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ABSTRACT 

     Dual laterolog (DLL) makes use of a galvanic conduction principle to focus electrical currents 

into rock formations, thereby minimizing shoulder and borehole effects in the measurement of 

formation resistivity. The tool includes two separate focusing systems: deep-sensing (LLd) and 

shallow-sensing modes (LLs). Laterolog current-focusing systems were designed for operation 

primarily in vertical boreholes penetrating horizontal layers; only recently their design has been 

revised for operation in deviated wells in the presence of electrical anisotropy.  

The objective of this paper is to simulate three-dimensional (3D) DLL measurements in 

dipping, invaded, and electrically anisotropic formations and to appraise the corresponding 

effects on apparent resistivity logs. Simulations are performed by combining the use of a Fourier 

series expansion in a non-orthogonal system of coordinates with an existing 2D goal-oriented 

higher-order self-adaptive hp finite-element method. This numerical algorithm yields accurate 

solutions in limited CPU time since only a few Fourier modes are needed to simulate practical 

applications. For the calculation of focused currents, we introduce an embedded post-processing 

method that incorporates a synthetic focusing principle to compute current intensities at each 

iterative step of optimal mesh refinements. Our numerical method accurately simulates 3D DLL 

measurements in rock formations that exhibit extreme contrasts of electrical resistivity.  

Simulations indicate that LLs resistivity logs are more sensitive to both invaded and 

anisotropic layers than LLd resistivity logs. In deviated wells, shoulder-bed effects on apparent 

resistivity logs increase with an increase of dip angle, and are emphasized across thin conductive 

layers. Electrical anisotropy effects on apparent resistivity logs substantially increase with dip 

angle. 
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INTRODUCTION 

     The electrical resistivity of clay-free hydrocarbon-bearing rocks depends on pore volume, 

pore-volume connectivity, electrical resistivity of connate water, and interconnected pore volume 

occupied by connate water. That is why resistivity logs are widely used to calculate hydrocarbon 

saturation in combination with nuclear logs (Anderson, 2001). However, often resistivity logs 

fail to properly measure electrical resistivity because they are affected by invasion and shoulder-

bed effects. It is therefore desirable to utilize a resistivity logging instrument with variable radial 

lengths of investigation while delivering measurements with high vertical resolution. Such is the 

purpose of Dual Laterolog (DLL) instruments, intended for operation in boreholes which are 

more electrically conductive than the surrounding rock formations. 

     Dual laterolog was developed based on early laterolog tools, the laterolog 3 (LL3) and the 

laterolog 7 (LL7), both of which were introduced by Doll (1951). It includes two separate 

focusing systems: deep-sensing (LLd) and shallow-sensing modes (LLs). For both systems, DLL 

comprises nine electrodes: one main and four outer bucking current electrodes and four 

monitoring (potential) electrodes. Intensities of bucking (or focusing) currents are automatically 

adjusted so that the current emitted by the main electrode flows preferentially in the horizontal 

direction toward the formation. This design condition allows the assessment of formation 

resistivity beyond invaded zones while minimizing shoulder and borehole effects. For the case of 

LLd, the main electrical current penetrates deeply into the formation whereas LLs is more 

sensitive to the near-borehole region. Although DLL operates usually at non-zero frequencies 

(from 10 Hz to 1000 Hz) in order to reduce contact-impedance electrical noise and interference 

from natural potentials, DLL is usually considered to be a DC measurement (Anderson, 2001). 

     A plethora of relevant work has been published on the numerical simulation of laterolog 
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measurements. Liu et al. (1999) evaluated invasion effects on DLL measurements for two-

dimensional (2D) axisymmetric environments using a finite-element method (FEM), while 

Cozzolino et al. (2007) utilized a synthetic focusing method to determine the intensities of 

bucking currents in their 2D simulations. Lovell (1993) developed a simulation method based on 

the frequency-dependent partial differential equations of the current potential. Chen et al. (1998) 

applied the current potential concept to DC array-laterolog simulation. Yang et al. (2007) 

introduced a second-order FEM to improve the accuracy of simulated 2D frequency-dependent 

DLL measurements. In all of the aforementioned projects, DLL measurements were simulated 

for the specific case of vertical wells. 

     Deviated wells are nowadays widely used in hydrocarbon surveillance because they penetrate 

longer distances within hydrocarbon layers. Accurate evaluation of hydrocarbon-producing 

zones in deviated wells is a subject of increasing importance in formation evaluation. The only 

reliable way to quantify dip-angle effects on laterolog measurements is to utilize 3D software 

(e.g. Druskin et al., 1999; Newman and Alumbaugh, 2002; Davydycheva et al., 2003; Wang and 

Signorelli, 2004; Avdeev et al., 2002), since deviated wells involve 3D geometries. However, 3D 

simulation algorithms often fail to yield accurate solutions in a limited amount of CPU time 

because computational requirements increase dramatically as a result of the complexity of 

arbitrary 3D geometries. 

     The objective of this paper is twofold: (a) first, to introduce a new numerical algorithm to 

simulate DC laterolog measurements acquired in deviated wells that penetrate invaded and 

electrically anisotropic formations; (b) second, to appraise the relative influence of invasion, 

shoulder-bed, and electrically anisotropic effects on laterolog measurements acquired in deviated 

wells as a function of dip angle. 

We simulate 3D DC-based DLL measurements with a method that combines the use of a 
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Fourier series expansion in a non-orthogonal system of coordinates with a 2D goal-oriented 

higher-order self-adaptive hp FEM (Pardo et al., 2006; h denotes the element size and p the 

polynomial order of approximation within each element). Our 3D numerical method yields 

accurate solutions in limited CPU times because only a few Fourier modes are needed (typically, 

below 10) to simulate DLL measurements in a non-orthogonal system of coordinates (Pardo et 

al., 2008). The simulation of DLL measurements is based on the specific commercial DLL tool 

configuration (Yang et al., 2007). 

     In the simulation of DLL measurements, intensities of bucking currents are determined based 

on the probed resistivity distribution so as to actively focus the main survey current into the 

formation, away from the borehole. To determine optimal intensities of bucking currents, it is 

customary to use a post-processing method (Cozzolino et al., 2007; Yang et al., 2007). In the hp 

grid refinement algorithm, intensities of bucking currents need to be updated within every step of 

optimal hp mesh refinements. To that end, we introduce an embedded post-processing method 

(EPPM) in which the hp algorithm guarantees optimal grids for the simulation of focused DLL 

measurements. 

     The remainder of this paper is organized as follows: we first describe the DLL under 

consideration. Subsequently, we provide technical details of our simulation method, specifically 

the Fourier FEM and EPPM. Next, numerical simulations of DLL measurements are described 

for synthetic formation models of variable complexity and penetrated by deviated wells.  We 

conclude by summarizing the main technical observations stemming from the simulation work. 

 

DUAL LATEROLOG (DLL) 

     The two focusing systems of DLL instruments provide different current paths (Fig. 1) and 

radial lengths of investigation. DLL incorporates nine electrodes, five current (A0, A1, A1′, A2 and 
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A2′) and four monitoring (potential) electrodes (M1, M2, M1′ and M2′) (Fig. 1). All electrodes are 

located symmetrically with respect to the main survey electrode A0 that emits a current of 

intensity equal to I0. In LLd, the five current electrodes emit current with the same polarity but 

different intensities to focus the main survey current. By contrast, only three electrodes (namely, 

A0, A1 and A1′) emit currents in LLs and the emitted currents return to the remaining, reversely 

polarized electrodes A2 and A2′.  

     Together with the two focusing systems, DLL incorporates a micro-spherically focused 

device (MicroSFL) used to measure the resistivity of the invaded zone and to detect bed 

boundaries. DLL tools are designed mainly with three objectives: small borehole effect, high 

vertical resolution, and three well-distributed radial lengths of investigation corresponding to 

LLd, LLs and MicroSFL, respectively (Anderson 2001). DLL tools manufactured by different 

service companies work in slightly different ways, possibly due to different monitoring 

conditions and different dimensions (e.g. Anderson, 2001; Cozzolino et al., 2007; Yang et al., 

2007). With the specific tool configuration of a commercial DLL tool (Fig. 1), we simulate the 

two focusing systems of DLL invoking the monitoring conditions described by Cozzolino et al 

(2007). 

 

Monitoring conditions 

     For the simulation of DLL measurements, we compute the intensities of currents emitted by 

the four bucking electrodes, A1, A1′, A2 and A2′ (I1, I1′, I2 and I2′, respectively). Subsequently, the 

intensity of current emitted by the main electrode, A0, is set to I0 = 1A. The four unknowns, I1, 

I1′, I2 and I2′ are determined in such a way that potential gradients between two pairs of 

monitoring electrodes are null for both LLd and LLs operating modes, i.e. 
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V(M1) = V(M2) and V(M1′) = V(M2′).        (1) 

 

In the vicinity of monitoring electrodes, the above conditions impose no current flow in the 

vertical direction thereby causing the main survey current to enter the formation in the horizontal 

direction. There are two additional relationships between I1 and I2 , and  I1′ and I2′, which can be 

expressed for LLd and LLs operating modes, respectively, as 

 

I2 =    (I1 + c) and I2′ =    (I1′ + c), and  (for LLd)     (2) 

I2 = − (I1 + c) and I2′ = − (I1′+ c),  (for LLs)     (3) 

 

where c is a parameter representing either: (a) an additional amount of current emitted by the 

outer guard electrodes A2 and A2′ with respect to the adjacent guard electrodes A1 and A1′, 

respectively (LLd), or (b) additional return of currents for both A2 and A2′ (LLs). The parameter c 

is set to 0.5 for the LLs operating mode, since all emitted currents should return to the current 

return electrodes (A2 and A2′). For the LLd operating mode, the survey current could be over-

focused or under-focused depending on the value of c, since c is the additional amount of current 

emitted by the outer guard electrodes. Following Cozzolino et al. (2007), we select c = 0.5 for 

the LLd operating mode. 

 

Description of the DLL tool 

     In computer-aided simulation of DLL measurements, Dirac delta functions are commonly 

used to represent source electrodes (Cozzolino et al., 2007) even though actual electrodes are 

finite in size. To simulate DLL measurements, we use realistic finite-size electrodes with 

practical values of electrode dimensions and resistivities. Moreover, employing finite-source 
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electrodes is consistent with using a self-adaptive algorithm: a load similar to a Dirac delta 

function should not be used in combination with any self-adaptive algorithm since the 

corresponding exact solution possesses infinite energy.  

     For the simulation of DLL measurements, we implement a specific commercial DLL tool 

configuration (Fig. 1). Each simulated electrode is positioned at the same location with the same 

vertical dimension as that of the commercial DLL tool. When simulating LLd measurements, we 

assume a current return electrode located at infinity and hence do not include its physical 

dimensions in the simulation. We assume that the resistivity of all the electrodes is 10−5 ohm-m, 

while the resistivity of the insulator (the rest of the DLL tool except for the nine electrodes) is 

105 ohm-m. Thus, the resistivity contrast at the interfaces between electrodes and insulator is 

1010. 

 

SIMULATION METHOD 

Fourier series expansion in a non-orthogonal system of coordinates 

     The electrostatic equation in a spatial domain Ω, which governs DC resistivity logging 

applications is given by 

 

( ) impu∇ ⋅ ∇ = ∇ ⋅Jσ ,         (4) 

 

where σ  is the conductivity tensor, Jimp is the impressed electric current density measured in 

A/m2 and u is the electrostatic potential measured in volts. On the domain boundary far from the 

electrode, denoted by ΓD, where the electric potential is approximately zero, we assign a 

homogeneous Dirichlet boundary condition (BC), 0
D

u
Γ

= .  

     Multiplication of the electrostatic equation 4 with a test function v∈ H1
D (Ω) = {u∈L2(Ω): 
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u|ΓD = 0, ∇u∈L2(Ω)}, which is the space of admissible solutions, and integrating by parts over 

the computational domain Ω, gives rise to the resulting variational formulation:  

 

1

1

Find ( ) such that:

, ( ),
N

D D

imp
D

u u H

u vdV vdV gvdS v H
Ω Ω Γ

⎧ ∈ + Ω⎪
⎨ ∇ ∇ = ∇ ⋅ + ∀ ∈ Ω⎪⎩∫ ∫ ∫Jσ

    (5) 

 

where uD is a lift (typically uD = 0), g = (σ ∇u)·n is a prescribed flux defined on ΓN, n is the unit 

normal outward (with respect to Ω ) vector.  

     For a deviated well, Pardo et al. (2008) suggested the following non-orthogonal coordinate 

system ζ = (ζ1, ζ2, ζ3) in terms of the Cartesian coordinate system x = (x1, x2, x3) (Fig. 2): 

 

1 1 2

2 1 2

3 3 0 1 1 2

cos
sin ,

( ) cos

x
x
x f

ζ ζ
ζ ζ
ζ θ ζ ζ

=⎧
⎪ =⎨
⎪ = +⎩

        (6) 

 

where θ0 = tanθ, θ is the dip angle, and f1 is defined for ρ1 and ρ2 as 

 

1 1

1 1
1 1 2 1 1 2

2 1

1 1 2

0

( ) ,f

ζ ρ
ζ ρζ ρ ρ ζ ρ
ρ ρ
ζ ζ ρ

⎧ <
⎪

−⎪= ≤ ≤⎨ −⎪
⎪ >⎩

      (7) 

 

where ρ1 is the interface between subdomains I and II, and ρ2 is the interface between 

subdomains II and III shown in Fig. 2b (note that the change of coordinates degenerates for a 

horizontal well, i.e., θ0  ∞ as θ   90°). Subdomain I, being part of the borehole, includes the 
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DLL logging instrument while subdomain III corresponds to the formation. Subdomain II, the 

remainder part of the borehole except for subdomain I, “glues” subdomain I with subdomain III 

in a linear way as indicated by equations 6 and 7, such that the resulting system of coordinates is 

globally continuous, bijective, and with a positive Jacobian.  

In this non-orthogonal system of coordinates, a deviated well with a dip angle equal to θ  (Fig. 

2a) has material properties that are invariant with respect to the quasi-azimuthal direction ζ2. We 

can efficiently simulate DLL measurements in a deviated well with a Fourier series expansion 

(Appendix A) because the metric (Aris, 1962) associated with the change of coordinates from a 

reference grid to the physical 3D geometry is decomposed in terms of only five Fourier modes in 

subdomain II in the quasi-azimuthal direction ζ2, while in terms of only one and three Fourier 

modes in subdomains I and III, respectively, (Pardo et al., 2008). In other words, the resulting 

formulation in deviated wells consists of a sequence of coupled problems (constituting the 

corresponding 3D problem), which has a very special interaction among the various 2D 

problems. Specifically, each 2D problem only interacts (couples) with a maximum of five 2D 

problems, which results in a penta-diagonal structure for the associated stiffness matrix 

(Appendix A, i.e., equation A-11). Furthermore, the maximum interaction that occurs among five 

different 2D problems takes place only in subdomain II. In subdomain III, an interaction occurs 

only among three 2D problems, while in subdomain I no interaction occurs (Appendix A). This 

sparsity of the resulting stiffness matrix is the major advantage of the formulation developed in 

this paper over more traditional 3D formulations. 

 

Embedded post-processing method (EPPM) 

     When simulating DLL measurements, the main obstacle is the determination of the intensities 

of bucking currents needed to impose active focusing conditions (equations 1 through 3). It is 
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common practice to use a post-processing method that computes the intensities of bucking 

currents based on the superposition principle, and to impose the focusing conditions after 

computing the responses of each different source electrode (Cozzolino et al., 2007, Yang et al., 

2007).  

     If the post-processing technique is applied directly to the individual solutions derived from 

adaptive methods, the post processing method will fail because optimal grids constructed 

dynamically with adaptive methods for individual sources are not optimal for DLL 

measurements; they are only optimal for each individual source. As a remedy to this problem, we 

use EPPM, in which a post-processing algorithm based on a synthetic focusing method 

(Cozzolino et al., 2007) is applied at every step of mesh refinements and thus, is embedded in the 

hp adaptive algorithm. 

     EPPM solves one problem with five right-hand sides (RHSs, corresponding to individual 

electrodes activated while the remaining four are disabled) on each grid in order to compute the 

intensities of current electrodes using the synthetic focusing method. Using the main current 

together with four bucking currents for the calculated intensities as DLL source, the hp algorithm 

performs optimal mesh refinements for DLL measurements. In this manner, the hp algorithm 

with EPPM generates a sequence of optimal grids that converge exponentially and that 

ultimately provide a small error (below 1% in this study) in the quantity of interest (apparent 

resistivity in this study).  

 

Synthetic focusing 

     Using the superposition principle, total potentials (V(Mi)) at each monitoring electrode (Mi) 

can be expressed as: 
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      V(M2) =  I2V2,2  + I1V2,1  + V2,0  + I1′V2,1′ + I2′V2,2′, 

      V(M1) =  I2V1,2  + I1V1,1  + V1,0  + I1′V1,1′ + I2′V1,2′, 

 V(M1′) = I2V1′,2 + I1V1′,1 + V1′,0 + I1′V1′,1′ + I2′V1′,2′, and                (8) 

     V(M2′) = I2V2′,2 + I1V2′,1 + V2′,0 + I1′V2′,1′ + I2′V2′,2′, 

 

where Vi,j is potential on Mi due to only the current with unit intensity acting on a current 

electrode Aj while the remaining current electrodes are disabled. Thus, equation 1 becomes 

 

            I2V1,2  + I1V1,1  + V1,0  + I1′V1,1′ + I2′V1,2′ = I2V2,2  + I1V2,1  + V2,0  + I1′V2,1′ + I2′V2,2′, and 

I2V1′,2 + I1V1′,1 + V1′,0 + I1′V1′,1′ + I2′V1′,2′ = I2V2′,2 + I1V2′,1 + V2′,0 + I1′V2′,1′ + I2′V2′,2′.        (9) 

 

From equation 9 together with equation 2 for LLd or equation 3 for LLs, we obtain a linear 

system of four equations with four unknowns. The solution of the two linear systems yields the 

intensities of bucking currents, I1, I1′, I2 and I2′ for LLd and LLs, respectively. Subsequently, 

apparent resistivities (ρa) are calculated from the ohmic drop of the current I0 = 1A between a 

monitoring electrode and the reference potential electrode N, i.e. 

 

0

N
a avr

V VK KV
I

ρ −
= ≈ ,          (10) 

 

where K is the tool constant (KLLd for LLd and KLLs for LLs), VN is usually assumed to be 

negligible since N is often located relatively far away from A0, and V can be considered as the 

average of the potentials (Vavr) measured at the four monitoring electrodes. The tool constraint K 

can be determined in a homogeneous medium where the measured apparent resistivity should be 
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equal to the medium resistivity (Chen et al., 1998). 

     We choose apparent resistivity as the quantity of interest (L), for which the hp algorithm 

generates optimal grids, that is: 

 

1 1' 2 2 ''1 1 2 2 '

1 1 1 1( ) ( ) ( ) ( ) ( )
4 | | | | | | | |

M M M M

a
M M M M

KL u u x dx u x dx u x dx u x dxρ
Ω Ω Ω Ω

⎛ ⎞
⎜ ⎟= = + + +
⎜ ⎟Ω Ω Ω Ω⎝ ⎠

∫ ∫ ∫ ∫ ,(11) 

 

where | | 1
i

Mi

M dx
Ω

Ω = ∫  and we have considered the relationship in equation 10.  

 

NUMERICAL RESULTS 

Verification of the 2D hp algorithm 

     In order to verify the EPPM, we consider a 2D model for which the corresponding DLL 

apparent resistivity logs are described in Cozzolino et al. (2007). The model consists of three 

horizontal layers with resistivities equal to 1, 0.1 and 10 ohm-m from top to bottom. Resistivity 

and radius of the borehole are 5 ohm-m and 0.1 m, respectively. To simulate DLL measurements 

for the 2D model, EPPM is applied to a 2D self-adaptive goal-oriented hp-FEM algorithm (Pardo 

et al., 2006), which has already been validated against existing analytical solutions (Paszynski et 

al., 2005). Cozzolino et al. (2007) employed Dirac delta functions to model sources. Since Dirac 

delta sources produce solutions with infinite energy that cannot be employed in combination 

with self-adaptive gridding algorithms, in this paper we consider electrodes with size equal to 

0.01 m × 0.01 m at 0.01 m in the radial direction with the same resistivity as that of the borehole 

mud. In addition, we assume the same spacing between the centers of electrodes described by 

Cozzolino et al. (2007).  

     Figure 3 compares the results obtained by Cozzolino et al. (2007) to those obtained with the 
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2D hp algorithm for the 2D model described above. The agreement is very good showing only 

negligible differences, which can be explained either by the different way of modeling sources or 

by the fact that the solutions have been simulated on different grids; our solutions are simulated 

on optimal grids generated by the 2D self-adaptive goal oriented hp-FEM algorithm. 

 

Model formation 

     Figure 4 shows a five-layer formation model penetrated by a deviated well, which is used for 

the remaining numerical simulations considered in this paper. The model includes five horizontal 

layers with resistivities equal to 100, 5, 1000, 0.5, and 100 ohm-m from top to bottom, 

respectively. Thicknesses of the second, third and fourth layers are 2, 4 and 3 m, respectively. 

Borehole radius and resistivity are equal to of 0.1 m and 0.1 ohm-m, respectively To display 

numerical results, we use the center point of the DLL tool to reference the relative depth of DLL 

measurements with respect to the probed formation; the relative depth is equal to 0 at the 

interface between the second and third layers. 

 

Vertical well 

     We first test our 3D simulation algorithm on a 0° deviated (vertical) well penetrating the five-

layer formation model (Fig. 4). The non-orthogonal system of coordinates in equation 6 for a 

vertical well is identical to a system of cylindrical coordinates because the dip angle of a vertical 

well, θ, is 0°. Therefore, the 3D formulation for a 0° deviated well can be reduced to a 2D 

formulation in the system of cylindrical coordinates. To verify this, we simulate DLL 

measurements employing both the 3D algorithm with one Fourier mode and the 2D algorithm 

verified in the previous section. Both algorithms give the same results (see Fig. 5) up to more 

than 8 digits of accuracy for LLd (black) and LLs (light gray) apparent resistivity logs in the 
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vertical well without presence of invasion (dashed line) (the comparison between them is not 

shown here).  

     In Fig. 5, both LLd and LLs resistivity logs for a formation without invasion show 

significantly good vertical resolution, since they are both close to the actual resistivities of the 

formation even though the largest resistivity contrast of the formation is more than 103. Across 

the conductive second and fourth layers, LLd apparent resistivities depart from actual formation 

resistivities. This behavior is attributed to shoulder-bed effects in conductive layers for galvanic 

tools, which can be viewed as the opposite of shoulder-bed effect in resistive layers for the case 

of induction tools. 

In order to validate the performance of the hp-algorithm, in Fig. 6 we display amplifications 

of the corresponding optimal grid for LLd measurements at a depth of 4 m in the formation 

without presence of invasion. The amplifications are made toward a singular point (ρ, z) = (−1 

m, 4 m), where three materials (namely, the borehole, the third and forth layers) with highly 

varying resistivities (0.1, 1000, 0.5 ohm-m, respectively) meet. For further performance on the 

hp algorithm, interested readers are referred to Pardo et al. (2006), Demkowicz (2007) and 

Demkowicz et al. (2008). 

 

Invasion 

     We consider invaded zones with resistivities equal to 50 and 5 ohm-m in the third and fourth 

layers, respectively. The invaded zone in the third layer is more conductive than its virgin 

formation while that in the fourth layer is more resistive. When the radial length of invasion is 

0.1 m (♦; Fig. 5), LLs logs are more influenced by invasion than LLd logs (the corresponding 

effect on apparent resistivity is almost twice as large) in the fourth conductive layer, while no 

significant difference is observed between effects of invasion on LLs and LLd apparent 
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resistivities across the third resistive layer. If the radial length of invasion increases to 0.8 m (▲), 

both LLd and LLs apparent resistivities are much closer to the resistivities of the invasion zones 

in both layers; LLs apparent resistivities are slightly closer to the resistivities of the invasion 

zones than LLd apparent resistivities since LLd was designed to investigate deeper than LLs. 

 

Anisotropy 

     Electrical anisotropy is usually observed in sedimentary layers whose conforming grains have 

elongated shapes in the parallel direction to the plane of deposition, and therefore whose pore 

structure makes electric current flow more efficient in the parallel than in the vertical direction to 

the bedding plane. This type of electrical anisotropy is referred to as transversely isotropic (TI) in 

which the horizontal resistivity (resistivity in the parallel direction) is different from the vertical 

resistivity (resistivity in the vertical direction). DLL measurements are affected by TI electrical 

anisotropy, even though the first DLL tools were assumed to be almost insensitive to vertical 

resistivity, and therefore used to measure the horizontal resistivity because emitted currents are 

focused by bucking currents to flow laterally deep into the probed formation (Anderson, 2001).  

     Electrical anisotropy, that is TI, is included in the third and fourth layers. Vertical resistivities 

in those layers are set to 10000 and 5 ohm-m, respectively, which are ten times larger than the 

corresponding horizontal resistivities (1000 and 0.5 ohm-m in the third and fourth layers, 

respectively). Across the center of the fourth anisotropic, conductive layer, we observe that LLs 

apparent resistivities are affected by anisotropy (increased by 30.5%; Fig. 7), while the effects of 

anisotropy on LLd apparent resistivity logs are negligible (decreased by 7.9% rather than 

increased). On the other hand, both LLd and LLs apparent resistivities in the third (resistive) 

layer are increased by up to 29.8% and 39.6%, respectively, because of TI anisotropy. 
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Verification of the 3D hp algorithm 

     In order to verify the accuracy and reliability of the 3D hp algorithm, in addition to the above 

comparison between results for the vertical well derived from 2D and 3D algorithms, 

respectively, we simulate DLL measurements acquired in a deviated well that penetrates a 

homogeneous formation with resistivity equal to 1 or 1000 ohm-m (Fig. 8). Note that, even 

though the two models comprise a homogeneous formation, we model them as full 3D problems, 

since we situated the DLL tool (with realistic material properties and dimensions) in a deviated 

borehole penetrating the formation. In particular, solutions for the 3D problem should coincide 

with the corresponding axial-symmetric solution for a vertical well because the resistivity of the 

formation is homogeneous. We compute DLL apparent resistivities for each formation (having a 

resistivity equal to 1 or 1000 ohm-m) with dip angles of 30° and 60°, respectively, and compare 

them to the reference 2D solutions for the axial-symmetric case of a vertical (0° deviated) well. 

     Figure 9 shows the convergence history for LLd (in black) and LLs (in light gray) apparent-

resistivity logs for the two problems in log-log scale. For the 60° deviated well (dashed line with 

▲) in both formations, we obtain solutions with a relative error below 1% with respect to the 

exact (2D) solution when using 7 Fourier modes or less for both LLs and LLd modes, while for 

the 30° deviated well (solid line with ♦) the number of Fourier modes needed for convergence is 

reduced to only three. 

     To further verify the 3D algorithm, in Fig. 10 we show the convergence history of LLd 

apparent-resistivity readings for a 45° deviated well penetrating the five-layer formation after 

computing the apparent resistivities with various numbers of Fourier modes for the solution. 

Assuming that LLd resistivities computed with nine Fourier modes are a fully converged 

solution, we compare LLd resistivities computed with one, three, five and seven Fourier modes, 

respectively (Figs. 10a, b, c and d), against the solution with nine Fourier modes. When using 
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one Fourier modal coefficient (Fig. 10a), LLd resistivity logs exhibit noticeable discrepancies 

from the reference solution, especially across conductive layers. LLd resistivity logs calculated 

with three Fourier modes (Fig. 10b) show relatively small discrepancies except near the 

boundaries of both the third and fifth layer. When five Fourier modes are used (Fig. 10c) to 

perform the simulation, we obtain improved LLd apparent-resistivity readings in the vicinity of 

layer boundaries. Using seven Fourier modes (Fig. 10d) yields the same result as that of the exact 

(reference) solution. 

 

Deviated well 

     Figure 11 shows simulation results for 60° (►), 45° (▲) and 10° (♦) deviated wells together 

with a 0° deviated (vertical) well. Simulated apparent resistivities for the 10° deviated well are 

similar to those for the vertical well since the dip angle is small. When the dip angle increases to 

45°, LLd apparent resistivities across the resistive third layer slightly decrease near bed 

boundaries. Close to the center of the layer, the difference between apparent resistivities for the 

vertical and 45° deviated wells becomes even smaller. On the other hand, LLd apparent 

resistivities across the conductive second and fourth layers increase; the differences are larger in 

the thinner second layer than in the fourth layer. This behavior is attributed to increased 

shoulder-bed effects. In deviated wells, more current flows into shoulder beds than in vertical 

wells because the main survey current in LLd is focused to flow deep into the formation in the 

plane perpendicular to the DLL tool. More current will flow into the adjacent layers than for the 

case of a vertical well when the tool is situated in a more deviated well or in a thinner layer; the 

more the survey current flows into the adjacent layers the larger the corresponding effect on DLL 

apparent resistivities.  

     LLs apparent resistivities for the 45° deviated well show almost the same resistivities as those 
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for the vertical wells at the center of the fourth conductive layer even though LLd resistivities 

exhibit increased values because the radial length of investigation is shorter in LLs than in LLd. 

In both LLd and LLs apparent resistivity logs, the effects of dip angle are more emphasized in 

the 60° deviated well than in the 45° deviated well. 

 

Invasion 

     For both 45° and 60° deviated wells, we consider invasion with a radial length of 0.1 m in the 

third and fourth layers with resistivities of 50 and 5 ohm-m, respectively, as in the case of the 

vertical well. For both 45° (black) and 60° (light gray) deviated wells (Fig. 12), the overall 

characteristic of invasion effects on DLL apparent resistivity logs simulated in deviated wells are 

similar to those of the vertical well (Fig. 5); LLs apparent resistivity logs (Figs. 12b and 12d) are 

distorted by presence of invasion more than LLd apparent resistivity logs (Figs. 12a and 12c) 

across the conductive layer. 

 

Anisotropy 

     To investigate effects of dip angle across electrically anisotropic layers, we simulate DLL 

apparent resistivities for 60° and 45° deviated wells in an electrically TI anisotropic formation, 

and compare them in Fig. 13 to those simulated across the isotropic formation. The third and 

fourth layers have vertical resistivities of 10000 and 5 ohm-m, respectively, as discussed 

previously. Both LLs (black) and LLd simulated apparent resistivities (light gray) across the 

resistive third layer are closer to the vertical resistivities in the deviated wells (Fig. 13) than in 

the vertical well (Fig. 7). Even though effects of electrical anisotropy on LLd readings in the 

vertical well are negligible in the fourth conductive layer, we observe effects of anisotropy on 

LLd apparent resistivity logs in a 60° deviated well (Table 1). Apparent resistivities across the 
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third and fourth layers for the 60° deviated well (Fig. 13b) are closer to the corresponding 

vertical resistivities than those for the 45° deviated well (Fig. 13a), indicating larger effects due 

to anisotropy on DLL measurements (Table 1). We conclude that the effect of anisotropy on 

apparent-resistivity logs increases with dip angle. This behavior is attributed to the fact that 

relatively more current flows in the vertical direction and that the latter is more affected by the 

vertical resistivities with increasing dip angle. 

 

CONCLUSIONS 

     We have successfully simulated 3D DLL measurements in dipping, invaded, and anisotropic 

formations by combining the use of a Fourier series expansion in a non-orthogonal system of 

coordinates with a 2D goal-oriented higher-order self-adaptive hp finite-element method. 

Moreover, an embedded post-processing technique was introduced to compute the intensities of 

focused currents in combination with optimal grid refinements conducted by the hp FEM 

algorithm. Numerical results confirm that our method accurately simulates 3D DLL 

measurements in formations exhibiting extreme contrasts of electrical resistivity. It was found 

that LLs apparent resistivities are more sensitive to both invaded and anisotropic layers than LLd 

apparent resistivities. In deviated wells, shoulder-bed effects are more significant than in vertical 

wells because focused laterolog currents partially flow into shoulder beds. The increase of 

shoulder-bed effects is more clearly appreciated across thin layers and/or in highly deviated 

wells. Furthermore, electrical anisotropy effects increase with dip angle due to increased current 

flow in the vertical direction. Numerical simulation of laterolog measurements is necessary to 

reliably diagnose and quantify the effect of well deviation angle on the interpretation of 

formation resistivity.  
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APPENDIX A  

Fourier series expansion in a non-orthogonal system of coordinates for deviated wells 

     The change of coordinates in equation 6 can be described by the mapping x = ψ (ζ), which is 

bijective, with positive Jacobian determinant, and globally continuous (Pardo et al., 2008). Given 

an arbitrary scalar-valued function h, we denote h  := h ° ψ  and thus, using the chain rule, we 

obtain 

 

3
1

, 1
i

Tn
x

i n n i

u uu
x
ζ

ζ
−

=

∂∂ ∂
∇ = =

∂ ∂ ∂∑ e J
ζ

,        (A-1) 

 

where 
ixe is the unit vector in the xi-direction, u∂

∂ζ
 is the vector with the n-th component being 

n

u
ζ
∂
∂

, and the Jacobian matrix given by 
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J ,      (A-2) 

 

where ζ1, ζ2, ζ3 and θ0 are the same as those used in equation 6, and f1 is defined in equation 7. 

Equation 5 can be transformed into the non-orthogonal coordinate system of ζ, and expressed as 
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where Ω  = Ω ° ψ , and < , >L2( Ω ) is the L2-inner product of two arbitrary (possibly complex- and 

vector-valued) functions h1 and h2 such that 

 

     2
*

1 2 1 2 1 2 3( )
,

L
h h h h d d dζ ζ ζ

Ω Ω
< > = ∫ ,        (A-4) 

 

and 1 2 1 2( ) { ( ) : | 0, ( )}
D

T
D

uH u L u −
Γ

∂
Ω = ∈ Ω = ∈ Ω

∂
J

ζ
L , 1 1: | |T

NEW
− −= J J Jσ σ , : | |NEWf f= J  (f = 

∇·Jimp) and : | |NEW Sg g= J , where | J | is the determinant of the Jacobian associated with the 

change of variables, and | JS | is | J | restricted to NΓ  (Pardo et al., 2008). 

     In the new non-orthogonal system of coordinates described above, any function ω is periodic 

(with period 2π) with respect to ζ2 (Pardo et al., 2008), and can be expressed in terms of its 

Fourier series expansion as 

 

2 2( )
l l

jl jl
l l

l l
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where ejlζ2 are the modes, 2
2

20

1( )
2

jl
l lF e d

π ζω ω ω ζ
π

−= = ∫ are the modal coefficients that are 

independent of ζ2, and Fl(ω) is the l-th Fourier modal coefficient, ωl. 

     Using the Fourier series expansion representation for u, NEWσ  and fNEW (in the remainder of 

the paper, the symbol ‘~’ is omitted for convenience) and selecting a mono-modal test function v 

= vkejkζ2, the variational problem A-3 can be reduced by orthogonality of the Fourier modes in L2 

to 

 



 

 
24

( ) ( )

( )

( ) ( ) ( ) ( )

2 2

2
2

2
2 2

2 2

1

2

( )
2

1
( ) ( ( ))

Find ( ) such that:

,

, , ( ) ( ),

D

D N D

jl jl
l l D D

l l

l k

k k l NEW l L
l k

jk
k k NEW k k NEW k DL L

u F u e F u e H

v uF F F

F v F f F v F g F v e H

ζ ζ

ζ

= +

− Ω
= −

Ω Γ Ω

⎧ = ∈ + Ω
⎪
⎪ ⎛ ⎞ ⎛ ⎞∂ ∂⎪ < >⎨ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎪
⎪ = + ∀ ∈ Ω⎪⎩

∑ ∑

∑ σ
ζ ζ

 

(A-6) 

 

where Ω2D =  {(ζ1, ζ2, ζ3)  ∈  Ω : ζ2 = 0},  the infinite series in terms of l has been reduced for 

each k to a finite sum with at most five terms, namely l = k − 2, …, k + 2 because Fk−l( NEWσ ) = 0 

if | k – l | > 2 (Pardo et al., 2008), and  
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Defining 
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and 
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and considering that dl
k (Fl(u), Fk(v)) is a bilinear form, from formula A-6 we obtain: 

 



 

 
25

( )

( )

2

2

1

2 2
1

2 2

Find ( ) such that:

, ( ) ( ) ( ) ( ( )) ( ) ( ),

jl
l D D

l
l k l k

jkk k
l k l l l k k k D

l k l k

u F u e H

d F v F u d F u l F v F v e H

ζ

ζ
= + = +

= − = −

⎧ = + Ω
⎪⎪
⎨
⎪ ⋅ = = ∀ ∈ Ω
⎪⎩

∑

∑ ∑
   (A-10) 

 

Therefore, formula A-10 can be expressed in matrix form if we consider, for instance, the case of 

nine Fourier modes (namely, k = −4, −3, …, 3, 4), as 
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The resulting stiffness matrix (A) in equation A-11 is, in general, penta-diagonal. Furthermore, if 

we consider only subdomain III, A becomes tri-diagonal since Fk−l( NEWσ ) = 0 for every | k – l | > 

1 while, for subdomain I, A is diagonal since Fk−l( NEWσ ) = 0 for if | k – l | ≠ 0 (Pardo et al., 

2008). 
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Table 1. Effects of anisotropy on LLd and LLs measurements simulated at the center of the third 

and fourth layers for angles of well deviation equal to 0°, 45°, and 60°. The corresponding 

effects are described  in relative percent differences with respect to DLL readings simulated in 

the isotropic formation.  

Mode LLd LLs 
Dip angle 0° 45° 60° 0° 45° 60° 

Effect of anisotropy in third layer (%) 29.8 69.2 125.9 39.6 71.0 101.9 
Effect of anisotropy in fourth layer (%) −7.9  2.6   25.9 30.5 52.5   74.4 
 

Figures Captions 

Figure 1. Configuration of a commercial DLL tool with five current (A0, A1, A1′, A2, and A2′) and 

four monitoring electrodes (M1, M1′, M2, and M2′). Dashed light gray lines indicate patterns of 

current flow for deep-sensing (LLd, left of panel) and shallow-sensing modes (LLs, right of 

panel).  

 

Figure 2. (a) Cross section showing a deviated well with a dip angle of θ penetrating a layered 

formation. The horizontal circle in (a) indicates the “quasi-azimuthal” direction ζ2 in a 

nonorthogonal system of coordinates, whereas both the x3- (in Cartesian system of coordinates) 

and ζ3-directions (in the nonorthogonal system of coordinates) correspond to the direction of the 

borehole. (b) In the nonorthogonal system, we employ three domains that have different systems 

of coordinates as described in the cross section corresponding to ζ2 = 0. Subdomain 1, which 

includes the DLL logging instrument, is part of the borehole, while subdomain 3 corresponds to 

the formation. Subdomain 2, the remainder part of the borehole not contained in subdomain 1, 

and it “glues” subdomain 1 with subdomain 3 so that the resulting system of coordinates is 

globally continuous, bijective, and with a positive Jacobian.  
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Figure 3. Comparisons of DLL apparent resistivities computed by Cozzolino et al. (2007) and 

with the 2D hp-FEM with the embedded post processing method (EPPM). Borehole radius and 

resistivity are equal to 0.1 m and 5 ohm-m, respectively. Straight solid lines describe layer 

resistivities, equal to 1, 0.1, and 10 ohm-m from top to bottom, respectively. A dashed line and 

open left triangles identify DLL readings simulated with the 2D hp-FEM from this study and by 

Cozzolino et al. (2007), respectively, for (a) LLd and (b) LLs modes. DLL apparent resistivities 

from Cozzolino et al. (2007) were digitized from those shown in their publication. 

 

Figure 4. Formation including five horizontal layers of resistivities equal to 100, 5, 1000, 0.5, 

and 100 ohm-m from top to bottom, respectively, used as base model for the numerical 

simulations considered in this paper. The thicknesses of the second, third, and fourth layers 

(from top to bottom) are 2, 4, and 3 m, respectively. Borehole radius and resistivity are equal to 

0.1 m and 0.1 ohm-m, respectively. Either invasion or electrical anisotropy is included in the 

third and fourth layers. The symbol R describes radial length of invasion. 

 

Figure 5. Comparison of calculated apparent resistivities for a vertical well penetrating the five-

layer formation model (Figure 4) with and without presence of invasion. Straight solid and 

dashed black lines describe resistivities of layers and invaded zones, respectively. Dashed lines, 

diamonds, and triangles in black identify LLd apparent resistivities for 0, 0.1, and 0.8 m radial 

lengths of invasion (R), respectively, and those in light gray identify LLs apparent resistivities. 

 

Figure 6. Final adapted hp-grid for a LLd measurement simulated at a depth of 4 m for a vertical 

well penetrating the five-layer formation model (Figure 4) without presence of invasion. Figures 

show progressive amplifications by factors of 1, 10, and 100, respectively (from left), toward a 
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singularity located at (ρ = 0.1 m, z = 4 m), where the borehole (0.1 ohm-m), the third (1000 ohm-

m), and the fourth layers (0.5 ohm-m) meet. Different colors indicate different polynomial orders 

of approximation (p), ranging from p = 1 (lighter) to p = 8 (darker).  

 

Figure 7. Comparison of calculated apparent resistivities for a vertical well penetrating isotropic 

and anisotropic formations composed of five horizontal layers (Figure 4). For the isotropic case, 

layer resistivities are 100, 5, 1000, 0.5, and 100 ohm-m from top to bottom, respectively. For the 

anisotropic case, only the third and fourth layers are electrically anisotropic, with vertical 

resistivities equal to 10000 and 50 ohm-m, respectively. Straight solid and dashed lines identify 

horizontal and vertical layer resistivities, respectively. The dashed line and diamonds in black 

identify LLd apparent resistivities calculated for isotropic and anisotropic formations, 

respectively, and those in light gray identify LLs apparent resistivities. 

 

Figure 8. Description of a formation model used for verification of the 3D hp FEM. The model is 

composed of a homogeneous formation with a resistivity equal to 1 ohm-m or 1000 ohm-m and a 

borehole with a resistivity equal to 0.1 ohm-m and a radius of 0.1 m. Dip angle, θ, is set to 0°, 

30°, and 60°. 

 

Figure 9. Convergence behavior as a function of the number of Fourier modes used in the 

simulation of both LLd and LLs measurements in deviated wells penetrating a formation with 

resistivity equal to (a) 1 or (b) 1000 ohm-m. Solid and dashed curves describe DLL 

measurements simulated for 30° and 60° deviated wells, respectively, and black and light-gray 

curves describe simulated LLd and LLs measurements, respectively. 
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Figure 10. Simulation of LLd apparent resistivities as a function of the number of Fourier modes 

for a 45° deviated well penetrating the five-layer formation model (Figure 4). The number of 

Fourier modes under consideration is one, three, five, and seven (panels a, b, c, and d, 

respectively) when computing LLd apparent resistivities. LLd apparent resistivities computed 

with nine Fourier modes are regarded as the fully converged solution.  A straight solid line 

describes the layer resistivities.  

 

Figure 11. Comparison of apparent resistivities calculated for vertical and deviated wells 

penetrating the five-layer formation model (Figure 4). A straight solid line describes the layer 

resistivities. The dashed line, diamonds, and triangles in black identify LLd apparent resistivities 

for 0°, 10°, 45°, and 60° deviated wells, respectively, and those in light gray identify shallow 

LLs apparent resistivities.   

 

Figure 12. Comparison of apparent resistivities calculated for 0° and 45° deviated wells (panels a 

and b, respectively) and for 45° and 60° deviated wells (panels c and d, respectively) with and 

without invaded zones (the radial length of invasion is 0.1 m) in the third and fourth layers. 

Straight solid and dashed lines describe resistivities of layers and invaded zones, respectively. 

Dashed line and diamonds identify simulated apparent resistivities in virgin and invaded 

formations, respectively, for LLd (panels a and c) and LLs (panels b and d) modes.  

 

Figure 13. Comparison of apparent resistivities calculated for (panel a) 45° and (panel b) 60° deviated wells 

penetrating isotropic and anisotropic formations composed of five horizontal layers (Figure 4). Straight solid and 

dashed lines describe horizontal and vertical layer resistivities, respectively. Dashed line and diamonds in black 

identify simulated LLd apparent resistivities for isotropic and anisotropic formations, respectively, while those in 

light gray identify LLs simulated apparent resistivities.   
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Figure 1. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 



 

 
40

 
                                 (a) 

1 3 5 7 9
10

-1

10
0

10
1

10
2

10
3

Number of Fourier modes

R
el

at
iv

e 
er

ro
r (

in
 %

)

 

 

LLd: 30°
LLd: 60°
LLs: 30°
LLs: 60°

 
 
                                 (b) 

1 3 5 7 9
10

-1

10
0

10
1

10
2

10
3

Number of Fourier modes

R
el

at
iv

e 
er

ro
r (

in
 %

)

 

 

LLd: 30°
LLd: 60°
LLs: 30°
LLs: 60°

 
Figure 9. 



 

 
41

           (a)                                                                        (c) 

10
-1

10
0

10
1

10
2

10
3

-4

-2

0

2

4

6

8

Solutions with 1 and 9 Fourier modes

Apparent resistivity (Ωm)

R
el

at
iv

e 
de

pt
h 

(m
)

 

 

Resistivity of formation

LLd: 1 mode
LLd: 9 modes

10
-1

10
0

10
1

10
2

10
3

-4

-2

0

2

4

6

8

Solutions with 5 and 9 Fourier modes

Apparent resistivity (Ωm)

R
el

at
iv

e 
de

pt
h 

(m
)

 

 

Resistivity of formation

LLd: 5 modes
LLd: 9 modes

 
                             (b)                                                                     (d) 

10
-1

10
0

10
1

10
2

10
3

-4

-2

0

2

4

6

8

Solutions with 3 and 9 Fourier modes

Apparent resistivity (Ωm)

R
el

at
iv

e 
de

pt
h 

(m
)

 

 

Resistivity of formation

LLd: 3 modes
LLd: 9 modes

10
-1

10
0

10
1

10
2

10
3

-4

-2

0

2

4

6

8

Solutions with 7 and 9 Fourier modes

Apparent resistivity (Ωm)

R
el

at
iv

e 
de

pt
h 

(m
)

 

 

Resistivity of formation

LLd: 7 modes
LLd: 9 modes

 
Figure 10. 



 

 
42

10
-1

10
0

10
1

10
2

10
3

-4

-2

0

2

4

6

8

Deviated well

Apparent resistivity (Ωm)

R
el

at
iv

e 
de

pt
h 

(m
)

 

 

Resistivity of formation

LLd:   0°
LLd: 10°
LLd: 45°
LLd: 60°
LLs:   0°
LLs: 10°
LLs: 45°
LLs: 60°

 
Figure 11. 



 

 
43

                    (a)                                                                                (c) 

10
-1

10
0

10
1

10
2

10
3

-4

-2

0

2

4

6

8

Deviated well with invasion (LLd)

Apparent resistivity (Ωm)

R
el

at
iv

e 
de

pt
h 

(m
)

 

 

R
es

is
tiv

ity
 o

f i
nv

as
io

n

R
es

is
tiv

ity
 o

f i
nv

as
io

n

Resistivity of formation

LLd: 45°,    0 m
LLd: 45°, 0.1 m
LLd:   0°,    0 m
LLd:   0°, 0.1 m

10
-1

10
0

10
1

10
2

10
3

-4

-2

0

2

4

6

8

Deviated well with invasion (LLd)

Apparent resistivity (Ωm)

R
el

at
iv

e 
de

pt
h 

(m
)

 

 

R
es

is
tiv

ity
 o

f i
nv

as
io

n

R
es

is
tiv

ity
 o

f i
nv

as
io

n

Resistivity of formation

LLd: 60°,    0 m
LLd: 60°, 0.1 m
LLd: 45°,    0 m
LLd: 45°, 0.1 m

  
          (b)                                                                                 (d) 

10
-1

10
0

10
1

10
2

10
3

-4

-2

0

2

4

6

8

Deviated well with invasion (LLs)

Apparent resistivity (Ωm)

R
el

at
iv

e 
de

pt
h 

(m
)

 

 

R
es

is
tiv

ity
 o

f i
nv

as
io

n

R
es

is
tiv

ity
 o

f i
nv

as
io

n

Resistivity of formation

LLs: 45°,    0 m
LLs: 45°, 0.1 m
LLs:   0°,    0 m
LLs:   0°, 0.1 m

10
-1

10
0

10
1

10
2

10
3

-4

-2

0

2

4

6

8

Deviated well with invasion (LLs)

Apparent resistivity (Ωm)

R
el

at
iv

e 
de

pt
h 

(m
)

 

 

R
es

is
tiv

ity
 o

f i
nv

as
io

n

R
es

is
tiv

ity
 o

f i
nv

as
io

n

Resistivity of formation

LLs: 60°,    0 m
LLs: 60°, 0.1 m
LLs: 45°,    0 m
LLs: 45°, 0.1 m

 
Figure 12. 



 

 
44

          (a)                                                                                  (b) 

10
-1

10
0

10
1

10
2

10
3

10
4

-4

-2

0

2

4

6

8

Deviated well with anisotropy

Apparent resistivity (Ωm)

R
el

at
iv

e 
de

pt
h 

(m
)

 

 

Ve
rti

ca
l r

es
is

tiv
ity

Ve
rti

ca
l r

es
is

tiv
ity

Resistivity of formation

LLd: 45°, Iso
LLd: 45°, Ani
LLs: 45°, Iso
LLs: 45°, Ani

10
-1

10
0

10
1

10
2

10
3

10
4

-4

-2

0

2

4

6

8

Deviated well with anisotropy

Apparent resistivity (Ωm)

R
el

at
iv

e 
de

pt
h 

(m
)

 

 

Ve
rti

ca
l r

es
is

tiv
ity

Ve
rti

ca
l r

es
is

tiv
ity

Resistivity of formation

LLd: 60°, Iso
LLd: 60°, Ani
LLs: 60°, Iso
LLs: 60°, Ani

 
Figure 13. 
 


