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Abstract

In this paper, we introduce a method to conclude about the existence of secondary
bifurcations or isolas of steady state solutions for parameter dependent nonlinear par-
tial differential equations. The technique combines the Global Bifurcation Theorem,
knowledge about non existence of nontrivial steady state solutions at the zero param-
eter value and explicit information about the coexistence of multiple nontrivial steady
states at a positive parameter value. We apply the method to the two-dimensional
Swift-Hohenberg equation.

1 Introduction

Studying the global structure of solution sets of nonlinear eigenvalue problems in a Ba-
nach space is a difficult problem. Powerful techniques from global analysis like the Global
Bifurcation Theorem of Rabinowitz [1] allow one to conclude about existence of continua
of solutions of these equations and provide information about the global behavior of these
continua (e.g. unboundedness). However, if one is interested in answering specific questions
regarding the structure of the solution sets, then these analytical methods soon become
inefficient. In particular, one cannot use the Global Bifurcation Theorem to conclude about
the existence of secondary bifurcations or existence of solution sets disjoint from the triv-
ial solution set (isolas). For that reason, numerical simulations are often used to get new
insights and observations in order to conjecture the answer to these questions.

In this paper, we propose to merge the strengths of global analysis and rigorous compu-
tations to conclude about the existence of secondary bifurcations or isolas of steady states
for parameter dependent nonlinear partial differential equations (PDEs) of the form

uy = E(u,v), veR (1)

More specifically, we first use the so-called validated continuation method for high-dimensional
PDEs introduced in [2] to prove coexistence of multiple nontrivial steady state solutions of
(1) at a parameter value v* > 0. Using these solutions plus knowledge about non exis-
tence of nontrivial steady state solutions at v = 0, one can then use the Global Bifurcation
Theorem introduced in [1] to prove existence of isolas or secondary bifurcations.

Even though this method is rather general, we choose to present it in the context of a
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specific problem. More precisely, consider the Swift-Hohenberg PDE

up = vu — (14 A)?u —u?, in Q= [0,£1] x [0, 4], (2)
u(m,y,t):u(x+€1,y,t):u(a:,y+£2,t), (3)
U(SL', y7t) = u(_mvyvt) = U(S(}, _yat) = ’U/(—IL‘7 _yat)a (4)

with periodic boundary conditions on the two dimensional rectangle ) restricited to even
symmetries. The Swift-Hohenberg PDE was originally introduced as a one-dimensional
model in [3] to describe the onset of Rayleigh-Bénard convection and is widely used as
model for pattern formation.

Theorem 1.1. At least one of the following two statements is true:
1. Equation (2) undergoes a secondary bifurcation of steady states;

2. Equation (2) possesses an isola, that is, a connected set of steady states disjoint from
the trivial solution set & = {(0,v) | v € R}.

The proof of Theorem 1.1 requires a combination of the Global Bifurcation Theorem,
global knowledge about non existence of nontrivial steady state solutions at the parameter
value v = 0 and coexistence of multiple nontrivial steady states at a parameter value v* > 0.

The paper is organized as follows. In Section 2, we recall the Global Bifurcation Theorem
of Rabinowitz [1] and apply it to the two-dimensional Swift-Hohenberg equation (2). In
Section 3, we use the energy functional associated to (2) to prove that the Swift-Hohenberg
equation has no nontrivial steady states solutions at the parameter value v = 0. In Section 4,
we use the so-called validated continuation for high dimensional PDEs method developed
in [2] to prove existence of six distinct steady states for a parameter value v* > 0. Finally,
combining all the above mentioned ingredients, we prove Theorem 1.1 in Section 5.

2 The Global Bifurcation Theorem

The following result, due to Rabinowitz, is introduced and proved in [1].

Theorem 2.1 (Global Bifurcation). Suppose that L is a compact operator on a Banach
space X, and H(u, \) is a compact operator on X x R. If g is a characteristic value of L
with odd algebraic multiplicity, then (0, o) is a bifurcation point of

F(u,\) = uw— Mou— H(u,\) = 0. (5)

Moreover, if % is the set of the nontrivial solutions of F(u,\) = 0, then there is a closed
connected component X1 of 3, such that (0, ) € X1, and either (a) X1 is unbounded; or
(b) 31 contains (0, \,), where A\ # Ao is also a characteristic value of L.

We want to apply Theorem 2.1 to the Swift-Hohenberg equation (2). First we define the
linear operator L. For that purpose, fix € € (0,1] and define

AUE[Q+AY+4M (6)

Since the Swift-Hohenberg equation is considered with periodic boundary conditions on
the rectangle Q = [0, £1] x [0, £5], we identify the domain with the two-dimensional torus T2.

Letting L, = % and Ly = %, one denotes T? = [O, i—’j X {O, %ﬂ For a function u defined



on T?, we use the notation (k) to denote the Fourier coefficient associated to the mode
k = (K1, ko) with basis element e’*1L17¢ik2L2y - Consider then H*(T?) = W*2(T?) C L?(T?)
the Sobolev space of functions defined on T? with norm

[ullFe ey = > (14 1KI1%)" ak) [,

keZ2

where ||k|| = \/k? + k3.

Lemma 2.2. The linear operator A defined by (6) maps H?(T?) into H*(T?) and it is
invertible. Denote by A1 its inverse. Then A~' maps H*(T?) into H°(T?).

Proof. Denote k = (k1,ks) € Z? and kL = (k1L1,k2Ls). Recalling (6), one has that
— 2 .
Au(k) = ((1 — |kL|?)® + s) a(k).

Consider v € H?(T?) and define L, = max{|L1|,|L2|}. Since € € (0,1], one has that

Al = 30 (4 IBIP) [Fuck)|
keZ2
= 3 () (- KR ) )
keZ?
< 2 (1 [RIP) (1 + 1R fack)?
keZ?2

< 29]lullFs g2y < 00,

where v = (L) is a positive constant depending on L.. Hence, A maps H°(T?) into
H(T?). Let us now show that A is invertible. We want to show that the problem

Au=wv (7)

has a unique solution u defined in T2. Computing the Fourier expansion on both sides of
(7) gives
Au(k) = [(1 — |kL|?)* + e} a(k) = o(k).

Since (1 — ||I<:L||2)2 +¢e >0, for all k € Z?2, one can uniquely define the solution u of (7) by

o(k)
(1 [RL]?) +<

w=Y_ i(k), witha(k)=

keZ?

where ¥y, = Py, k, = eF111%etk2L29 Hence, the operator A is invertible. Denote by A~! its
inverse. The fact that A=! maps H!(T?) into H®(T?) follows by similar arguments to the
one used above. ]

Let us now put the Swift-Hohenberg equation (2) in the context of Theorem 2.1. First,
one needs to define the compact operators L and H. By the Sobolev Embedding Theorem,
there exists a compact inclusion i; : H®(T?) — H'(T?). Defining L = 4; o A~' and
X < H'(T?), one has that the linear operator L : X — X is compact. Now, let us
construct H : X — X. For u € X = H'(T?), one has that u € L5(T?), which then implies
that u? € L?(T?). Now, a solution w of Aw = u? is such that w € H*(T?). This can be



proved by computing the Fourier expansion like in the proof of Lemma 2.2. Hence, one
has that A='u® € H*(T?). By the Sobolev Embedding Theorem, consider the compact
inclusion iy : H*(T?) — H'(T?). Defining H(u) = iy 0 A~'u?, one has that H : X — X is
compact.

Let us now define A =
solve for

v+ ¢. Hence, solving for the steady states of (2) is equivalent to

F(u,\) = u— ALu — H(u) = 0.
One can then apply Theorem 2.1 to the Swift-Hohenberg equation (2) defined on the two-
dimensional torus.

Corollary 2.3. If Ao is a characteristic value of L = i;0 A~ with odd algebraic multiplicity,
then (0, o) is a bifurcating steady state of (2). Moreover, if 3 is the set of the nontrivial
steady states of (2), then there is a closed connected component ¥1 of 3, such that (0, ) €
31, and either (a) ¥y is unbounded; or (b) 31 contains (0, A\i), where Ax # Ao is also a
characteristic value of L.

3 Global uniqueness of steady state at v =0

In this Section, we prove that there are no nontrivial steady state solutions at the parameter
value v = 0.

Lemma 3.1. The trivial solution uw = 0 is the unique steady state solution of the Swift-
Hohenberg PDE (2) at the parameter value v = 0.

Proof. First, it is well known that the energy functional

B(u) & //T [iuu %((1 +A) uﬂ dA 8)

acts as a Lyapunov function for the Swift-Hohenberg equation (2) at ¥ = 0 subject to the
symmetries (4) (see e.g. [4]). Hence, steady state solutions of (2) corresponds to minimizers
of the action functional (8). Assume now that there exists a local minimizer 4 # 0. Then,
there is a neighborhood N of % in X such that E(@) < E(v) for all v € N. Considering a
general u # @ € X, there exists § € (0,1) such that us = (1 — &)@+ du € N. Since the
functional (8) is strictly convex, that implies that E(4) < E(us) < (1 —0)E(a) + 0E(u).
Hence, 0E(u) < dE(u). In particular, for v = 0, one get that 0 < E(u) < E(0) = 0. This is
a contradiction. Hence, u = 0 is the unique minimizer. That shows that the trivial solution
u = 0 is the unique steady state solution at v = 0. |

4 Coexistence of multiple steady states at v* > 0

In this Section, we use the so-called walidated continuation technique to demonstrate the
coexistence of six steady state solutions of (2) at the parameter value v* = 0.8. Validated
continuation [5, 6, 7, 2, 8, 9, 10] is a computational method to rigorously compute solutions
of infinite dimensional parameter dependent nonlinear operators of the form f(a,v) = 0.
The idea of the method is to use f to construct a Newton-like operator 7" in a Banach space,
and then to combine analytic a priori estimates and rigorous computation to show that T is a
contraction mapping. It is important to note that since the validated continuation technique
is based on the Implicit Function Theorem, it cannot be used to handle bifurcations directly.
In this paper, we use the work presented in [2], which was introduced to rigorously compute



steady state solutions of high-dimensional PDEs. To apply this computational method, one
first needs to set up the operator f.

Notice first that due to the boundary conditions (3) and the symmetry assumptions (4),
one can expand the steady state solutions of (2) using a cosine basis {1k }xen2 given by

£

Yr(y) = cos(kiLiz) cos(kaLay).

Hence, using the expansion

u= Z arpVr

keZ?

with the assumption that ajg = ax for k € 72, the expansion of the steady states of (2)
takes the form

fk d:ef UGl — Z Ap10pR20L3,
kl4k24k3=k
kiezd
where )
() = v — 1= (L + L) (9)

with fig = fk, for all k € Z2. Therefore, we only need to solve fr = 0 for k > 0. Hence,
defining a = {ag trenz and f = {fx}renz, it can be shown that finding steady states of (2)
is equivalent to finding solutions of

f((l,l/):() (10)

in a space of algebraically decaying coefficients (see [2]). We have now the following result.
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Figure 1: Diagram of rigorously computed steady states of (2) with £; = 2% and ¢, = 2%
for some values of v € [0,0.8].

Theorem 4.1. Consider the Swift-Hohenberg equation (2) with {1 = % and by = % At

the parameter value v* = 0.8, equation (2) has at least siz nontrivial distinct steady state
solutions.



Proof. For v* = 0.8, the rigorous computational method from [2] was used to prove existence
and local uniqueness of three solutions of (10), corresponding to steady state solutions of (2).
For each one of these solutions there is the corresponding solution given by the reflection
symmetry (u — —u). Rigorous computations were used to verify that these six steady state
solutions are distinct. [ ]

Note that we actually proved more than the result of Theorem 4.1. In fact, in order to
get to the parameter value v* = 0.8, we proved the existence of many more steady state
solutions. In Figure 1, we show the diagram of all rigorously computed solutions. However,
as shown in Section 5, the proof of Theorem 1.1 only requires knowledge of coexistence
at v* = 0.8. As mentioned before, since the wvalidate continuation technique is based on
the Implicit Function Theorem, it can not be used to handle bifurcations. Hence all the
rigorously computed solutions presented in Figure 1 are away from bifurcations.
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Figure 2: Plot of the three computed nontrivial steady states solutions of the Swift-
Hohneberg equation (2) defined on the rectangle [0, 22] x [0, 2Z] at the parameter value

v* =0.8.

5 Proof of the main result

Proof of Theorem 1.1. Let v* = 0.8, and assume that the theorem is false. Notice that the
bifurcations from the trivial solution occur for the values of v given by

2
Vi = 1= (B2 + R3L3)]

It is easy to see that in the parameter interval [0, v*], the only bifurcations from the trivial
solution occur at v; = (0.21)? ~ 0.0441 and v = (0.44)? ~ 0.1936. These bifurcations
correspond to the modes (k1,k2) = (1,0) and (ki,k2) = (0,1) respectively. Hence, by the
reflection symmetry u — —u on the solutions of (2), there are exactly four branches of
equilibria bifurcating from the trivial solution in the interval [0, 7*]. Denote these branches
by ¥F and %3

In Theorem 4.1 it was proved that there are at least six nontrivial distinct steady state
solutions at v* = 0.8. Therefore there is a nontrivial steady state solution us that does
not belong to ¥ U YT, Let £ = {(u,v) | F(u,v) =0, v € R} be the set of steady state
solutions of (2), and let &3 C £ be the connected component that contains us.

Since by assumption there are no isolas and no secondary bifurcations, there must exist
a branch of solutions Y3 C &3 such that ug € X3, and X3 is connected to the set of trivial
solutions &y at some value of v3 & [0,v*], that is, (v3,0) € 3. Then, by Corollary 2.3, we



have that either X3 is unbounded, or there exists v4 # v such that (v4,0) € X3. Since, by
Lemma 3.1, at vy = 0 the only steady state solution is the trivial solution we must have that
vs > v* and v4 > v*. In either case, since 3 can not cross the axis v = 0, it must undergo
a secondary saddle-node like bifurcation, which contradicts the initial assumption. |
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