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Abstract. In this paper we prove dispersive estimates for the system formed by two
coupled discrete Schrödinger equations. We obtain estimates for the resolvent of the
discrete operator and prove that it satisfies the limiting absorption principle. The decay
of the solutions is proved by using classical and some new results on oscillatory integrals.

1. Introduction

Let us consider the linear Schrödinger equation (LSE):

(1.1)

{
iut + uxx = 0, x ∈ R, t 6= 0,
u(0, x) = ϕ(x), x ∈ R.

Linear equation (1.1) is solved by u(t, x) = S(t)ϕ, where S(t) = eit∆ is the free
Schrödinger operator. The linear semigroup has two important properties. First, the
conservation of the L2-norm:

(1.2) ‖S(t)ϕ‖L2(R) = ‖ϕ‖L2(R)

and a dispersive estimate of the form:

(1.3) |(S(t)ϕ)(x)| ≤ 1

(4π|t|)1/2
‖ϕ‖L1(R), x ∈ R, t 6= 0.

The space-time estimate

(1.4) ‖S(·)ϕ‖L6(R, L6(R)) ≤ C‖ϕ‖L2(R),

due to Strichartz [13], is deeper. It guarantees that the solutions of system (1.1) decay
as t becomes large and that they gain some spatial integrability. Inequality (1.4) was
generalized by Ginibre and Velo [3]. They proved the mixed space-time estimates, well
known as Strichartz estimates:

(1.5) ‖S(·)ϕ‖Lq(R, Lr(R)) ≤ C(q, r)‖ϕ‖L2(R)

for the so-called admissible pairs (q, r):

(1.6)
1

q
=

1

2

(1

2
− 1

r

)
, 2 ≤ q, r ≤ ∞.
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Similar results can be stated in any space dimension but it is beyond the scope of this
article. These estimates have been successfully applied to obtain well-posedness results for
the nonlinear Schrödinger equation (see [2], [14] and the reference therein).

Let us now consider the following system of difference equations

(1.7)

{
iut + ∆du = 0, j ∈ Z, t 6= 0,

u(0) = ϕ,

where ∆d is the discrete laplacian defined by

(∆du)(j) = uj+1 − 2uj + uj−1, j ∈ Z.

Concerning the long time behavior of the solutions of system (1.7) in [11] the authors have
proved that a decay property similar to the one obtained for the continuous Schrödinger
equation holds:

(1.8) ‖u(t)‖l∞(Z) ≤ C(|t|+ 1)−1/3‖ϕ‖l1(Z), ∀ t 6= 0.

The proof of (1.8) consists in writing the solution u of (1.7) as the convolution between a
kernel Kt and the initial data ϕ and then estimate Kt by using Van der Corput’s lemma.
For the linear semigroup exp(it∆d), Strichartz like estimates similar to those in (1.5) have
been obtained in [11] for a larger class of pairs (q, r):

(1.9)
1

q
≤ 1

3

(1

2
− 1

r

)
, 2 ≤ q, r ≤ ∞.

We also mention [5] and [6] where the authors consider a similar equation on hZ by
replacing ∆d by ∆d/h

2 and analyze the same properties in the context of numerical ap-
proximations of the linear and nonlinear Schrödinger equation.

A more thorough analysis has been done in [9] and [10] where the authors analyze the
decay properties of the solutions of equation iut + Au = 0 where A = ∆d − V , with
V a real-valued potential. In these papers l1(Z) − l∞(Z) and l2−σ(Z) − l2σ(Z) estimates
for exp(itA)Pa,c(A) have been obtained where Pa,c(A) is the spectral projection to the
absolutely continuous spectrum of A and l2±σ(Z) are weighted l2(Z)-spaces.

In what concerns the Schödinger equation with variable coefficients we mention the
results of Banica [1]. Consider a partition of the real axis as follows: −∞ = x0 < x1 <
· · · < xn+1 = ∞ and a step function σ(x) = b−2

i for x ∈ (xi, xi+1), where bi are positive
numbers. The solution u of the Schrödinger equation{

iut(t, x) + (σ(x)ux)x(t, x) = 0, for x ∈ R, t 6= 0,

u(0, x) = u0(x), x ∈ R,

satisfies the dispersion inequality

‖u(t)‖L∞(R) ≤ C|t|−1/2‖u0‖L1(R), t 6= 0,

where constant C depends on n and on sequence {bi}ni=0. We recall that in [4] the above
result was used in the analysis of the long time behavior of the solutions of the linear
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Schödinger equation on regular trees. In the case of discrete equations the corresponding
model is given by

(1.10)

{
iUt + AU = 0, t 6= 0,
U(0) = ϕ,

where the infinite matrix A is symmetric with a finite number of diagonals nonidentically
vanishing. Once a result similar to [1] will be obtained for discrete Schrödinger equations
with non-constant coefficients we can apply it to obtain dispersive estimates for discrete
Schrödinger equations on trees. But as far as we know the study of the decay properties
of solutions of system (1.10) in terms of the properties of A is a difficult task and we try
to give here a partial answer to this problem. In the case when A is a diagonal matrix
these properties are easily obtained by using the Fourier transform and classical estimates
for oscillatory integrals.

The main goal of this article is to analyze a simplified model which consists in coupling
two DSE by Kirchhoff’s type condition:

(1.11)



iut(t, j) + b−2
1 (∆du)(t, j) = 0 j ≤ −1, t 6= 0,

ivt(t, j) + b−2
2 (∆dv)(t, j) = 0 j ≥ 1, t 6= 0,

u(t, 0) = v(t, 0), t 6= 0,

b−2
1 (u(t,−1)− u(t, 0)) = b−2

2 (v(t, 0)− v(t, 1)), t 6= 0,

u(0, j) = ϕ(j), j ≤ −1,

v(0, j) = ϕ(j), j ≥ 1.

In the above system u(t, 0) and v(t, 0) have been artificially introduced to couple the two
equations on positive and negative integers. The third condition in the above system
requires continuity along the interface j = 0 and the fourth one can be interpreted as the
continuity of the flux along the interface.

The main result of this paper is given in the following theorem.

Theorem 1.1. For any ϕ ∈ l2(Z \ {0}) there exists a unique solution (u, v) ∈ C(R, l2(Z \
{0})) of system (1.11). Moreover, there exists a positive constant C(b1, b2) such that

(1.12) ‖(u, v)(t)‖l∞(Z\{0}) ≤ C(b1, b2)(|t|+ 1)−1/3‖ϕ‖l1(Z\{0}), ∀t ∈ R,

holds for all ϕ ∈ l1(Z \ {0}).

Using the well-known results of Keel and Tao [7] we obtain the following Strichartz-like
estimates for the solutions of system (1.11).

Theorem 1.2. For any ϕ ∈ l2(Z \ {0}) the solution (u, v) of system (1.11) satisfies

‖(u, v)‖Lq(R, lr(Z\{0})) ≤ C(q, r)‖ϕ‖l2(Z\{0})

for all pairs (q, r) satisfying (1.9).
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The paper is organized as follows: In section 2 we present some discrete models, in
particular system (1.11) in the case b1 = b2 and show how it is related with problem (1.7).
In addition, a system with a dynamic coupling along the interface is presented. In section
3 we present some classical results on oscillatory integrals and make some improvements
that we will need in the proof of Theorem 1.1. In section 4 we obtain an explicit formula for
the resolvent associated with system (1.11). We prove a limiting absorption principle and
we give the proof of the main result of this paper. Finally we present some open problems.

2. Some discrete models

In this section in order to emphasize the main differences and difficulties with respect to
the continuous case when we deal with discrete systems we will consider two models. In
the first case we consider system (1.11) with the two coefficients in the front of the discrete
laplacian equal. In the following we denote Z∗ = Z \ {0}.

Theorem 2.1. Let us assume that b1 = b2. For any ϕ ∈ l2(Z∗) there exists a unique
solution u ∈ C(R, l2(Z∗)) of system (1.11). Moreover there exists a positive constant C(b1)
such that

(2.1) ‖u(t)‖l∞(Z∗) ≤ C(b1)(|t|+ 1)−1/3‖ϕ‖l1(Z∗), ∀ t ∈ R,

holds for all ϕ ∈ l1(Z∗).

In the particular case considered here we can reduce the proof of the dispersive estimate
(2.1) to the analysis of two problems: one with Dirichlet’s boundary condition and another
one with a discrete Neumann’s boundary condition.

Before starting the proof of Theorem 2.1 let us recall that in the case of system (1.7) its
solution is given by u(t) = Kt ∗ ϕ where ∗ is the standard convolution on Z and

Kt(j) =

∫ π

−π
e−4it sin2( ξ

2
)eijξdξ, t ∈ R, j ∈ Z.

In [11] a simple argument based on Van der Corput’s lemma has been used to show that
for any real number t the following holds:

(2.2) |Kt(j)| ≤ C(|t|+ 1)−1/3, ∀j ∈ Z.

Proof of Theorem 2.1. The existence of the solutions is immediate since operator A defined
in (2.7) is bounded in l2(Z∗). We prove now the decay property (2.1). Let us restrict for
simplicity to the case b1 = b2 = 1.

For (u, v) solution of system (1.11) let us set

S(j) =
v(j) + u(−j)

2
, D(j) =

v(j)− u(−j)
2

, j ≥ 0.

Observe that u and v can be recovered from S and D as follows

(u, v) = ((S −D)(−·), S +D).
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Writing the equations satisfied by u and v we obtain that D and S solve two discrete
Schrödinger equations on Z+ = {j ∈ Z, j ≥ 1} with Dirichlet, respectively Neumann
boundary conditions:

(2.3)


iDt(t, j) + (∆dD)(t, j) = 0 j ≥ 1, t 6= 0,

D(t, 0) = 0, t 6= 0,

D(0, j) = ϕ(j)−ϕ(−j)
2

, j ≥ 1,

and

(2.4)


iSt(t, j) + (∆dS)(t, j) = 0 j ≥ 1, t 6= 0,

S(t, 0) = S(t, 1), t 6= 0,

S(0, j) = ϕ(j)+ϕ(−j)
2

, j ≥ 1.

Making an odd extension of the function D and using the representation formula for the
solutions of (1.7) we obtain that the solution of the Dirichlet problem (2.3) satisfies

(2.5) D(t, j) =
∑
k≥1

(Kt(j − k)−Kt(j + k))D(0, k), t 6= 0, j ≥ 1.

A similar even extension of function S permits us to obtain the explicit formula for the
solution of the Neumann problem (2.4)

(2.6) S(t, j) =
∑
k≥1

(Kt(k − j) +Kt(k + j − 1))S(0, k), t 6= 0, j ≥ 1.

Using the decay of the kernel Kt given by (2.2) we obtain that S(t) and D(t) decay as
(|t|+ 1)−1/3 and then the same property holds for u and v. This finishes the proof of this
particular case. �

Observe that our proof has taken into account the particular structure of the equations.
When the coefficients b1 and b2 are not equal we cannot write an equation verified by
functions D or S.

We now write system (1.11) in matrix formulation. Using the coupling conditions at
j = 0 system (1.11) can be written in the following equivalent form{

iUt + AU = 0,
U(0) = ϕ,

where U = (u, v)T , u = (u(j))j≤−1, v = (vj)j≥1 and

(2.7) A =



... ... ... 0 0 0 0 0
0 b−2

1 −2b−2
1 b−2

1 0 0 0 0
0 0 b−2

1 −b−2
1 − 1

b21+b22

1
b21+b22

0 0 0

0 0 0 1
b21+b22

− 1
b21+b22

− b−2
2 b−2

2 0 0

0 0 0 0 b−2
2 −2b−2

2 b−2
2 0

0 0 0 0 0 ... ... ...

 .
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In the particular case b1 = b2 = 1 the operator A can be decomposed as follows

A = ∆d+B =


... ... ... 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 ... ... ...

+


... ... ... 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1

2
−1

2
0 0 0

0 0 0 −1
2

1
2

0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 ... ... ...

 .

However, we do not know how to use the dispersive properties of exp(it∆d) and the par-
ticular structure of B in order to obtain the decay of the new semigroup exp(it(∆d +B)).

Another model of interest is the following one inspired in the numerical approximations
of LSE. Set

a(x) =

{
b−2

1 , x < 0,
b−2

2 , x > 0.

Using the following discrete derivative operator

(∂u)(x) = u(x+
1

2
)− u(x− 1

2
)

we can introduce the second order discrete operator

∂(a∂u)(j) = a(j +
1

2
)u(j + 1)−

(
a(j +

1

2
) + a(j − 1

2
)
)
u(j) + a(j − 1

2
)u(j − 1), j ∈ Z.

In this case we have to analyze the following system

(2.8)


iut(t, j) + b−2

1 (∆du)(t, j) = 0, j ≤ −1, t 6= 0,

iut(t, j) + b−2
2 (∆du)(t, j) = 0, j ≥ 1, t 6= 0,

iut(t, 0) + b−2
1 u(t,−1)− (b−2

1 + b−2
2 )u(t, 0) + b−1

2 u(t, 1) = 0, t 6= 0,

u(0, j) = ϕ(j), j ∈ Z.

In matrix formulation it reads iUt + AU = 0 where U = (u(j))j∈Z, and the operator A is
given by the following one

(2.9) A =


... ... ... 0 0 0 0
0 b−2

1 −2b−2
1 b−2

1 0 0 0
0 0 b−2

1 −(b−2
1 + b−2

2 ) b−2
2 0 0

0 0 0 b−2
2 −2b−2

2 b−2
2 0

0 0 0 0 ... ... ...

 .

Observe that in the case b1 = b2 the results of [11] give us the decay of the solutions.
Regarding the long time behavior of the solutions of system (2.8) we have the following

result.

Theorem 2.2. For any ϕ ∈ l2(Z) there exists a unique solution u ∈ C(R, l2(Z)) of system
(2.8). Moreover, there exists a positive constant C(b1, b2) such that

‖u(t)‖l∞(Z) ≤ C(b1, b2)(|t|+ 1)−1/3‖ϕ‖l1(Z), ∀t ∈ R,
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holds for all ϕ ∈ l1(Z).

The proof of this result is similar to the one of Theorem 1.1 and we will only sketch it
at the end of Section 4.

3. Oscillatory integrals

In this section we present some classical tools for oscillatory integrals and we give an
improvement of Van der Corput’s Lemma that is in some sense similar to the one obtained
in [8]. First of all let us recall Van der Corput’s lemma(see for example [12], p. 332).

Lemma 3.1. (Van der Corput) Let k ≥ 1 be an integer, and φ : [a, b] → R such that
|φ(k)(x)| ≥ 1 for all x ∈ [a, b], and φ′ monotone in the case k = 1.
Then ∣∣∣∣∫ b

a

eitφ(x)ψ(x)dx

∣∣∣∣ ≤ ck|t|−
1
k

(
‖ψ‖L∞(a,b) +

∫ b

a

|ψ′(ξ)|dξ
)
, ∀ t 6= 0.

A first improvement has been obtained in [8] where the authors analyze the smoothing
effect of some dispersive equations. We will present here a particular case of the results in
[8], that will be sufficient for our purposes. In the sequel Ω will be a bounded interval. We
consider class A2 of real functions φ ∈ C3(Ω) satisfying the following conditions:
1) Set Sφ = {ξ ∈ Ω : φ′′ = 0} is finite,
2) If ξ0 ∈ Sφ then there exist constants ε, c1, c2 and α ≥ 2 such that for all |ξ − ξ0| < ε,

c1|ξ − ξ0|α−2 ≤ |φ′′(ξ)| ≤ c2|ξ − ξ0|α−2,

3) φ′′ has a finite number of changes of monotonicity.

Lemma 3.2. Let Ω be a bounded interval, φ ∈ A2 and

I(x, t) =

∫
Ω

ei(tφ(ξ)−xξ)|φ′′(ξ)|1/2dξ.

Then for any x, t ∈ R

(3.1) |I(x, t)| ≤ cφ|t|−1/2,

where cφ depends only on the constants involved in the definition of class A2.

Remark 1. The results of [8] are more general that the one we presented here allowing
functions with vertical asymptotics, finite union of intervals or infinite domains.

As a corollary we also have [8]:

Corrolary 3.1. If φ ∈ A2 then∣∣∣ ∫
Ω

ei(tφ(ξ)−xξ)|φ′′(ξ)|1/2ψ(ξ)dξ
∣∣∣ ≤ Cφ|t|−1/2

(
‖ψ‖L∞(Ω) +

∫
Ω

|φ′(ξ)|dξ
)
,

holds for all x, t ∈ R.
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In the proof of our main result we will need a result similar to Lemma 3.2 but with
|p′′′|1/3 instead of |p′′|1/2 in the definition of I(x, t). We define class A3 of real functions
φ ∈ C4(Ω) satisfying the following conditions:
1) Set Sφ = {ξ ∈ Ω : φ′′′ = 0} is finite,
2) If ξ0 ∈ Sφ then there exist constants ε, c1, c2 and α ≥ 3 such that for all |ξ − ξ0| < ε,

(3.2) c1|ξ − ξ0|α−3 ≤ |φ′′′(ξ)| ≤ c2|ξ − ξ0|α−3,

3) φ′′′ has a finite number of changes of monotonicity.

Lemma 3.3. Let Ω be a bounded interval, φ ∈ A3 and

I(x, t) =

∫
Ω

ei(tφ(ξ)−xξ)|φ′′′(ξ)|1/3dξ.

Then for any x, t ∈ R
(3.3) |I(x, t)| ≤ cφ|t|−1/3,

where cφ depends only on the constants involved in the definition of class A3.

In the following we will write a . b if there exists a positive constant C such that a ≤ Cb.
Similar for a & b. Also we will write a ∼ b if C1b ≤ a ≤ C2b for some positive constants
C1 and C2.

Proof. We observe that since Ω is bounded we only need to consider the case when t is
large.

Case 1: 0 < m ≤ |φ′′′(ξ)| ≤M .
We apply Van der Corput’s Lemma with k = 3 to the phase function φ(ξ) − xξ/t and to
ψ = |φ′′′|1/3. Then

|I(x, t)| ≤ C(tm)−
1
3 (‖ψ‖L∞(Ω) + ‖ψ′‖L1(Ω)).

Since φ′′′ has a finite number of changes of monotonicity we deduce that φ(4) changes the
sign finitely many times and then

‖ψ′‖L1(Ω) =
1

3

∫
Ω

∣∣∣(φ′′′(ξ))− 2
3φ(4)(ξ)

∣∣∣dξ ≤ 1

3
m−

2
3

∫
Ω

|φ(4)(ξ)|dξ ≤ C(m,M).

Hence
|I(x, t)| ≤ C(M,m)t−

1
3 .

Case 2: 0 ≤ |φ′′′(ξ)| < M .
Using the assumptions on φ we can assume that there exists only one point ξ0 ∈ Ω such
that φ′′′(ξ0) = 0. Notice that if φ ∈ A3, then any translation and any linear perturbation
of φ (i.e. φ(ξ− ξ0) + aξ + b) is still in A3 and the conditions in the definition of set A3 are
verified with the same constants as φ. Therefore we can assume that ξ0 = 0 and φ′(ξ0) = 0.
Moreover let us assume that as ξ ∼ 0, |φ′(ξ)| ∼ |ξ|α and |φ′′′(ξ)| ∼ |ξ|β for some numbers
α ≥ 2 and β > 0.

We distinguish now two cases depending on the behavior of φ′ near ξ = 0. If α ≥ 4 then
|φ(k)(ξ)| ∼ |ξ|α−k as ξ ∼ 0 for k = 2, 3 and, in particular β = α− 3. The case α = 3 cannot
appear since then β = α − 3 and φ

′′′
does not vanish at ξ = 0. For α = 2, |φ′(ξ)| ∼ |ξ|,
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|φ′′(ξ)| ∼ 1 as ξ ∼ 0 and the third derivative satisfies |φ′′′(ξ)| ∼ |ξ|β as ξ ∼ 0 for some
positive integer β. This last case occurs for example when φ′(ξ) = ξ + ξ3. In all cases
β ≥ α− 3.

We split Ω as follows

I(x, t) =

∫
|ξ|≤ε

ei(tφ(ξ)−xξ)|φ′′′(ξ)|
1
3dξ +

∫
|ξ|≥ε

ei(tφ(ξ)−xξ)|φ′′′(ξ)|
1
3dξ = I1 + I2.

Since ξ = 0 is the only point where the third derivative vanishes we have that outside
an interval that contains the origin φ′′′ does not vanish. Thus I2 can be treated as in the
first case.

Let us now estimate the first term I1. We define Ωj, 1 ≤ j ≤ 3, as follows

Ω1 = {ξ ∈ Ω||ξ| ≤ min(ε, |t|−1/α)},

Ω2 =

{
ξ ∈ Ω− Ω1||ξ| ≤ ε, and

∣∣∣φ′(ξ)− x

t

∣∣∣ ≤ 1

2

∣∣∣x
t

∣∣∣} ,
Ω3 = {ξ ∈ Ω− (Ω1 ∪ Ω2)||ξ| ≤ ε}.

In the case of Ω1 we use that for some β ≥ 1, the third derivative of φ satisfies c1|ξ|β ≤
|φ′′′(ξ)| ≤ c2|ξ|β for |ξ| < ε. We get∫

Ω1

|φ′′′(ξ)|
1
3dξ ≤ c

1
3
2

∫
Ω1

|ξ|
β
3 dξ ≤ C|Ω1|t−

β
3α ≤ C|t|−

1
α
− β

3α ≤ C|t|−1/3,

where the last inequality holds since α ≤ β + 3 and |t| ≥ 1.

In the case of the integral on Ω2 we assume that x 6= 0 since otherwise Ω2 has measure
zero. Observe that for ξ ∈ Ω2 we have

±|φ′(ξ)| ∓
∣∣∣x
t

∣∣∣ ≤ ∣∣∣φ′(ξ)− x

t

∣∣∣ ≤ 1

2

∣∣∣x
t

∣∣∣ ,
which implies that

1

2

∣∣∣x
t

∣∣∣ ≤ |φ′(ξ)| ≤ 3

2

∣∣∣x
t

∣∣∣.
Since |φ′(ξ)| ∼ |ξ|α−1 we have that |ξ| ∼ |x/t|

1
α−1 . Then |φ′′′(ξ)| ∼ |ξ|β ∼ |x/t|

β
α−1 and

min
ξ∈Ω2

|φ′′′(ξ)| > 0.

Applying Van der Corput’s Lemma with k = 3 and using that φ(4) changes the sign finitely
many times we obtain that∣∣∣ ∫

Ω2

ei(tφ(ξ)−xξ)|φ′′′(ξ)|
1
3dξ
∣∣∣ ≤ C(min

ξ∈Ω2

|φ′′′(ξ)||t|)−
1
3

(
‖|φ′′′(ξ)|

1
3‖L∞(Ω2) + ‖(|φ′′′(ξ)|

1
3 )′‖L1(Ω2)

)
= C(min

ξ∈Ω2

|φ′′′(ξ)|)−
1
3 |t|−

1
3

(
max
ξ∈Ω2

|φ′′′(ξ)|
1
3 +

1

3

∫
Ω2

|φ′′′(ξ)|−
2
3 |φ(4)(ξ)|dξ

)
≤ C(min

ξ∈Ω2

|φ′′′(ξ)|)−
1
3 max
ξ∈Ω2

|φ′′′(ξ)|
1
3 |t|−

1
3 .



10 LIVIU I. IGNAT, DIANA STAN

Since on Ω2, |φ′′′(ξ)| ∼ |x/t|
β
α−1 , there exists a positive constant C such that

max
ξ∈Ω2

|φ′′′(ξ)|
1
3 ≤ C(min

ξ∈Ω2

|φ′′′(ξ)|)
1
3 ,

which gives us the desired estimates on the integral on Ω2.

Now, we estimate the integral on Ω3. Observe that we have to consider the case |t|−1/α <
ε, otherwise Ω2 = Ω3 = ∅. In particular, for ξ ∈ Ω3, we have |t|−1/α < ξ < ε. Integrating
by parts the integral on Ω3 satisfies

∣∣∣ ∫
Ω3

ei(tφ(ξ)−xξ)|φ′′′(ξ)|
1
3dξ
∣∣∣ =

1

|t|

∣∣∣ ∫
Ω3

(ei(tφ(ξ)−xξ))′
|φ′′′(ξ)| 13
φ′(ξ)− x

t

dξ
∣∣∣

(3.4)

≤ 1

|t|

∣∣∣± ei(tφ(ξ)−xξ) |φ′′′(ξ)|
1
3

φ′(ξ)− x
t

∣∣
∂Ω3

∣∣∣
+

1

|t|

∣∣∣ ∫
Ω3

ei(tφ(ξ)−xξ)
1
3
|φ′′′(ξ)|− 2

3φ(4)(ξ)(φ′(ξ)− x
t
)− |φ′′′(ξ)| 13φ′′(ξ)(

φ′(ξ)− x
t

)2 dξ
∣∣∣

≤ 2

|t|
max
ξ∈Ω3

|φ′′′(ξ)| 13∣∣φ′(ξ)− x
t

∣∣ +
1

3|t|

∫
Ω3

|φ′′′(ξ)|− 2
3 |φ(4)(ξ)|∣∣φ′(ξ)− x

t

∣∣ +
1

|t|

∫
Ω3

|φ′′′(ξ)| 13 |φ′′(ξ)|(
φ′(ξ)− x

t

)2 dξ.

In the following we obtain upper bounds for all terms in the right hand side of (3.4).
Since on Ω3, |φ′(ξ)− x/t| ≥ |x/2t|, there exists a positive constant c such that∣∣∣φ′(ξ)− x

t

∣∣∣ > c|φ′(ξ)| ≥ c|ξ|α−1, ∀ξ ∈ Ω3.

In the case of the first term

(3.5)
1

|t|
sup
ξ∈Ω3

|φ′′′(ξ)| 13∣∣φ′(ξ)− x
t

∣∣ ≤ C

|t|
sup
ξ∈Ω3

|ξ|β3
|ξ|α−1

=
C

|t|
sup
ξ∈Ω3

|ξ|
β
3
−α+1 ≤ |t|−1/3,

since |ξ| ≤ ε ≤ 1 and |ξ|β/3−α+1 ≤ |ξ|(α−3)/3−α+1 = |ξ|−2α/3 ≤ |t|2/3.
The second term satisfies

1

|t|

∫
Ω3

1
3
|φ′′′(ξ)|− 2

3 |φ(4)(ξ)|∣∣φ′(ξ)− x
t

∣∣ dξ ≤ C

|t|

∫
Ω3

|ξ|−2β/3

|ξ|α−1
|φ(4)(ξ)|dξ ≤ C

|t|

∫
Ω3

|ξ|
−2β
3
−α+1|φ(4)(ξ)|dξ.

Integrating by parts, applying the triangle inequality and using the definition of Ω3 we get∫
Ω3

|ξ|
−2β
3
−α+1|φ(4)(ξ)|dξ . sup

Ω3

|ξ|
−2β
3
−α+1|φ′′′(ξ)|+

∫
Ω3

|ξ|
−2β
3
−α|φ′′′(ξ)|dξ

. sup
Ω3

|ξ|
β
3
−α+1 +

∫
Ω3

|ξ|
β
3
−αdξ

. sup
Ω3

|ξ|
β
3
−α+1 ≤ |t|2/3,
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where the last inequality follows as in (3.5).
The last term in (3.4) can be estimated as follows∫

Ω3

|φ′′′(ξ)| 13 |φ′′(ξ)|(
φ′(ξ)− x

t

)2 dξ .
∫

Ω3

|ξ|β/3+α−2

|ξ|2(α−2)
=

∫
Ω3

|ξ|β/3−α . sup
Ω3

|ξ|
β
3
−α+1 ≤ |t|2/3.

Putting together the estimates for the terms in the right hand side of (3.4) we obtain that
the integral on Ω3 also decays as |t|−1/3.

The proof is now finished. �

4. Proof of the main result

In this section we prove the main result of this paper. In order to do this, we will follow
the ideas of [1] in the case of a discrete operator. Let us consider the system

(4.1)

{
iUt + AU = 0,
U(0) = ϕ,

where U(t) = (u(t, j))j 6=0 and operator A is given by (2.7). We compute explicitly the
resolvent (A − λI)−1, we obtain a limiting absorption principle and finally we prove the
main result of this paper Theorem 1.1.

4.1. The resolvent. We start by localizing the spectrum of operator A and computing
the resolvent R(λ) = (A− λI)−1. We use some classical results on difference equations.

Theorem 4.1. For any b1 and b2 positive the spectrum of operator A satisfies

(4.2) σ(A) = [−4 max{b−2
1 , b−2

2 }, 0].

Proof. Since A is self-adjoint we have that

σ(A) ⊂ [ inf
‖u‖l2(Z∗)≤1

(Au, u), sup
‖u‖l2(Z∗)≤1

(Au, u)].

Explicit computations show that

(Au, u) = −b−2
1

∑
j≤−1

(uj − uj−1)2 − 1

b2
1 + b2

2

(u−1 − u1)2 − b−2
2

∑
j≥1

(uj+1 − uj)2.

It is easy to see that (Au, u) ≤ 0 and

(Au, u) ≥ −2 max{b−2
1 , b−2

2 }
∑
j∈Z∗

(u2
j + u2

j+1) = −4 max{b−2
1 , b−2

2 }
∑
j∈Z∗

u2
j .

In order to prove that the spectrum is continuous we need to prove that for any λ ∈
[−4 max{b−2

1 , b−2
2 }, 0] we can find un ∈ l2(Z∗) with ‖un‖l2(Z∗) ≤ 1 such that ‖(A−λI)un‖l2(Z∗)

tends to zero. To fix the ideas let us assume that b2 ≤ b1 and λ ∈ [−4b−2
2 , 0]. We construct

un such that all its components un,j, j ≤ −1, vanish. Thus for such un’s we have that

(Aun)j = b−2
2 (∆dun)j, j ≥ 1.
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Using the fact that any λ ∈ [−4b−2
2 , 0] belongs to σ(b−1

2 ∆d) we can construct sequences
(un,j)j≥1 such that ‖un‖l2(Z∗) ≤ 1 and ‖(A− λI)un‖l2(Z∗) → 0. This implies that λ ∈ σ(A)
and the proof is finished. �

Before computing the resolvent (A−λI)−1 we need some results for difference equations.

Lemma 4.1. For any λ ∈ C \ [−4, 0] and g ∈ l2(Z∗), any solution f ∈ l2(Z∗) of

∆df(j)− λf(j) = g(j), j 6= 0

with f(0) prescribed is given by

(4.3) f(j) = αr|j| +
1

2r − 2− λ
∑
k∈Z∗

r|j−k|g(k)

where α is determined by f(0) and r is the unique solution with |r| < 1 of

r2 − 2r + 1 = λr.

Moreover

f(j) = f(0)r|j| +
1

r − r−1

∑
k

(r|j−k| − r|j|+|k|)g(k), j 6= 0.

Proof. Let us consider the case when j ≥ 1, the other case j ≤ −1 can be treated similarly.
Writing the equation satisfied by f we obtain that

f(j + 1)− (2 + λ)f(j) + f(j − 1) = g(j), j ≥ 1.

This is an inhomogeneous difference equation whose solutions are written as the sum
between a particular solution and the general solution for the homogeneous difference
equation

f(j + 1)− (2 + λ)f(j) + f(j − 1) = 0, j ≥ 1.

Let us denote by r1 and r2, |r1| ≤ |r2|, the two solutions of the second order equation

r2 − (2 + λ)r + 1 = 0.

Since 2 + λ ∈ C \ [−2, 2] we have that r1 and r2 belong to C \ R and more than that
|r1| < 1 < |r2|. Thus we obtain that

(4.4) f(j) = αrj1 + βrj2 +
1

2r − 2− λ
∑
k∈Z∗

r
|j−k|
1 g(k).

Since f is an l2(Z+) function we should have β = 0. Then formula (4.3) holds. The last
identity is obtained by putting j = 0 in (4.4) and using that 2r − 2− λ = r − r−1. �

As an application of the previous Lemma we have the following result.

Lemma 4.2. Set Z1 = Z∩(−∞,−1] and Z2 = Z∩[1,∞). For any λ ∈ C\[−4 max{b−2
1 , b−2

2 }, 0]
and g ∈ l2(Z∗), any solution f ∈ l2(Z) of

b−2
s ∆df(j)− λf(j) = g(j), j ∈ Zs,
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with f(0) prescribed is given by

(4.5) f(j) = αsr
|j|
s +

b2
s

2rs − 2− λb2
s

∑
k∈Zs

r|j−k|s g(k), j ∈ Zs, s ∈ {1, 2}

where for s ∈ {1, 2}, constant αs is determined by f(0) and rs is the unique solution with
|rs| < 1 of

r2
s − 2rs + 1 = λrsb

2
s.

Moreover

(4.6) f(j) = f(0)r|j|s +
b2
s

rs − r−1
s

∑
k∈Zs

(r|j−k|s − r|j|+|k|s )g(k), j ∈ Zs.

The proof of this lemma consists in just applying Lemma 4.1 to the difference equations
in Z1 and Z2.

Lemma 4.3. Let λ ∈ C \ [−4 max{b−2
1 , b−2

2 }, 0]. For any g ∈ l2(Z∗) there exists a unique
solution f ∈ l2(Z∗) of the equation (A − λI)f = g. Moreover, it is given by the following
formula

f(j) =
−r|j|s

b−2
2 (1− r2) + b−2

1 (1− r1)

[∑
k∈Z1

r
|k|
1 g(k) +

∑
k∈Z2

r
|k|
2 g(k)

]
(4.7)

+
b2
s

rs − r−1
s

∑
k∈Zs

(r|j−k|s − r|j|+|k|s )g(k), j ∈ Zs,

where for s ∈ {1, 2}, rs = rs(λ) is the unique solution with |rs| < 1 of the equation

r2
s − 2rs + 1 = λb2

srs.

Proof. Any solution of (A− λI)f = g satisfies{
∆df(j)− b2

sλf(j) = b2
sg(j), j ∈ Zs,

b−2
1 (f(−1)− f(0)) = b−2

2 (f(0)− f(1)),

where f(0) is artificially introduced in order to write the system in a convenient form that
permits us to apply Lemma 4.2.

Using (4.6) we obtain

f(−1) = f(0)r1 − b2
1

∑
k∈Z2

r
|k|
1 g(k)

and
f(1) = f(0)r2 − b2

2

∑
k∈Z2

r
|k|
2 g(k).

The coupling condition gives us that

f(0) =
−1

b−2
1 (1− r1) + b−2

2 (1− r2)

∑
s=1,2, k∈Zs

r|k|s g(k).

Introducing this formula in (4.6) we obtain the explicit formula of the resolvent. �
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4.2. Limiting absorption principle. In this subsection we write a limiting absorption
principle. From Lemma 4.3 we know that for any λ ∈ C \ [−4 max{b−2

1 , b−2
2 }, 0] and

ϕ ∈ l2(Z∗) there exists R(λ)ϕ = (A− λ)−1ϕ ∈ l2(Z∗) and it is given by

(R(λ)ϕ)(j) =
−r|j|s

b−2
2 (1− r2) + b−2

1 (1− r1)

[∑
k∈I1

r
|k|
1 ϕ(k) +

∑
k∈I2

r
|k|
2 ϕ(k)

](4.8)

+
b2
s

rs − r−1
s

∑
k∈Is

(r|j−k|s − r|j|+|k|s )ϕ(k), j ∈ Zs,

where rs = rs(λ), s ∈ {1, 2}, is the unique solution with |rs| < 1 of the equation

r2
s − 2rs + 1 = λb2

srs.

Let us now consider I = [−4 max{b−2
1 , b−2

2 }, 0]. As we proved in Theorem 4.1 we have
that σ(A) = I. For any ω ∈ I and ε ≥ 0 let us denote by r±s,ε the unique solution with
modulus less than one of

r2 − 2r + 1 = (ω ± iε)b2
sr.

Denoting r+
s,ε = exp(z+

s,ε) with z+
s,ε = a+

s,ε + iã+
s,ε, a

+
s,ε < 0 and ã+

s,ε ∈ [−π, π] we obtain by
taking the imaginary part in the equation satisfied by r+

s,ε that

(exp(a+
s,ε)− exp(−a+

s,ε)) sin(ã+
s,ε) = εb2

s.

Thus ã+
s,ε ∈ [−π, 0]. A similar result holds for r−s,ε, ã

−
s,ε ∈ [0, π].

Let us set r±s = limε↓0 r
±
s,ε. Using the sign of the imaginary part of r±s,ε we obtain that r±s

are the solutions with Im (r+
s ) ≤ 0 ≤ Im (r−s ) of the equation

r2 − 2r + 1 = ωb2
sr.

Also, using that r−s,ε = r+
s,ε we obtain r−s = r+

s .

For any ω ∈ J = I \ {−4b−2
1 ,−4b−2

2 , 0} and ϕ ∈ l1(Z∗) let us set

(R±(ω)ϕ)(j) =
−(r±s )|j|

b−2
2 (1− r±2 ) + b−2

1 (1− r±1 )

[∑
k∈I1

(r±1 )|k|ϕ(k) +
∑
k∈I2

(r±2 )|k|ϕ(k)
]

+
b2
s

r±s − (r±s )−1

∑
k∈Is

((r±s )|j−k| − (r±s )|j|+|k|)ϕ(k), j ∈ Zs.

We will prove that R±(ω) are well defined as bounded operators from l1(Z∗) to l∞(Z∗).
We point out that we cannot define R±(ω) for ω ∈ {−4b−2

1 ,−4b−2
2 , 0} since for ω = 0 we

have r1 = r2 = 1 and for ω = 4b−2
s , s ∈ {1, 2}, we have rs = −1. We also emphasize that

R−(ω)ϕ = R+(ω)ϕ. This is a consequence of the fact that for any ω ∈ I, r−s (ω) = r+
s (ω).

Formally, the above operator equals R(ω ± iε) with ε = 0. We point out that as operators
on l2(Z∗), R(ω ± iε) are defined for any ω ∈ I but only if ε 6= 0.
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Lemma 4.4. For any ϕ ∈ l1(Z∗) operator exp(itA) satisfies

(4.9) eitAϕ =
1

2iπ

∫
I

eitω[R+(ω)−R−(ω)]ϕdω.

Proof. To clarify the ideas behind the proof we divide it in several steps.
Step 1. Let I1 be a bounded interval such that I ⊂ I1. There exists a constant

(4.10) C(ω) =
1

|ω|1/2
+

1

|ωb2
1 + 4|1/2

+
1

|ωb2
2 + 4|1/2

∈ L1(I1)

such that for all ω ∈ I1 \ {−4b−2
1 ,−4b−2

2 , 0} the following inequality

|(R(ω ± iε)ϕ)(n)| . C(ω)‖ϕ‖l1(Z∗), for all ϕ ∈ l1(Z∗) and n ∈ Z∗,

holds uniformly on small enough ε.
Step 2. For any ω ∈ J , R±(ω) are bounded operators from l1(Z∗) to l∞(Z∗) and

‖R±(ω)‖l1(Z∗)−l∞(Z∗) . C(ω).

Step 3. For any ω ∈ J , ϕ ∈ l1(Z∗) and n ∈ Z∗ the following holds

lim
ε↓0

(R(ω ± iε)ϕ)(n) = (R±(ω)ϕ)(n).

Step 4. For any ϕ ∈ l1(Z∗) and n ∈ Z∗ we have

lim
ε↓0

∫
I

eitω(R(ω ± iε)ϕ)(n)dω =

∫
I

eitω(R±(ω)ϕ)(n)dω.

Step 5. For any ϕ ∈ l1(Z∗)

eitAϕ =
1

2iπ

∫
I

eitω[R+(ω)−R−(ω)]ϕdω.

Proof of Step 1. Observe that for any ω ∈ R and ε > 0 we have

|(R(ω±iε)ϕ)(n)|

. ‖ϕ‖l1(Z∗)

( 1

|b−2
2 (1− r±2,ε) + b−2

1 (1− r±1,ε)|
+

1

|r±1,ε − (r±1,ε)
−1|

+
1

|r±2,ε − (r±2,ε)
−1|

)
.

Solution r±s,ε of equation r2 − 2r + 1 = (ω ± iε)b2
sr satisfies

1

|r±s,ε|
− |r±s,ε| ≤

∣∣∣∣r±s,ε − 1

r±s,ε

∣∣∣∣ = bs|ω ± iε|1/2.

Then for all ω ∈ I1 and ε small enough we have

|r±s,ε| ≥
2

bs|ω ± iε|1/2 + (b2
s|ω ± iε|+ 4)1/2

≥ C > 0

and

|r±s,ε| ≤
1

|r±s,ε|
+
∣∣∣r±s,ε − 1

r±s,ε

∣∣∣ ≤ C1 <∞.
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Thus for any ω ∈ I1 we have

1

|r±s,ε − (r±s,ε)
−1|
.

1

|1− r±s,ε||1 + r±s,ε|
.

1

|1− r±s,ε|
+

1

|1 + r±s,ε|
.

Using the equation satisfied by r±s,ε we find that

|1− r±s,ε| = bs|ω ± iε|1/2|r±s,ε| & |ω ± iε|1/2 ≥ |ω|1/2

and

|1 + r±s,ε| = |(ω ± iε)b2
s + 4|1/2|r±s,ε| & |(ω ± iε)b2

s + 4|1/2 ≥ |ωb2
s + 4|1/2.

Putting together the above estimates for the roots r±s,ε we find that for all ω ∈ I1 and ε
small enough the following holds

1

|r±1,ε − (r±1,ε)
−1|

+
1

|r±2,ε − (r±2,ε)
−1|
.

1

|ω|1/2
+

1

|ωb2
1 + 4|1/2

+
1

|ωb2
2 + 4|1/2

.

We now prove that

1

|b−2
2 (1− r±2,ε) + b−2

1 (1− r±1,ε)|
.

1

|ω|1/2
.

We recall that the sign of the imaginary parts of r±1,ε and r±2,ε is the same. Also, since

|r±s,ε| < 1, the real parts of 1− r±1,ε and 1− r±2,ε are positive. These properties of the roots
imply that

|b−2
2 (1− r±2,ε) + b−2

1 (1− r±1,ε)| ≥ b−2
2 |1− r±2,ε|+ b−2

1 |1− r±1,ε| & |ω|1/2.

Putting together the above results we obtain that Step 1 is satisfied with C(ω) given by
(4.10) uniformly on all ε > 0 sufficiently small.

Step 2 follows as Step 1 by putting ε = 0 and replacing r±s,ε with r±s .

Proof of Step 3. We write

R(ω ± iε)ϕ(n) =
∑
k∈Z∗

R(ω ± iε, n, k)ϕ(k),

where R(ω ± iε, n, k) collects all the coefficients in front of ϕ(k) in formula (4.7).
Using that, for any ω ∈ J , r±s,ε(ω) → r±s (ω) we obtain that R(ω ± iε, n, k)ϕ(k) →

R±(ω, n, k)ϕ(k). Since for any ω ∈ J and ε small enough we have the uniform bound

|R(ω ± iε, n, k)ϕ(k)| ≤ C(ω)|ϕ(k)|, ∀k ∈ Z∗,

we can apply Lebesgue’s dominated convergence theorem to conclude that∑
k∈Z∗

R(ω ± iε, n, k)ϕ(k)→
∑
k∈Z∗

R±(ω, n, k)ϕ(k),

which proves Step 3.
Step 4 follows by Lebesgue’s dominated convergence theorem since we have the pointwise

convergence in Step 3 and the uniform bound in Step 1.
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Proof of Step 5. Applying Cauchy’s formula we obtain that

eitA =
1

2iπ

∫
Γ

eitωR(ω)dω

for any curve Γ that rounds the spectrum of operator A. For small parameter ε we choose
in the above formula path Γε to be the following rectangle

Γε ={ω ± iε, ω ∈ [−4 max{b−2
1 , b−2

2 } − ε, ε]}
∪ {−4 max{b−2

1 , b−2
2 } − ε+ iη, η ∈ [−ε, ε]} ∪ {ε+ iη, η ∈ [−ε, ε]}.

Using the estimates for R(λ), λ ∈ Γε obtained in Step 1 and the convergence in Step 4 we
obtain that for any ϕ ∈ l1(Z∗) the following holds:

eitAϕ =
1

2πi

∫
I

eitω(R+(ω)−R−(ω))ϕdω.

The proof is now complete. �

4.3. Proof of the main result. We now prove the main result of this paper.

Proof of Theorem 1.1. For any ϕ ∈ l1(Z∗) Lemma 4.4 gives us that

(eitAϕ)(n) =
1

2πi

∫
I

eitω(R+(ω)−R−(ω))ϕ(n)ds, n ∈ Z∗,

where I = [−4 max{b−2
1 , b−2

2 }, 0]. Using the fact that R−(ω)ϕ = R+(ω)ϕ we obtain

(eitAϕ)(n) =
1

π

∫
I

eitω(( ImR+)(ω)ϕ)(n)dω, n ∈ Z∗,

where ImR+ is given by

( ImR+)(ω)ϕ(j) =
(R+(ω)ϕ)(j)− (R−(ω)ϕ)(j)

2i

=
∑
k∈Z1

ϕ(k) Im
−(r+

s )|j|(r+
1 )|k|

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )

+
∑
k∈Z2

ϕ(k) Im
−(r+

s )|j|(r+
2 )|k|

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )

+
∑
k∈Zs

ϕ(k) Im
b2
s

r+
s − (r+

s )−1
((r+

s )|j−k| − (r+
s )|j|+|k|), j ∈ Zs

and for s ∈ {1, 2}, r+
s is the root of r2−2r+1 = ωb2

sr with the imaginary part nonpositive.

In order to prove (1.12) it is sufficient to show the existence of a constant C = C(b1, b2)
such that
(4.11)∑

k∈Z1

|ϕ(k)|
∣∣∣ ∫

I

eitω Im
(r+
s )|j|(r+

1 )|k|

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )
dω
∣∣∣ ≤ C(|t|+ 1)−1/3‖ϕ‖l1(Z∗), ∀j ∈ Z∗,
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and

(4.12)
∑
k∈Zs

|ϕ(k)|
∣∣∣ ∫

I

eitω Im
(r+
s )|j−k|

r+
s − (r+

s )−1
dω
∣∣∣ ≤ C(|t|+ 1)−1/3‖ϕ‖l1(Z∗), ∀j ∈ Z∗.

The estimates for the other two terms occurring in the representation of ImR+(ω) are
similar.

Step I. Proof of (4.12). We prove that

(4.13) sup
j∈Z

∣∣∣ ∫
I

eitω Im
(r+
s )|j|

r+
s − (r+

s )−1
dω
∣∣∣ ≤ C(b1, b2)(|t|+ 1)−1/3, ∀ t ∈ R.

We split I as I = I1 ∪ I2 where I1 = [−4 max{b−2
1 , b−2

2 }, 4b−2
s ] and I2 = [4b−2

s , 0]. If ω ∈ I1,
the following equation

r +
1

r
= 2 + ωb2

s

has real roots and then ∫
I

eitω Im
(r+
s )|j|

r+
s − (r+

s )−1
dω = 0.

When ω ∈ I2, root rs of equation rs + 1
rs

= 2 + ωb2
s has the form rs = e−iθ, θ ∈ [0, π].

Using the change of variables ω = b−2
s (2 cos θ − 2) we get∫

I2

eitω Im
(r+
s )|j|

r+
s − (r+

s )−1
dω = 2b−2

s

∫ π

0

eitb
−2
s (2 cos θ−2) Im

e−i|j|θ

e−iθ − eiθ
sin θdθ

=− 2b−2
s

∫ π

0

eitb
−2
s (2 cos θ−2) Im

e−i|j|θ

2i sin θ
sin θdθ

=b−2
s

∫ π

0

eitb
−2
s (2 cos θ−2) Re e−i|j|θdθ

=
b−2
s

2

∫ π

0

eitb
−2
s (2 cos θ−2)(ei|j|θ + e−i|j|θ)dθ.

Van der Corput’s Lemma applied to the phase function φ(θ) = (2 cos θ−2)b−2
s +jθ/t shows

that

(4.14)
∣∣∣ ∫ π

0

eit(2 cos θ−2)b−2
s eijθdθ

∣∣∣ ≤ C(bs)(|t|+ 1)−3, ∀ t ∈ R,∀j ∈ Z

The proof of (4.12) is now finished.

Step II. Proof of (4.11). It is sufficient to prove that

sup
j,k∈N

∣∣∣ ∫
I

eitω
(r+

1 )j(r+
2 )k

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )
dω
∣∣∣ ≤ C(b1, b2)(|t|+ 1)−1/3, ∀t ∈ R.

To fix the ideas let us assume that b2 ≤ b1. We split interval I as follows I = I1 ∪ I2 where
I1 = [−4b−2

2 ,−4b−2
1 ] and I2 = [−4b−2

1 , 0]. We remark that on I1, r+
1 ∈ R and r+

2 ∈ C \ R.
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On I2 both r+
1 and r+

2 belong to C \ R. We prove that

(4.15) sup
j,k∈N

∣∣∣ ∫
I1

eitω
(r+

1 )j(r+
2 )k

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )
dω
∣∣∣ ≤ C(b1, b2)(|t|+ 1)−1/3

and

(4.16) sup
j,k∈N

∣∣∣ ∫
I2

eitω
(r+

1 )j(r+
2 )k

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )
dω
∣∣∣ ≤ C(b1, b2)(|t|+ 1)−1/3.

Let us set h(ω) = b−2
2 (1− r+

2 (ω)) + b−2
1 (1− r+

1 (ω)) Using the same arguments as in the
proof of Lemma 4.4 we get that |h(ω)| ≥ C(b1, b2)|ω|1/2. Then, on I1, |h(ω)| ≥ c > 0.
Moreover |h′(ω)| ≤ c2 <∞. Using integration by parts we obtain that∣∣∣ ∫

I1

eitω
(r+

1 )j(r+
2 )k

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )
dω
∣∣∣

≤ sup
x∈I1

∣∣∣ ∫ x

−4b−2
2

eitω(r+
1 )j(r+

2 )kdω
∣∣∣(‖1/h‖L∞(I1) + ‖(1/h)′‖L1(I1)

)
≤ C(b1, b2) sup

x∈I1

∣∣∣ ∫ x

−4b−2
2

eitω(r+
1 )j(r+

2 )kdω
∣∣∣.

A similar argument shows that∣∣∣ ∫ x

−4b−2
2

eitω(r+
1 )j(r+

2 )kdω
∣∣∣ ≤ sup

y≤x

∣∣∣ ∫ y

−4b−2
2

eitω(r+
2 )kdω

∣∣∣(‖(r+
1 )j‖L∞(I1) + ‖((r+

1 )j)′‖L∞(I1)

)
.

Observe that for ω ∈ I1, r+
1 (ω) given by

r+
1 (ω) =

2 + b2
1ω −

√
(2 + b2

1ω)2 − 4

2
is a decreasing function. Thus

‖((r+
1 )j)′‖L1(I1) ≤ ‖(r+

1 )j‖L∞(I1) ≤ 1, ∀j ∈ N.
The proof of (4.15) is now reduced to the following estimate:

sup
y∈I1

∣∣∣ ∫ y

−4b−2
2

eitω(r+
2 (ω))kdω

∣∣∣ ≤ C(b1, b2)(|t|+ 1)−1/3,∀k ∈ N, t ∈ R.

Making the change of variables ω = b−2
2 (2 cos θ−2) and applying Van der Corput’s Lemma

as in the final step of Step I we obtain that∣∣∣ ∫ y

−4b−2
2

eitω(r+
2 (ω))kdω

∣∣∣ = 2b−2
2

∣∣∣ ∫ π

2 arcsin(b22/y)

eitb
2
2(2 cos θ−2)e−ikθ sin θdω

∣∣∣ ≤ C(b2)(|t|+ 1)−1/3.

We now prove (4.16). We first make the change of variables ω = b−2
1 (2 cos θ − 2). Thus∫

I2

eitω
(r+

1 )j(r+
2 )k

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )
dω = 2b−2

1

∫ π

0

eitb
−2
1 (2 cos θ−2)e−ijθe−2ik arcsin(b2b

−1
1 sin θ

2
) sin θ

h(θ)
dθ,

where h(θ) = b−2
2 (1− r+

2 (θ)) + b−2
1 (1− r+

1 (θ)), r+
1 (θ) = e−iθ and r+

2 (θ) = e−2i arcsin(b2b
−1
1 sin θ

2
).
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Using that far from θ = 0 function h satisfies |h(θ)| > 0 we choose a small parameter ε
and split our integral as follows:∫ π

0

eitb
−2
1 (2 cos θ−2)e−ijθe−2ik arcsin(b2b

−1
1 sin θ

2
) sin θ

h(θ)
dθ = T1 + T2

=

∫ ε

0

eitb
−2
1 (2 cos θ−2)e−ijθe−2ik arcsin(b2b

−1
1 sin θ

2
) sin θ

h(θ)
dθ

+

∫ π

ε

eitb
−2
1 (2 cos θ−2)e−ijθe−2ik arcsin(b2b

−1
1 sin θ

2
) sin θ

h(θ)
dθ.

Observe that on interval [0, ε]∥∥∥sin θ

h(θ)

∥∥∥
L∞(0,ε)

+
∥∥∥ d
dθ

(
sin θ

h(θ)
)
∥∥∥
L1(0,ε)

≤M <∞

and on interval [ε, π] ∥∥∥ 1

h(θ)

∥∥∥
L∞(ε,π)

+
∥∥∥ d
dθ

(
1

h(θ)
)
∥∥∥
L1(ε,π)

≤M <∞.

Then we have the following estimates for T1 and T2

|T1| ≤M sup
x∈[0,ε]

∣∣∣ ∫ x

0

eitb
−2
1 (2 cos θ−2)e−ijθe−2ik arcsin(b2b

−1
1 sin θ

2
)dθ
∣∣∣

and

|T2| ≤M sup
x∈[ε,π]

∣∣∣ ∫ π

x

eitb
−2
1 (2 cos θ−2)e−ijθe−2ik arcsin(b2b

−1
1 sin θ

2
) sin θdθ

∣∣∣.
We now apply the following lemma that we prove later.

Lemma 4.5. Let a ∈ (0, 1] and 0 ≤ δ ≤ π. There exists C(a, δ) such that for all real
numbers y, z and t

(4.17)
∣∣∣ ∫ π

δ

eit(2 cos θ+2z arcsin(a sin θ
2

))eiyθ sin θdθ
∣∣∣ ≤ C(a, δ)(|t|+ 1)−1/3

and if δ > 0

(4.18)
∣∣∣ ∫ π−δ

0

eit(2 cos θ+2z arcsin(a sin θ
2

))eiyθdθ
∣∣∣ ≤ C(a, δ)(|t|+ 1)−1/3.

We obtain that

|T1| ≤MC(a, ε)(|t|+ 1)−1/3

and

|T2| ≤MC(a, ε)(|t|+ 1)−1/3.

The proof of Theorem 1.1 is now finished. �
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Proof of Lemma 4.5. Since the integrals in (4.17) and (4.18) are on bounded intervals it is
sufficient to prove that, for t large enough, each of the integrals is bounded by |t|−1/3. In
the case of (4.17) we will consider the case δ = 0 since the proof for δ > 0 is similar.

Let us denote by ψ either the function χ(0,π−δ) or sin θ. We set

p(θ) = 2 cos θ + 2z arcsin(a sin
θ

2
), θ ∈ [0, π].

Using the Maple software we obtain that

min
θ∈[0,π]

[(p′′(θ))2 + (p′′′(θ))2] ≥ min
{

4 +
z2a2(a2 − 1)

2

16
,

a2

4(1− a2)

(
z − 4

√
1− a2

a

)2
}
.

If z is such that |z − 4
√

1−a2
a
| ≥ ε > 0 then Van der Corput’s lemma applied to the phase

function p(θ) + yθ/t guarantees that∣∣∣ ∫ π

0

eitp(θ)eiyθψ(θ)dθ
∣∣∣ ≤ C(a, ε)(|t|+ 1)−1/3.

Assume now that |z − 4
√

1−a2
a
| < ε with ε small enough that we will specify later. Let us

write

z =
4
√

1− a2

a
+ b

with b a small parameter such that |b| < ε. With this notation p(θ) = pb(θ) = q(θ) + br(θ)
where

q(θ) = 2 cos(θ) +
8
√

1− a2

a
arcsin(a sin

θ

2
)

and

r(θ) = 2 arcsin(a sin
θ

2
).

Solving system (q′′(θ), q′′′(θ)) = (0, 0) with Maple software we obtain that it has a unique
solution θ = π. Thus for any δ < π there exists a positive constant c(a, δ) such that

|q′′(θ)|+ |q′′′(θ)| ≥ c(a, δ), ∀ θ ∈ [0, π − δ].

It implies the existence of an ε = ε(a, δ) such that for all |b| ≤ ε

|p′′b (θ)|+ |p′′′b (θ)| ≥ c(a, δ)− |b| sup
x∈[0,π]

(|r′′|+ |r′′′|) ≥ c(a, δ)

2
, ∀ θ ∈ [0, π − δ].

Hence, Van der Corput’s Lemma applied to the phase function pb(θ) + yθ/t guarantees
that ∣∣∣ ∫ π−δ

0

eitpb(θ)eiyθψ(θ)dθ
∣∣∣ ≤ C(a, δ)(|t|+ 1)−1/3, ∀|b| < ε,∀ t, y ∈ R.

The proof of (4.18) is finished.
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To prove estimate (4.17) it remains to show that we can choose δ(a) small enough such
that for all |b| < ε

(4.19) |Ib(t)| :=
∣∣∣ ∫ π

π−δ(a)

eitpb(θ)eiyθ sin(θ)dθ
∣∣∣ ≤ C(a)(|t|+ 1)−1/3, ∀y, t ∈ R.

The Taylor expansions of q and r near θ = π are as follows

q(θ) =
−2a+ 8

√
1− a2 arcsin (a)

a
− 1

16

(2 a2 − 1) (θ − π)4

−1 + a2
− 1

384

(4 a2 − 1) (θ − π)6

(−1 + a2)2 +O((θ−π)8),

and

r(θ) = 2 arcsin (a)− 1

4

a√
1− a2

(θ − π)2 +
1

192

a (2 a2 + 1)

(1− a2)3/2
(θ − π)4 +O

(
(θ − π)6) .

Also the second derivatives of q and r satisfy

q′′(θ) = −3

4

(2 a2 − 1) (θ − π)2

−1 + a2
+O(|θ − π|4) as θ ∼ π,

and

r′′(θ) = −1

2

a√
1− a2

+O(θ − π)2 as θ ∼ π.

Observe that for a 6= 1/
√

2, the second derivative of q behaves as (θ − π)2 near θ = π.
Otherwise it behaves as (θ − π)4 near the same point. Since the proof of (4.19) is quite
different in the two cases we will treat then separately.

In the sequel δ(a) is chosen such that we can compare q and r with their Taylor expres-
sions near θ = π.
Case 1. a 6= 1/

√
2. The main idea is to split the interval [π− δ(a), π] in three intervals

where we can compare |θ − π| with |b|1/2 and decide which of them dominates the other:

[π − δ(a), π] = [π − δ(a), π − α2|b|1/2] ∪ [π − α2|b|1/2, π − α1|b|1/2] ∪ [π − α1|b|1/2, π],

where α1 << 1 << α2 are independent of b but depend on the parameter a. More precisely
the parameters α1 and α2 are chosen in terms of the first two coefficients of the Taylor
expansion of functions q and r near θ = π.

Let us consider the interval [π− δ(a), π−α2|b|1/2] with α2 large enough. In this interval
|θ−π| dominates |b|1/2 and we apply Lemma 3.2. We check the hypotheses of this lemma.
In this interval the first derivative of pb is of the same order as |θ − π|3 :

|p′b(θ)| ≥ |q′(θ)| − |b||r′(θ)| ≥ C1|θ − π|(|θ − π|2 − C2|b|) ≥ C3|θ − π|3

and
|p′b(θ)| ≤ |q′(θ)|+ |b||r′(θ)| ≥ C4|θ − π|(|θ − π|2 + C5|b|) ≥ C6|θ − π|3.

Also, the second derivative satisfies:

|p′′b (θ)| ≥ |q′′(θ)| − |b||r′′(θ)| ≥ C7(|θ − π|2 − C8|b|) ≥ C9|θ − π|2

and
|p′′b (θ)| ≤ |q′′(θ)|+ |b||r′′(θ)| ≥ C10(|θ − π|2 + C11|b|) ≥ C12|θ − π|2.
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We emphasize that all the above constants are independent of b. Observe that on the
considered interval |p′′b | & |b|. If we try to apply Van der Corput’s Lemma with k = 2 we
obtain∣∣∣ ∫ π−α2|b|1/2

π−δ(a)

eitpb(θ)eiyθ sin(θ)dθ
∣∣∣ ≤ (|tb|)−1/2 max

[π−δ(a),π−α2|b|1/2]
| sin θ| ≤ C(δ(a))|tb|−1/2,

an estimate that is not uniform in the parameter b.
However, using Lemma 3.2 we obtain the existence of a constant C depending on all the

constants Ci, i = 1, ..., 12 but independent of the parameter b, such that

∣∣∣ ∫ π−α2|b|1/2

π−δ(a)

eitpb(θ)eiyθ sin(θ)dθ
∣∣∣ =

∣∣∣ ∫ π−α2|b|1/2

π−δ(a)

eitpb(θ)eiyθ|p′′b (θ)|1/2
sin(θ)

|p′′b (θ)|1/2
dθ
∣∣∣

(4.20)

≤ C|t|−1/2
(

max
[π−δ(a),π−α1|b|1/2]

| sin(θ)|
|p′′b (θ)|1/2

+

∫ π−α2|b|1/2

π−δ(a)

∣∣∣( sin(θ)

|p′′b (θ)|1/2
)′

(θ)
∣∣∣dθ)

≤ C|t|−1/2 max
[π−δ(a),π−α2|b|1/2]

| sin(θ)|
|p′′b (θ)|1/2

. C|t|−1/2 max
[π−δ(a),π−α2|b|1/2]

| sin(θ)|
|θ − π|

. C|t|−1/2.

On the interval [π − α2|b|1/2, π − α1|b|1/2] the third derivative of pb satisfies:

|p′′′(θ)| ' |θ − π||C(a) + b| ' |b|1/2,

since C(a) 6= 0 in the case a 6= 1/
√

2. Applying Van der Corput’s Lemma with k = 3 we
get

(4.21)
∣∣∣ ∫ π−α1|b|1/2

π−α2|b|1/2
eitpb(θ)eiyθ sin(θ)dθ

∣∣∣ . (|tb|1/2)−1/3 max
θ∈[π−α2|b|1/2,π−α1|b|1/2]

| sin θ| . |t|−1/3.

On interval [π − α1|b|1/2, π] with α1 small enough, the term |br′′(θ)| dominates |q′′(θ)|.
The the behavior of p′′b (θ) is given by |br′′(θ)|:

|p′′b (θ)| ≥ |br′′(θ)| − |q′′(θ)| ≥ C1(|b| − C2|θ − π|2) ≥ C3|b|,

for some positive constants C1 and C2 independent of the parameter b. Applying Van der
Corput’s Lemma with k = 2 we get

(4.22)
∣∣∣ ∫ π

π−α1|b|1/2
eitpb(θ)eiyθ sin(θ)dθ

∣∣∣ . (|tb|)−1/2 max
θ∈[π−α1|b|1/2,π]

| sin θ| . |t|−1/2.

Using (4.20), (4.21) and (4.22) we obtain that (4.19) holds uniformly for all |b| < ε, y
and t real numbers.

Case 2. a = 1/
√

2. In this case the Taylor expansion of function q at θ = π is given by

q(θ) =
−2a+ 8

√
1− a2 arcsin (a)

a
− 1

384

(4 a2 − 1) (θ − π)6

(−1 + a2)2 +O(|θ − π|8).
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We split the interval [π − δ(a), π] as follows:

[π − δ(a), π] =[π − δ(a), π − α3|b|1/4] ∪ [π − α3|b|1/4, π − α2|b|1/4]

∪ [π − α2|b|1/4, π − α1|b|1/2] ∪ [π − α1|b|1/2, π],

where α2 << 1 << α3 and all α1, α2, α3 are independent of b.
On the first interval [π− δ(a), π−α3|b|1/4] we apply Lemma 3.3. We have to check that

the first third derivatives behave as powers of |θ − π| in this interval. Observe that

|p′b(θ)| ≥ C1|θ − π|(|θ − π|4 − C2|b|) ≥ C3|θ − π|5

and

|p′b(θ)| ≤ C4|θ − π|(|θ − π|4 + C5|b|) ≥ C6|θ − π|5.
In a similar manner

C7|θ − π|4 ≤ |p′′b (θ)| ≤ C8|θ − π|4.
Also the third derivative satisfies

|p′′′b (θ)| ≥ C9|θ − π|(|θ − π|2 − C10|b|) ≥ C11|θ − π|3

and

|p′′′b (θ)| ≤ C12|θ − π|(|θ − π|2 + C13|b|) ≥ C14|θ − π|3.
We now apply Lemma 3.3 taking into account that all the above constants are independent
of b and we obtain∣∣∣ ∫ π−α3|b|1/4

π−δ(a)

eitpb(θ)eiyθ sin θdθ
∣∣∣ =

∣∣∣ ∫ π−α3|b|1/4

π−δ(a)

eitpb(θ)eiyθ|p′′′b (θ)|1/3 sin θ

|p′′′b (θ)|1/3
dθ
∣∣∣(4.23)

. |t|−1/3
(

max
[π−δ(a),π−α3|b|1/4]

| sin θ|
|p′′′b (θ)|1/3

+

∫ π−α3|b|1/4

π−δ(a)

∣∣∣( sin θ

|p′′′b (θ)|1/3
)′∣∣∣dθ)

. |t|−1/3 max
[π−δ(a),π−α3|b|1/4]

| sin θ|
|p′′′b (θ)|1/3

. |t|−1/3 max
[π−δ(a),π−α3|b|1/4]

| sin θ|
|θ − π|

≤ C|t|−1/3.

In the case of the interval [π − α3|b|1/4, π − α2|b|1/4] we apply Van der Corput’s Lemma
with k = 3 and use that

|p′′′b (θ)| ≥ C1|θ − π|(|θ − π|2 − C2|b|) ≥ C1|θ − π|(α2
2|b|1/2 − C2|b|) ≥ C3|b|1/4+1/2.

Then ∣∣∣ ∫ π−α2|b|1/4

π−α3|b|1/4
eitpb(θ)eiyθ sin θ

∣∣∣ ≤ (|t||b|3/4)−1/3 max
[π−α3|b|1/4,π−α2|b|1/4]

| sin θ| ≤ C|t|−1/3.(4.24)
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Let us now consider the integral on the interval [π− α2|b|1/4, π− α1|b|1/2]. Observe that
in this case ∣∣∣ ∫ π−α1|b|1/2

π−α2|b|1/4
eitpb(θ)eiyθ sin θdθ

∣∣∣ ≤ ∫ π−α1|b|1/2

π−α2|b|1/4
| sin θ|dθ ≤

∫ α2|b|1/4

α1|b|1/2
| sin θ|dθ(4.25)

≤
∫ α2|b|1/4

α1|b|1/2
θdθ ≤ C|b|1/2 ≤ C|t|−1/3,

as long as |b| ≤ |t|−2/3.
We now consider the case |b| ≥ |t|−2/3 and prove that a similar estimate can be obtained.

Observe that on the considered interval the second derivative of pb satisfies

|p′′b (θ)| ≥ |b||r′′(θ)| − |q′′(θ)| ≥ C1(|b| − C2|θ − π|4) ≥ C1(|b| − C2(α2|b|1/4)4) ≥ C3|b|.

Thus, Van der Corput’s Lemma with k = 2 gives us

∣∣∣ ∫ π−α1|b|1/2

π−α2|b|1/4
eitpbeiyθ sin θdθ

∣∣∣ . (|tb|)−1/2 max
θ∈[π−α2|b|1/4,π−α1|b|1/2]

| sin θ| ≤ (|tb|)−1/2|b|1/4

(4.26)

≤ |t|−1/2|b|−1/4 ≤ |t|−1/2|t|1/6 = |t|−1/3.

On the last interval [π−α1|b|1/2, π] the term |br′′(θ)| dominates |q′′(θ)|. Then the behavior
of p′′b (θ) in the considered interval is given by |br′′(θ)|:

|p′′b (θ)| ≥ |br′′(θ)| − |q′′(θ)| ≥ C1(|b| − C2|θ − π|4) ≥ C3|b|.

Thus

(4.27)
∣∣∣ ∫ π

π−α1|b|1/2
eitpb(θ)eiyθ sin(θ)dθ

∣∣∣ . (|tb|)−1/2 max
θ∈[π−α1|b|1/2,π]

| sin θ| . |t|−1/2.

Using the previous estimates (4.23), (4.24), (4.25), (4.26) and (4.27) we obtain that
estimate (4.19) also holds in the case a = 1/

√
2.

The proof of Lemma 4.5 is now finished. �

In the case of system (2.8) the proof of Theorem 2.2 follows the lines of the proof of
Theorem 1.1 by taking into account the representation formula for the resolvent of the
operator A given by (2.9).

Lemma 4.6. Let λ ∈ C \ [−4 max{b−2
1 , b−2

2 }, 0] and A given by (2.9). For any g ∈ l2(Z∗)
there exists a unique solution f ∈ l2(Z∗) of the equation (A − λI)f = g. Moreover, it is
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given by the following formula

f(j) =
−r|j|s

b−2
1 (r−1

1 − r1) + b−2
2 (r−1

2 − r2)

[
g(0) +

∑
k∈Z1

r
|k|
1 g(k) +

∑
k∈Z2

r
|k|
2 g(k)

](4.28)

+
b2
s

rs − r−1
s

∑
k∈Zs

(r|j−k|s − r|j|+|k|s )g(k), j ∈ Zs,

where for s ∈ {1, 2}, rs = rs(λ) is the unique solution with |rs| < 1 of the equation

r2
s − 2rs + 1 = λb2

srs.

We leave the complete details of the proof of Theorem 2.2 to the reader.

5. Open problems

In this article we have analyzed the dispersive properties of the solutions of a system
consisting in coupling two discrete Schrödinger equations. However we do not cover the case
when more discrete equations are coupled. The main difficulty is to write in an accurate
and clean way the resolvent of the linear operator occurring in the system. Once this case
will be understood then we can treat discrete Schödinger equations on trees similar to
those considered in [4] in the continuous case.

There is another question which arises from this paper. Suppose that we have a system
iUt + AU = 0 with an initial datum at t = 0, where A is an symmetric operator with
a finite number of diagonals not identically vanishing. Under which assumptions on the
operator A does solution U decay and how we can characterize the decay property in terms
of the properties of A? When A is a diagonal operator we can use Fourier’s analysis tools
but in the case of a non-diagonal operator this is not useful.
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