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Chapter 6

A Geometric Toolbox for Tetrahedral
Finite Elements Partitions

Jan Brandts!, Sergey Korotov?, and Michal Kiizek?

Abstract: In this work we present a survey of some geometric results on tetrahedral partitions and
their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical
calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis.
Special emphasis is laid on the correspondence between relevant results and terminology used in FE
computations, and those established in the area of discrete and computational geometry (DCG).

Keywords: finite element method, tetrahedron, polyhedral domain, linear finite element, angle and
ball conditions, convergence rate, mesh regularity, discrete maximum principle, mesh adaptivity, red,
green and yellow refinements, bisection algorithm

1 Introduction and Motivation

Many geometric facts about tetrahedra and partitions of polyhedra into tetrahedra are known, and some
of them already for quite some time. Even so, with the appearance and permanent growth in speed and
capacity of modern computers, together with the practical needs originating from various numerical
methods such as the finite element method (FEM), new challenges still appear in this context.
Tetrahedra seem to be the most natural “basic shapes” for dissection or approximation of complicated
3D domains. As a result, constructing tetrahedral partitions and their refinements are among the
most challenging problems in finite element discretization of three-dimensional partial differential
equations that arise for instance in mathematical physics and engineering. In this survey, we discuss
both mathematical and numerical issues related to this topic.

To start, we briefly present two motivating examples. First, it is commonly believed, not only among
FEM practitioners but also in discrete and computational geometry (DCG), that the use of near de-
generate tetrahedra in a partition should, if possible, be avoided. However, we will point out (see
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Section 4) that not all such tetrahedra are that bad, and, moreover, that some are even unavoidable in
certain situations, e.g. for covering thin slots, gaps or strips of different materials (see [1, p. 76]).
Second, note that a single obtuse triangle or tetrahedron in a finite element triangulation can destroy
the validity of the discrete maximum principle (DMP) for the Poisson equation —Au = f with homo-
geneous Dirichlet boundary conditions (see e.g. [2]). For instance, let the domain (0,4) x (0,2) be
triangulated as in Figure (1) below. The space of continuous piecewise linear functions relative to this
triangulation that satisfy the boundary conditions has dimension three. Their degrees of freedom are
the values at the vertices vi = (1,1),v, = (3,1), and v3 = (2,1 + p), which are indicated with dots.
The triangle with vertices vy, v,,v3 is obtuse for all p € (0, 1). It can be easily verified that the discrete
Laplacian does not have a non-negative inverse. For example, for p = % this inverse equals

6 11
248 248 16
1 e 1
248 248 16
11 37

16 16 160

Therefore, each non-positive continuous function f # 0 whose support does not intersect the supports
of the finite element functions that vanish at vy, gives rise to an approximation u;, of u that is positive
at v, hence violating the DMP (cf. Remark 6.11 below).

Figure (1): Triangulation with a single obtuse triangle for p = %

The above two examples show that the geometric properties of partitions used are important.

In what follows, we assume that Q C R? is a given domain. If the boundary dQ of Q is contained
in a finite number of planes, then Q is called a polyhedral domain. If Q is bounded, it is called a
polyhedron. Further, let L?>(Q) be the space of square integrable functions over Q equipped with the
standard norm. Sobolev spaces are denoted by H*(Q). The symbol c¢ stands for a generic constant,
and vol, stands for the d-dimensional Euclidean volume.

2 Tetrahedra

2.1 Main geometric characteristics

Let A= (Al,Az,Aj,), B = (31,32,33), C= (C],CQ,C3), and D = (Dl,Dz,D3) be points in R3 that
are not contained in one plane. We denote by T the tetrahedron with vertices A, B, C, and D (see
Figure (2)). It is the simplest closed convex polyhedron, which has 4 triangular faces and 6 edges.
The volume of T can, for example, be calculated by the following formula:

volsT = |2|, 2.1



A Geometric Toolbox for Tetrahedral Finite Elements Efficient Preconditioned Solution Methods for Elliptic PDEs 105

Figure (2): Tetrahedron 7" with denotation.

where
Bi—A1 By—Ay By—A; i /;1 /;2 /;3
S=det |C1—A; Cr—Ay C3—As| =det Rl I (2.2)
Di—A; Dy—A; D3—A P a 6 G
1 1 Dr—Ay D3—A3 | D, D, Ds
see [3, Sect. 6.2]. Further,
3volsT
= 23
vol,oT 2:3)
is the radius of the inscribed ball of 7', where 9T is the boundary of 7.
By [4, p. 316], the radius of the circumscribed ball about 7' can be computed as
VZr
Rr=_Y"—" 2.4
T 24volsT” @4
where
Zr = 2d}d3d;d? + 2d3d3didE + 2d3d3dRd? — did) — dydi — ddy. (2.5)

In the above formula d; and d; 3 are the Euclidean lengths of opposite edges of T fori =1,2,3:

di =4~ Bl, &= A ~Cl, dy = ||A~D||, dy = |C~DJ|, ds = B~ DI, ds = ||B—Cl.
See Figure (2).
The dihedral angles of a tetrahedron are the six angles between each pair of faces of 7. They are
defined as the complementary angles of outward unit normals to those facets and can be calculated by
means of the inner product (see [5, p. 385], [6]):

coso = —ny -ny, (2.6)

where n; and n, are outward unit normals of particular faces.
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2.2 On the shapes of tetrahedra

It is common in both FE analysis and DCG to qualitatively distinguish between so-called “well-
shaped” (i.e. close to regular) tetrahedra and “badly-shaped” ones (i.e. close to degenerate). Some
classifications of badly-shaped tetrahedra are given in [7, p. 191], [8, p. 3], [9, p. 195], [10, p. 286],
and [11, p. 256].

The classification in Figure (3) is taken from [8, 9], which distinguishes between so-called “skinny”
and “flat” badly-shaped tetrahedra, based on closeness of vertices of such tetrahedra to one line
(skinny) or to one face (flat). In practice (see [12, p. 794]), the degree of degeneration of a tetra-

SKINNY TETRAHEDRA

~
spire/ needle splinter spindle spear spike

FLAT TETRAHEDRA

wedge Spade cap diver

Figure (3): Classification of “badly-shaped” tetrahedra according to [8,9]. However, some tetrahedra
(needles, splinters, wedges) satisfy the maximum angle condition (see (4.5)—(4.6) in below), which
guarantees that their shape does not influence the nodal interpolation error (and, therefore, theoretical
and also practical convergence of FE approximations) in a negative way.

hedron T is often measured in terms of the quality indicator
&
Qr =3-- € (0,1], Q2.7)
Rt

with rr and Ry defined in (2.3) and (2.4). Tetrahedra with quality indicator Q7 near 1 are almost
regular, whereas those with Q7 near O are nearly degenerate. Other quality indicators used in DCG
and FEMs (and their comparison) can be found e.g. in [9-13].

In Section 4 we shall introduce several regularity conditions in terms of angles and balls that are used
in finite element convergence proofs.
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3 Tetrahedral Partitions of Polyhedral Domains

3.1 On face-to-face partitions of polyhedra into tetrahedra

Definition 6.1. A finite set of tetrahedra is a (face-to-face) partition of a polyhedron Q if

i) the union of all the tetrahedra is Q,
ii) the interiors of the tetrahedra are mutually disjoint,

iii) any face of any tetrahedron from the set is either a face of another tetrahedron in the set, or
a subset of Q.

Alternative terminology (commonly used in both FEM and DCG) is a simplicial complex, decom-
position, dissection, division, grid, lattice, mesh, net, network, triangulation, space discretization,
subdivision, tetrahedralization, etcetera.

Theorem 6.1. For any polyhedron there exists a partition into tetrahedra.
The main idea of the detailed constructive proof presented in [1, 14] is the following. Denote the faces
of a given polyhedron Q by Fi, ..., F,. Consider the planes Py, ..., P, C R3 such that
FECcP,i=1,....m.
It can be shown that all components of the set
Q\UL P,

are open convex polyhedra. Their closures can be decomposed into tetrahedra as follows. First, we
triangulate each of its polygonal faces as sketched in Figure (4). Second, we take the convex hull of
the gravity center of the convex polyhedron with each of the triangles on its surface. If all common
faces are triangulated in the same way, a partition of Q into tetrahedra satisfying the conditions of
Definition 6.1 results.

Figure (4): Partition of a convex polyhedron into tetrahedra. Each polygonal face of its surface is
divided into triangles.

For a given partition 7, the discretization parameter h stands for the maximum length of all edges in
the partition, i.e.,

h = maxhr,
TeT,

where
hr = diamT.
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3.2 Various refinement techniques for tetrahedral partitions

In FE analysis and computation, one needs sequences (infinite or finite) of partitions that have certain
properties. They are usually constructed by face-to-face refinements of a given coarse partition [15,
16].

Definition 6.2. An infinite sequence F = {7}, of partitions of Q is called a family of partitions
if for every € > O there exists 7, € F with h < €.

One can define various kinds of “well-shapedness”, usually called regularity, in the sense that certain
properties of the tetrahedral elements are supposed to hold uniformly over all partitions of the family.

Definition 6.3. A family F of partitions is regular (strongly regular) if there exists a constant ¢ > 0
such that for any 7, € F and any T € ‘7, we have

volsT > ch3  (vol3T > ch?). (3.1)

Remark 6.1. It is easy to construct strongly regular families of triangulations of a polygonal domain
into triangles in the sense that vol, 7 > ch?. This is because each triangle can be subdivided into four
congruent triangles similar to the original one. Also techniques based on bisection can be used, see
e.g. [17] for details. In three dimensions it is generally not possible to subdivide a tetrahedron into
congruent tetrahedra similar to the original one (cf. [14]).

Nevertheless, the following theorem is valid.

Theorem 6.2. For any tetrahedron there exists a strongly regular family of partitions into tetrahedra.

For a detailed constructive proof see [14], or [1]. The main idea is that the reference tetrahedron
T = ABCD, whose opposite edges AB and CD have length 2 and the length of the remaining edges
is v/3, can be divided into 8 congruent subtetrahedra which are similar to T (cf. Figure (5)). This
is the only tetrahedron (up to scaling) with such a property. An arbitrary tetrahedron T can now be
decomposed into 8 tetrahedra (cf. Figure (5)) using an affine one-to-one mapping between 7 and T.
Such a refinement is called red.

B

Figure (5): Red refinement in 3D.
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Remark 6.2. An interesting observation on the performance of the 3D red refinement is presented
in [14] and [18]. The convex hull of a vertex of a tetrahedron 7" with the midpoints of the outgoing
edges is a tetrahedron similar to the original one. The octahedron that remains after cutting away
the four tetrahedra corresponding to each of the four vertices of T has three spatial diagonals (see
Figure (5)). Therefore, there are three possibilities for refining a given tetrahedron into 8 subtetrahedra
so that its boundary triangles are divided by midlines. However, only choosing the shortest interior
diagonal of the octahedron leads to a regular family of tetrahedral face-to-face partitions.

Theorem 6.3. For any polyhedron there exists a strongly regular family of partitions into tetrahedra.

Its proof follows immediately from Theorems 6.1 and 6.2.

Local refinements of tetrahedral partitions are needed at those regions in €2, where singularities or
large variations of the solution of PDEs and its derivatives occur. This usually happens near vertices
and edges of the polyhedron €, or where jumps in coefficients occur, or where the type of boundary
condition changes, or near the so-called interfaces (see, e.g., [19,20]).

In two dimensions, such refinements are usually done with the help of midlines and medians of tri-
angles. Triangles that are divided by midlines are called red and by medians green, see [21]. The
corresponding refinements are also called red and green [22]. Other refinement techniques exist, such
as red* refinement [23], blue refinement [24], and yellow refinement [25] (see Figure (6)).

red refinement green refinement

N
X
|
|
l
|

VoL
Sa s

red* refinement " yellow refinement

blue refinement

Figure (6): Refinement techniques in 2D.
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Three-dimensional analogues of green and red refinement are sketched in Figures (7) and (5). In
Figure (7), we also depict a hybrid red-green refinement: one face of the tetrahedron is divided by
midlines and the other faces by medians. A three-dimensional analogue of yellow refinement from
Figure (6) will be introduced in Section 5.1.

It is worth noting that green refinements from Figures (6) and (7) are also known in the literature as
bisections, see e.g. [17,22,26].

green refinement red-green refinement

Figure (7): 3D analogues of green and red refinements.

Remark 6.3. In [26], a simple algorithm is presented that generates local refinements of tetrahedral
partitions using green and red-green refinement of tetrahedra. They induce a regular family ¥ . More-
over, it can proved that there exists a constant ¢ > 0 such that Q7 > ¢ for all tetrahedra T € 7;, and all
T, € F, where Qr is the quality indicator of T defined in (2.7).

Remark 6.4. In Figure (8), we depict another local refinement procedure to treat vertex singularities
proposed by B. Guo in [27]. A tetrahedron is first decomposed into one tetrahedron and several penta-
hedra as in Figure (8)a. Then, each pentahedron is decomposed into three tetrahedra as in Figure (8)b.

a) b)

Figure (8): Local refinement technique from [27].

In [5] we describe an algorithm that generates local refinements of nonobtuse tetrahedra towards a
vertex. The main idea is based on recursive use of Coxeter’s trisection [28] on the left of Figure (9).
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A

D

Figure (9): Examples of local nonobtuse refinements towards a vertex.

Remark 6.5. Domains with curved boundaries are usually approximated by polyhedra. Doing this, a
so-called variational crime is committed. The remainder of the domain can be handled, e.g. by special
curved hat and slice elements. See [29].

Remark 6.6. Uniform or almost uniform partitions usually produce various superconvergence phe-
nomena, see e.g. [30,31] and references therein.

4 Mesh Regularity: Angle and Ball Conditions in FE Analysis

In [32], one can find results on interpolation estimates for piecewise polynomial functions relative to
a family of partitions of the domain, and their relation to the approximation error in FEM. Some of
them also follow from the theorems given in the section below.

4.1 The minimum angle condition

The following four regularity conditions for families of simplicial partitions are commonly used in
the FE analysis (cf. Section 3.2). The constants ¢; in those conditions may depend on the dimension
d € {2,3}.

Condition 1: There exists ¢; > 0 such that for any 7, € ¥ and any T € 7,
VOld T > Clhéfw . (4-1)
Condition 2: There exists c; > 0 such that for any 7, € F and any T € 7}, there exists aballb C T
with radius 77 such that
rr Z Czl’lT. (42)
Condition 3: There exists ¢3 > 0 such that for any 7, € F and any T € ‘I,
vol; T > c3voly B, 4.3)

where B D T is the circumscribed ball about 7.
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Condition 4: There exists ¢4 > 0 such that for any 7, € F, any T € ‘7;,, and any dihedral angle o and,
for d = 3, also any angle o within a triangular face of 7', we have

o> cy. (4-4)
Theorem 6.4. The above four regularity conditions are equivalent for d =2, 3.

The proof can be found in [33]. Condition 2 is sometimes called the inscribed ball condition [32].
Condition 4 is usually called the minimum angle condition. In the 2D case it was introduced by
M. Zlamal in [34].

Remark 6.7. If the quality factor (2.7) is bounded from below by a constant ¢ > 0 independently of
h, then the family ¥ of simplicial partitions is regular, since (4.2) is valid:

> SRr>Sh
> bl
T2 R = it

as 2RT Z /’lT.

4.2 Maximum angle condition

Definition 6.4. A family F of partitions of a polyhedron into tetrahedra is said to be semiregular if
there exist a cs < 7 such that for any 7, € ¥, any T € ‘I, any dihedral angle ¥ between faces of 7" and
any angle ¢ within a triangular face of 7', we have

Y<cs, 4.5

¢ <cs. (4.6)

The maximum angle condition (4.6) for triangles was first introduced by J. L. Synge [35] and for
tetrahedra first by M. K¥izZek [36].

Theorem 6.5. Any regular family of partitions of a polyhedron into tetrahedra is semiregular.

For the proof see [36], where it is also shown that the converse implication does not hold. Semiregular
families can contain needles, wedges, and splinters of arbitrary thinness. See Figure (3).

For any tetrahedron 7 and function v € C(T'), we write Ttrv for the nodal Lagrange linear interpolant
of von T, further, | - ||« is the norm and | - | « 7 is the seminorm in the Sobolev space W*=(T).

Theorem 6.6. Let F be a semiregular family of partitions of a polyhedron into tetrahedra. Then there
exists ce > 0 such that for any T, € F and any T € ‘Tj, we have

v =nrv|1eor < cehr|Viaer WveCH(T). 4.7

For the proof see [1, pp. 85-87].
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Remark 6.8. With a sliver tetrahedron (cf. Figure (3))
A= (—h,0,0), B=(0,k*,—h), C=(h0,0), D=(0,h*h),

we see that (4.6) holds, since @ < %, but (4.5) is violated for # — 0. Similarly we observe that (4.6) is
not valid and that (4.5) holds for 7 — 0 if we consider a spike tetrahedron:

A=(0,0,0), B=(h,0,0), C=(h,0,h*), D= (—hn,0).

These two examples show that conditions (4.5) and (4.6) are independent. In both the examples v
loses its optimal order error behavior (4.7). See [36].

Remark 6.9. Theorem 6.6 shows that some badly-shaped tetrahedra preserve the optimal interpola-
tion properties. They can therefore be safely used to fill narrow gaps and slots, see e.g. [1, p. 76], and
also [37-43].

Remark 6.10. The maximum angle condition represents only a sufficient condition for the conver-
gence of linear finite elements due to Theorem 6.6 and the famous Céa’s lemma. According to [41],
this condition is not necessary for the convergence of the FEM.

S Discrete Maximum Principles for Linear Tetrahedral Finite Elements

The FEM uses piecewise polynomials to approximate solutions of partial differential equations. If
these solutions satisfy certain maximum principles, it is desirable that their finite element approx-
imations satisfy their discrete analogues (called discrete maximum principles, or DMPs in short).
Nonobtuse and acute tetrahedral partitions indeed yield finite element approximations that satisfy
DMPs for several elliptic [44-49] and parabolic problems [S0-52] by means of continuous piecewise
linear functions.

A key observation in this context is that the gradient of a non-zero linear function on a simplex
T that vanishes on a face F; of T is a constant non-zero normal to F;. Hence, the sign of inner
products between pairs of gradients of two distinct functions on T with this property is in one-to-one
correspondence with the type of dihedral angle. To be more explicit, for d > 1 we have the following
expression, which was derived in [44] directly from [5] and [49],

VOld, 1 Fl VOldlej
(dvolyT)?

where o; is the dihedral angle between F; and Fj, and vy is the linear function that vanishes on Fy
and has value one at the vertex B, opposite F; (see Figure (10)). A similar expression was introduced
in [53].

Basically, the discrete Laplacian that results from the standard finite element method has a non-
negative inverse if each of the above inner products in the partition is non-positive for distinct i and
J» which is the case for nonobtuse partitions. If the partition is in fact acute, the discrete Laplacian
has a positive inverse and then reaction terms of small enough size can be handled using perturbation
arguments. See for instance the papers [44, 54] where the presence of a reaction term in a reaction-
diffusion problem led to the condition that the partition should be acute and the diameters of the
simplices small enough.

(Vvi) Vv = — cosoyj, i,j=1,....4, i#}] (5.1)

Remark 6.11. It is also of practical interest that the DMP holds in order to avoid negative numerical
values of nonnegative physical quantities like concentration, temperature, density, and pressure, see
e.g. [45] for some real-life examples. Also a discrete heat flux may have an opposite sign than the
continuous flux when the DMP is violated.
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B

B.

]

Figure (10): [lustration for the above formula (5.1).

5.1 Nonobtuse tetrahedral partitions and their refinements

To increase the accuracy of FE calculations, we often need to perform various global or local refine-
ments of the partitions. In this context, the techniques presented in Section 3 can be used. However,
if we are interested in the preservation of the DMP on more refined partitions, then we should be able
to guarantee the preservation of geometric properties of acuteness or nonobtuseness in the refining
process.

For convenience, in Figure (11) we present several examples of nonobtuse tetrahedra, which are also
mentioned in what follows. The left one, called a path tetrahedron, has three mutually orthogonal
edges that form a path (in the sense of graph theory), the middle one, called a cube corner tetraheron,
has three mutually orthogonal edges that share a common vertex.

: \\l ‘
’a) \ b) c)

Figure (11): Examples of nonobtuse tetrahedra: a) path, b) cube corner, and c) regular.

In [25], we presented sufficient conditions for the existence of partitions into path-tetrahedra with an
arbitrarily small mesh size, as formulated in the following theorem.

Theorem 6.7. Let each tetrahedron in a given nonobtuse partition of a polyhedron contain its cir-
cumcenter. Then there exists a family of partitions into path-tetrahedra.

Its proof is constructive. Each face is first partitioned into four or six right triangles whose common
vertex is the center of its circumscribed circle. Then each tetrahedron from the initial partition is
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divided into path-tetrahedra, by taking the convex hulls of the right triangles on its surface with its
circumcenter (see Figure (12) (left)). Such a refinement technique is called yellow (cf. Figure (6)).
In this case, common faces of adjacent tetrahedra from the initial partition are partitioned in the same
manner. The proof then proceeds by induction.

Remark 6.12. In [55] the nonobtuseness assumption in Theorem 6.7 is replaced by a weaker condition
that requires that only faces are nonobtuse. This enables us to apply the above technique also to
degenerated tetrahedra (like needles, wedges, slivers, and splinters).

One technique for local nonobtuse tetrahedral refinements (towards a vertex) is presented in Fig-
ure (12), see [56] for details.

Figure (12): Global and local nonobtuse tetrahedral refinements from [25, 56].

Further, we present the key idea and also an illustration from the recent work [57] (see Figures (13)
and (14)) on nonobtuse tetrahedral refinements towards a flat face of (or interface inside) the solution
domain. For this purpose we take a square prism (e.g. a cube) and its adjacent square prism. Denote
their vertices and some other nodes as sketched in Figure (13), where also partitions of some faces are
given.

As Bs B Cs
B, B, C.
A, B, B, c,
B, B, C,
B, c.
B, B, c,
D
A B, B3 """""" N C,
A1 Bl Bl Cl

Figure (13): A sketch of a decomposition of two adjacent square prisms into nonobtuse tetrahedra.

In what follows, let s = |B1B3| = |B3Bs| denote the lengths of the edges of the square faces of the
prisms, and let /; = |AoBy| and I, = |BoCy| be their thicknesses.
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First, we decompose the left square prism AjA3zAsA7B1B3BsB; of Figure (13) into four triangular
prisms whose common edge is AgBy. Second, we decompose each triangular prism into four tetra-
hedra. For instance, the triangular prism ApA1A3BoB1B3 will be divided in the following way (see
Figure (14)):

ApA1A3Bg (cube corner tetrahedron), A; B B>By (path tetrahedron),
A3B3B, By (path tetrahedron), and A|A3zByB>.

The first three resulting tetrahedra are clearly nonobtuse. The last tetrahedron A;A3BgB; is the union
of two path tetrahedra whose common face is A»BgB,, where A, is the midpoint of AjA3. We see that
A1A3ByB; is nonobtuse if and only if

|BlB3‘§2‘AoB()|, i.e. 112 . (52)

|«

The other three triangular prisms, AgA3AsByB3Bs, AgAsA7BgBsB7, and AgA1A7ByB1B7, can be subdi-
vided similarly.

A B, A, B,

s BZ

A, B, A B,
Figure (14): Decomposition of a triangular prism AgA1A3BgB B3 into four tetrahedra.

Next, we decompose the right adjacent square prisms B;B3BsB7CC3CsC7 of Figure (13) into eight
triangular prisms whose common edge is BoCy. Further, the triangular prism ByB;B,CoC;C, will be
divided into four tetrahedra like in the previous step:

ByB1B,C; (cube corner tetrahedron), BoCoDC, (path tetrahedron),
B1C1DC; (path tetrahedron), and ByB;DC5.

The last tetrahedron is nonobtuse provided

V2s

’B()Bl| < 2|B()C()’, i.e. lz > T (5.3)

This condition is necessary and sufficient to guarantee a nonobtuse decomposition of the triangular
prism ByB1B,CyCC, into four nonobtuse tetrahedra as described above.

The other seven triangular prisms can be divided into nonobtuse tetrahedra similarly. In this way (i.e.,
under conditions (5.2) and (5.3)) we get a face-to-face nonobtuse partition of two adjacent square
prisms. The left square prism of Figure (13) is subdivided into 16 and the right prism into 32 nonobtuse
tetrahedra. This enables us to form layers and use this process repeatedly (see examples in [57]).

5.2 On acute tetrahedral partitions and their refinements

The following theorem states a relationship between dihedral angles and angles in triangular faces.
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Theorem 6.8. Let ABCD be an acute tetrahedron. Let o. be the dihedral angle at the edge AD and let
¢ be the angle /BAC with vertex at A. Then

Q<. (5.4)

For the proof, see [58, p. 384].

A similar theorem holds also for nonobtuse tetrahedra, but the inequality < in (5.4) must be replaced
by <. For obtuse tetrahedra, the inequality does not hold (cf. Remark 6.8). Such theorems can be
used in the construction of acute and nonobtuse partitions of R>.

Remark 6.13. The first algorithm to partition the whole space R into acute tetrahedra was given
in [59]. Later, in [60], four more algorithms were given, together with an acute tetrahedral partition of
slabs. Recently, in [61], also the cube was partitioned into acute tetrahedra. Finally, in [62] all other
Platonic solids were acutely partitioned.

Remark 6.14. Note that small enough perturbations of acute partitions remain acute. This is the
not the case for nonobtuse partitions. Further properties of acute partitions are given in our survey

paper [2].

6 Generalizations to Higher Dimensions

Several natural generalizations of the previous geometric results to higher dimensions are presented
in below.

A simplex S in R? is a convex hull of d + 1 points, Aj,As,...,Ag41, that do not belong to the same
hyperplane. We denote by kg the length of the longest edge of S. Let F; be the (d — 1)-dimensional
facet of a simplex S opposite to the vertex A; and let v; be the altitude from the vertex A; to the facet F;.
Formula (2.3) for the radius of the inscribed ball of S can be easily generalized to an arbitrary space

dimension, namely

dVOldS
=—. 6.1
'S VOld_1aS ( )

By [63,64], or [65, p. 125], the volume of a d-simplex S can be computed in terms of lengths of its
edges using the so-called Cayley-Menger determinant of size (d +2) x (d +2)

1 1 1 1 7
1 2 aj - “Ed az,dﬂ
Dy = (=) 129(d1)?(volyS)? = det |1 a3 0 - ay agy|, 6.2)
|1 a?zﬂ,l “31+1,2 a?zﬂ,d 0 |

where g;; is the length of the edge A;A; for i # j.
The radius Rg of the circumscribed ball B satisfies (see [66])

1 Ay

3D, (6.3)

2
Ry
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where 5 ) )
(2) ap aéd aé,dJrl
a 0 a a
21 2d 2,d+1
Ay = det .
2 2 2
Ayl Y12 0 Yat1d 0

Let @ C R? be a domain. If the boundary of the closure dQ of Q is contained in a finite number of
(d — 1)-dimensional hyperplanes, we say that Q is polytopic. Moreover, if Q is bounded, it is called a
polytope; in particular, Q is called a polygon for d = 2 and a polyhedron for d = 3.

We shall again consider only face-to-face simplicial partitions of a polytope Q and their families F .

Condition 1’: There exists ¢; > 0 such that for any 7, € ¥ and any S € ‘T, we have

voly S > cihf. (6.4)
Condition 2': There exists ¢; > 0 such that for any 7, € F and any S € 7, we have

volgb > crhé (6.5)

where b C S is the inscribed ball of S.

Condition 3’: There exists ¢z > 0 such that for any 7, € F and any S € 7;, we have
vol; S > c3voly B, (6.6)

where B D S is the circumscribed ball about S.

Condition 4’: There exists ¢4 > 0 such that for any 7, € ¥, any S € 7y, and any i € {1,2,...,d+ 1}
we have

sind (Ai‘AlAz .. -Ad-H) > C4, (6.7)
where
a1 (volyS)d-!

(d— 1) L volg 1 Fj

sing(A;|A1A; ... Agy1) = (6.8)

Theorem 6.9. Conditions 1/, 2', 3', and 4’ are equivalent.

For the proof see [67] and [68]. If one of the conditions holds, then the family ¥ of simplicial
partitions is called regular.
Formula (5.1) can be rewritten as follows:

COs Q;
- )
hih;

(Vvi) Vv, = Lhj=1,....d+1, i#], (6.9)
where h; is the height in § above F; and o;; are dihedral angles between facets F; and F;. Their
definition is similar to (2.6).

Many other results from the previous sections have been generalized to any dimension, for instance,
local nonobtuse simplicial refinements towards a vertex [5], superconvergence phenomena [30], the
maximum angle condition [42], the discrete maximum principle [44—-47,51].
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