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Abstract. Let n ≥ 2 and g∗λ be the well-known high dimensional Littlewood-Paley
function which was defined and studied by E. M. Stein,

g∗λ(f)(x) =

(∫∫
Rn+1

+

( t

t+ |x− y|

)nλ
|∇Ptf(y, t)|2 dydt

tn−1

)1/2

, λ > 1

where Ptf(y, t) = pt ∗ f(x), pt(y) = t−np(y/t) and p(x) = (1 + |x|2)−(n+1)/2, ∇ =
( ∂
∂y1

, . . . , ∂
∂yn

, ∂∂t ). In this paper, we give a characterization of two weight norm in-

equality for g∗λ-function. We show that,
∥∥g∗λ(fσ)

∥∥
L2(w)

.
∥∥f∥∥

L2(σ)
if and only if the

two weight Muchenhoupt A2 condition holds, and a testing condition holds :

sup
Q:cubes in Rn

1

σ(Q)

∫
Rn

∫∫
Q̂

( t

t+ |x− y|

)nλ
|∇Pt(1Qσ)(y, t)|2wdxdt

tn−1
dy <∞,

where Q̂ is the Carleson box over Q and (w, σ) is a pair of weights. We actually prove
this characterization for g∗λ function associated with more general fractional Poisson

kernel pα(x) = (1 + |x|2)−(n+α)/2. Moreover, the corresponding results for intrinsic
g∗λ-function are also presented.

1. Introduction

The g∗λ-function originated in the work of Littlewood and Paley [8] in the 1930s. It is
a basic tool to prove the Lp-boundedness of various linear operators. Later, the classical
g∗λ function of higher dimension was first introduced and studied by Stein [13] in 1961, a
certain sublinear operator arises in Littlewood-Paley theory [1, 14]. It plays important
roles in harmonic analysis and other fields. Let n ≥ 2, we recall its definition as follows:

g∗λ(f)(x) =

(∫∫
Rn+1
+

( t

t+ |x− y|

)nλ
|∇Ptf(y, t)|2dydt

tn−1

)1/2

, λ > 1

where Ptf(y, t) = pt ∗ f(x), pt(y) = t−np(y
t
) denotes the Poisson kernel and ∇ =

( ∂
∂y1
, . . . , ∂

∂yn
, ∂
∂t

). It is easy to show that g∗λ is an isometry on L2(Rn). With much

greater difficulty, it can be proved that for any 1 < p <∞,
∥∥g∗λ(f)

∥∥
Lp(Rn) and

∥∥f∥∥
Lp(Rn)
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are equivalent norms [13]. Moreover, in [13], Stein also proved that if λ > 2, then g∗λ is
of weak type (1, 1), and is of strong type (p, p) for 1 < p <∞. In 1970, as a replacement
of weak (1, 1) bounds for 1 < λ < 2, Fefferman [1] considered the end-point weak (p, p)
estimates of g∗λ-function when p > 1 and λ = 2/p.

Recently, Lacey and the second named author [5] gave a characterization of two weight
norm inequalities for the classical g-function and the corresponding intrinsic square func-
tion. Recall that the classical g-function is defined by

g(f)(x) =

(∫ ∞
0

|∇Ptf(x, t)|2tdt
)1/2

.

It was shown that the following two weight norm inequality for the classical Littlewood-
Paley g-function for a pair of weights (w, σ) on Rn:

(1.1)
∥∥g(fσ)

∥∥
L2(w)

. N
∥∥f∥∥

L2(σ)

holds if and only if (w, σ) satisfies

(1.2) A 2
2 := sup

Q

σ(Q)

|Q|
w(Q)

|Q|
<∞;

and the testing condition holds, uniformly over all cubes Q ⊂ Rn,

(1.3)

∫∫
Q̂

|∇Pt(1Qσ)(x, t)|2wdx tdt . σ(Q), Q̂ = Q× [0, `(Q)].

The condition (1.3) is called the Sawyer testing condition, which can be traced back
to [12]. It is known that Littlewood-Paley g-function is point wisely controlled by g∗λ-
function. Thus it is quite natural to ask if one can establish a characterization for the
Littlewood-Paley g∗λ-function. But the g∗λ-function also involves additional difficulties
since more integrals appear in the definition. One also needs to find the new suitable
testing condition to replace condition (1.3).

In order to state our results, we first introduce the definition of the Littlewood-Paley
g∗λ-function with fractional Poisson kernels.

Definition 1.1. Let λ > 1, for any x ∈ Rn, the Littlewood-Paley g∗λ-function with
fractional Poisson kernels is defined by

g∗,αλ (f)(x) =

(∫∫
Rn+1
+

( t

t+ |x− y|

)nλ
|∇Pα

t f(y, t)|2dydt
tn−1

)1/2

, 0 < α ≤ 1,

where Pα
t f(y, t) = pαt ∗ f(x), pαt (y) = t−npα(y/t) and pα(x) = (1 + |x|2)−n+α2 .

Remark 1.2. If α = 1, then g∗,1λ coincides with the classical Littlewood-Paley g∗λ-function
of higher dimension defined and studied by E. M. Stein [13] in 1961.

Motivated by the above work, in this paper, we will focus on the characterization of
the two weight inequality for the Littlewood-Paley g∗λ-function.

(1.4)
∥∥g∗,αλ (fσ)

∥∥
L2(w)

. N
∥∥f∥∥

L2(σ)
.
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In addition, we introduce the corresponding testing condition:
(1.5)

B2 := sup
Q: cubes in Rn

1

σ(Q)

∫
Rn

∫∫
Q̂

( t

t+ |x− y|

)nλ
|∇Pα

t (1Qσ)(y, t)|2wdxdt
tn−1

dy <∞.

Here we formulate the main result of this paper as follows.

Theorem 1.1. Let λ > 2, 0 < α ≤ min{1, n(λ− 2)/2} and σ, w be two weights. Then
the two weight inequality (1.4) holds if and only if the two weight condition (1.2) and
testing condition (1.5) hold. Moreover, N ' A2 + B, where N is the best constant in
the inequality (1.4).

Remark 1.3. The characterization of the two weight inequality for the classical Littlewood-
Paley g∗λ-function is contained in Theorem 1.1 (α = 1, λ ≥ 2(1 + 1/n)). Actually, when
λ ≥ 2(1 + 1/n), we have 0 < α ≤ 1. It not only includes the classical case, but also
extends to the case for 0 < α < 1. Another notable fact is that we are able to improve
the result of [5] with the fractional Poisson kernel pα, 0 < α ≤ 1.

To state another main result, we begin with one more definition.

Definition 1.4. For 0 < α ≤ 1, let Cα be the family of functions ϕ satisfying supp ϕ ⊂
{x ∈ Rn; |x| ≤ 1},

∫
Rn ϕ(x)dx = 0, and such that |ϕ(x) − ϕ(x′)| ≤ |x − x′|α, for all

x, x′ ∈ Rn. If f ∈ L1
loc(Rn) and (y, t) ∈ Rn+1

+ , we define Aαf(y, t) = supϕ∈Cα |f ∗
ϕt(y)|, where ϕt(x) = t−nϕ(x/t). Then the intrinsic g∗λ-function is defined by setting,
for all x ∈ Rn,

g∗λ,α(f)(x) =

(∫∫
Rn+1
+

( t

t+ |x− y|

)nλ
[Aαf(y, t)]2

dydt

tn+1

)1/2

.

For the intrinsic g∗λ,α function, we have the following result.

Theorem 1.2. Let λ > 2, 0 < α ≤ min{1, n(λ− 2)/2} and σ, w be two weights. Then
the two weight inequality ∥∥g∗λ,α(fσ)

∥∥
L2(w)

. Nα

∥∥f∥∥
L2(σ)

holds if and only if

(i) (w, σ) satisfies the A2 condition (1.2);
(ii) the testing condition holds :

B2
α := sup

Q: cubes in Rn

1

σ(Q)

∫
Rn

∫∫
Q̂

( t

t+ |x− y|

)nλ
[Aα(1Qσ)(y, t)]2

wdxdt

tn+1
dy <∞.

Moreover, the best constants satisfy Nα ' A2 + Bα.

Note that g∗,αλ f(x) ≤ g∗λ,αf(x), for all x ∈ Rn. Since the main steps in the proof of
Theorem 1.2 are the same as the Theorem 1.1, we omit the proof of Theorem 1.2.

The rest of this article is organized as follows. The necessary condition is shown in
the Section 2. In Section 3, applying the random dyadic grids and martingale difference
decomposition, we give the final reduction of the main theorem. In order to prove the
sufficiency, some lemmas and elementary estimates are established in Section 4. Finally,
in Section 5, by splitting into four parts, we prove the sufficiency in Theorem 1.1.
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Notation We write A . B, if there is a constant C > 0 so that A ≤ CB. We may
also write A h B if B . A . B.

We then set some dyadic notation. For cubes Q and R, we denote

• `(Q) is the side length of Q;
• d(Q,R) denotes the distance between the cubes Q and R;
• D(Q,R) := `(Q) + `(R) + d(Q,R) is the long distance;

• Q̂ := Q× (0, `(Q)] is the Carleson box over Q;

• WQ := Q× ( `(Q)
2
, `(Q)] is the Whitney region associated with Q;

• Q(k) denotes the unique dyadic cube for which `(Q(k) = 2k`(Q) and Q ⊂ Q(k)

and Q ⊂ Q(k);
• ch(Q) denotes the dyadic children of Q.

2. The Necessity and constant estimates

2.1. Proposition. The inequality (1.4) implies the inequality (1.2).

Proof. For some fixed cube Q, we have

|∇Pα
t (1Qσ)(y, t)| ≥ |∂tPα

t ∗ (1Qσ)(y)| =
∣∣∣∣ ∫

Q

ntα+1 − αtα−1|y − z|2

(t2 + |y − z|2)n+α2 +1
σdz

∣∣∣∣.
If x, y, z ∈ Q and 2`(Q) ≤ t ≤ 3`(Q), then

ntα+1 − αtα−1|y − z|2

(t2 + |y − z|2)n+α2 +1
&

1

tn+1
.

Thus,

|∇Pα
t (1Qσ)(y, t)| & σ(Q)

tn+1
.

Furthermore, for x ∈ Q,

g∗,αλ (1Qσ)(x)2 ≥
∫
Q

∫ 3`(Q)

2`(Q)

( t

t+ |x− y|

)nλ∣∣∣∣ ∫
Q

ntα+1 − αtα−1|y − z|2

(t2 + |y − z|2)n+α2 +1
σdz

∣∣∣∣2 dt

tn−1
dy

&
∫
Q

∫ 3`(Q)

2`(Q)

σ(Q)2

t3n+1
dtdy &

σ(Q)2

|Q|2
.

Therefore, the boundedness of g∗,αλ gives that

σ(Q)w(Q)

|Q|2
.

1

σ(Q)

∥∥g∗,αλ (1Qσ)
∥∥2
L2(w)

≤ N 2.

That is, A2 . N . �

Moreover, it is trivial that (1.4) implies (1.5). Thus, we have proved the necessity of
Theorem 1.1.
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2.2. Random Dyadic Grids. Let us recall random dyadic grids defined in [2]. Denote
by D = D(β) the random dyadic grid, where β = {βj}∞j=−∞ ∈ ({0, 1}n)Z. That is

D = {Q+
∑

j:2−j<`(Q)

2−jβj : Q ∈ D0},

where D0 is the standard dyadic grid in Rn.
A cube I ∈ D is said to be bad if there exists a J ∈ D with `(J) ≥ 2r`(I)such

that dist(I, ∂J) ≤ `(I)γ`(J)1−γ, where r ∈ Z+ and γ ∈ (0, 1
2
) are given parameters.

Otherwise, I is called good.
Throughout this article, we take γ = α

2(n+α)
and r will be determined in the follow-

ing. Moreover, roughly speaking, a dyadic cube I will be bad if it is relatively close
to the boundary of a much bigger dyadic cube. Denote πgood = Pβ(Q + βis good) =
Eβ??(1good(Q+ β))??. Then πtextupgood is independent of Q ∈ D0. And we choose r large
enough so that πgood > 0.

2.3. Definition. Given a dyadic cube I, we set WI to be the maximal dyadic cubes
K ⊂ I such that 2r`(K) ≤ `(I) and dist(K, ∂I) ≥ `(K)γ`(I)1−γ.

2.4. Proposition. The following statements hold.

(1) For any good J b I, there is a cube K ∈ WI which contains J ;
(2) For any C > 0, provided r is sufficiently large, depending upon γ, there holds∑

K∈WI

1CK . 1I .

Here, J b I means that J ⊂ I and 2r`(J) ≤ `(I); in words, J is strongly contained in I.

2.5. The Pivotal Condition. The pivotal constant P is the smallest constant in
the following inequality. For any cube I0, and any partition of I0 into dyadic cubes
{Ij; j ∈ N}, there holds

(2.1)
∑
j∈N

∑
K∈WIj

Pα(K,1I0σ)2w(K) ≤P2σ(I0),

where Poisson term

Pα(I, f) =

∫
Rn

`(I)α

(`(I) + dist(x, I))n+α
f(x)dx.

To estimate the best constants, we give the following Proposition.

2.6. Proposition. The A2 condition (1.2) and testing condition (1.5) imply the finite-
ness of the pivotal constant P. In particular, there holds P . A2 + B.

Proof. We follow the strategy used in [5]. Taking the large enough constant C in Propo-
sition 2.4 such that α

2
≥ n( 2

C−1)2. The A2 condition and Proposition 2.4 give that∑
j∈N

∑
K∈WIj

Pα(K,1CKσ)2w(K) . A 2
2

∑
j∈N

∑
K∈WIj

σ(CK) . A 2
2 σ(I0).

Thus, it is enough to treat the Poisson terms Pα(K,1I0\CKσ).
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It is easy to verify

Pα(K,1I0\CKσ) . t ∂tP
α
t (1I0\CKσ)(y, t), for any y ∈ K, t ∼ `(K).

Therefore,

Pα(K,1I0\CKσ)2w(K) .
∫
K

∫∫
WK

( t

t+ |x− y|

)nλ
|∇Pα

t (1I0\CKσ)(y, t)|2wdxdt
tn−1

dy.

Since we have∑
j∈N

∑
K∈WIj

∫
K

∫∫
WK

( t

t+ |x− y|

)nλ
|∇Pα

t (1I0σ)(y, t)|2wdxdt
tn−1

dy

≤
∑
j∈N

∑
K∈WIj

∫
Rn

∫∫
WK

( t

t+ |x− y|

)nλ
|∇Pα

t (1I0σ)(y, t)|2wdxdt
tn−1

dy

≤
∫
Rn

∫
Î0

( t

t+ |x− y|

)nλ
|∇Pα

t (1I0σ)(y, t)|2wdxdt
tn−1

dy

≤ B2σ(I0),

and ∑
j∈N

∑
K∈WIj

∫
K

∫∫
WK

( t

t+ |x− y|

)nλ
|∇Pα

t (1CKσ)(y, t)|2wdxdt
tn−1

dy

≤
∑
j∈N

∑
K∈WIj

∫
Rn

∫∫
ĈK

( t

t+ |x− y|

)nλ
|∇Pα

t (1CKσ)(y, t)|2wdxdt
tn−1

dy

≤ B2
∑
j∈N

∑
K∈WIj

σ(CK)

. B2σ(I0),

the desired estimate follows immediately.
�

3. The Probabilistic Reduction

Our next task is to simplify the proof of sufficiency. The probabilistic techniques we
will use are taken from [2]. We here need some fundamental tools, including the random
dyadic grids, the probabilistic good/bad decompositions, and the martingale difference
expansions, which can be found in [2, 5, 6], and essentially goes back to [11].

3.1. The Generalized Result. In order to prove the main theorem, it is enough to
show the following generalized result.

(3.1)
∥∥g∗ψ,λ(f · σ)

∥∥
L2(w)

. (A2 + B)
∥∥f∥∥

L2(σ)
,

where

g∗ψ,λ(f)(x) =

(∫∫
Rn+1
+

( t

t+ |x− y|

)nλ
|ψt ∗ f(y)|2dydt

tn+1

)1/2

,

ψt(x) = 1
tn
ψ(x

t
) and ψ satisfies the following conditions:
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(1) |ψ(x)| . (1 + |x|)−n−α;
(2) |ψ(x)− ψ(y)| . |x− y|α(1 + |x|)−n−α.

A particular case of the above function class was introduced by Wilson [15, p. 114].
However, we do not need the cancelation property of ψ in this paper.

3.2. Averaging over Good Whitney Regions. Let f ∈ L2(σ). For R ∈ D, let
WR = R× (`(R)/2, `(R)] be the associated Whitney region. Note that the position and
goodness of R+̇β are independent (see [2]). Therefore, one can write

∥∥g∗λ(f · σ)
∥∥2
L2(w)

=

∫
Rn

∫∫
Rn+1
+

( t

t+ |y|

)nλ
|ψt ∗ (f · σ)(x− y)|2dydt

tn+1
wdx

=

∫∫
Rn+1
+

∫
Rn
|ψt ∗ (f · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t

= Eβ
∑
R∈D0

∫∫
WR+̇β

∫
Rn
|ψt ∗ (f · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t

=
1

πgood

∑
R∈D0

Eβ(1good(R+̇β))Eβ
∫∫

WR+̇β

∫
Rn
|ψt ∗ (f · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t

=
1

πgood

∑
R∈D0

Eβ
(

1good(R+̇β)

∫∫
WR+̇β

∫
Rn
|ψt ∗ (f · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t

)
=

1

πgood
Eβ

∑
R∈Dgood

∫∫
WR

∫
Rn
|ψt ∗ (f · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t
.

With the monotone convergence theorem, it suffices to show that there exists a con-
stant C > 0 such that for any s ∈ N, we have∑

R∈Dgood
R⊂[−2s,2s]n
2−s≤`(R)≤2s

∫∫
WR

∫
Rn
|ψt ∗ (f · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t
≤ C(A2 + B)2

∥∥f∥∥2
L2(σ)

.

3.3. The Final Reduction. In order to get the further reduction, we introduce the
martingale difference decomposition. Define

EσQf :=
1

σ(Q)

∫
Q

fdσ,

assuming that σ(Q) > 0, otherwise set it to be zero. For the martingale differences,

∆σ
Qf :=

∑
Q′∈ch(Q)

(EσQ′f − EσQf)1Q′ .
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For fixed s ∈ N, by Lebesgue differentiation theorem, we can write

f =
∑
Q∈D

`(Q)≤2s

∆σ
Qf +

∑
Q∈D

`(Q)=2s

(EσQf)1Q.

Since {∆σ
Qf}Q∈D is a family of orthogonal, we have∥∥f∥∥2

L2(σ)
=

∑
Q∈D

`(Q)≤2s

∥∥∆σ
Qf
∥∥2
L2(σ)

+
∑
Q∈D

`(Q)=2s

∥∥(EσQf)1Q
∥∥2
L2(σ)

.

Now we claim that we can assume that f is compactly supported, say supp f ⊂ Q0.
Let F denote the subspace of L2(σ) which has compact support. We shall show that

(3.2) K := sup
f∈F

‖f‖L2(σ)=1

‖g∗λ(fσ)‖L2(w) <∞.

Indeed, if (3.2) is proved, then for any f ∈ L2(σ) and ε > 0, there exists some cube Q
such that

‖f − fχQ‖L2(σ) < ε‖f‖L2(σ),

For simplicity, set g := f − fχQ. Then we have

∑
R∈Dgood

R⊂[−2s,2s]n
2−s≤`(R)≤2s

∫∫
WR

∫
Rn
|ψt ∗ (f · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t

≤ 2
∑

R∈Dgood
R⊂[−2s,2s]n
2−s≤`(R)≤2s

∫∫
WR

∫
Rn
|ψt ∗ (fχQ · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t

+ 2
∑

R∈Dgood
R⊂[−2s,2s]n
2−s≤`(R)≤2s

∫∫
WR

∫
Rn
|ψt ∗ (g · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t
.

Substitute with

f(x) =
`(Q)α

(`(Q) + dist(x,Q))n+α
χQ′\4√nQ,

in (3.2) and using similar arguments as that in [5], we get∫
Q′

`(Q)2α

(`(Q) + dist(z,Q))2(n+α)
dσ(z)w(Q) . K 2 + A 2

2 .
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Then by letting Q′ increase to Rn, we know that (3.2) and the A2 condition imply the
Poisson type A2 condition. Therefore,∫∫

WR

∫
Rn
|ψt ∗ (g · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t

≤
∫∫

WR

∫
Rn
‖g‖2L2(σ)‖ψt(x− y − ·)‖2L2(σ)

( t

t+ |y|

)nλdy
tn
wdx

dt

t

≤ Cn

∫
Rn

`(R)2α

(`(R) + dist(z,R))2(n+α)
dσ(z)w(R)‖g‖2L2(σ)

≤ Cn(K 2 + A 2
2 )ε2‖f‖2L2(σ)

Then by taking sufficiently large cube Q such that 2(2s+2)nCn(K 2 + A 2
2 )ε2 < K 2. We

finally get∑
R∈Dgood

R⊂[−2s,2s]n
2−s≤`(R)≤2s

∫∫
WR

∫
Rn
|ψt ∗ (f · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t
≤ 4K 2‖f‖L2(σ),

which means that we reduce the problem to prove (3.2). Then by repeating the previous
arguments, we further reduce the problem to estimate∑

R∈Dgood
R⊂[−2s,2s]n
2−s≤`(R)≤2s

∫∫
WR

∫
Rn
|ψt ∗ (f · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t
,

where f has compact support. Assume that supp f ⊂ [−2s
′
, 2s

′
]n. Without loss of

generality, we can assume that s ≥ s′ + 1. Then it suffices to estimate∑
R∈Dgood

R⊂[−2s,2s]n
2−s≤`(R)≤2s

∫∫
WR

∫
Rn
|ψt ∗ (f1[−2s−1,2s−1]n · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t
.

Denote Fs the subspace of F which supported in [−2s−1, 2s−1]n.

Ks := sup
f∈Fs

‖f‖L2(σ)=1

∑
R∈Dgood

R⊂[−2s,2s]n
2−s≤`(R)≤2s

∫∫
WR

∫
Rn
|ψt ∗ (f · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t

Similar arguments as the previous show that∫∫
WR

∫
Rn
|ψt ∗ (f · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t

≤ Cn

∫
[−2s−2,2s−2]n

`(R)2α

(`(R) + dist(z,R))2(n+α)
dσ(z)w(R)‖f‖2L2(σ)

≤ 22snCnA
2
2 ‖f‖2L2(σ),
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which means that Ks ≤ 2(4s+2)nCnA 2
2 < ∞. Using the martingale decomposition, we

can write
f =

∑
Q∈D

`(Q)≤2s

∆σ
Qf,

when `(Q) = 2s, ∆σ
Q should be understood as Eσ

Q. Denote

fgood =
∑

Q∈Dgood

`(Q)≤2s

∆σ
Qf.

Again, we can set g̃ := f − fgood. For any ε > 0, choosing r sufficiently large such that
‖g̃‖L2(σ) < ε, see [3]. Then we have

Ks ≤ 2 sup
f∈F

‖f‖Lp(σ)=1

∑
R∈Dgood

R⊂[−2s,2s]n
2−s≤`(R)≤2s

∫∫
WR

∫
Rn
|ψt ∗ (fgood · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t

+ 2Ks‖g̃‖2L2(σ).

By taking ε = 1/2, (which means that r is independent of s) we reduce the problem to
prove
(3.3)∑
R∈Dgood
`(R)≤2s

∫∫
WR

∫
Rn

∣∣∣ ∑
Q∈Dgood
`(Q)≤2s

ψt∗(∆σ
Qf ·σ)(x−y)

∣∣∣2( t

t+ |y|

)nλdy
tn
wdx

dt

t
. (A2+B)2

∥∥f∥∥2
L2(σ)

.

4. Some Lemmas And Elementary Estimates

To prove the boundedness of g∗λ(·σ) from L2(σ) to L2(w), we here present some crucial
estimates and lemmas.

4.1. Elementary Estimate 1. Let 0 < α ≤ n(λ− 2)/2. For given cubes Q,R ∈ D and
(x, t) ∈ WR, we have the following estimate
(4.1)(∫

Rn
|ψt ∗ ((∆σ

Qf)σ)(x− y)|2
( t

t+ |y|

)nλdy
tn

)1/2

.
`(R)α σ(Q)1/2

(`(R) + d(Q,R))n+α
∥∥∆σ

Qf
∥∥
L2(σ)

.

Proof. By the size condition, we obtain

|ψt ∗ ((∆σ
Qf) · σ)(x− y)| .

∫
Rn

tα

(t+ |x− y − z|)n+α
|∆σ

Qf(z)|dσ(z).

Since z ∈ Q and x ∈ R, |x− z| ≥ d(Q,R).
If |y| ≤ 1

2
d(Q,R), then |x− y − z| ≥ |x− z| − |y| ≥ 1

2
d(Q,R). Thus,

|ψt ∗ ((∆σ
Qf)σ)(x− y)| . `(R)α

(`(R) + d(Q,R))n+α
∥∥∆σ

Qf
∥∥
L1(σ)

≤ `(R)α

(`(R) + d(Q,R))n+α
σ(Q)1/2

∥∥∆σ
Qf
∥∥
L2(σ)

,
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and(∫
|y|≤ 1

2
d(Q,R)

|ψt ∗ ((∆σ
Qf)σ)(x− y)|2

( t

t+ |y|

)nλdy
tn

)1/2

.
`(R)α σ(Q)1/2

(`(R) + d(Q,R))n+α
∥∥∆σ

Qf
∥∥
L2(σ)

.

If |y| > 1
2
d(Q,R), then ( t

t+ |y|

)nλ 1

tn
.

`(R)nλ−n

(`(R) + d(Q,R))nλ
.

Hence, by Young’s inequality, it yields that(∫
|y|> 1

2
d(Q,R)

|ψt ∗ ((∆σ
Qf)σ)(x− y)|2

( t

t+ |y|

)nλdy
tn

)1/2

.
`(R)

nλ
2
−n

2

(`(R) + d(Q,R))
nλ
2

∥∥ψt ∗ ((∆σ
Qf)σ)(x− ·)

∥∥
L2(Rn)

≤ `(R)
nλ
2
−n

2

(`(R) + d(Q,R))
nλ
2

∥∥ψt∥∥L2(Rn)

∥∥∆σ
Qf
∥∥
L1(σ)

.
`(R)

nλ
2
−n

2 t−
n
2

(`(R) + d(Q,R))
nλ
2

σ(Q)1/2
∥∥∆σ

Qf
∥∥
L2(σ)

.
`(R)

nλ
2
−n

(`(R) + d(Q,R))
nλ
2

σ(Q)1/2
∥∥∆σ

Qf
∥∥
L2(σ)

≤ `(R)α

(`(R) + d(Q,R))n+α
σ(Q)1/2

∥∥∆σ
Qf
∥∥
L2(σ)

,

where we have used the condition 0 < α ≤ n(λ− 2)/2 in the last step.
This completes the proof of (4.1). �

4.2. Elementary Estimate 2. Let 0 < α ≤ n(λ − 2)/2. Assume that Q,R ∈ D are
given cubes with `(Q) < `(R), `(Q) < 2s and (x, t) ∈ WR. Then we have the following
estimate
(4.2)(∫

Rn
|ψt ∗ (∆σ

Qf · σ)(x− y)|2
( t

t+ |y|

)nλdy
tn

)1/2

.
`(Q)α/2`(R)α/2 σ(Q)1/2

(`(R) + d(Q,R))n+α
∥∥∆σ

Qf
∥∥
L2(σ)

.

Proof. Let zQ be the center of Q. By the cancellation condition
∫
Q

∆σ
Qfσdx = 0,we have

ψt ∗ (∆σ
Qf · σ)(x− y) =

∫
Q

(ψt(x− y − z)− ψt(x− y − zQ))∆σ
Qf(z)dσ(z).

Since |z − zQ| ≤
√
n
2
`(Q) ≤

√
n
4
`(R) <

√
n
2
t ≤

√
n
2
`(R), we have

|ψt(x− y − z)− ψt(x− y − zQ)| . |z − zQ|α

(t+ |x− y − z|)n+α
.

`(Q)α/2`(R)α/2

(t+ |x− y − z|)n+α
.

Making use the similar arguments as in the preceding subsection, we will obtain the
inequality (4.2).
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4.3. Some Lemmas. For the sake of talking convenience, we here present two key
lemmas, which will be used later.

Lemma 4.1 ([5]). Let

AαQR =
`(Q)α/2`(R)α/2

D(Q,R)n+α
σ(Q)1/2w(R)1/2,

where the long distance D(Q,R) = `(Q) + `(R) + d(Q,R), Q,R ∈ D and α > 0. Then
for any xQ, yR ≥ 0, we have the following estimate( ∑

Q,R∈D

AαQRxQyR

)2
. A 2

2

∑
Q∈D

x2Q ×
∑
R∈D

y2R.

Lemma 4.2. Let 0 < α ≤ n(λ − 2)/2. Given three cubes R ⊂ K ⊂ S, and function f
satisfies supp(f) ∩ S = ∅. If dist(R, ∂K) ≥ `(R)γ`(K)1−γ, then there holds

(4.3)

∫
Rn

∫∫
WR

|ψt∗(f ·σ)(x−y)|2wdx
( t

t+ |y|

)nλdtdy
tn+1

.

(
`(R)

`(K)

)α
Pα(K, |f |σ)2w(R).

Proof. First, we shall prove, for any z 6∈ S,

(4.4)
`(R)α

(`(R) + dist(z, R))n+α
≤
[ `(R)

`(K)

]α/2 `(K)α

(`(K) + dist(z,K))n+α
.

In fact, since dist(z, R) ≥ dist(z,K) + dist(R, ∂K), we have

`(R)α

(`(R) + dist(z, R))n+α
=

(
`(R)

`(K)

)α
`(K)α

(`(R) + dist(z,R))n+α

.

(
`(R)

`(K)

)α−(n+α)γ
`(K)α

(`(K) + dist(z,K))n+α
.

Secondly, we turn to the estimate of (4.3). Decompose∫
Rn
|ψt ∗ (f · σ)(x− y)|2

( t

t+ |y|

)nλdy
tn

≤
∫
Rn

(∫
z:|y|≤ 1

2
dist(z,R)

|ψt(x− y − z)||f(z)|dσ(z)

)2( t

t+ |y|

)nλdy
tn

+

∫
Rn

(∫
z:|y|> 1

2
dist(z,R)

|ψt(x− y − z)||f(z)|dσ(z)

)2( t

t+ |y|

)nλdy
tn

:= E1 + E2.
For (x, t) ∈ WR, and z 6∈ S, we have

|ψt(x− y − z)| . tα

(t+ |x− y − z|)n+α
.

`(R)α

(`(R) + |x− y − z|)n+α
.

If |y| ≤ 1
2
dist(z,R), |x− y − z| ≥ |x− z| − |y| ≥ 1

2
dist(z, R). Then by (4.4)

|ψt(x− y − z)| . `(R)α

(`(R) + dist(z,R))n+α
.

(
`(R)

`(K)

)α/2
`(K)α

(`(K) + dist(z,K))n+α
.
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Hence,

E1 .
(
`(R)

`(K)

)α ∫
Rn

(∫
Rn

`(K)α

(`(K) + dist(z,K))n+α
|f(z)|dσ(z)

)2( t

t+ |y|

)nλdy
tn

.

(
`(R)

`(K)

)α
Pα(K, |f |σ)2.

If |y| > 1
2
dist(z,R), the inequality (4.4) and Young’s inequality imply that

E2 . tn
∫
Rn

(∫
z:|y|> 1

2
dist(z,R)

|ψt(x− y − z)| `(R)
nλ
2
−n

(`(R) + dist(z,R))
nλ
2

|f(z)|dσ(z)

)2

dy

≤ tn
∫
Rn

(∫
Rn
|ψt(x− y − z)| `(R)α

(`(R) + dist(z,R))n+α
|f(z)|dσ(z)

)2

dy

. tn
(
`(R)

`(K)

)α ∫
Rn

(∫
Rn
|ψt(x− y − z)| `(K)α

(`(K) + dist(z,K))n+α
|f(z)|dσ(z)

)2

dy

≤ tn
(
`(R)

`(K)

)α∥∥ψt∥∥2L2(Rn)

(∫
Rn

`(K)α

(`(K) + dist(z,K))n+α
|f(z)|dσ(z)

)2

.

(
`(R)

`(K)

)α
Pα(K, |f |σ)2.

Consequently, the inequality (4.3) is concluded from the above estimates. �

5. The Sufficiency in The Main Theorem

In this section, we undertake to prove the sufficiency. We shall divide the collection
{Q;Q ∈ Dgood, `(Q) ≤ 2s} into the following four parts. The last one is the core and
quite complicated.

5.1. The Case `(Q) < `(R). In this case, we must have `(Q) < 2s. It follows from (4.2)
and Lemma 4.1 that∑

R∈Dgood
`(R)≤2s

∫∫
WR

∫
Rn

∣∣∣ ∑
Q∈Dgood
`(Q)<`(R)

ψt ∗ (∆σ
Qf · σ)(x− y)

∣∣∣2( t

t+ |y|

)nλdy
tn
wdx

dt

t

≤
∑

R∈Dgood
`(R)≤2s

∫∫
WR

[ ∑
Q∈Dgood
`(Q)<`(R)

(∫
Rn
|ψt ∗ (∆σ

Qf · σ)(x− y)|2
( t

t+ |y|

)nλdy
tn

)1/2]2
wdx

dt

t

.
∑

R∈Dgood
`(R)≤2s

∫∫
WR

[ ∑
Q∈Dgood
`(Q)<`(R)

`(Q)α/2`(R)α/2

(`(R) + d(Q,R))n+α
σ(Q)1/2

∥∥∆σ
Qf
∥∥
L2(σ)

]2
wdx

dt

t

.
∑

R∈Dgood

( ∑
Q∈Dgood

AαQR
∥∥∆σ

Qf
∥∥
L2(σ)

)2

. A 2
2

∥∥f∥∥2
L2(σ)

.



14 MINGMING CAO, KANGWEI LI, AND QINGYING XUE

5.2. The Case `(Q) ≥ `(R) and d(Q,R) > `(R)γ`(Q)1−γ. We claim that there holds
in this case

(5.1)
`(R)α

(`(R) + d(Q,R))n+α
.
`(Q)α/2`(R)α/2

D(Q,R)n+α
.

Indeed, if `(Q) ≤ d(Q,R), it is obvious that

`(R)α

(`(R) + d(Q,R))n+α
.

`(R)α

D(Q,R)n+α
≤ `(Q)α/2`(R)α/2

D(Q,R)n+α
.

If `(Q) > d(Q,R), then D(Q,R) ∼ `(Q). Using d(Q,R) > `(R)γ`(Q)1−γ and γ = α
2(n+α)

,

we obtain

`(Q) =

(
`(Q)

`(R)

)γ
`(R)γ`(Q)1−γ <

(
`(Q)

`(R)

)γ
d(Q,R),

and

`(R)α

(`(R) + d(Q,R))n+α
≤ `(R)α

d(Q,R)n+α
≤ `(Q)α/2`(R)α/2

`(Q)n+α
∼
`(Q)α/2`(R)α/2

D(Q,R)n+α
.

Then Lemma 4.1 and the inequalities (4.1), (5.1) give that

∑
R∈Dgood
`(R)≤2s

∫∫
WR

∫
Rn

∣∣∣ ∑
Q∈Dgood:`(Q)≥`(R)

d(Q,R)>`(R)γ`(Q)1−γ

ψt ∗ (∆σ
Qf · σ)(x− y)

∣∣∣2( t

t+ |y|

)nλdy
tn
wdx

dt

t

≤
∑

R∈Dgood
`(R)≤2s

∫∫
WR

[ ∑
Q∈Dgood:`(Q)≥`(R)

d(Q,R)>`(R)γ`(Q)1−γ

(∫
Rn
|ψt ∗ (∆σ

Qf · σ)(x− y)|2
( t

t+ |y|

)nλdy
tn

)1/2]2
wdx

dt

t

.
∑

R∈Dgood
`(R)≤2s

∫∫
WR

[ ∑
Q∈Dgood:`(Q)≥`(R)

d(Q,R)>`(R)γ`(Q)1−γ

`(R)α

(`(R) + d(Q,R))n+α
σ(Q)1/2

∥∥∆σ
Qf
∥∥
L2(σ)

]2
wdx

dt

t

.
∑

R∈Dgood

( ∑
Q∈Dgood

AαQR
∥∥∆σ

Qf
∥∥
L2(σ)

)2

. A 2
2

∥∥f∥∥2
L2(σ)

.

5.3. The Case `(R) ≤ `(Q) ≤ 2r`(R) and d(Q,R) ≤ `(R)γ`(Q)1−γ. In this case, it is
trivial that D(Q,R) ∼ `(Q) ∼ `(R). Thus

`(R)α

(`(R) + d(Q,R))n+α
≤ `(R)−n ∼

`(Q)α/2`(R)α/2

D(Q,R)n+α
.
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Then proceeding as we did in the previous subsection, we obtain that∑
R∈Dgood
`(R)≤2s

∫∫
WR

∫
Rn

∣∣∣ ∑
`(R)≤`(Q)≤2r`(R)

d(Q,R)≤`(R)γ`(Q)1−γ

ψt ∗ (∆σ
Qf · σ)(x− y)

∣∣∣2( t

t+ |y|

)nλdy
tn
wdx

dt

t

.
∑

R∈Dgood
`(R)≤2s

∫∫
WR

[ ∑
`(R)≤`(Q)≤2r`(R)

d(Q,R)≤`(R)γ`(Q)1−γ

`(R)α

(`(R) + d(Q,R))n+α
σ(Q)1/2

∥∥∆σ
Qf
∥∥
L2(σ)

]2
wdx

dt

t

. A 2
2

∥∥f∥∥2
L2(σ)

.

5.4. The Case `(Q) > 2r`(R) and d(Q,R) ≤ `(R)γ`(Q)1−γ. Recall R(k) is the k gen-
erations older dyadic ancestor of R. In this case, since R is good, it must actually have
R ⊂ Q. That is, Q is the ancestor of R. Then we can write∑
R∈Dgood
`(R)≤2s

∫∫
WR

∫
Rn

∣∣∣ ∑
`(Q)>2r`(R)

d(Q,R)≤`(R)γ`(Q)1−γ

ψt ∗ (∆σ
Qf · σ)(x− y)

∣∣∣2( t

t+ |y|

)nλdy
tn
wdx

dt

t

=
∑

R∈Dgood
`(R)≤2s−r−1

∫∫
WR

∫
Rn

∣∣∣ s−log2 `(R)∑
k=r+1

ψt ∗ (∆σ
R(k)f · σ)(x− y)

∣∣∣2( t

t+ |y|

)nλdy
tn
wdx

dt

t

≤
∑

R∈Dgood
`(R)≤2s−r−1

∫∫
WR

∫
Rn

∣∣∣ s−log2 `(R)∑
k=r+1

ψt ∗ ((1R(k)\R(k−1)∆σ
R(k)f)σ)(x− y)

∣∣∣2( t

t+ |y|

)nλdy
tn
wdx

dt

t

+
∑

R∈Dgood
`(R)≤2s−r−1

∫∫
WR

∫
Rn

∣∣∣ s−log2 `(R)∑
k=r+1

ψt ∗ ((1R(k−1)∆σ
R(k)f)σ)(x− y)

∣∣∣2( t

t+ |y|

)nλdy
tn
wdx

dt

t

:= J +K.

Fix the summing variable k ≥ r + 1. Then, the inequality (4.3) implies that∑
R∈Dgood

`(R)≤2s−r−1

∫∫
WR

∫
Rn

∣∣∣ψt ∗ ((1R(k)\R(k−1)∆σ
R(k)f)σ)(x− y)

∣∣∣2( t

t+ |y|

)nλdy
tn
wdx

dt

t

. 2−kα
∑

R∈Dgood
`(R)≤2s−r−1

Pα(R(k), |∆σ
R(k)f |σ)2w(R)

. 2−kα
∑
I

∥∥∆σ
I f
∥∥2
L2(σ)

σ(I)

|I|
w(I)

|I|
. 2−kαA 2

2

∥∥f∥∥2
L2(σ)

,

where we reindexed the sum over R above. By the geometric decay in k, we deduce

J . A 2
2

∥∥f∥∥2
L2(σ)

.
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It remains only to analyze the contribution made to K by the term(∆σ
R(k)f)1R(k−1) .

Our goal is to prove

(5.2) K . (A2 + B)2
∥∥f∥∥2

L2(σ)
.

To finish this, we here need an extra concept : Stopping cubes. For more applications
and consequences associated with stopping cubes, we refer readers to the works [3] ,[4],
[9]. The following argument is essentially taken from [5].

Stopping Cubes. We make the following construction of stopping cubes S. Set S0 to
be all the maximal dyadic children of Q0, which are in Df . Then set τ(S) = EσSf , for
S ∈ S0. In the recursive step, assuming that Sk is constructed, for S ∈ Sk, set chS(S) to
be the maximal subcubes I ⊂ S, I ∈ Df , such that either

(a) EσI f > 2τ(S);
(b) The first condition fails, and

∑
K∈WI

Pα(K,1Sσ)2w(K) ≥ C0P2σ(I).

Then, define Sk+1 :=
⋃
S∈Sk chS(S), and for any Ṡ ∈ chS(S)

τ(Ṡ) :=

{
Eσ
Ṡ
|f | Eσ

Ṡ
|f | > 2τ(S),

τ(S) otherwise .

Finally, S :=
⋃∞
k=0 Sk. Note that `(Ṡ) ≤ 2−r−1`(S) for all Ṡ ∈ chS(S). In particular, it

follows that

(5.3) Ṡ(1) ⊂ K, for some K ∈ WS.

This holds since Ṡ(1) is good, and strongly contained in S, so that Proposition 2.4 gives
the implication above.
Some Notations . For any dyadic cube I, S(I) will denote its father in S, the minimal
cube in S that contains it. Note that there maybe the case S(I) = I. For any stopping
cube S, F (S) will denote its father in the stopping tree, inductively, F k+1S = F (F kS).

The construction enjoys the following properties.

Lemma 5.1 ([9]). The following statements hold.

(i) For all cubes I, |EσI f | . τ(S(I)).
(ii) The quasi-orthogonality bound holds :

(5.4)
∑
S∈S

τ(S)2σ(S) .
∥∥f∥∥2

L2(σ)
.

Applying the tool of stopping cubes, we can make the following decomposition.
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(5.5)

s−log2 `(R)∑
k=r+1

(EσR(k−1)∆
σ
R(k)f)1R(k−1)

=
∞∑
m=1

s−log2 `(R)∑
k=r+1

1FmS(R(r))⊂S(R(k−1))(EσR(k−1)∆
σ
R(k)f)1FmS(R(r))\Fm−1S(R(r))

+

s−log2 `(R)∑
k=r+1

(EσR(k−1)∆
σ
R(k)f)1S(R(r)) −

s−log2 `(R)∑
k=r+1

(EσR(k−1)∆
σ
R(k)f)1S(R(k−1))\R(k−1) .

Now, we are in the position to consider the contribution of K, which is defined in the
beginning of Section 5.4. Recall that

K =
∑

R∈Dgood
`(R)≤2s−r−1

∫∫
WR

∫
Rn

∣∣∣ s−log2 `(R)∑
k=r+1

ψt ∗ ((1R(k−1)∆σ
R(k)f)σ)(x− y)

∣∣∣2( t

t+ |y|

)nλdy
tn
wdx

dt

t
.

Thus, K is bounded by corresponding three parts, which are written as KGlo, KPar, and
KLoc, respectively. We next shall estimate each one successively.

• The Global Part. First, we analyze the first term on the right of (5.5), It is worth
noting that reindexing the corresponding sum is crucial to our estimates. To do this, we
here borrow an idea from [5].

Fix a stopping cube S and integer m. Note that for a choice of constant |c| . 1, there
holds

(5.6)

s−log2 `(R)∑
k=r+1

1FmS⊂S(R(k−1))(EσR(k−1)∆
σ
R(k)f)1FmS\Fm−1S = c · τ(FmS)1FmS\Fm−1S.

Note that the restriction is on S(R(k−1)) above. We are going to reindex the sum above.
Consider S̈ ∈ S, and split integer m = p + q, where p = dm/2e. Consider the sub-
partition of S̈ given by P(m, S̈) = {Ṡ ∈ S : F pṠ = S̈}. Now, for stopping cube S with
F qS = Ṡ , and good R b S, we have R ⊂ K̇ for some K̇ ∈ WṠ , where Ṡ ∈ P(m, S̈).

Note that we have R ⊂ K̇ ⊂ Ṡ. It follows from the goodness of R that he assumption of
of Lemma 4.2 holds for these three intervals. The above argument is saying that

⋃
R:good,RbS

F qS=Ṡ

R ⊂
⋃

Ṡ∈P(m,S̈)

⋃
K̇∈WṠ

⋃
R:R⊂K̇

R.
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For each S̈ ∈ S, using (5.6) to bound the sum over martingale differences, (4.3) and
pivotal condition, we obtain

∑
R:FmS(R(r))=S̈

∫∫
WR

∫
Rn

∣∣∣ s−log2 `(R)∑
k=r+1

S̈⊂S(R(k−1))

EσR(k−1)∆
σ
R(k)f · ψt ∗ (σ1S̈\Fm−1S)(x− y)

∣∣∣2

×
( t

t+ |y|

)nλ
dy
wdxdt

tn+1

. τ(S̈)2
∑

Ṡ∈P(m,S̈)

∑
K̇∈WṠ

∑
R:R∈K̇

∫
Rn

∫∫
WR

|ψt ∗ (σ1S̈\Fp−1Ṡ)(x− y)|2
( t

t+ |y|

)nλ
wdx

dtdy

tn+1

. τ(S̈)2
∑

Ṡ∈P(m,S̈)

∑
K̇∈WṠ

Pα(K̇, σ1S̈)2
∑

R:R∈K̇

[ `(R)

`(K̇)

]α
w(R)

. 2−mα/2τ(S̈)2
∑

Ṡ∈P(m,S̈)

∑
K̇∈WṠ

Pα(K̇, σ1S̈)2w(K̇)

. 2−mα/2(A2 + B)2τ(S̈)2σ(S̈).

In the last step, we used Lemma 2.6. The sum over S̈ ∈ S is controlled by the quasi-
orthogonality bound (5.4).

Let us next explain how to obtain the geometric factor. We can assume that q > 2.
Now, S(R) = S and F qS = Ṡ. Write the stopping cubes between S and Ṡ as

R ⊂ S = S1 ( S2 ( · · · ( Sq := Ṡ, St ∈ S, 1 ≤ t ≤ q.

Observing (5.3), we have Sq−1 ⊂ K̇, for K̇ ∈ WṠ as above. Then, we have `(R) ≤
2−q+1`(K̇). Since q ' m/2, we obtain the geometric decay in m above.

• The Paraproduct Estimate. Next, we bound the second term on the right of
(5.5). It is worth noting that the sum over the martingale differences is controlled by
the stopping value τ(S). That is,∣∣∣ s−log2 `(R)∑

k=r+1

EσR(k−1)∆
σ
R(k)f

∣∣∣ =
∣∣EσR(r)f

∣∣ . τ(S).

Therefore, for fixed S ∈ S, an application of testing condition (1.5) gives that

∑
R:`(R)≤2s−r−1

S(R(r))=S

∫∫
WR

∫
Rn

∣∣∣ s−log2 `(R)∑
k=r+1

ψt ∗ (EσR(k−1)∆
σ
R(k)f · σ1S)(x− y)

∣∣∣2( t

t+ |y|

)nλdy
tn
wdx

dt

t

. τ(S)2
∫
Rn

∫∫
Ŝ

|ψt ∗ (σ1S)(x− y)|2
( t

t+ |y|

)nλ
wdx

dtdy

tn+1
. B2τ(S)2σ(S).

And the quasi-orthogonality bound controls the sum over S .
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• The Local Bound. Finally, let us estimate the third term on the right in (5.5). We
will see that he stopping rule on the pivotal condition is now essential. Fix an S ∈ S,
and fix a k ≥ r. In addition, fix a (good) cube Ṙ which intersects S, and child R̈ of Ṙ.

Recall the construction of the stopping cubes. Since S(R̈) = S, this means that the
cube R̈ must fail the conditions of the stopping cube construction, in particular it must
fail the pivotal stopping condition. Thus, by (4.3), for any K ∈ WR̈,∑

R:S(R̈)=S

R(k−1)=R̈,R⊂K

∫∫
WR

∫
Rn
|ψt∗(1S(R̈)\R̈)(x−y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t
. 2−kα/2Pα(K, σ1S)2w(K).

Furthermore, since R̈ is not a stopping cube,

|Eσ
R̈

∆σ
Ṙ
f |2

∑
R:S(R̈)=S

R(k−1)=R̈

∫∫
WR

∫
Rn
|ψt ∗ (1S(R̈)\R̈)(x− y)|2

( t

t+ |y|

)nλdy
tn
wdx

dt

t

. 2−kα/2(A2 + B)2|Eσ
R̈

∆σ
Ṙ
f |2σ(R̈).

It is clear that we can sum over the various fixed quantities to complete the proof in this
case.

So far, we have proved (5.2). Consequently, we complete the proof of sufficiency in
Theorem 1.1.

�
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