, r)Opεn−p, (2.13)

and
ˆ

U
|v|p dx ≤ c(n, p, r,Q)

(

min
i

|ai|p +Op

)

εn. (2.14)

Moreover, the values of v along any (n − 1)-dimensional face of εQ depend only on the
values assumed in the vertices belonging to that face.

Proof. Obviously, we start by defining v = ai in Qεr(pi). Let L be an edge of vertices
pi and pj. We can extend v to S(L) := (Qεr(pi) ∪ Qεr(pj))

co interpolating the values
on the two cubes Qεr(pi) and Qεr(pj). Hence, we have the straightforward estimate
|∇v| = |aj − ai| /(ε− εr) ≤ 2O/ε, and then

ˆ

S(L)
|∇v|p dx ≤ 2p+1Oprn−1εn−p

since Ln(S(L)) ≤ 2rn−1εn.
Let now F be a (n−1)-dimensional face of edges L1, . . . , Lm, wherem = 2n−2(n−1). We

can extend v from
⋃m

i=1 S(Li) to (
⋃m

i=1 S(Li))
co so to have the Lp control of the gradient

as in (2.13). This intermediate step ensures that the values of v along a face F depend
only on the values assumed in the vertices of the face. It is skipped out in the case n = 2.
Finally, we complete the Sobolev extension to all of U .

To conclude we prove (2.14). Suppose |a1| = mini |ai|, and apply the Poincaré-Wirtinger
inequality in W 1,p (see [23, Lemma 1.1.11]) to get

‖v‖p
Lp(U)

≤ 2p−1
(

|a1|pLn(U) +
∥

∥v − vQεr(p1)

∥

∥

p

Lp(U)

)

≤ c(n, p, r,Q)
(

|a1|pLn(U) + εp ‖∇v‖p
Lp(U,Rn)

)

which yields the conclusion if combined with (2.13) and by taking into account that
Ln(U) = (1 + 2r)nεn. �

We are now ready to prove the SBV p compactness result.

Proof of Theorem 1. Let us first note that the sequence (ũk) is bounded in Lp(Ω) by its
very definition and (2.1). Hence, it converges weakly to some function u in Lp(Ω) up to a
subsequence not relabeled for convenience. In the sequel we will show that actually (ũk)
converges strongly in L1(Ω), and that u belongs to GSBV p ∩ Lp(Ω).

To this aim we initially suppose that P has the cone property with respect to an open
cone C. Under this assumption we claim that there exists an open, bounded and connected
set E having the cone property and such that

P ∩ 3Q ⊆ E ⊆ P.
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For, let F be the union of P ∩ 3Q with each congruent copy of C included in P and with
vertex in P∩3Q. Such a set has the cone property with respect to some cone included in C.
Then, being bounded, F can be decomposed into a finite number of open sets F1, . . . , Fm

each star-shaped with respect to some open ball (see [23, Sezione 1.1.9, Lemma 1]). In
particular, the sets F1, . . . , Fm are connected; joining those sets with (finite) chains of
congruent copies of C included in P , gives the set E.

In the following we will often implicitely use that the sets Ei
εk

overlap only a finite
number of times independently from i and εk. Throughout steps 1 and 2 below c will
denote a positive constant depending (at most) on n, p, r and E which may vary from line
to line, unless otherwise stated.

Step 1. We show that (ũk) is strongly convergent in L1(Ω).

To this aim we introduce the sets of indexes

Ik := {i ∈ Z
n : Ei

εk
⊆ Ω}, Jk := {i ∈ Z

n : Ω ∩ Ei
εk

6= Ø},
and the auxiliary piecewise constant functions

ζk(x) :=











 

(Br)i
εk

uk(x) dx if x ∈ Qi
εk
, i ∈ Ik,

0 elsewhere in Ω.

We claim that the sequence (ζk) is pre-compact in L1(Ω). According to the M.Riesz-
Fréchet-Kolmogorov compactness criterion (see Theorem IV.25 [11]), being (ζk) bounded
in Lp(Ω), it suffices to check that

lim
|h|→0

sup
k

‖τh(ζk) − ζk‖L1(A) = 0 (2.15)

for every open subset A ⊂⊂ Ω. Given this choice, let h ∈ R
n be such that |h| < d(A,Ωc).

Notice that for k ≥ k(h) the translates A+ h′ are included in ∪i∈Ik
Ei

εk
for every h′ ∈ R

n

with |h′| ≤ |h|.
Let us first assume that h = se, e ∈ E, and without loss of generality suppose s ∈

[0,+∞). We distinguish two cases: either s ∈ [0, εk] or s > εk. In the former we split
(Q ∩ P )iεk

, i ∈ Ik, into the subsets

Ui,εk
= {x ∈ (Q∩P )iεk

: x+se ∈ (Q∩P )iεk
}, Vi,εk

= {x ∈ (Q∩P )iεk
: x+se /∈ (Q∩P )iεk

}.
By the very definition of ζk it follows for x ∈ Ui,εk

|τse(ζk)(x) − ζk(x)| = 0. (2.16)

Furthermore, for any i ∈ Ik both the balls (Br)
i
εk

and (Br)
i+e
εk

are contained in Ei
εk

.

Then, we can apply Proposition 5 on Ei
εk

with respect to (Br)
i
εk

and (Br)
i+e
εk

to obtain for
x ∈ Vi,εk

εnkLn(E)|ζk(x) − τse(ζk)(x)| = ‖ζk(x) − ζk(x+ εke)‖L1(Ei
εk

)

≤‖uk − ζk(x)‖L1(Ei
εk

) + ‖uk − ζk(x+ εke)‖L1(Ei
εk

) ≤ c εk|Duk|(Ei
εk

).
(2.17)

Notice that Ln(Vi,εk
) ≤ εn−1

k s, by integrating |ζk−τse(ζk)| over (Q∩P )iεk
and by summing

up on i ∈ Ik, we infer from (2.16) and (2.17), that

‖τse(ζk) − ζk‖L1(A) ≤ cs |Duk| (Ωεk
). (2.18)
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Let us now assume that s > εk, and rewrite s = mεk + s′ with s′ ∈ [0, εk) and m ∈ N.
Then, since τh′ ◦ τh′′ = τh′+h′′ , the argument leading to (2.18) yields

‖τse(ζk) − ζk‖L1(A) ≤
m−1
∑

r=0

‖τ(r+1)εke(ζk) − τrεke(ζk)‖L1(A)

+ ‖τse(ζk) − τmεke(ζk)‖L1(A) ≤ c(mεk + s′) |Duk| (Ωεk
),

from which in turn we deduce that (2.18) holds true also in case s > εk.
Let now h be any vector in R

n with |h| < dist(A,Ωc), by varying one coordinate per
time and fixing all the others, we deduce from (2.18)

‖τh(ζk) − ζk‖L1(A) ≤ c |h| |Duk |(Ωεk
), (2.19)

with c a positive constant depending neither on h nor on A. From (2.1) and (2.19) we get
(2.15), i.e., (ζk) is pre-compact in L1(Ω).

Let us prove that (ũk) is pre-compact in L1(Ω), too. By Proposition 5 we have

‖ũk − ζk‖L1(Ω) ≤
∑

i∈Ik

ˆ

Ei
εk

∣

∣

∣

∣

uk −
 

(Br)i
εk

uk(y) dy

∣

∣

∣

∣

dx+ c

ˆ

∪i∈Jk\Ik
(Ei

εk
∩Ω)

|uk| dx

≤ c εk
∑

i∈Ik

|Duk| (Ei
εk

) + c

ˆ

∪i∈Jk\Ik
(Ei

εk
∩Ω)

|uk| dx

≤ c εk |Duk| (Ωεk
) + cLn(∪i∈Jk\Ik

(Ei
εk

∩ Ω))
p−1

p ‖uk‖Lp(Ωεk
) .

Then, since limk Ln(∪i∈Jk\Ik
(Ei

εk
∩Ω)) = 0, by (2.1) it follows that limk ‖ũk − ζk‖L1(Ω) = 0.

Step 2. We prove that the strong L1 limit u of (ũk) belongs to GSBV p ∩ Lp(Ω).

Let Hk := {i ∈ Ik : Hn−1(Suk
∩Ei

εk
) ≤ δεn−1

k }, with δ = δ(n, r,E) > 0 small enough in
order to apply both Lemmata 2 and 3. Take note that the number of elements in Ik \Hk is
bounded by δ−1ε1−nHn−1(Suk

∩Ωεk
), then by (2.1) we infer limk Ln(∪i∈Jk\Hk

(Ei
εk
∩Ω)) =

0. In each Ei
εk

, i ∈ Hk, we modify uk on all the balls of radius 4rεk centered in the

vertices of the cube Qi
εk

by exploiting Lemma 2, and define the function wk accordingly.
Then, by construction wk assumes constant values on the concentric balls of radius rεk
(see Figure 2).

In view of items (iii)-(v) in Lemma 2, we get for each i ∈ Hk
ˆ

Ei
εk

|wk|p dx ≤ c

ˆ

Ei
εk

|uk|p dx,
ˆ

Ei
εk

|∇wk|p dx ≤ c

ˆ

Ei
εk

|∇uk|p dx,

Hn−1(Swk
∩ Ei

εk
) ≤ cHn−1(Suk

∩ Ei
εk

),

(2.20)

so that (wk) still satisfies the energy bound (2.1).
Let w̃k be the Lp extension of wk to all of Ω defined in (2.2), with wk in place of uk.

Repeating the argument employed for (ũk), we have that (w̃k) is pre-compact in L1(Ω).
Moreover, since ũk and w̃k coincide (at least) on the set ∪i∈Hk

(B4r)
i
εk

\ (B3r)
i
εk

, Lemma 1
entails that they have the same cluster points.

Next we modify (wk) in order to get a sequence (vk) pre-compact in GSBV p(Ω). First,
we apply Lemma 4 in each cube Qi

εk
, i ∈ Hk, by using the constant values of wk on the

balls of radius rεk and centered in the vertices of such cubes and define vk accordingly.
Eventually, we set vk equal to 0 on Ω \ ∪i∈Hk

Qi
εk

. A pictorial idea of the construction of
the function vk is given in Figure 3.
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εk

Figure 2. We have colored in black the balls of radius 4rεk centered in
the vertices of the cubes Qi

εk
, i ∈ Hk, and in dark gray the intersection of

such cubes with Ωεk
.

εk

Figure 3. Accordingly to the previous picture, the function vk is obtained
by applying Lemma 4 in each cube belonging to the dark gray zone and it
is equal to zero in the light gray one (the remaining part of the domain Ω).
This last part vanishes as εk → 0+.
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Given any open set A ⊂⊂ Ω we claim that (vk) is bounded in GSBV p ∩ Lp(A). By
applying estimate (2.11) in Lemma 3 between the balls of radius rεk centered in the
vertices of Qi

εk
, i ∈ Hk, we bound the oscillation Oi

k of the values of wk in such vertices as

(Oi
k)p ≤ c

(

ε1−n
k

ˆ

Ei
εk

|∇wk| dx
)p

≤ c εp−n
k

ˆ

Ei
εk

|∇wk|p dx.

By combining such an estimate with (2.13)-(2.14) and (2.20) we get for every i ∈ Hk
ˆ

Qi
εk

|vk|p dx ≤ c

ˆ

Ei
εk

(

|uk|p + |∇uk|p
)

dx and

ˆ

Qi
εk

|∇vk|p dx ≤ c

ˆ

Ei
εk

|∇uk|p dx.

Then, by summing up on i ∈ Hk,
ˆ

Ω
|vk|p dx ≤ c

ˆ

Ω

(

|uk|p + |∇uk|p
)

dx and

ˆ

Ω
|∇vk|p dx ≤ c

ˆ

Ω
|∇uk|p dx.

Moreover, if k is large enough the only discontinuities of vk in A are along the (n− 1)-
dimensional faces of the cubes Qi

εk
for i ∈ Ik \Hk. Then,

Hn−1(Svk
∩A) ≤ cHn−1(Suk

∩ Ωεk
).

Hence, by (2.1), we use the GSBV p compactness theorem (see [5, Theorem 4.36]) to
infer that (vk) converges in L1(A) (up to a subsequence not relabeled for convenience) to
some v ∈ GSBV p ∩ Lp(A), with

ˆ

A
|∇v|p dx ≤ c lim inf

k

ˆ

Ωεk

|∇uk|p dx < +∞,

Hn−1(Sv ∩A) ≤ c lim inf
k

Hn−1(Suk
∩ Ωεk

) < +∞.

Observing that w̃k and vk coincide (at least) on the set ∪i∈Hk
((Br)

i
εk
∩Qi

εk
), by Lemma 1

we have that u = v Ln a.e. in A. By the arbitrariness of A in the inequalities above and
since the constant c is independent from A, we conclude that u belongs to GSBV p(Ω)
and estimates (2.3) are verified.

Step 3. We eliminate the cone condition requirement on P .

Let t ∈ (0, 1) and let P t be an open, Q-periodic and connected set having the cone
property and such that B4r ⊆ P t ⊆ P and Ln(Q ∩ (P \ P t)) ≤ t. Such a set P t can be
assembled simply by merging open balls included in P (see also Lemma 8).

Let ũt
k be defined as in (2.2), with P t instead of P and Ωt

ε := Ω ∩ εP t instead of Ωε.
By the previous part of the proof, we know that (up to a subsequence) (ũt

k) converges
strongly in L1(Ω) to some u ∈ GSBV p ∩ Lp(Ω). By Lemma 1 the limit u, and then the
subsequence, is not depending on t. Moreover,

ˆ

Ω

∣

∣ũk − ũt
k

∣

∣ dx ≤
ˆ

Ω∩εk(P\P t)

(

|uk| +
∣

∣ũt
k

∣

∣

)

dx ≤ c t
p−1

p ‖uk‖Lp(Ωεk
) ,

with the constant c independent from t. Being t arbitrary, we deduce that (ũk) converges
strongly in L1(Ω) to u. Moreover, since Ωt

εk
⊆ Ωεk

, inequalities (2.3) are true in this
setting, too.

Finally, the sequence (ũk) is bounded in L∞(Ω) if supk ‖uk‖L∞(Ωεk
) < +∞, therefore

u ∈ SBV p ∩ L∞(Ω) and ũk → u strongly in Lp(Ω). �
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In the framework of Sobolev spaces the previous approach greatly simplifies and essen-
tially reduces to [2, Lemma 2.3], though some changes are needed since we prove it under
weaker assumptions and give a slightly different conclusion.

Theorem 2. Let εk → 0+ and let (uk) be a sequence in W 1,p(Ωεk
) such that

sup
k

‖uεk
‖W 1,p(Ωεk

) < +∞.

Defined (ũk) as in Theorem 1, then (up to a subsequence not relabeled) ũk → u strongly
in L1(Ω), for some u ∈W 1,p(Ω). Moreover, there is a constant c = c(n, p, P ) such that

ˆ

Ω
|∇u|p dx ≤ c lim inf

k

ˆ

Ωεk

|∇uk|p dx.

In addition, if P has the cone property, then ũk → u strongly in Lp
loc(Ω).

Proof. The first part of the proof can be deduced directly from Theorem 1 since the limit
function u belongs to GSBV p ∩ Lp(Ω) and Hn−1(Su) = 0, it belongs to W 1,p(Ω).

It remains to prove that the sequence (ũk) is pre-compact in Lp
loc(Ω) when P has the

cone property. This can be done as in Step 1 of Theorem 1 by estimating the Lp moduli
of continuity of (ζk) on each open subset A ⊂⊂ Ω. In doing that we use the analogue of
Proposition 5 in Sobolev spaces (see for instance [23, Lemma 1.1.11]) to infer

‖τh(ζk) − ζk‖Lp(A) ≤ c |h| ‖∇uk‖Lp(Ωεk
,Rn) . (2.21)

Being (ζk) bounded in Lp(Ω), (ζk) converges (up to subsequences) strongly in Lp
loc(Ω)

to some u ∈ Lp(Ω). In addition, by passing to the infimum limit in (2.21), since c is
depending neither on h nor on A, we get

‖τh(u) − u‖Lp(A) ≤ c |h| lim inf
k

‖∇uk‖Lp(Ωεk
,Rn) ,

from which we infer that u is actually in W 1,p(Ω) with (see Proposition IX.3 [11])

‖∇u‖Lp(Ω,Rn) ≤ c lim inf
k

‖∇uk‖Lp(Ωεk
,Rn) .

Eventually, by [23, Lemma 1.1.11] we have

‖ũk − ζk‖p
Lp(A) ≤

∑

i∈Ik

ˆ

Ei
εk

∣

∣

∣

∣

uk −
 

(Br)i
εk

uk(y) dy

∣

∣

∣

∣

p

dx

≤ c εpk

∑

i∈Ik

‖∇uk‖p
Lp(Ei

εk
,Rn)

≤ c εpk ‖∇uk‖p
Lp(Ωεk

,Rn) ,
(2.22)

and thus we infer the convergence of (ũk) to u in Lp
loc(Ω). �

Corollary 1. Assume Ω Lipschitz and P with the cone property. Let εk → 0+ and let
(uk) ⊂ W 1,p(Ωεk

) be a sequence such that supk ‖∇uεk
‖Lp(Ωεk

,Rn) < +∞ and uk = u0 in

∂Ω ∩ ∂Ωεk
for a certain u0 ∈ W 1,p(Ω). Defined (ũk) as in Theorem 1, then (up to a

subsequence not relabeled) ũk → u strongly in Lp(Ω), for some u ∈ W 1,p(Ω) such that
u = u0 in ∂Ω.

Proof. Without loss of generality we can assume u0 = 0. Then, the extension by zero of
uk to all εkP belongs to W 1,p(εkP ). Now we argue as in [2, Lemma A.4] to show that
(uk) is bounded in Lp(εkP ). For, let h ∈ R

n be such that (h+ Ω) ∩ Ω = Ø, and let Ω′ be
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a bounded, open set with (h + Ω) ∪ Ω ⊂⊂ Ω′. With the role of Ω, A in Theorem 2 played
by Ω′, Ω here, respectively, (2.22) yields

‖uk‖Lp(Ωεk
) ≤ ‖ζk − uk‖Lp(Ωεk

) + ‖ζk‖Lp(Ωεk
) ≤ cεk ‖∇uk‖Lp(Ω′

εk
,Rn) + ‖ζk‖Lp(Ωεk

) .

To bound the last term take note that ζk = 0 on h + Ω by the choice of h ∈ R
n, then

(2.21) implies

‖ζk‖Lp(Ωεk
) = ‖τh(ζk) − ζk‖Lp(Ωεk

) ≤ c|h| ‖∇uk‖Lp(Ω′
εk

,Rn) .

By collecting the last two inequalities, we infer that (uk) is bounded in Lp(Ωεk
) and then in

Lp(εkP ). By applying Theorem 2 in some open and bounded set compactly containing Ω′,
we obtain that up to a subsequence (ũk) converges strongly in Lp(Ω′) to some u ∈W 1,p(Ω′).
Since ũk = 0 in Ω′

εk
\ Ω, by Lemma 1 it follows that u = 0 in Ω′ \ Ω. �

3. Lusin type approximation

In order to identify the volume energy density of the Γ-limit in the homogenization result,
we decompose a given sequence in SBV p(Ωε) in the sum of a function in SBV p(Ω) and
a sequence in W 1,∞(Rn) keeping the energy bounds on Ωε and the same L1(Ω) limit.
To do that we follow a by now classical strategy based on maximal function estimates
and Lipschitz extension techniques developed in [3]. A similar approach has been used
in [18, Step 2 of Proposition 5.3] in the setting of perforated domains. Despite the result
there is correct, a technical difficulty has been overlooked. The argument in [18, Step 2 of
Proposition 5.3] hinges on [21, Lemma 2.1], in which the same result for the case of non-
perforated domains, i.e., sequences in SBV (Ω), had been previously shown. That proof
contains an inaccuracy which can be easily fixed when invoking the use of [17, Theorem 2
in Section 6.6.2]. Indeed, the maximal function operator employed in [21, Lemma 2.1] is
not clearly defined, it can be interpreted either to be the one related to the zero extension
of the total variation measure outside Ω, or to be the one related to the zero extension of
the given function out of Ω. In both cases the result by [17] can not be directly applied,
though only simple changes have to be performed to conclude the proof. For instance, an
extension of the functions to all R

n maintaining the vanishing condition of the measure of
their jump sets suffices (see Step 1 of Proposition 3).

As a consequence, a constant that in [21, Lemma 2.1] depends only on the space di-
mension n, actually turns out to depend also on the geometry of the reference domain
Ω. Clearly, this fact prevents the straightforward application of [21, Lemma 2.1] in the
framework of varying domains Ωε as done in [18, Step 2 of Proposition 5.3], and requires
a control of the behavior of those constants as ε→ 0+.

In the sequel, we clarify the stage providing full proofs, though some arguments are well
known in literature.

First, let us fix some notations. Given a positive and finite measure Radon µ in R
n, we

denote by M(µ) the maximal function of µ:

M(µ)(x) := sup
r>0

µ(Br(x))

Ln(Br(x))
.

We simply write M(w) when µ = wLn for some w ∈ L1(Rn).
If A is an open set, the zero extension of the measure µ out of A is denoted by µχA.

Lemma 5. Let R be a open rectangle in R
n and let φ : R→ A be a bi-Lipschitz transfor-

mation. Then, there exists a positive constant c depending on n and on the product of the
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Lipschitz constants of φ and φ−1, such that for every u ∈ BV (A) it holds

|u(x) − u(y)| ≤ c |x− y|
[

M(|Du|χA)(x) +M(|Du|χA)(y)
]

(3.1)

for Ln a.e. x, y ∈ A.

Proof. Step 1. Assume initially that φ is the identity, that is R = A.
Let r > 0 and let x ∈ A be a Lebesgue point for u. By Proposition 4,

ˆ

Br(x)∩A

∣

∣u(z) − uBr(x)∩A

∣

∣ dz ≤ c(n)r |Du| (Br(x) ∩A).

By the definition of M(|Du|χA), then it follows that

1

Ln(Br(x))

ˆ

Br(x)∩A

∣

∣u(z) − uBr(x)∩A

∣

∣ dz ≤ c(n)rM(|Du|χA)(x).

Since A is a rectangle, Ln(B r

2k+1
(x) ∩A) ≥ c(n)Ln(B r

2k
(x)). Therefore

∣

∣

∣
uB r

2k
(x)∩A − uB r

2k+1
(x)∩A

∣

∣

∣
≤
 

B r

2k+1
(x)∩A

∣

∣u(z) − uB r

2k
(x)∩A

∣

∣dz

≤ c(n)

Ln(B r

2k
(x))

ˆ

B r

2k
(x)∩A

∣

∣u(z) − uB r

2k
(x)∩A

∣

∣dz ≤ c(n)r

2k
M(|Du|χA)(x).

Since x is a Lebesgue point, we have

u(x) = lim
r→0+

uBr(x) = lim
k→∞

uB r

2k
(x)

and then

∣

∣u(x) − uBr(x)∩A

∣

∣ =

∞
∑

k=0

∣

∣

∣
uB r

2k
(x)∩A − uB r

2k+1
(x)∩A

∣

∣

∣
≤ c(n)rM(|Du|χA)(x). (3.2)

Consider now two distinct Lebesgue points x, y ∈ A and set r = |x− y|. Since A is a
rectangle, Ln(Br(x) ∩Br(y) ∩A) ≥ c(n)Ln(Br(x)). Therefore

∣

∣uBr(x)∩A − uBr(y)∩A

∣

∣ ≤
 

Br(x)∩Br(y)∩A

(

∣

∣u(z) − uBr(x)∩A

∣

∣+
∣

∣u(z) − uBr(y)∩A

∣

∣

)

dz

≤ c(n)

Ln(Br(x))

ˆ

Br(x)∩A

∣

∣u− uBr(x)∩A

∣

∣ dz +
c(n)

Ln(Br(y))

ˆ

Br(y)∩A

∣

∣u− uBr(y)∩A

∣

∣ dz

≤ c(n)r
[

M(|Du|χA)(x) + (M(|Du|χA)(y)
]

.

(3.3)

Gathering (3.2) and (3.3) through the triangular inequality we get (3.1).

Step 2. In order to raise the result obtained in the previous step to the general case, we
consider the pullback w(z) := u(φ(z)). Denote by l and l′ the Lipschitz constants of φ
and φ−1, respectively. By [5, Theorem 3.16] w belongs to BV (R) with

|Dw| (U) ≤ (l′)n−1φ−1
# |Du| (U) (3.4)

for any Borel set U ⊆ R, where φ−1
# |Du| is the push-forward of the measure |Du| through

φ−1. Since φ(Br(z)) ⊆ Brl(φ(z)), by (3.4) it follows

|Dw| (Br(z) ∩R) ≤ (l′)n−1 |Du| (φ(Br(z) ∩R)) ≤ (l′)n−1 |Du|
(

Brl(φ(z)) ∩A
)

,



18 M. BARCHIESI & M. FOCARDI

and thus, by taking into account that φ−1(Br/l′(φ(z))) ⊆ Br(z), a change of variables
implies

M(|Dw|χR)(z) ≤ l2n(l′)2n−1M(|Du|χA)(φ(z)).

Finally, by Step 1 and since φ enjoys the Lusin (N) property, we infer for Ln a.e. x, y ∈ A

|u(x) − u(y)| =
∣

∣w(φ−1(x)) − w(φ−1(y))
∣

∣

≤ c(n)
∣

∣φ−1(x) − φ−1(y)
∣

∣

[

M(|Dw|χR)(φ−1(x)) +M(|Dw|χR)(φ−1(y))
]

≤ c(n)(ll′)2n |x− y|
[

M(|Du|χA)(x) + (M(|Du|χA)(y)
]

.

�

The result in the sequel is instrumental in order to apply the previous lemma in our
framework.

Lemma 6. Assume that P is Lipschitz regular. Given x, y ∈ P , there exist an open
rectangle R, an open set A ⊆ P containing x and y, and a bi-Lipschitz transformation
φ : R → A such that both φ and φ−1 have Lipschitz constants dominated by a constant
c = c(n, P ).

Proof. For each x ∈ P ∩Q we choose an open rectangle Rr(x), centered in x and with
diameter r = r(x), as follows

• if x ∈ P , we require only that Rr(x) ⊆ P ;
• if x ∈ ∂P , then we choose Rr(x) in such a way that there exist a Lipschitz function
fx : (0, 1)n−1 → (0, 1) and an affine transformation ϕx : Q → Rr(x) such that,
writing z ∈ Q as (z′, zn) ∈ (0, 1)n−1 × (0, 1),

Rr(x) ∩ P = ϕx({z ∈ Q : zn < fx(z′)}).

This is possible since P is a Lipschitz domain.

Now we extract from {Rr(x) : x ∈ P ∩Q} a finite subcovering {Rr(xk) : k = 1, . . . ,m}
of P ∩Q. Let δ > 0 be such that, if x ∈ P ∩Q, then Bδ(x) ⊆ Rr(xk) for some k ∈
{1, . . . ,m}. Thank to the periodicity of P , the thesis is right away proved when |x−y|< δ.

Instead, if |x − y|≥ δ we proceed as follow. As before, for each x ∈ P ∩Q we choose
an open rectangle Rr(x), this time with the additional constraint r < δ/2, and extract a
finite subcovering {Rr(xk) : k = 1, . . . ,m′} of P ∩Q.

Let k, j ∈ {1, . . . ,m′} and i, j ∈ Z
n such that x ∈ Rr(xk + i) and y ∈ Rr(xj + h). To

complete the proof it is sufficient to find an open rectangle R ⊆ R
n, an open set A ⊆ P

including P∩Rr(xk+i) and P∩Rr(xj+h), and a bi-Lipschitz application φ : R→ A in such
a way that the Lipschitz constants of φ and φ−1 do not depend on i and h. By translating
and rotating the coordinate system, we can assume i = 0 and h = (h1, . . . , hn) ∈ Nn.

We examine first the case h = 0. Since the constraint r < δ/2 implies that Rr(xk) and
Rr(xj) are well separated, we can build an open set U ⊆ R

n and a bi-Lipschitz application
ψ : (0, 1)n−1 × (−2, 1) → U such that ψ((0, 1)n−1 × [−1, 0]) ⊆ P , and ψ|(0,1)n−1×(−2,−1)

and ψ|(0,1)n−1×(0,1) are affine transformations on Rr(xk) and Rr(xj), respectively. Setting
A := P ∩ U , we define φ according to the following four cases:

• xk, xj ∈ P . Since Rr(xk), Rr(xj) ⊆ P , we take φ = ψ;
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• xk ∈ P and xj ∈ ∂P . If n ≥ 3, by rotating fxj
around the axis zn = 1/2, we can

assume that ϕxj
= ψ|(0,1)n−1×(0,1) (this is always the case if n = 2). Then, the map

φ(z) :=

{

ψ(z) if z ∈ (0, 1)n−1 × (−2, 0],

ψ((z′, fxj
(z′)zn)) if z ∈ (0, 1)n−1 × (0, 1),

is what we are looking for (see Figure 4);
• xk ∈ ∂P and xj ∈ P , or xk, xj ∈ ∂P . We argue similarly to the previous case.

z′

zn xh xk

Figure 4

To conclude we examine the case |h| := h1 + . . . + hn ≥ 1. We remark that the
construction of the set U cannot be made arbitrarily since we need to control the Lipschitz
constants of φ and φ−1.

Let e1, . . . , en be the unit vectors of the canonical base E of R
n, and let Rr(xs) ⊆ P ∩Q

be an open rectangle, not necessarily in the extracted subcovering, well separated from
both Rr(xk) and Rr(xj). We write

y−1 = xk, y0 = xs, y1 = xs + e1, . . . , yh1
= xs + h1e1, yh1+1 = xs + h1e1 + e2, . . . ,

yh1+h2
= xs + h1e1 + h2e2, . . . , y|h| = xs + h, y|h|+1 = xj + h.

We can build an open set U ⊆ R
n (see Figure 5) and a bi-Lipschitz application ψ :

(0, 1)n−1 × (−2, 2 |h| + 3) → U such that

• ψ((0, 1)n−1 × [−1, 2 |h| + 2]) ⊆ P ;

• ψ|(0,1)n−1×(2t,2t+3) joins Rr(yt) with Rr(yt+1) for t = −1, . . . , |h| (this is possible
thanks to the choice of xs since the relevant rectangles are well separated);

• ψ|(0,1)n−1×(−2,−1) (resp., ψ|(0,1)n−1×(2|h|+2,2|h|+3)) is an affine transformation onto
Rr(xk) (resp., Rr(xj + h));

• ψ|(0,1)n−1×(2t,2t+2) = τ2te1(ψ|(0,1)n−1×(0,2)), for t = 1, . . . , h1 − 1, we argue similarly
on the branches in the remaining directions e2, . . . , en.

The last (periodicity) condition ensures that the Lipschitz constants of ψ and ψ−1 are not
depending on how large h1, . . . , hn are.

Eventually, we set A := P ∩ U and conveniently modify ψ on (0, 1)n−1 × (−2,−1) and
on (0, 1)n−1 × (2 |h| + 2, 2 |h| + 3) arguing as in the case i = h = 0 in order to get φ. �
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xj + h

xk

xs

Figure 5

Remark 2. In Lemma 6 the constant c is invariant by rescaling: c(n, P ) = c(n, εP ) for
any ε > 0.

The following estimate of the oscillation of a function u ∈ SBV (εP ) in terms of the
maximal function of Du is the key of our approximation result.

Theorem 3. Assume that P is Lipschitz regular, there exists a constant c = c(n, P ) with
the following property: for each ε > 0 and for each u ∈ SBV (εP ),

|u(x) − u(y)| ≤ c |x− y|
[

M(|Du|χεP )(x) +M(|Du|χεP )(y)
]

(3.5)

for Ln a.e. x, y ∈ εP .

Proof. It is a straightforward consequence of Lemma 5, Lemma 6 and Remark 2. �

We are now ready to prove a decomposition result for sequence in SBV in the framework
of periodically perforated domains. In doing that we have been inspired by [20, Theorem
6.3], [5, Theorem 5.36] and [19, Lemma 1.2].

Proposition 3. Assume that P is Lipschitz regular. Let εk → 0+ and let (uk) be a
sequence in L1(Ω) such that uk → u strongly in L1(Ω) to some u ∈ SBV p(Ω), uk|Ωεk

∈
SBV p(Ωεk

) and

sup
k

(

ˆ

Ωεk

|∇uk|p dx+ Hn−1(Suk
∩ Ωεk

)

)

< +∞. (3.6)

Then, there exist a subsequence kj → +∞ and a sequence (wj) ⊂ W 1,∞(Ω) such that
wj → 0 strongly in L∞(Ω), wj = 0 on a neighborhood of ∂Ω, (χΩεkj

∇wj) is p-equiintegrable

and
lim

j
Ln({x ∈ Ωεkj

: ukj
(x) 6= u(x) + wj(x)}) = 0. (3.7)
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Proof. We divide the proof into several steps.

Step 1. By truncating (uk − u) we find (ϑk) ⊆ L1(Rn) ∩ SBV p(εkP ) with gradients
bounded in Lp(εkP,R

n), with singular part of the distributional derivative vanishing on
εkP , converging to 0 in L∞(Rn) and satisfying (3.7).

For each δ > 0 consider the function uk,δ := (uk − u) ∨ (−δ) ∧ δ. Noting that uk,δ(x) =
uk(x) − u(x) if |uk(x) − u(x)| ≤ δ we have

Ln({x ∈ Ω : uk,δ(x) 6= uk(x) − u(x)}) ≤ 1

δ

ˆ

Ω
|uk − u| dx.

Since uk → u strongly in L1(Ω), we can choose δk → 0+ such that the function ζk := uk,δk

satisfies limk Ln({x ∈ Ω : ζk(x) 6= uk(x) − u(x)}) = 0. Clearly, ζk → 0 strongly in L∞(Ω)
since ‖ζk‖L∞(Ω) ≤ δk, and moreover ζk|Ωεk

∈ SBV p(Ωεk
) with

ˆ

Ωεk

|∇ζk|pdx ≤
ˆ

Ωεk

|∇(uk − u)|pdx, Sζk
⊆ Suk

∪ Su.

Finally, (3.6) yields

lim
k

|Dsζk| (Ωεk
) ≤ lim

k
δk Hn−1((Suk

∪ Su) ∩ Ωεk
) = 0.

We extend ζk out of Ω via a cut-off argument. To this aim for each η > 0 consider
an open set Ωη ⊂⊂ Ω in such a way that Ln(Ω \ Ωη) → 0 as η → 0+, and a function
ϕη ∈ C1

c (Ω, [0, 1]) such that ϕη = 1 in Ωη. Let ζk,η := ϕηζk, then Sζk,η
⊆ Sζk

and

ˆ

Ωεk

|∇ζk,η|p dx ≤ 2p−1
(

ˆ

Ωεk

|∇ζk|p dx+ Ln(Ω) ‖∇ϕη‖p
L∞(Ω,Rn) δ

p
k

)

.

As ζk → 0 strongly in L∞(Ω) we can choose ηk → 0+ such that the functions defined by
ϑk := ζk,ηk

in Ω and ϑk := 0 in R
n \ Ω belong to SBV p(εkP ), with

sup
j

ˆ

εkP
|∇ϑk|p dx < +∞.

Furthermore, (ϑk) satisfies by construction limk Ln({x ∈ Ω : ζk(x) 6= ϑk(x)}) = 0 and
limk |Dsϑk| (εkP ) = 0.

Step 2. We truncate ϑk via the maximal function, getting a sequence (vk) ⊆ W 1,∞(Rn)
with gradients bounded in Lp(εkP,R

n) and satisfying (3.7).

Let λk := |Dsϑk|
1

1−p (εkP ), then λk → +∞ as k → +∞. Inequality (3.5) shows that
the restriction of ϑk to Uk := {x ∈ εkP : M(|Dϑk|χεkP )(x) ≤ λk} is a Lipschitz function
with Lipschitz constant dominated from above by 2c(n, P )λk. Let vk be an extension of
ϑk|Uk

to R
n with the same Lipschitz constant. Chebyshev inequality and [24, Theorem

1(c)] give for every λ > 0

Ln({x ∈ εkP : M(µk)(x) > λ}) ≤ 1

λp

ˆ

{x∈εkP : M(µk)(x)>λ}
Mp(µk)(x)dx

≤ c(n, p)

λp

ˆ

{x∈εkP : |∇ϑk|(x)>λ}
|∇ϑk|p (x)dx,

(3.8)
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where we have used the short hand notation µk = |∇ϑk|χεkP . Moreover, a Besicovitch
type covering argument gives

Ln({x ∈ εkP : M(|Dsϑk|χεkP )(x) > λ}) ≤ c(n)

λ
|Dsϑk| (εkP ). (3.9)

Equality |Dϑk| = |∇ϑk| Ln + |Dsϑk| yields that the set (εkP ) \ Uk is included in

{x ∈ εkP : M(|∇ϑk|χεkP )(x) > λk/2} ∪ {x ∈ εkP : M(|Dsϑk|χεkP )(x) > λk/2},
thus gathering (3.8) and (3.9) with λ = λk/2 we get limk Ln((εkP ) \ Uk) = 0 and

sup
k

ˆ

εkP
|∇vk|p dx ≤

[

sup
k

ˆ

εkP
|∇ϑk|p dx+ (2c(n, P )λk)pLn((εkP ) \ Uk)

]

≤ (1 + c(n, p, P )) sup
k

ˆ

εkP
|∇ϑk|p dx+ c(n, p, P ) < +∞.

(3.10)

Step 3. We truncate suitably (vk) to get a p-equiintegrable (sub)sequence on Ωεk
satis-

fying (3.7).

By using again [24, Theorem 1(c)], from estimate (3.10) we infer that the sequence
lk := Mp

k (|∇vk|χεkP ) is bounded in L1(Rn). Therefore, by Lemma 7, there exists a
subsequence (lkj

) such that (lkj
∧ jp) is equiintegrable.

Arguing as in the previous step, we can find a Lipschitz function wj coinciding with vkj

on Vj := {x ∈ εkj
P : M(|∇vkj

|χεkj
P )(x) ≤ j} and having Lipschitz constant smaller than

2c(n, P )j. Moreover, limj Ln((εkj
P ) \ Vj) = 0 and therefore

lim
j

Ln({x ∈ εkj
P : vkj

(x) 6= wj(x)}) ≤ Ln((εkj
P ) \ (Ukj

∪ Vj)) = 0.

In addition, for Ln a.e. x ∈ Vj we have

|∇wj(x)| =
∣

∣∇vkj
(x)
∣

∣ ≤M(|∇vkj
|χεkj

P )(x) = M(|∇vkj
|χεkj

P )(x) ∧ j,

and for Ln a.e. x ∈ (εkj
P ) \ Vj

|∇wj(x)| ≤ c(n, P )j = c(n, P )
[

M(|∇vkj
|χεkj

P )(x) ∧ j
]

,

from which we conclude that |∇wj |χεkj
P is p-equiintegrable.

Eventually, we truncate wj between δkj
and −δkj

and apply again the cut-off procedure
performed in Step 1 in order to get a sequence satisfying all the required properties. �

4. Homogenization

We give an application of the results in the previous sections to prove the homogenization
of non equi-coercive energies in SBV p and in W 1,p.

We follow the approach by [18], extending the results there to the case in which P
is only assumed connected (see also [14]). A major technical difference is that we avoid
the use of any extension result in Sobolev spaces on perforated domains, which was an
instrumental tool to identify the density fhom in [18, Proposition 5.1]. Thus, in the sequel
we indicate how the arguments of [18] must be appropriately restated and provide full
proofs only when our strategy departs from the original one.

Furthermore, as a consequence of this, we are able to give a new proof of the classical
homogenization theorem for degenerate energies on W 1,p, too.
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Let us first set some notation. Given ε > 0, let W 1,p
per(Q ∩ εP ) be the family of the

Q-periodic functions in W 1,p
loc (εP ) whose restriction to Q ∩ εP belongs to W 1,p(Q ∩ εP ).

Moreover, given ν ∈ S
1, we denote by Qν any unit cube centered at the origin with one face

orthogonal to ν and by SBV0,1(Q
ν ∩ εP ) the family of functions w ∈ SBV (Qν ∩ εP ) such

that ∇w = 0 Ln a.e. in Qν ∩εP , with w(x) = 1, 0 on a neighborhood of ∂Qν ∩{x ·ν ≥ 0},
∂Qν ∩ {x · ν < 0}, respectively.

Let p ∈ (1,+∞) and consider a Carathéodory function f : R
n × R

n → [0,+∞) and a
Borel function g : R

n × S
n−1 → [0,+∞). We suppose that f satisfies

(f1) f(·, ξ) is Q-periodic for every ξ ∈ R
n,

(f2) there exist two constants c1, c2 > 0 such that for every (x, ξ) ∈ R
n × R

n

c1|ξ|p ≤ f(x, ξ) ≤ c2(1 + |ξ|p),

and that g satisfies

(g1) g(·, ν) is Q-periodic for every ν ∈ S
n−1,

(g2) g(x,−ν) = g(x, ν) for every (x, ν) ∈ R
n × S

n−1,
(g3) there exist two constants c3, c4 > 0 such that for every (x, ν) ∈ R

n × S
n−1

c3 ≤ g(x, ν) ≤ c4.

Then we introduce the family of functionals Fε : Lp(Ω) → [0,+∞] defined by

Fε(u) :=







ˆ

Ωε

f
(x

ε
,∇u

)

dx+

ˆ

Su∩Ωε

g
(x

ε
, νu

)

dHn−1 u|Ωε ∈ SBV p(Ωε),

+∞ otherwise in Lp(Ω).
(4.1)

Its asymptotic behavior is described by the following theorem.

Theorem 4. The family (Fε) Γ(Lp(Ω))-converges to the functional Fhom : Lp(Ω) → [0,∞]
given by

Fhom(u) :=







ˆ

Ω
fhom(∇u) dx+

ˆ

Su

ghom (νu) dHn−1 u ∈ GSBV p(Ω),

+∞ otherwise in Lp(Ω),

where the bulk energy density fhom : R
n → [0,+∞) is given by

fhom(ξ) := inf

{
ˆ

Q∩P
f co (x, ξ + ∇w) dx : w ∈W 1,p

per(Q ∩ P )

}

, (4.2)

with f co denoting the convex envelope of f , and the surface energy density ghom : S
n−1 →

[0,+∞) is given by

ghom(ν) := lim
ε→0+

inf

{

ˆ

Sw∩εP
g
(x

ε
, νw

)

dHn−1 : w ∈ SBV0,1(Q
ν ∩ εP )

}

. (4.3)

Furthermore, with c2 the constant in (f2), c4 the constant in (g2) and some constants
c′1, c

′
3 > 0, it hold

c′1|ξ|p ≤fhom(ξ) ≤ c2Ln(P ∩Q)(1 + |ξ|p) for every ξ ∈ R
n,

c′3 ≤ghom(ν) ≤ c4Ln(P ∩Q) for every ν ∈ S
n−1.

(4.4)
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Proof. The starting point of our analysis are the local methods of Γ-convergence. For every
open subset A of Ω let Fε(u,A) be defined as Fε(u) in (4.1), with Ω replaced by A. Then,
for any sequence (εk) there exists a subsequence (εjk

) for which (Fεjk
(·, A)) Γ-converges

to a functional F(·, A) for every A, and such that for every u ∈ SBV p ∩ Lp(A)

F(u,A) =

ˆ

A
f0(∇u)dx+

ˆ

Su∩A
g0(u

+ − u−, ν)dHn−1,

for some functions f0 : R
n → [0,+∞] and g0 : R × S

n−1 → [0,+∞]. The former inte-
gral representation result is based on an adaptation of [7, Theorem 1] performed in [18,
Propositions 5.1 and 5.2].

If we show that for any sequence (εk) the functions f0 and g0 above are given by fhom

and ghom, respectively, then Urysohn property will entail the conclusion. To simplify the
notation in the sequel we suppose that the sequence (Fεk

(·, A)) is converging itself.
In this respect, let us point out that the limit in (4.3) defining ghom exists by reproducing

the proof of [9, Proposition 2.2] (see [18, Lemma 5.1] in case g = 1). In addition, equality
ghom = g0 can be obtained arguing as in [18, Proposition 5.4] (the latter is actually proven
under the assumption g = 1).

To conclude we are left with showing equality fhom = f0.
By adapting the first part of the proof of [7, Theorem 4], we have that for every open

subset A of Ω and u ∈W 1,p(A) the Lp lower-semicontinuous envelope of Fε is given by

Fε(u,A) =

ˆ

A∩εP
f co
(x

ε
,∇u

)

dx,

and by [8, Proposition 7.13]

Γ(Lp(A)) − lim
k

Fεk
(u,A) = F(u,A). (4.5)

Moreover, by [8, Proposition 19.6 and Remark 19.2] the limit below exists and

fhom(ξ) = lim
ε→0+

inf

{
ˆ

Q∩εP
f co
(x

ε
, ξ + ∇w

)

dx : w ∈W 1,p
per(Q ∩ εP )

}

. (4.6)

In the sequel we will use both the definition and the latter characterization of fhom to
prove the desired equality.

Step 1: f0 ≤ fhom.

With fixed δ > 0, there exists w0 ∈W 1,p
per(Q ∩ P ) such that

ˆ

Q∩P
f co (x, ξ + ∇w0(x)) dx ≤ fhom(ξ) + δ.

We regard w0 as extended to the whole of R
n by setting it equal to 0 in R

n \ P . Define
wk(x) := εkw0(x/εk), then wk ∈ Lp(Q), wk|Q∩εkP ∈ W 1,p(Q ∩ εkP ), and (wk) converges
to 0 in Lp(Q) as k → +∞. Furthermore, setting vk(x) := ξ · x + wk(x), a simple change
of variables and the periodicity assumption (f1) yield

Fεk
(vk, Q) ≤ εnk

(

1 +
[

ε−1
k

])n
ˆ

Q∩P
f co (x, ξ + ∇w0(x)) dx,

with [·] denoting the integer part of the relevant quantity. By (4.5) we infer

f0(ξ) = F(ξ · x,Q) ≤ lim inf
k

Fεk
(vk, Q) ≤ fhom(ξ) + δ,

and by taking the limit as δ → 0+ we conclude f0(ξ) ≤ fhom(ξ).
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Step 2: fhom ≤ f0.

In this step our arguments differ mostly with respect to those of [18, Step 2 of Propo-
sition 5.3] in which the extension result for Sobolev functions on perforated domains
contained in [1, Theorem 2.1] has been employed in case P is Lipschitz regular. Instead,
we take advantage of the decomposition result proved in Proposition 3 to deal with such
a case. Following [18, Step 3 of Proposition 5.3] an approximation argument is exploited
to recover the general case.

Let us first outline the approximation procedure. Let (Pm) be a sequence of open,
Q-periodic, connected and Lipschitz sets such that Pm ⊆ Pm+1 and ∪mP

m = P as in
Lemma 8, and define fm

hom as fhom in (4.2) with P replaced by Pm, then we claim that

sup
m
fm

hom = fhom. (4.7)

Clearly fm
hom ≤ fm+1

hom ≤ fhom by definition; to prove the opposite inequality we denote by
Em, m ∈ N, an open, bounded, and connected set having the cone property such that
Q ∩ Pm ⊆ Em ⊆ Pm (see the beginning of the proof of Theorem 1).

For every m ∈ N let wm ∈W 1,p
per(Q ∩ Pm) be such that

ffl

Q∩P 1 wmdx = 0 and
ˆ

Q∩P m

f co (x, ξ + ∇wm) dx ≤ fm
hom(ξ) +

1

m
.

Since for every fixed M ∈ N

sup
m≥M

ˆ

Q∩P M

f co (x, ξ + ∇wm) dx ≤ sup
m
fm

hom(ξ) + 1,

the sequence (wm)m≥M is bounded in W 1,p(EM ) by the Poincaré-Wirtinger inequality in
Sobolev spaces ([23, Lemma 1.1.11]). Then, a diagonal argument implies the existence of
a subsequence (mk) such that the sequence (wmk

) is weakly convergent in W 1,p(Q ∩ PM )
to some function w, for every M ∈ N. Since

ˆ

Q∩P M

f co (x, ξ + ∇w) dx ≤ lim inf
k

ˆ

Q∩P M

f co (x, ξ + ∇wmk
) dx ≤ sup

m
fm

hom(ξ) +
1

M
,

by letting M → +∞, we infer that w ∈ Lp
loc(Q ∩ P ), ∇w ∈ Lp(Q ∩ P,Rn) and

ˆ

Q∩P
f co (x, ξ + ∇w) dx ≤ sup

m
fm

hom(ξ). (4.8)

In particular, it is easy to check that the truncated functions vj := w ∧ j ∨ −j, extended

by Q-periodicity, belong to W 1,p
per(Q ∩ P ) and for every M ∈ N

fhom(ξ) ≤
ˆ

Q∩P
f co(ξ + ∇vj)dx

=

ˆ

(Q∩P )\{|w|≥j}
f co(ξ + ∇w)dx + c2(1 + |ξ|p)Ln((Q ∩ P ) \ {|w| ≥ j})

≤
ˆ

Q∩P
f co(ξ + ∇w)dx+ c2(1 + |ξ|p)

(

Ln((Q ∩ PM ) \ {|w| ≥ j}) + Ln(Q ∩ (P \ PM ))
)

.

Since w ∈ Lp(Q ∩ PM ), we have Ln((Q ∩ PM ) \ {|w| ≥ j}) → 0 as j → +∞, so that

fhom(ξ) ≤
ˆ

Q∩P
f co(ξ + ∇w)dx+ c2(1 + |ξ|p)Ln(Q ∩ (P \ PM )). (4.9)

Gathering (4.8) and (4.9), we obtain (4.7) as M → +∞.
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With the help of (4.7) we are able to show that fhom(ξ) ≤ f0(ξ). With fixed m ∈ N,
denote by Fm

ε the functionals defined as Fε with P replaced by Pm. Consider a sequence
(uk) ⊂ Lp(Q) converging to ξ · x in Lp(Q) and such that

f0(ξ) = F(ξ · x,Q) = lim
k

Fεk
(uk, Q).

By Proposition 3, there exist a subsequence (kj) and a sequence (wj) ⊂ W 1,∞(Q) such
that wj → 0 strongly in L∞(Q), wj = 0 on a neighborhood of ∂Q, (χQ∩εkj

P m∇wj) is p-

equiintegrable and limj Ln(Uj) = 0, where Uj := {x ∈ Q∩εkj
Pm : ukj

(x) 6= ξ ·x+wj(x)}.
Then, by extending wj to R

n by Q-periodicity and by the characterization in (4.6) for
fm

hom, we get

fm
hom(ξ) ≤ lim sup

j
Fm

εkj
(ξ · x+ wj, Q) ≤ lim sup

j
Fm

εkj
(ukj

, Q)

+ c2 lim sup
j

ˆ

Uj

(

1 + |ξ + ∇wj |p
)

dx ≤ f0(ξ),

being Fm
εkj

≤ Fεkj
. Taking the supremum in m, by (4.7) we conclude.

Eventually, in order to show (4.4) it suffices to take into account (f2) and (g2), and the
lower semicontinuity estimates in (2.3), the growth conditions from above being trivially
satisfied.

Finally, as a consequence of Theorem 1, we have Γ-limFε(u) = +∞ whenever u /∈
GSBV p ∩Lp(Ω). Moreover, the coerciveness conditions established in (4.4) and a by now
standard argument (see [9, Lemma 3.5]) imply the continuity of Fhom along truncations,
so that the integral representation can be extended to GSBV p ∩ Lp(Ω). �

Remark 3. If P is Lipschitz regular the proof of inequality fhom ≤ f0 above greatly
simplifies since we can skip the approximation argument. In addition, in such a case it
also follows that

fhom(ξ) = inf

{
ˆ

Q∩P
f co (x, ξ + ∇w) dx : w ∈W 1,∞

per (Q)

}

.

Remark 4. If f is convex in the second variable, then we do not need to relax Fε and we
can just assume f Borelian.

Arguing as in Theorem 4 we deduce the classical homogenization theorem for degenerate
energies on Sobolev spaces. This method is alternative to that employed by [1] relying
on an extension result. In what follows we denote by Eε : Lp(Ω) → [0,+∞] the family of
functionals defined by

Eε(u) :=







ˆ

Ωε

f
(x

ε
,∇u

)

dx u|Ωε ∈W 1,p(Ωε),

+∞ otherwise in Lp(Ω).
(4.10)

Theorem 5. The family (Eε) Γ(Lp(Ω))-converges to the functional Ehom : Lp(Ω) → [0,∞]
given by

Ehom(u) :=







ˆ

Ω
fhom(∇u) dx u ∈W 1,p(Ω),

+∞ otherwise in Lp(Ω),

with fhom : R
n → [0,+∞) defined in (4.2).
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Proof. For every open subset A of Ω, define Eε(u,A) as Eε(u) in (4.10), with Ω replaced
by A. Then the local methods of Γ-convergence and the integral representation result
in [7, Theorem 2] give that for any sequence (εk) there exists a subsequence (εjk

) for
which (Eεjk

(·, A)) Γ-converges to a functional E(·, A) for every A, and such that for every

u ∈W 1,p(A)

E(u,A) =

ˆ

A
f0(∇u)dx

for some Borel function f0 : R
n → [0,+∞]. To deduce that f0 = fhom we argue as in

Theorem 4. Finally, Γ-lim Eε(u) = +∞ whenever u /∈W 1,p(Ω) by Theorem 2. �

Remark 5. The Γ-convergence statements in Theorems 4 and 5 are compatible with the
addition of Dirichlet boundary conditions on the fix boundary ∂Ω ∩ ∂Ωε, provided Ω is
assumed to be Lipschitz regular and the boundary datum g is the trace of a function in
W 1,p ∩ L∞(Ω) in the first case, and W 1,p(Ω) in the second (compare with [18, Theorems
6.1 and 7.1] and [2, Lemmata A.3, A.4]).

In the first case, by truncating, we can always assume that the sequence (uε) of almost
minimizers is bounded in L∞(Ωε) and then, by Theorem 4, that (ũε) converges strongly
in Lp(Ω) to some u ∈ SBV p ∩ L∞(Ω), which turns out to be the related solution for the
minimum problem of the Γ-limit. In the second case instead we need to suppose that P
enjoys the cone property to apply Corollary 1.

Eventually, in the Sobolev case one can consider the addition of Neumann boundary
conditions (see [1, Theorem 3.1] and [8, Proposition 19.10]). Also in this case, despite the
Γ-limit is provided only under the assumption that P is connected, to guarantee that the
limit of the minimizers is a solution for the minimum problem of the Γ-limit, we need to
assume that P has the cone property in order to apply the last part of Theorem 2.

Appendix A

We quote some results which were instrumental in the arguments above and maybe less
known. First, we state two Poincaré-Wirtinger type inequalities in BV which are usually
stated in the Sobolev space setting. Their extensions follows easily since W 1,1 is dense in
BV with respect to the strict convergence, i.e., the convergence of the functions in L1 and
of the total variation measures.

Proposition 4. There exists a constant c = c(n) such that for every open, bounded and
convex set E ⊆ R

n
ˆ

E
|u(x) − uE | dx ≤ c diam(E) |Du| (E),

for every u ∈ BV (E).

Proposition 5. Let E ⊆ R
n be a bounded, connected and open set having the cone prop-

erty. Given an open ball B ⊆ E, there is a constant c = c(B,E) such that
ˆ

E
|u(x) − uB | dx ≤ c |Du| (E),

for every u ∈ BV (E).

For the proofs in the Sobolev space setting see [22, Theorem 12.30] for the first, and
[23, Lemma 1.1.11] for the latter.

Take also note that the constant c in Proposition 5 scales linearly: c(εB, εE) = εc(B,E)
for every ε > 0.
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Then we quote a truncation result. It is a slightly strengthened statement of Chacon’s
biting lemma. Several versions are known in literature (see [19, Lemma 1.2]) we recall
here the one proved in [16, Lemma A.2].

Lemma 7. Let (lk) ⊂ L1(Ω) be bounded, then for every positive increasing sequence
tj ↑ +∞ there exists a subsequence (lkj

) such that (lkj
∧ tj ∨−tj) is equi-integrable.

Finally, we state an approximation lemma exploited in Theorem 4.

Lemma 8. Let P ⊆ R
n be a connected, Q-periodic open set. Then there exists a sequence

of smooth sets (Pm) ⊆ R
n enjoying the same properties, and such that Pm ⊆ Pm+1,

∪mP
m = P .

Proof. If P = R
n there is nothing to prove. Thus, we may assume that P c 6= Ø and 0 ∈ P

without loss of generality. Then, being P Q-periodic, all the vertices pi, 1 ≤ i ≤ 2n, of the
unit cube Q belong to P ; in addition the distance function dist(·, P c) is Q-periodic, too.

By taking into account that P is open and arcwise connected for any two vertices pi,
pj with |pi − pj| = 1 there exists a continuous curve γi,j : [0, 1] → P with γi,j(0) = pi and
γi,j(1) = pj . Let

S̃ := ∪i<jγi,j([0, 1]), S := ∪z∈Zn(z + S̃),

then dist(S,P c) > 0 being S and P both Q-periodic.
Consider the connected component Am of the set Dm := {x ∈ R

n : dist(x, P c) > 2−m},
m ∈ N sufficiently big, containing S. By construction, Am ⊆ Am+1 and ∪mA

m ⊆ P . On
the other hand for any point x ∈ P there exists a continuous curve γx : [0, 1] → P joining x
itself and a vertex p of Q. Hence, γx([0, 1]) ⊆ Dm form ∈ N satisfying dist(γx([0, 1]), P c) >
2−m, and since p ∈ S ∩ γx([0, 1]) by connectedness γx([0, 1]) ⊆ Am. Hence, ∪mA

m = P .
To conclude we regularize dist(·, P c) in order to get smooth open sets as in the statement.

To this aim, consider a kernel ϕ ∈ C∞
c (B1, [0,+∞)) with ‖ϕ‖L1(Rn) = 1 and define the

mollified functions dk(x) := (dist(·, P c) ∗ knϕ(k·))(x). Take note that dk is Q-periodic for
all k ∈ N.

Sard’s theorem implies that for every k ∈ N the sets Dk,η := {x ∈ R
n : dk(x) > 2−m−η}

are (n− 1)-dimensional manifolds of class C∞ if η ∈ Im, with Im a set of full L1 measure

in (2−(m+2), 2−(m+1)). By uniform convergence of (dk) to dist(·, P c) on R
n we can find a

diverging sequence (km) such that

‖dkm − dist(·, P c)‖L∞(Rn) +
∥

∥dkm − dkm+1

∥

∥

L∞(Rn)
≤ 2−(m+2).

To conclude let (ηm) be a decreasing sequence, with ηm ∈ Im and ηm − ηm+1 < 2−(m+2),
then Dm ⊆ Dkm,ηm ⊆ Dkm+1,ηm+1

. Denote by Pm the connected component of Dkm,ηm

containing Am, the family (Pm) satisfies by construction all the requirements of the state-
ment. �
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