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Abstract

In this paper, we propose a new general method to compute rigorously global
smooth branches of equilibria of higher-dimensional partial differential equations. The
theoretical framework is based on a combination of the theory introduced in Global
smooth solution curves using rigorous branch following [2] and in Analytic estimates
and rigorous continuation for equilibria of higher-dimensional PDEs [11]. Using this
method, one can obtain proofs of existence of global smooth solution curves of equilib-
ria for large (continuous) parameter ranges and about local uniqueness of the solutions
on the curve. As an application, we compute several smooth branches of equilibria for
the three-dimensional Cahn-Hilliard equation.

1 Introduction

In the last twenty years, various computational methods have been introduced to prove
the existence of solutions of nonlinear partial differential equations (PDEs). Among them,
methods involving rigorous enclosure of eigenvalues of nonlinear operators are used in [3, 22]
to prove existence of solutions of second-order elliptic boundary value problems. In [25, 26],
a technique of self-consistent a priori bounds is elaborated to prove the existence of equilibria
and periodic solutions for the one-dimensional Kuramoto-Sivashinsky PDE. A method based
on a computational version of the Banach fixed point theorem is introduced in [24] to prove
existence and local uniqueness of solutions of boundary value problems. In [19, 20], a
technique combining the Schauder fixed point theorem and a priori error estimates for finite
element approximations in Sobolev spaces is applied to prove the existence of solutions
of elliptic problems. A combination of norm estimations of inverses of linear operators,
Newton-Chord iterations and a priori estimates is developed in [13] to prove existence of
steady state solutions of the two-dimensional Navier-Stokes equations. Finally, rigorous
numerics combined with ideas from Conley index theory and connection matrices are used
in [9, 17] to prove results concerning the global dynamics of parabolic PDEs.

∗Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan (gameiro@math.kyoto-u.ac.jp).
This author was partially supported by the JSPS Postdoctoral Fellowship No. P08016 and by the JSPS
Grant-in-Aid for Scientific Research No. 2008016, Ministry of Education, Science, Technology, Culture and
Sports, Japan.
†BCAM - Basque Center for Applied Mathematics, Bizkaia Technology Park, 48160 Derio, Bizkaia,

Spain and Rutgers University, Department of Mathematics, 110 Frelinghuysen Rd, Piscataway, NJ 08854,
USA (lessard@math.rutgers.edu). This author was partially supported by NSF grant DMS-0511115, by
DARPA, and by DOE grant DE-FG02-05ER25711.

1



These novel computational methods are powerful in the sense that they can prove results
that would be difficult to prove using standard analytic techniques. However, their appli-
cability can be limited by the computational time and memory required to terminate the
algorithms carrying out the proofs. For example, the computer-assisted proof presented in
[15] about the existence of non-trivial bifurcating equilibria for three-dimensional Rayleigh-
Bénard problems demonstrates how expensive such a technique can be. As the authors
mentioned in the conclusion of [15], due to the limit of their computational power, only
a few equilibrium solutions could be proved to exist. That raises the question of compu-
tational efficiency and applicability of these techniques to higher-dimensional PDEs. The
rigorous continuation method developed in [1, 2, 10, 11, 12, 16] was precisely introduced to
address these kind of computational efficiency issues.

In this paper, we propose an extension of the above mentioned rigorous continuation
method to the context of global smooth branches of equilibria of higher-dimensional PDEs.
In [9, 18, 21, 23], different methods were developed to compute continuous solution curves
of one- and two-dimensional PDEs. However, to the best of our knowledge, these techniques
have never been applied to equations defined on domains of dimension greater than two.
Our new proposed method combines the theory of rigorous branch following introduced
in [2] and the analytic estimates constructed in [11]. Using this method, one can obtain
proofs of existence of equilibria for continuous parameter ranges, existence and smoothness
of global solution curves and about local uniqueness of the solutions on the curves. It is also
important to note that although we restrict our attention to the three-dimensional Cahn-
Hilliard equation, the method introduced in this paper is quite general and can in principle
be applied to a rather large class of nonlinear equations, namely autonomous problems with
polynomial nonlinearities posed on rectangular domains.

Consider the three-dimensional Cahn-Hilliard equationut = −∆(ε2∆u+ u− u3), in Ω

∂u

∂ν
=
∂∆u

∂ν
= 0, on ∂Ω

(1)

defined on a rectangular domain Ω ⊂ R3. Here, ε > 0 models the interaction length, and
ν denotes the unit outer normal to ∂Ω, that is, there are no-flux boundary conditions for
both u and ∆u. Equation (1) was introduced in [5, 6, 7] as a model for phase separation
in binary alloys. Notice that the equilibria of (1) are given by the solutions of the elliptic
boundary value problem ε

2∆u+ u− u3 = c, in Ω

∂u

∂ν
= 0, on ∂Ω,

(2)

which introduces the parameter

c :=
1

|Ω|

∫
Ω

(u− u3)dy. (3)

In this paper we consider the case c = 0. The case c 6= 0 can also be handled using the
theory presented in this paper (see Remark 2.1). We have the following result, which is
proved in Section 4.

Theorem 1.1. Consider the case c = 0 and the three-dimensional rectangular domain
Ω = [0, π] × [0, π/1.1] × [0, π/1.2]. For each segment of curve in the diagram of Figure 1
there exists a smooth branch of equilibria of (1). In particular this implies existence and
local uniqueness of solutions, as well as non-existence of secondary bifurcations along the
computed branches.
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Figure 1: Theorem 1.1 demonstrates the existence of four distinct smooth branches (1),
(2), (3) and (4) of equilibrium solutions for the Cahn-Hilliard equation in the 3D domain
Ω = [0, π] × [0, π/1.1] × [0, π/1.2]. Each solution is proved to lie in a ball, given by (10),
of radius r ≈ 10−12 around the computed numerical approximation. Note that the ap-
parent bifurcations from the trivial solution are not proved. The proof of existence and
smoothness for each of the branches starts shortly after the bifurcation. More precisely,
the bifurcations from the trivial solution occur at λ = 1/ε2 ≈ 2.21, 2.44, 2.65, and 3.65,
and the proof of existence and smoothness for the branches (1), (2), (3) and (4) are per-
formed for the parameter intervals Λ(1) = [2.21199048168627, 2.23324590395188], Λ(2) =
[2.44219762780765, 2.46395636078611], Λ(3) = [2.65238677722770, 2.67180897706867], and
Λ(4) = [3.65987085537112, 3.84043126483459], respectively.
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Figure 2: Stationary solutions for the Cahn-Hilliard equation posed on the three-dimensional
rectangular domain Ω = [0, π] × [0, π/1.1] × [0, π/1.2]. Plotted are the isosurfaces of the
solutions corresponding to the last point of each branch in the diagram of Figure 1. The
labels (1), (2), (3) and (4) correspond to the respective branches in Figure 1.
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The paper is organized as follows. In Section 2, we introduce the general theory of
computation of global smooth branches of equilibria of higher-dimensional PDEs with poly-
nomial nonlinearities. In Section 3 we present explicit formulas for the case of a cubic
nonlinearity. In Section 4 we apply the method to the three-dimensional Cahn-Hilliard
equation, where we prove Theorem 1.1. Note that as a test case we first applied the method
to the two-dimensional Cahn-Hilliard equation. These results are presented in Appendix A.

2 Global smooth branch of equilibria: general theory

As mentioned in Section 1, we introduce the theory for nonlinear higher-dimensional partial
differential equations with polynomial nonlinearities. More precisely, consider the problem
of looking for equilibria of the parameter dependent equation

ut = L(u, λ) +

p∑
n=2

qnu
n = 0, (4)

in a rectangular domain Ω ⊂ Rd, where λ ∈ R is a parameter, L(·, λ) is a linear operator,
qn = qn(λ) ∈ R are the coefficients of the polynomial nonlinearity of degree p. Expanding
(4) using an orthogonal basis chosen appropriately in terms of the eigenfunctions of L(·, λ)
and the boundary conditions, it can be shown that solving problem (4) is equivalent to
solving for the zeroes of a problem of the form

f : Xs × R→ Xs : (x, λ) 7→ f(x, λ), (5)

for x = {xk}k∈Zd in a Banach space Xs of fast decaying coefficients, where s = (s1, . . . , sd)
corresponds to the component-wise decay rate of the coefficients (see [11] for details). More
precisely, the nonlinear operator f = {fk}k∈Zd given by (5) is given component-wise by

fk(x, λ) := µk(λ)xk +

p∑
n=2

qn
∑

k1+···+kn=k

kj∈Zd

xk1 · · ·xkn , k = (k1, . . . , kd) ∈ Zd. (6)

Remark 2.1. If equation (4) contains a non zero constant c, that is if

L(u, λ) +

p∑
n=2

qnu
n = c,

then the only difference in f given component-wise by (6) is in its first component f0. In
this case, one gets

f0(x, λ) = µ0(λ)x0 +

p∑
n=2

qn
∑

k1+···+kn=0

kj∈Zd

xk1 · · ·xkn − c.

It is well accepted that one of the most efficient methods for computing solution curves
of a continuous parameterized family of maps f(x, λ) = 0 is to use path-following contin-
uation techniques [14]. Recall that this method involves a predictor and a corrector step:
given, within a prescribed tolerance, a solution x0 at parameter value λ0, the predictor step
produces an approximate solution x̂1 at nearby parameter value λ1, and the corrector step,
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often based on a Newton-like operator, takes x̂1 as its input and produces, once again within
the prescribed tolerance, a solution x1 at λ1.

The goal of this paper is to generalize this procedure to the context of computing smooth
solution curves of equilibria of higher-dimensional partial differential equations. By the
above mentioned equivalence, we restrict our attention to the problem f(x, λ) = 0, where
f is given by (5). Since the operator f is infinite dimensional, the continuation must first
be applied to some finite dimensional approximation. Hence, let us first introduce the finite
dimensional Galerkin projection.

We use boldface type to denote multi-indices as in k = (k1, . . . , kd) ∈ Zd. We denote
by | · | the component-wise absolute value, that is, |k| := (|k1|, . . . , |kd|). Given k,n ∈ Zd
we also use component-wise inequalities. So that k < n, for example, means that kj < nj
for all 1 ≤ j ≤ d. We use a similar notation for k ≤ n, k > n, and k ≥ n. Throughout
this paper m = (m1, . . . ,md) and M = (M1, . . . ,Md) are computational parameters such
that M ≥ m, and Mj ≥ 6 for all 1 ≤ j ≤ d. Furthermore s = (s1, . . . , sd) will always
denote the “decay rate”, where each sj is the decay rate on the jth-coordinate, and is such
that sj ≥ 2 for all 1 ≤ j ≤ d. We also denote the finite set of indices of “sizes” m and
M respectively by Fm := {k ∈ Zd | |k| < m} and FM := {k ∈ Zd | |k| < M}. Notice
that Fm = Fm1

× · · · × Fmd
, where Fmj

:= {kj ∈ Z | |kj | < mj}. We have a similar
decomposition for FM . Given x = {xk}k∈Zd we denote its finite part of size m and its
corresponding infinite part respectively by xFm := {xk}k∈Fm and xIm := {xk}k 6∈Fm .

A Galerkin projection of (5) of dimension m is given by f (m) := {f (m)
k }k∈Fm , where

f
(m)
k : Rm1···md × R→ R, is given by

f
(m)
k (xFm , λ) := fk((xFm , 0), λ) = µkxk +

p∑
n=2

qn
∑

k1+···+kn=k

kj∈Fm

xk1 · · ·xkn , (7)

for k ∈ Fm. Now suppose that at the parameter value λ0, we numerically find x̄Fm and

ẋFm such that f (m)(x̄Fm , λ0) ≈ 0 and Df (m)(x̄Fm , λ0)ẋFm + ∂f(m)

∂λ (x̄Fm , λ0) ≈ 0. Defining
x̄ := (x̄Fm , 0Im) and ẋ := (ẋFm , 0Im) we should have that

f(x̄, λ0) ≈ 0 and Df(x̄, λ0)ẋ+
∂f

∂λ
(x̄, λ0) ≈ 0, (8)

assuming that the Galerkin projection dimension m is taken large enough. Consider λ close
to λ0 and define ∆λ := λ− λ0. Then, using x̄ and ẋ, we define the set of predictors by

xλ = x̄+ ∆λẋ.

The nest step is to construct a parameter dependent fixed point equation whose fixed
points correspond to the zeros of f . For this purpose, assume that the Jacobian matrix
Df (m)(x̄Fm , λ0) is non-singular and let J−1

m be a numerical approximation for its inverse.
We define the parameter dependent linear operator J−1

λ on sequence spaces, which acts as
an approximation for the inverse of Df(x̄, λ0). More explicitly, the action of J−1

λ on an
element x = {xk}k∈Zd is defined component-wise by

[
J−1
λ (x)

]
k

:=


[
J−1
m (xFm)

]
k
, if k ∈ Fm

(µk(λ))
−1
xk, if k 6∈ Fm.

Using the above, for λ close to λ0, we define

Tλ(x) := x− J−1
λ f(x, λ).
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It is important to notice that the finite part of the operator J−1
λ depends on λ0 only. We

want to uniquely enclose fixed points of Tλ into closed balls centered at xλ in Xs. Before
proceeding further, let us now describe the set Xs in details. Letting

ωsk :=

{
1, if k = 0

|k|s, if k 6= 0,

we define the d-dimensional weights with growth rate s = (s1, . . . , sd) by

ωs
k :=

d∏
j=1

ω
sj
kj
,

which are used to define the norm

‖x‖s = sup
k∈Zd

ωs
k|xk|,

and the Banach space
Xs = {x | ‖x‖s <∞} , (9)

consisting of sequences with algebraically decaying tails according to the rate s. The theo-
retical justification for this choice of Banach space lies is the fact that the solutions of (5)
we are looking for have sufficient regularity.

One can easily check that the closed ball of radius r in Xs, centered at the origin, is
given by

B(r) :=
∏
k∈Zd

[
− r

ωs
k

,
r

ωs
k

]
.

The closed ball of radius r centered at xλ is

B(xλ, r) := xλ +B(r). (10)

Consider now bounds Yk and Zk for all k ∈ Zd, such that∣∣∣[Tλ(xλ)− xλ
]
k

∣∣∣ ≤ Yk(|∆λ|), (11)

and
sup

b,c∈B(r)

∣∣∣[DTλ(xλ + b)c
]
k

∣∣∣ ≤ Zk(r, |∆λ|). (12)

Let us now make the important remark that the bounds Yk and Zk satisfying (11) and
(12) can be constructed monotone increasing in |∆λ| ≥ 0. It is also worth mentioning that
in practice, the bound Yk(|∆λ|) is chosen so that Yk(|∆λ|) = 0 for k 6∈ FM . We refer
the reader to Section 3.1 for an explicit construction of such Yk(|∆λ|) and Zk(|∆λ|) in the
context of cubic nonlinearities.

Lemma 2.2. Consider λ = λ0 + ∆λ. If there exists an r > 0 such that ‖Y + Z‖s < r,
with Y := {Yk}k∈Zd and Z := {Zk}k∈Zd , satisfying (11) and (12), respectively, then Tλ
is a contraction mapping on B(xλ, r) with contraction constant at most ‖Y + Z‖s/r < 1.
Furthermore, there is a unique x̃λ ∈ B(xλ, r) such that f(x̃λ, λ) = 0, and x̃λ lies in the
interior of B(xλ, r).

Proof. See [11]. �
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In order to compute the upper bounds Yk and Zk we choose M ∈ Nd such that M ≥
p(m− 1) + 1 component-wise, that is,

Mj ≥ p(mj − 1) + 1 (13)

for all 1 ≤ j ≤ d, where p is the degree of the polynomial nonlinearity in (4). This
component-wise lower bound on the choice of M comes from the fact that one wants to
construct Yk such that Yk = 0 for all k 6∈ FM . We refer to the beginning of Section 3.1
for an explicit example. Rather than giving general formulas for the upper bounds Yk and
Zk, we opted to show explicitly in Section 3 how to compute them for the case of a cubic
nonlinearity. Assume now that there exists a bound Z̃M (r, |∆λ|) such that one may define
for the cases k 6∈ FM

Zk(r, |∆λ|) :=
r

ωs
k

Z̃M (r, |∆λ|). (14)

Notice that Z̃M is independent of k. Its construction is presented in Section 3 in the context
of partial differential equations with cubic nonlinearities.

Definition 2.3. We define the finite radii polynomials {pk(r)}k∈FM
by

pk(r, |∆λ|) := Yk(|∆λ|) + Zk(r, |∆λ|)−
r

ωs
k

, (15)

and the tail radii polynomial by

p̃M (r, |∆λ|) := Z̃M (r, |∆λ|)− 1. (16)

Lemma 2.4. Suppose that f ∈ C` (Xs × R, Xs), ` ∈ {1, 2, . . . ,∞}. If there exist r > 0
and ∆λ such that pk(r, |∆λ|) < 0 for all k ∈ FM and p̃M (r, |∆λ|) < 0, then there exists
a C` function x̃ : [λ0 − |∆λ|, λ0 + |∆λ|] → Xs : λ 7→ x̃(λ) such that f(x̃(λ), λ) = 0 for all
λ ∈ [λ0 − |∆λ|, λ0 + |∆λ|]. Furthermore, these are the only solutions of f(x, λ) = 0 in the
tube {(x, λ) | x− xλ ∈ B(r), |λ− λ0| ≤ |∆λ|}.
Proof. For k ∈ FM , notice that pk(r, |∆λ|) < 0 implies that

ωs
k

(
Yk(|∆λ|) + Zk(r, |∆λ|)

)
< r.

For k 6∈ FM , recall (14) and that Yk(|∆λ|) = 0. Then, since p̃M (r, |∆λ|) < 0, we get that

ωs
k

(
Yk(|∆λ|) + Zk(r, |∆λ|)

)
= ωs

kZk(r, |∆λ|) = rZ̃M (r, |∆λ|) < r.

Therefore we have

‖Y + Z‖s = sup
k∈Zd

{
ωs
k

(
Yk(|∆λ|) + Zk(r, |∆λ|)

)}
< r.

As mentioned earlier, we chose the radii polynomials monotone increasing in |∆λ| ≥ 0.
Hence, existence and uniqueness of a solution x̃(λ) for all λ ∈ [λ0 − |∆λ|, λ0 + |∆λ|] follows
from Lemma 2.2. In particular, for every fixed λ ∈ [λ0 − |∆λ|, λ0 + |∆λ|], the operator Tλ
maps B(xλ, r) into itself and it is a contraction on B(xλ, r). Then, the operator

T̃ : B(r)× [λ0 − |∆λ|, λ0 + |∆λ|]→ B(r) : (y, λ) 7→ T̃ (y, λ) := Tλ(y + xλ)− xλ
is a uniform contraction on B(r). Since f ∈ C` (Xs × R, Xs), we have that

T̃ ∈ C` (B(r)× [λ0 − |∆λ|, λ0 + |∆λ|], B(r)) .

By the Uniform Contraction Principle, see e.g. [8], we conclude that x̃(λ) is a C` function
of λ ∈ [λ0 − |∆λ|, λ0 + |∆λ|]. �
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For the remainder of this section we assume that ∆λ ≥ 0. The case ∆λ ≤ 0 can be
handled similarly.

After one successful step, based at (x, λ) = (x̄0, λ0) with predictor x̄0 + ∆λẋ0 and step
size ∆λ, we find the corrector x̄1 at λ = λ1 = λ0 + ∆λ using a Newton iteration, and we
rebuild the radii polynomials, now based at (x, λ) = (x̄1, λ1). Suppose now that we have
performed two succesful continuation steps, i.e., in both steps we have found radii r0 and
r1, respectively, where the radii polynomials are negative. We thus have two continuous
solution graphs over intervals [λ0, λ1] and [λ1, λ2]: Lemma 2.4 implies the existence of
two functions x0(λ) and x1(λ) of class C` such that C0 :=

{(
λ, x0(λ)

)
| λ ∈ [λ0, λ1]

}
and

C1 :=
{(
λ, x1(λ)

)
| λ ∈ [λ1, λ2]

}
are smooth branches of solutions of f(x, λ) = 0. The

question is to determine whether or not C0 and C1 connect at the parameter value λ1 to
form a smooth continuum of zeros C0∪C1. In other words, can we prove that x0(λ1) = x1(λ1)
and that the connection is smooth? At the parameter value λ1, we have two sets enclosing
a unique zero namely

B0 := x̄0 + (λ1 − λ0)ẋ0 +B(r0),

and
B1 := x̄1 +B(r1).

We want to prove that the solutions in B0 and B1 are the same. We return now to the
radii polynomials constructed at basepoint (x, λ) = (x̄1, λ1), and evaluate them at ∆λ = 0.
Since pk(r1, 0) < 0 for all k ∈ FM and p̃M (r1, 0) < 0, we can find a non empty interval
I0 := [r−1 , r

+
1 ] strictly containing r1 such that, for all r ∈ I0, one has that pk(r, 0) < 0 (for

all k ∈ FM ) and p̃M (r, 0) < 0. We now have two additional sets enclosing a unique zero at
parameter value λ1, namely

B1± := x̄1 +B(r±1 ).

The next result is taken verbatim from [2]. For sake of completeness, we repeat the proof
here.

Proposition 2.5. If B0 ⊂ B1+ or B1− ⊂ B0, then C0 ∪ C1 consists of a continuous branch
of solutions of f(x, λ) = 0, and C0 ∩C1 = {(λ1, x

0(λ1))} = {(λ1, x
1(λ1))} ∈ {λ1}×B0 ∩B1.

Moreover, if T (x, λ) := Tλ(x) is of class C`, then C0 ∪ C1 is a C` smooth curve.

Proof. For a geometric representation of the proof, we refer to Figure 3. The sets B1− , B1+

and B1 all contain a unique zero of f(·, λ1). Since the balls are nested, these zeros are one
and the same, namely x1(λ1). Furthermore, B0 also contains exactly one zero of f(·, λ1),
namely x0(λ1). By hypothesis we have that either B0 and B1+ , or B0 and B1− are nested,
hence x0(λ1) = x1(λ1). This means that C0 ∪ C1 consists of a one dimensional continuous
branch of zeros of f . It remains to prove smoothness at λ = λ1. By Lemma 2.4, x1(λ) is a
smooth C` function on the interval [λ1 −∆λ, λ1 + ∆λ]. Moreover, we assert that x0(λ) and
x1(λ) coincide on [λ1 − ε, λ1] for ε > 0 sufficiently small. Namely,

(
x1(λ1), λ1

)
lies in the

interior of the tube {(x, λ) | x− (x̄1 + (λ− λ1)ẋ1) ∈ B(r1), |λ− λ1| ≤ ∆λ, }, and
(
x1(λ), λ

)
are the only zeros of f inside this tube. On the other hand, the solution curve

(
x0(λ), λ

)
must enter the tube for λ close to λ1, since

(
x0(λ1), λ1

)
is in the interior. From uniqueness

of solutions inside the tube (Lemma 2.4) it follows that indeed x0(λ) and x1(λ) coincide on
[λ1 − ε, λ1] for ε > 0 sufficiently small. Hence, we conclude that the union C0 ∪ C1 is C`

smooth. �

Remark 2.6. In practice, the hypothesis of Proposition 2.5 are verified as follows. The
center points x̄0 + (λ1 − λ0)ẋ0 of B0 and x̄1 of B1 and B1± are computed using the finite
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x̄0

x̄1

•

•

B1

B0

B
+
1

B
−

1

λ0 λ1 λ2

Figure 3: B0∩B1 contains a unique zero of (5) and C0∪C1 consists of a continuum of zeros.
This picture illustrates the proof of Proposition 2.5

dimensional approximations f (m0) and f (m1) of f , respectively, where f (m) is given by (7).
For m0 = (m0

1,m
0
2, . . . ,m

0
d) and m1 = (m1

1,m
1
2, . . . ,m

1
d), we define m̄ = (m̄1, m̄2, . . . , m̄d)

component-wise by m̄j = max{m0
j ,m

1
j}, for j = 1, . . . , d. Let us define the finite dimensional

projections

B
(m̄)
0 := (x̄0 + (λ1 − λ0)ẋ0)Fm̄

+
∏

k∈Fm̄

[
− r0

ωs
k

,
r0

ωs
k

]
,

B
(m̄)
1− := (x̄1)Fm̄

+
∏

k∈Fm̄

[
−r
−
1

ωs
k

,
r−1
ωs
k

]
,

B
(m̄)
1+ := (x̄1)Fm̄

+
∏

k∈Fm̄

[
−r

+
1

ωs
k

,
r+
1

ωs
k

]
.

Hence, verifying that B0 ⊂ B1+ (resp. B1− ⊂ B0) is done by checking numerically that the

finite dimensional box inclusion B
(m̄)
0 ⊂ B

(m̄)
1+ (resp. B

(m̄)
1− ⊂ B

(m̄)
0 ) is satisfied and that

r0 ≤ r1+ (resp. r1− ≤ r0).

3 Radii polynomials for smooth branches of equilibria
of higher-dimensional PDEs with cubic nonlinearities

In this section we derive the formulas for the radii polynomials for the case of a cubic
nonlinearity, that is, for f of the form

fk(x, λ) := µk(λ)xk + q3

∑
k1+k2+k3=k

kj∈Zd

xk1xk2xk3 . (17)
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To simplify the exposition, let us introduce the notation

(a ∗ b ∗ c)k :=
∑

k1+k2+k3=k

kj∈Zd

ak1bk2ck3 .

3.1 The bound Yk(|∆λ|)
The computation of the Yk(|∆λ|) in (11) is done as follows. We have that T (xλ) − xλ =
−J−1

λ f(xλ, λ). Recall now that we choose M so that it satisfies the component-wise lower
bound given by (13). Since xλ is such that (xλ)k = 0 for k 6∈ Fm we get that fk(xλ, λ) = 0
for every k 6∈ FM . Hence, for k 6∈ FM , we set Yk = 0. For the cases k ∈ FM , let us expand
f(xλ, λ) as a polynomial in ∆λ. Consider λ ∈ [λ0 − |∆λ|, λ0 + |∆λ|]. By Taylor’s Theorem,
one gets the existence of ξ = ξ(λ) ∈ [λ0 − |∆λ|, λ0 + |∆λ|] such that

µk(λ) = µk(λ0) +
∂µk

∂λ
(λ0)∆λ +

∂2µk

∂λ2
(λ0)∆2

λ +
∂3µk

∂λ3
(ξ)∆3

λ.

Hence, recalling that xλ = x̄+ ∆λẋ, one has that

fk(xλ, λ) = µk(λ0)x̄+ q3(x̄3)k +

[
µk(λ0)ẋ+ 3q3(x̄2 ∗ ẋ)k +

∂µk

∂λ
(λ0)

]
∆λ

+

(
∂2µk

∂λ2
(λ0)∆2

λ +
∂3µk

∂λ3
(ξ)∆3

λ

)
(x̄+ ∆λẋ) + 3q3(x̄ ∗ ẋ2)k∆2

λ + q3(ẋ3)k∆3
λ

= fk(x̄, λ0) +

[
Df(x̄, λ0)ẋ+

∂f

∂λ
(x̄, λ0)

]
k

∆λ +

(
∂2µk

∂λ2
(λ0)x̄k + 3q3(x̄ ∗ ẋ2)k

)
∆2
λ

+

(
∂2µk

∂λ2
(λ0)ẋk +

∂3µk

∂λ3
(ξ)x̄k + q3(ẋ3)k

)
∆3
λ +

(
∂3µk

∂λ3
(ξ)ẋk

)
∆4
λ,

where we use the notations x2 = x ∗ x and x3 = x ∗ x ∗ x. Consider µ
(3)
k > 0 such that∣∣∣∣∂3µk

∂λ3
(ξ)

∣∣∣∣ ≤ µ(3)
k , (18)

for all ξ ∈ [λ0 − |∆λ|, λ0 + |∆λ|]. Given a vector x, let us also define another vector β
component-wise by

βk(x) := µ
(3)
k |xk|. (19)

For k ∈ FM , define

y
(1)
k =

[
Df(x̄, λ0)ẋ+

∂f

∂λ
(x̄, λ0)

]
k

(20)

y
(2)
k =

∂2µk

∂λ2
(λ0)x̄k + 3q3(x̄ ∗ ẋ2)k (21)

y
(3)
k =

∂2µk

∂λ2
(λ0)ẋk + q3(ẋ3)k. (22)

Given k ∈ FM \ Fm consider µ∗k > 0 such that

|µk(λ)| ≥ µ∗k (23)
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for all λ ∈ [λ0 − |∆λ|, λ0 + |∆λ|]. Hence we define the bounds Y (0), Y (1), Y (2), Y (3) and
Y (4) as

Y
(0)
k :=


[
|J−1

m f (m)(x̄Fm , λ0)|
]
k
, if k ∈ Fm

1
µ∗
k
|fk(x̄, λ0)|, if k ∈ FM \ Fm

0, if k 6∈ FM

(24)

Y
(1)
k :=


[
|J−1

m y
(1)
Fm
|
]
k
, if k ∈ Fm

1
µ∗
k
|y(1)

k |, if k ∈ FM \ Fm

0, if k 6∈ FM

(25)

Y
(2)
k :=


[
|J−1

m y
(2)
Fm
|
]
k
, if k ∈ Fm

1
µ∗
k
|y(2)

k |, if k ∈ FM \ Fm

0, if k 6∈ FM

(26)

and

Y
(3)
k :=


[
|J−1

m y
(3)
Fm
|+ |J−1

m |βFm(x̄)
]
k
, if k ∈ Fm

1
µ∗
k
|y(3)

k |, if k ∈ FM \ Fm

0, if k 6∈ FM .

(27)

Y
(4)
k :=


[
|J−1

m |βFm(ẋ)
]
k
, if k ∈ Fm

0, if k ∈ FM \ Fm

0, if k 6∈ FM .

(28)

Note that by (8), one has that the bounds Y (0) and Y (1) should be very small. Hence,
using (24), (25), (26), (27) and (28), one defines

Y (|∆λ|) :=

4∑
j=0

Y (j)|∆λ|j . (29)

3.2 The bound Zk(r, |∆λ|)
In order to compute Zk it is convenient to denote J̃m := Df (m)(x̄Fm , λ0) and introduce the
operator [

J̃λ(x)
]
k

:=


[
J̃m(xFm)

]
k
, if k ∈ Fm

µk(λ)xk, if k 6∈ Fm,
(30)

which acts as an approximate inverse for the operator J−1
λ . We consider the splitting

DTλ(xλ + b)c =
(
I − J−1

λ J̃λ

)
c− J−1

λ

(
Df(xλ + b, λ)− J̃λ

)
c, (31)

where the first term is very small for k ∈ Fm, and is zero for k 6∈ Fm. For k ∈ Fm we have
the bounds ∣∣∣[(I − J−1

λ J̃λ
)
c
]
k

∣∣∣ ≤ r [∣∣∣I − J−1
m Df (m)(x̄Fm , λ0)

∣∣∣ω−sFm

]
k

=: rd
(1,0)
k , (32)

12



where ω−sFm
:= {1/ωs

k}k∈Fm , and | · | represents component-wise absolute values. As for the
second term in (31), we have that[

Df(xλ + b, λ)c
]
k

= µk(λ)ck + 3q3

[
x2
λ ∗ c+ 2xλ ∗ b ∗ c+ b2 ∗ c

]
k
.

Furthermore, for k ∈ Fm,[
J̃λc
]
k

=
[
Df (m)(x̄Fm , λ0)cFm

]
k

= µk(λ0)ck + 3q3

∑
k1+k2+k3=k

kj∈Fm

x̄k1 x̄k2ck3 ,

and, for k 6∈ Fm, [
J̃λc
]
k

= µk(λ)ck.

We now consider u, v ∈ B(1) defined by b = ru and c = rv so that we can expand the
expression

[(
Df(xλ + b, λ) − J̃λ

)
c
]
k

in terms of r and ∆λ. Considering k ∈ FM , we have
that

[(
Df(xλ + b, λ)− J̃λ

)
c
]
k

=


(µk(λ)− µk(λ0)) ck + 3q3

3∑
j=1

3−j∑
l=0

C
(j,l)
k rj∆l

λ, if k ∈ Fm

3q3

3∑
j=1

3−j∑
l=0

C
(j,l)
k rj∆l

λ, if k ∈ FM \ Fm

where the coefficients C
(j,l)
k are given by

C
(1,0)
k :=



∑
k1+k2+k3=k

k3 6∈Fm

x̄k1 x̄k2vk3 , if k ∈ Fm

∑
k1+k2+k3=k

kj∈Zd

x̄k1 x̄k2vk3 , if k ∈ FM \ Fm

C
(1,1)
k := 2

∑
k1+k2+k3=k

kj∈Zd

x̄k1 ẋk2vk3 , C
(1,2)
k :=

∑
k1+k2+k3=k

kj∈Zd

ẋk1 ẋk2vk3

C
(2,0)
k := 2

∑
k1+k2+k3=k

kj∈Zd

x̄k1uk2vk3 , C
(2,1)
k := 2

∑
k1+k2+k3=k

kj∈Zd

ẋk1uk2vk3 ,

and
C

(3,0)
k :=

∑
k1+k2+k3=k

kj∈Zd

uk1uk2vk3 .

We now want to find upper bounds Z
(1,0)
k , Z

(1,1)
k , Z

(1,2)
k , Z

(2,0)
k , Z

(2,1)
k and Z

(3,0)
k so that

|C(j,l)
k | ≤ Z(j,l)

k . Consider the splitting

C
(1,0)
k =



∑
k1+k2+k3=k

k3∈FM\Fm

x̄k1 x̄k2vk3 +
∑

k1+k2+k3=k

k3 6∈FM

x̄k1 x̄k2vk3 , if k ∈ Fm

∑
k1+k2+k3=k

kj∈FM

x̄k1 x̄k2vk3 +
∑

k1+k2+k3=k

{k1,k2,k3}6⊂FM

x̄k1 x̄k2vk3 , if k 6∈ Fm.
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Define

Ā := max
k∈Fm

{ωs
k|x̄k|} (33)

Ȧ := max
k∈Fm

{ωs
k|ẋk|}. (34)

Using Lemma 2.2 from [11] for the case k ∈ Fm, and Corollary 3.3 from [11] for the case
k ∈ FM \ Fm, we set

Z
(1,0)
k :=



∑
k1+k2+k3=k

k3∈FM\Fm

|x̄k1 ||x̄k2 |(1/ωs
k3) + Ā2ε

(3)
k , if k ∈ Fm

∑
k1+k2+k3=k

kj∈FM

|x̄k1 ||x̄k2 |(1/ωs
k3) + 3Ā2ε

(3)
k , if k ∈ FM \ Fm,

(35)

where the definition of ε
(3)
k can be found in equation (12) in [11]. For C

(1,1)
k , C

(1,2)
k , C

(2,0)
k ,

C
(2,1)
k and C

(3,0)
k we consider the splittings

C
(1,1)
k = 2

∑
k1+k2+k3=k

kj∈FM

x̄k1 ẋk2vk3 + 2
∑

k1+k2+k3=k

{k1,k2,k3}6⊂FM

x̄k1 ẋk2vk3 ,

C
(1,2)
k =

∑
k1+k2+k3=k

kj∈FM

ẋk1 ẋk2vk3 +
∑

k1+k2+k3=k

{k1,k2,k3}6⊂FM

ẋk1 ẋk2vk3 ,

C
(2,0)
k = 2

∑
k1+k2+k3=k

kj∈FM

x̄k1uk2vk3 + 2
∑

k1+k2+k3=k

{k1,k2,k3}6⊂FM

x̄k1uk2vk3 ,

C
(2,1)
k = 2

∑
k1+k2+k3=k

kj∈FM

ẋk1uk2vk3 + 2
∑

k1+k2+k3=k

{k1,k2,k3}6⊂FM

ẋk1uk2vk3 ,

C
(3,0)
k =

∑
k1+k2+k3=k

kj∈FM

uk1uk2vk3 +
∑

k1+k2+k3=k

{k1,k2,k3}6⊂FM

uk1uk2vk3 .

Recalling (33) and (34), we again use Corollary 3.3 from [11] to set, for k ∈ FM ,

Z
(1,1)
k = 2

∑
k1+k2+k3=k

kj∈FM

|x̄k1 ||ẋk2 |(1/ωs
k3) + 6ĀȦε

(3)
k , (36)

Z
(1,2)
k =

∑
k1+k2+k3=k

kj∈FM

|ẋk1 ||ẋk2 |(1/ωs
k3) + 3Ȧ2ε

(3)
k , (37)

Z
(2,0)
k = 2

∑
k1+k2+k3=k

kj∈FM

|x̄k1 |(1/ωs
k2)(1/ωs

k3) + 6Āε
(3)
k , (38)

Z
(2,1)
k = 2

∑
k1+k2+k3=k

kj∈FM

|ẋk1 |(1/ωs
k2)(1/ωs

k3) + 6Ȧε
(3)
k , (39)

Z
(3,0)
k =

∑
k1+k2+k3=k

kj∈FM

(1/ωs
k1)(1/ωs

k2)(1/ωs
k3) + 3ε

(3)
k , (40)
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For k ∈ Fm, one has that

(
µk(λ)− µk(λ0)

)
ck =

(
∂µk

∂λ
(λ0)∆λ +

∂2µk

∂λ2
(λ0)∆2

λ +
∂3µk

∂λ3
(ξ)∆3

λ

)
ck,

hence∣∣ (µk(λ)− µk(λ0)) ck
∣∣ ≤ (∣∣∣∣∂µk

∂λ
(λ0)

∣∣∣∣ |∆λ|+
∣∣∣∣∂2µk

∂λ2
(λ0)

∣∣∣∣ |∆λ|2 +

∣∣∣∣∂3µk

∂λ3
(ξ)

∣∣∣∣ |∆λ|3
)

r

ωs
k

.

For k ∈ Fm, define d
(1,1)
k , d

(1,2)
k and d

(1,3)
k by

d
(1,1)
k :=

∣∣∣∣∂µk

∂λ
(λ0)

∣∣∣∣ 1

ωs
k

(41)

d
(1,2)
k :=

∣∣∣∣∂2µk

∂λ2
(λ0)

∣∣∣∣ 1

ωs
k

(42)

d
(1,3)
k := µ

(3)
k

1

ωs
k

. (43)

One now has to define the term Z̃M (r, |∆λ|) from equation (14). For the case k 6∈ FM , one
has that [(

Df(xλ + b, λ)− J̃λ
)
c
]
k

= 3q3

3∑
j=1

3−j∑
l=0

C
(j,l)
k rj∆l

λ,

where the coefficients C
(j,l)
k are given by

C
(1,0)
k :=

∑
k1+k2+k3=k

kj∈Zd

x̄k1 x̄k2vk3 , C
(1,1)
k := 2

∑
k1+k2+k3=k

kj∈Zd

x̄k1 ẋk2vk3 , C
(1,2)
k :=

∑
k1+k2+k3=k

kj∈Zd

ẋk1 ẋk2vk3 ,

C
(2,0)
k := 2

∑
k1+k2+k3=k

kj∈Zd

x̄k1uk2vk3 , C
(2,1)
k := 2

∑
k1+k2+k3=k

kj∈Zd

ẋk1uk2vk3 , C
(3,0)
k :=

∑
k1+k2+k3=k

kj∈Zd

uk1uk2vk3 .

Assume now that there exists a uniform (in k and λ) lower bound µ̃M such that

|µk(λ)| ≥ µ̃M (44)

for all k /∈ FM and for all λ ∈ [λ0 − |∆λ|, λ0 + |∆λ|]. One can use Lemma 2.1 from [11] to
get that

∣∣∣[DTλ(xλ + b)c
]
k

∣∣∣ =

∣∣∣∣∣∣3q3

µk

3∑
j=1

3−j∑
l=0

C
(j,l)
k rj∆l

λ

∣∣∣∣∣∣
≤ 3|q3|α̃(3)

M

µ̃M

(
Ā2 + 2ĀȦ∆λ + Ȧ2∆2

λ + 2Ār + 2Ȧr∆λ + r2
) r

ωs
k

,

where the explicit definition of α̃
(3)
M can be found in equation (13) in [11]. Defining

Z̃M (r, |∆λ|) =
3|q3|α̃(3)

M

µ̃M

(
Ā2 + 2ĀȦ∆λ + Ȧ2∆2

λ + 2Ār + 2Ȧr∆λ + r2
)

15



one can finally define

Zk(r, |∆λ|) :=



3|q3|

∣∣J−1
m

∣∣ 3∑
l=1

d
(1,l)
Fm

r|∆λ|l +

3∑
j=1

3−j∑
l=0

Z
(j,l)
Fm

rj |∆λ|l


k

+ d
(1,0)
k r, if k ∈ Fm

3|q3|
µ∗k

3∑
j=1

3−j∑
l=0

Z
(j,l)
k rj |∆λ|l, if k ∈ FM \ Fm

r

ωs
k

Z̃M (r, |∆λ|), if k 6∈ FM

3.3 Definition of the radii polynomials

We then have that the radii polynomials, defined in Definition 2.3, for the general cubic
problem (17) are given, for k ∈ Fm, by

pk(r, |∆λ|) =

4∑
j=0

Y
(j)
k |∆λ|j +

(
d

(1,0)
k + 3|q3|

[∣∣J−1
m

∣∣( 3∑
l=1

d
(1,l)
Fm
|∆λ|l +

2∑
l=0

Z
(1,l)
Fm
|∆λ|l

)]
k

− 1/ωs
k

)
r

+
(

3|q3|
[∣∣J−1

m

∣∣ (Z(2,0)
Fm

+ Z
(2,1)
Fm
|∆λ|

)]
k

)
r2 +

(
3|q3|

[∣∣J−1
m

∣∣Z(3,0)
Fm

]
k

)
r3,

(45)
for k ∈ FM \ Fm, by

pk(r, |∆λ|) =

3∑
j=0

Y
(j)
k |∆λ|j +

(
3|q3|
µ∗k

2∑
l=0

Z
(1,l)
k |∆λ|l −

1

ωs
k

)
r

+
6|q3|
µ∗k

(
Z

(2,0)
k + Z

(2,1)
k |∆λ|

)
r2 +

3|q3|
µ∗k

Z
(3,0)
k r3,

(46)

and finally,
p̃M (r, |∆λ|) = Z̃M (r, |∆λ|)− 1. (47)

4 Application to the Cahn-Hilliard Equation

In this section we apply the theory introduced in Section 2 and we use the explicit radii
polynomials constructed in Section 3 to the Cahn-Hilliard equation (1), for the case c = 0
in (2). Taking the domain as

Ω =

d∏
j=1

[0, `j ],

and recalling the Neumann boundary conditions, we can express the solutions in terms of a
cosine basis {ψk}k∈Nd given by

ψk(y) :=

d∏
j=1

cos(kjLjyj),

where Lj = π/`j , for j = 1, . . . , d. Notice that we only need to consider the basis elements
for k ≥ 0. However, if we use the expansion

u =
∑
k∈Zd

akψk
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with the assumption that a|k| = ak for k ∈ Zd, then the expansion of (2) takes the form

fk(a, λ) := µkak −
∑

k1+k2+k3=k

kj∈Zd

ak1ak2ak3 , (48)

where

µk = 1− 1

λ

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)
,

with λ = 1/ε2, and we have that f|k| = fk, for all k ∈ Zd. Therefore, we only need to solve
fk = 0 for k ≥ 0.

4.1 Completion of the radii polynomials for Cahn-Hilliard

To complete the definition of the radii polynomials for the Cahn-Hilliard equation given by
(45), (46) and (47), we must compute some quantities specific to (1). To define the bounds

Yk, one needs to compute ∂2µk

∂λ2 (λ0), µ
(3)
k from (18), βk(x̄) and βk(ẋ) given by (19), y

(1)
k ,

y
(2)
k and y

(3)
k given respectively by (20), (21) and (22), and finally µ∗k given by (23). First

notice that

∂µk

∂λ
(λ0) =

1

λ2
0

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)
, (49)

∂2µk

∂λ2
(λ0) = − 2

λ3
0

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)
, (50)

∂3µk

∂λ3
(ξ) =

6

ξ4

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)
. (51)

For the construction of the radii polynomials, we assume the extra condition that

|∆λ| ≤
λ0

2
. (52)

Note that this condition need to be explicitly verified during the computations. Hence, for
every ξ ∈ [λ0 − |∆λ|, λ0 + |∆λ|],∣∣∣∣∂3µk

∂λ3
(ξ)

∣∣∣∣ ≤ µ(3)
k :=

96

λ4
0

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)
. (53)

The constructions of the βk(x̄), βk(ẋ), y
(1)
k , y

(2)
k and y

(3)
k are straightforward using (50) and

(53). Note that y
(1)
k is explicitly given by

y
(1)
k =

{
µk(λ0)ẋk − 3(x̄2 ∗ ẋ)k + ∂µk

∂λ (λ0)x̄k, if k ∈ Fm

−3(x̄2 ∗ ẋ)k, if k ∈ FM \ Fm.
(54)

For the construction of µ∗k we proceed as follows. Recall that we consider λ ∈ [λ0−|∆λ|, λ0+
|∆λ|] and that we assume |∆λ| ≤ λ0

2 . Assume also that

min
1≤j≤d

{
m2
jL

2
j

}
>

3λ0

2
. (55)
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Hence, for k /∈ Fm, we get that

|µk(λ)| =

∣∣∣∣1− 1

λ

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)∣∣∣∣
=

1

λ

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)
− 1

≥ 2

3λ0

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)
− 1

≥ 2

3λ0
min

1≤j≤d

{
m2
jL

2
j

}
− 1 > 0.

For k ∈ FM \ Fm, define the µ∗k > 0 satisfying (23) by

µ∗k :=
2

3λ0

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)
− 1.

Therefore, we get that for all λ ∈ [λ0− |∆λ|, λ0 + |∆λ|] and for k ∈ FM \Fm, we have that
|µk(λ)| ≥ µ∗k > 0. One can now define the Y (0), Y (1), Y (2), Y (3) and Y (4) given respectively
by (24), (25), (26), (27) and (28).

We need to define the d
(1,0)
k , d

(1,1)
k , d

(1,2)
k and d

(1,3)
k given respectively by (32), (41), (42)

and (43). Note that d
(1,0)
k is given directly by (32). For the others, let

d
(1,1)
k :=

1

λ2
0

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

) 1

ωs
k

,

d
(1,2)
k :=

2

λ3
0

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

) 1

ωs
k

,

d
(1,3)
k := µ

(3)
k

1

ωs
k

=
96

λ4
0

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

) 1

ωs
k

.

The other quantities needed are Ā and Ȧ given by (33) and (34) respectively; Z
(1,0)
k , Z

(1,1)
k ,

Z
(1,2)
k , Z

(2,0)
k , Z

(2,1)
k and Z

(3,0)
k given respectively by (35), (36), (37), (38), (39) and (40);

and the bound µ̃M given by (44). Defining

µ̃M :=
2

3λ0
min

1≤j≤d

{
M2
j L

2
j

}
− 1 > 0, (56)

one has that ∣∣∣µk(λ)
∣∣∣ ≥ µ̃M ,

for all k 6∈ FM and for all λ ∈ [λ0 − |∆λ|, λ0 + |∆λ|].
Remark 4.1. Recalling (47) and letting |∆λ| = 0, one has that

p̃M (r, 0) =
3α̃

(3)
M

µ̃M

(
Ā2 + 2Ār + r2

)
− 1

always has two distinct real roots, since its discriminant equals to
12α̃

(3)
M

µ̃M
> 0. Hence, the

only way we could fail to find a positive r such that p̃M (r, 0) < 0 is if
3Ā2α̃

(3)
M

µ̃M
− 1 ≥ 0. In

practice, before starting the rigorous numerical computations of the radii polynomials, we
check if

3Ā2α̃
(3)
M

µ̃M
< 1. (57)

If condition (57) is not satisfied, we a priori know that the validation will fail. Hence, we
need to increase the value of µ̃M , which can be done by increasing M .
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4.2 Algorithm for the rigorous computation of global smooth branches
of equilibria for the Cahn-Hilliard equation

Algorithm 4.2. To compute rigorous global smooth branches of equilibria of the three-
dimensional Cahn-Hilliard equation (1) on the parameter range [λmin, λmax], we proceed as
follows.

1. Choose a minimum step-size ∆min > 0 and set the maximum step-size ∆max = λmax

2 .
Note that with this choice, inequality (52) will always be verified. Initiate a decay rate
s = (s1, s2, s3), a projection dimension m = (m1,m2,m3), a computational parameter
M = (M1,M2,M3), the initial parameter value λ0 = λmin, an initial step size ∆λ

such that |∆λ| ∈ [∆min,∆max], a temporary step size ∆0
λ = 0, an initial predictor x̂Fm

of f (m)(xFm , 0) and an initial radius r0 = 0.

2. Calculate the analytic estimates α
(3)
k , α̃

(3)
M and ε

(3)
k , for k ∈ FM , using the theory from

[11]. Initiate B0 = B(ˆ̄x, r0), where ˆ̄x := (x̂Fm , 0Im).

3. With a Newton-like iterative scheme, find near x̂Fm an approximate solution x̄Fm of
f (m)(x̄Fm , λ0) = 0. Calculate an approximate solution ẋFm of Df (m)(x̄Fm , λ0)ẋFm +
∂f(m)

∂λ (x̄Fm , λ0) = 0. Compute Ā, Ȧ from (33), (34) and µ̃M given by (56). Verify
that conditions (57) is satisfied. If not, increase M component-wise and return to
Step 2.

4. Compute, using interval arithmetic, the coefficients of the radii polynomials pk, for
k ∈ FM , given by (45) and (46) and p̃M given by (47).

5. Defining

I0 :=
{
r ≥ 0 | pk(r, 0) < 0 for all k ∈ FM and p̃M (r, 0) < 0

}
,

compute using interval arithmetic, 0 < r−1 < r+
1 such that {r−1 , r+

1 } ⊂ I0. In practice,
we compute numerically inf(I0) and sup(I0), and we define r−1 = inf(I0) + δ− and
r+
1 = sup(I0) − δ+, for some small δ−, δ+ > 0. Consider B1− := B(x̄, r−1 ) and
B1+ := B(x̄, r+

1 ), where x̄ = (x̄Fm , 0Im). Using Remark 2.6, verify that B0 ⊂ B1+ or
B1− ⊂ B0.

6. Calculate numerically

I = [I−, I+] :=
{
r ≥ 0 | pk(r,∆λ) < 0 for all k ∈ FM and p̃M (r,∆λ) < 0

}
.

• If I = ∅ then go to Step 8.

• If I 6= ∅ then let r = I−+I+
2 . If, computing with interval arithmetic, one can

verify that pk(r,∆λ) < 0 for all k ∈ FM and p̃M (r,∆λ) < 0 then go to Step 7;
else go to Step 8.

7. Update ∆0
λ ← ∆λ and r0 ← r. If 10

9 ∆λ ≤ ∆max then update ∆λ ← 10
9 ∆λ and go to

Step 6; else go to Step 9.

8. If ∆0
λ > 0 then go to Step 9; else if 9

10∆λ ≥ ∆min then update ∆λ ← 9
10∆λ and go to

Step 6; else go to Step 10.

9. The continuation step has succeeded. Store, for future reference, x̄Fm , ẋFm , r0, λ0

and ∆0
λ. Determine λ1 approximately equal to, but interval arithmetically less than,

λ0 + ∆0
λ. Make the updates λ0 ← λ1, ∆λ ← ∆0

λ, x̂Fm ← x̄Fm + ∆0
λẋFm and ∆0

λ ← 0.
Update B0 ← B(ˆ̄x, r0) and go to Step 3 for the next continuation step.
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10. The continuation step has failed. Either decrease ∆min and return to Step 8; or in-
crease some of the components of M and return to Step 4; or increase some of the
components of m and return to Step 3. Alternatively, terminate the algorithm unsuc-
cessfully at λ = λ0

4.3 Proof of Theorem 1.1

Proof. The proof is computer assisted, using Algorithm 4.2. We initialize the algorithm
with s = (2, 2, 2), m = (m1,m2,m3) = (8, 8, 8), and M = (3m1 − 2, 3m2 − 2, 3m3 − 2).
We numerically find the initial points in each of the branches to initialize the algorithm.
When the continuation step fails (Step 10), we increase each component of m by 1, update
M = (3m1−2, 3m2−2, 3m3−2), and return to Step 3. Algorithm 4.2 terminates successfully
for each of the branches on the diagram of Figure 1. �

A Results for Cahn-Hilliard in 2D

In this section we present the results of computations for the two-dimensional Cahn-Hilliard
equation. As before, for each segment of curve in the diagram of Figure 4 we have existence
and local uniqueness of solutions for each value of the parameter for c = 0.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

(2)

(1)

(3)

(4) (5)
(6)

(7)

1/ε2

‖u
‖

Figure 4: Smooth branches of equilibria for the Cahn-Hilliard equation posed on the two-
dimensional rectangular domain Ω = [0, π] × [0, π/1.1]. Each solution is proved to lie in
a ball, given by (10), of radius r ≈ 10−12 around the computed numerical approximation.
Note that the apparent bifurcations are not proved. The proof of existence and smoothness
for each of the branches starts shortly after the apparent bifurcation. More precisely, the
bifurcations from the trivial solution occur at λ = 1/ε2 ≈ 1, 1.21, 2.21, 4, 4.84, and 5.21,
and the apparent bifurcation from branch (2) occur at λ ≈ 1.4374. The proof of existence
and smoothness for the branches (1), (2), (3), (4), (5), (6), and (7) are performed for
the parameter sets Λ(1) = [1.0003, 5.7], Λ(2) = [1.2103, 1.4087] ∪ [1.4887, 3.1864], Λ(3) =
[2.2019, 3.5986], Λ(4) = [4.0012, 4.8340], Λ(5) = [4.8414, 5.7], Λ(6) = [5.2046, 5.6318], and
Λ(7) = [1.4401, 3.1966], respectively.
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Figure 5: Solutions for the Cahn-Hilliard equation in 2D. The solutions corresponding to
the last point of the branches in the diagram of Figure 4 are plotted. The labels (1), (2),
(3), (4), (5), (6) and (7) correspond to the respective branches in Figure 4.
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