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Abstract. In this paper we analyze the large-time behavior of the augmented Burgers equation. We
first study the well-posedness of the Cauchy problem and obtain L1-Lp decay rates. The asymptotic

behavior of the solution is obtained by showing that the influence of the convolution term K ∗ uxx is

the same as uxx for large times. Then, we propose a semi-discrete numerical scheme that preserves this
asymptotic behavior, by introducing two correcting factors in the discretization of the non-local term.

Numerical experiments illustrating the accuracy of the results of the paper are also presented.

1. Introduction and main results

In this paper we consider the following equation:

(1)

{
ut = uux + ν uxx + cKθ ∗ uxx, (t, x) ∈ (0,∞)× R,
u(0, x) = u0(x), x ∈ R,

where ∗ denotes the convolution in the x variable, the parameters ν, c, θ are positive and

(2) Kθ(z) =

{
1
θ e
−z/θ, z > 0,

0, elsewhere.

This is a constant-parameter version of the augmented Burgers equation, which has been used to model
the propagation of the sonic-boom produced by supersonic aircrafts from their near-field down to the
ground level.

Until the last decade of the 20th century, linear theory was used to model the evolution of this strident
noise, based on the seminal works by Hayes [13] and Whitham [33]. In fact, until recently, most of the
research, both from and analytical and a numerical point of view, followed the so-called Jones-Seebass-
George-Darden theory for sonic-boom minimization [8, 17, 27, 28, 29].

Newer trends have started to use nonlinear physical models to improve the characterization of the
sonic-boom propagation. In this paper we focus on Burgers-type equations, which have been one of
the main tools to model the propagation of finite-amplitude plane waves. The classical viscous Burgers
equation [4] was first considered for wave propagation in a lossy medium. Successive generalizations
included other effects such as geometrical spreading and inhomogeneous mediums [5, 11, 20] or relaxation
processes [22, 23]. All those phenomena were taken into account in the augmented Burgers equation,
initially developed by Cleveland [7] and then adopted by Rallabhandi [25, 26]. This equation is given by

(3)
∂P

∂σ
= P

∂P

∂τ
+

1

Γ

∂2P

∂τ2
+
∑
ν

Cν
1

1 + θν
∂
∂τ

∂2P

∂τ2
− 1

2G

∂G

∂σ
P +

1

2ρ0c0

∂(ρ0c0)

∂σ
P,

where P = P (σ, τ) is the dimensionless perturbation of the pressure distribution. The covered distance
σ and time of the perturbation τ are also dimensionless. The operator appearing in the summation,
corresponding to the molecular relaxations, it is defined by:

(4)
1

1 + θν
∂
∂τ

f(τ) =
1

θν

∫ τ

−∞
e(ξ−τ)/θνf(ξ)dξ = Kθν ∗ f(τ),

Typically, two relaxation modes are considered: one for Oxygen molecules and another one for Nitrogen
ones. θν and Cν are the dimensionless relaxation time and dispersion parameter, respectively, for each
one. Γ is a dimensionless thermo-viscous parameter and function G ≡ G(σ) denotes the ray-tube area.
The atmosphere conditions are given by density ρ0 ≡ ρ(σ) and speed of sound c0 ≡ c0(σ), both closely
related to the altitude of the flight. We refer the reader to [7] for a detailed description on the development
of this model and to [1] for a comprehensive review about the sonic-boom minimization problem.
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Industrial applications of this kind of models, such as the aforementioned sonic-boom phenomena,
need to approximate solutions for large time. Therefore, they need a good understanding of the behavior
of the solutions in these extended regimes in order to be able to simulate them accurately. This issue
needs to be treated carefully, as it was already shown in [14]. In that work, the authors proved that a
numerical scheme with an acceptable accuracy in short-time intervals could completely disturb the large-
time behavior of solutions due to the numerical viscosity introduced by the numerical approximation. It
is well known that the asymptotic profile of the inviscid Burgers equation belongs to a two-parameter
family of N-waves [21], whereas these N-waves are mere intermediate metastable states of the viscous
Burgers equation [19]. In our case, (1) is not a hyperbolic equation and, hence, the asymptotic profile is
not an N-wave, but a diffusive wave too. Nevertheless, in our simulations we show that small values for
ν and c require a similar treatment from the numerical point of view, as if the equation was a hyperbolic
conservation law. In fact, in those situations, the solution may develop very steep regions (in what follows
we refer to these as quasi-shocks), which numerically behave almost like shocks.

Besides the nonlinear term, in this work we also analyze the influence of the operator (4) on the large-
time behavior of the solutions of the augmented Burgers equation. For the sake of simplicity, we consider
only one molecular relaxation phenomenon and homogeneous atmosphere –thus, we neglect the last two
terms in (3). In that framework, note that (3) can be expressed as in (1). Moreover, the asymptotical
analysis done in the first sections is focused on the case ν = c = θ = 1, but the extension to any positive
value of these parameters is immediate. We will omit the subindex θ whenever its value is one. In this
case, we have that

K ∗ uxx = K ∗ u− u+ ux.

Thus, (1) can be rewritten in a more suitable manner as follows:

(5)

{
ut = uux + uxx +K ∗ u− u+ ux, (t, x) ∈ (0,∞)× R,
u(t = 0, x) = u0(x), x ∈ R.

The main goals of the present paper are to analyze the asymptotic behavior of the solutions to (5) as
t→∞ and to build a semi-discrete numerical scheme that preserves this behavior. In what concerns the
large-time behavior of solutions of system (5), the main result is stated in the following theorem.

Theorem 1.1. Let u0 ∈ L1(R). For any p ∈ [1,∞], the solution u to (5) satisfies

t
1
2 (1− 1

p )‖u(t)− uM (t)‖p −→ 0, as t→∞,

where uM (t, x) is the solution of the following equation:{
ut = uux + 2uxx, x ∈ R, t > 0,

u(0) = Mδ0.

Here δ0 denotes the Dirac measure at the origin and M is the mass of the initial data, M =
∫
R u0(x)dx.

In the cases when ν, c and θ are no longer equal to one, the asymptotic profile does not depend on θ.
Moreover, the coefficient in front of the viscosity term in the equation satisfied by the profile is ν + c:{

ut = uux + (ν + c)uxx, x ∈ R, t > 0,

u(0) = Mδ0.

As a matter of fact, our results are also valid for the case ν > 0 and c = 0, which corresponds to the
classical viscous Burgers equation. At the continuous level, this has been long known (see, for instance,
[10] and the references therein). But, to the best of our knowledge, the results for the semi-discrete
framework included in our work are new too. On the contrary, the case ν = 0 and c > 0 would require
additional results that are beyond the scope of this paper.

Note also that the general case mentioned above will be particularly important at the numerical level.
On the one hand, when choosing the numerical flux to discretize the nonlinearity, we need to handle
thoroughly the numerical viscosity that is introduced. In [14], it is shown that in the hyperbolic case,
the N-wave asymptotic profile could be destroyed if the numerical flux is not chosen carefully. In our
case, if ν and c are much smaller than ∆x2/(2∆t) (∆x being the mesh-size and ∆t, the time-step),
the Lax-Friedrichs scheme would make the diffusion start dominating much earlier due to the numerical
viscosity. On the other hand, we need to treat the truncation of the integral term in such a manner that
we do not introduce undesired pathologies in the large-time behavior of the numerical solutions. We do
this by means of two correcting factors for the terms u and ux in (5).
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Let us denote by u∆ an approximation to the solution u of (5). We define this piecewise constant in
space function as follows:

(6) u∆(t, x) = uj(t), x ∈ (xj−1/2, xj+1/2), t ≥ 0,

where xj+1/2 = (j + 1
2 )∆x, for all j ∈ Z, and ∆x > 0 is a given mesh-size. We will also denote by

xj = j∆x the intermediate points of the spatial cells. For each j ∈ Z we need to compute a function
uj(t) that approximates the value of the solution in the cell. Taking into account the issues enumerated
above, we choose the following discretization of (5): the Engquist-Osher scheme for the flux, centered
finite differences for the laplacian and the composite rectangle rule for the integral:

(7)



u′j(t) =
gj+1/2(t)− gj−1/2(t)

∆x
+
uj−1(t)− 2uj(t) + uj+1(t)

∆x2

+

N∑
m=1

ωmuj−m(t)− F∆
0 uj(t) + F∆

1

uj+1(t)− uj(t)
∆x

, j ∈ Z, t ≥ 0,

uj(0) =
1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx, j ∈ Z,

where

(8) ωm =

∫ xm

xm−1

K(z)dz = e−m∆x
(
e∆x − 1

)
, m = 1, . . . , N,

and

gj+1/2(t) =
uj(t)

(
uj(t)− |uj(t)|

)
4

+
uj+1(t)

(
uj+1(t) + |uj+1(t)|

)
4

, j ∈ Z, t ≥ 0.

The parameter N = N(∆x) ∈ N denotes the number of nodes considered in the quadrature formula of
the integral. The correcting factors F∆

0 and F∆
1 in front of the approximations of u and ux, given by

(9) F∆
0 =

N∑
m=1

ωm and F∆
1 = ∆x

N∑
m=1

mωm,

handle, from the asymptotic behavior point of view, the correct truncation of the nonlocal term:

(K ∗u−u+ux)(x) =

∫
R
K(x−y)(u(y)−u(x)− (y−x)ux(x))dy '

N∑
m=1

ωm

(
uj−m − uj +m

uj+1 − uj
∆x

)
.

Finally, for ∆x fixed we study the asymptotic behavior as t→∞ of these semi-discrete solutions u∆.

Theorem 1.2. Let u0 ∈ L1(R), ∆x > 0 and u∆ be the corresponding solution of the semi-discrete scheme
(7) for the augmented Burgers equation (5). For any p ∈ [1,∞], the following holds

(10) t
1
2 (1− 1

p )‖u∆(t)− u∆
M (t)‖p −→ 0, as t→∞,

where u∆
M (t, x) is the unique solution of the following viscous Burgers equation:{

vt = vvx + (1 + F∆
2 )vxx, x ∈ R, t > 0,

v(x, 0) = Mδ0.

Here, M =
∫
R u0(x)dx is the mass of the initial data and

(11) F∆
2 =

∆x2

2

(
N∑
m=1

m(m− 1)ωm

)
.

Let us observe that if N is taken such that N∆x → ∞ when ∆x → 0 and N → ∞, then F∆
2 → 1,

which is, precisely, the value that we should expect from the continuous model. Besides, let us remark
that in the case where ν, c and θ are not necessarily equal to one, the asymptotic profile is the unique
solution of: {

vt = vvx + (ν + c F∆,θ
2 )vxx, x ∈ R, t > 0,

v(x, 0) = Mδ0.

In this case, we take

ωθm = e−m∆x/θ
(
e∆x/θ − 1

)
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and

F∆,θ
0 =

N∑
m=1

ωθm, F∆,θ
1 =

∆x

θ

N∑
m=1

mωθm and F∆,θ
2 =

∆x2

2θ2

(
N∑
m=1

m(m− 1)ωθm

)
.

In the same conditions as above, for a fixed θ we still have that F∆,θ
2 converges to one.

Remark 1. We emphasize that function uM in Theorem 1.1 and u∆
M in Theorem 1.2 are both particular

cases of uνM (ν = 2 and ν = 1 + F∆
2 respectively), which is solution of the equation{
ut = uux + νuxx, x ∈ R, t > 0,

u(0) = Mδ0.

In fact, uνM is explicitly given by (see [10])

(12) uνM (t, x) = 2
√
ν t−

1
2 exp

(
−x2

4νt

)[
CM +

∫ x/
√
νt

−∞
exp

(
−s2

4

)
ds

]−1

,

where CM ∈ R is a constant such that
∫
R u

ν
M (t, x)dx = M , for all t > 0. This shows that both uM and

u∆
M are of the form t−

1
2 fM

(
x√
t

)
for some function fM and, hence, self-similar. Note also that u∆

M → uM

as ∆x→ 0.

Moreover, as we can see in the numerical experiments, the numerical flux needs to be chosen carefully,
to avoid adding an extra viscosity term to the equation of the asymptotic profile. This has already been
observed in [14] in the context of the numerical approximation of the inviscid Burgers equation. That
extra viscosity term, of the order of ∆x2/(2∆t), would affect critically the numerical solution if both
parameters ν and c were much smaller. Note also that taking F∆

0 = F∆
1 = 1 would add undesired

phenomena, such as a transport, to the equation too.
Let us conclude this section by adding a final comment on the time discretization, which we do not

address in this paper. At the continuous/semi-discrete level, we obtain estimates on the solution that
allow us to prove the compactness of a family of rescaled solutions. Then, the asymptotic behavior
is obtained as in (10). The analogous step for the fully time-explicit discrete scheme requires further
development.

The paper is organized as follows. In Section 2, we deal with the well-posedness of equation (5) and the
asymptotical behavior of its solutions. In Section 3, we focus on the semi-discrete numerical scheme (7),
showing its convergence and analyzing for a fixed ∆x the large-time behavior of the numerical solutions.
To illustrate the main results of this work, we conclude with some numerical simulations in Section 4.

In this paper we have considered Engquist-Osher numerical flux for the discretization of the convective
term. Let us remark that any other scheme satisfying the analysis done in [14] would be valid too. For
instance, Godunov numerical flux would be acceptable, whereas Lax-Friedrichs-type ones are not (as we
highlight in Section 4).

2. Analysis of the augmented Burgers equation

In this section we study the well-posedness of the Cauchy problem for (5) with initial data in L1(R).
We also obtain estimates in the Lp-norms of its solution, which we subsequently denote ‖ · ‖p. We mainly
proceed as in [10] and [18].

2.1. Existence and uniqueness of solutions. The following theorem concerns the global existence
of solutions and specifies their regularity. Let us remark that the result coincides with the one for the
classical convection-diffusion equation [10].

Theorem 2.1. For any u0 ∈ L1(R), there exists a unique solution u ∈ C([0,∞), L1(R)) of (5). Moreover,
it also satisfies

u ∈ C((0,∞),W 2,p(R)) ∩ C1((0,∞), Lp(R)), ∀p ∈ (1,∞).

Additionally, equation (5) generates a contractive semigroup in L1(R).

Proof. Existence in L1(R) ∩ L∞(R). The local existence of the solution follows by a classical Banach
fixed point argument as in [10] or [15]. To extend the solution globally, we deduce a priori estimates
on the L1(R) and L∞(R) norms of the solution. Let us first focus on the L1-norm. Multiplying (5) by
sign(u) and integrating in R, it follows that

(13)
d

dt

∫
R
|u|dx ≤

∫
R

(K ∗ u− u) sign(u)dx ≤
∫
R
Kdx

∫
R
|u|dx−

∫
R
|u|dx ≤ 0
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and, consequently, ‖u(t)‖1 ≤ ‖u0‖1.
To estimate the L∞-norm similar arguments apply. We define µ = ‖u0‖∞, multiply equation (5) by

sign[(u− µ)+], where z+ := max{0, z}, and integrate it in R. We obtain

d

dt

∫
R
(u− µ)+dx ≤

∫
R

(K ∗ u− u+ ux) sign(u− µ)+dx =

∫
R

(K ∗ (u− µ)− (u− µ)) sign(u− µ)+dx

(14)

≤
∫
R
K ∗ (u− µ)+ −

∫
R
(u− µ)+ ≤ 0.

We conclude that (u − µ)+ ≤ (u0 − µ)+ = 0 and, consequently, u(t) ≤ µ almost everywhere. The same
argument for (u+µ)−, where z− := −max{0,−z}, shows that u ≥ −µ. Therefore, if u0 ∈ L1(R)∩L∞(R),
then ‖u(t)‖∞ ≤ ‖u0‖∞ for all t > 0. Lastly, since both L1-norm and L∞-norm remain bounded in time,
the solution u exists globally.
Regularity. It follows from classical regularity arguments (e.g., [16]) that

u ∈ C((0, T ),W 2,p(R)) ∩ C1((0, T ), Lp(R))

for every p ∈ (1,∞). This also holds for T = ∞. Let us remark that this regularity makes the integrals
in the previous steps well defined.
Uniqueness. To prove the uniqueness of solution it is enough to check that (5) generates a contractive
semigroup in L1(R); that is, for any initial datum u0, v0 ∈ L1(R) ∩ L∞(R)

(15) ‖u(t)− v(t)‖1 ≤ ‖u0 − v0‖1, ∀t > 0,

where u and v are the corresponding solutions. An analogous argument as in (13), applied to the equation
verified by u− v, shows

d

dt

∫
R
|u− v|dx ≤ 0,

hence the contraction property in L1(R).
Existence and uniqueness in L1(R). The extension of the result to a general u0 ∈ L1(R) can be done
following the same arguments as in [10]. �

2.2. Decay estimates and large-time behavior. Now we obtain Lp-decay rates for the solution to
(5). These are the same as the ones for the viscous Burgers equation [10].

Proposition 2.1. For all p ∈ [1,∞], there exists a positive constant C(p) such that

(16) ‖u(t)‖p ≤ C(p)‖u0‖1t−
1
2 (1− 1

p ), ∀t > 0,

for all solutions of equation (5) with initial data u0 ∈ L1(R).

Proof. The case p = 1 is an immediate consequence of Theorem 2.1. In the case p ∈ [2,∞), we multiply
equation (5) by |u|p−2u and integrate it in R. We obtain:

1

p

d

dt

(
‖u‖pp

)
=

∫
R
|u|p−2uutdx =

∫
R
|u|puxdx+

∫
R
|u|p−2uuxxdx+

∫
R
|u|p−2u(K ∗ u− u+ ux)dx(17)

= −4(p− 1)

p2

∥∥∥(|u|p/2)
x

∥∥∥2

2
− ‖u‖pp +

∫
R
|u|p−2u(K ∗ u)dx.

Let us focus on the last term, so that we can compare it with the Lp-norm of u. Young’s inequality gives
us that ∣∣|u(t, x)|p−2u(t, x)u(t, y)

∣∣ = |u(t, x)|p−1|u(t, y)| ≤ p− 1

p
|u(t, x)|p +

1

p
|u(t, y)|p.

Thus, using that K has mass one, it follows:∣∣∣∣∫
R
|u|p−2u(K ∗ u)dx

∣∣∣∣ ≤ ∫
R

∫
R
K(x− y)|u(t, x)|p−1|u(t, y)|dydx ≤ ‖u‖pp.

Plugging this last estimate in (17) we have

(18)
d

dt

(
‖u(t)‖pp

)
+

4(p− 1)

p

∥∥∥(|u(t)|p/2
)
x

∥∥∥2

2
≤ 0.

Finally, with the same arguments as in [10] we obtain the desired estimate (16) for any p ∈ [2,∞). The
case p = ∞ follows using the techniques of Véron [32]. The case p ∈ (1, 2) follows by applying Hölder’s
inequality and (16) with p = 1 and p = 2. �
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Similar estimates can be found for the derivative of the solution of (5). Let us define the re-scaled
function uλ, which will also be used in the following section to obtain the asymptotic profile. For λ > 0
we define

(19) uλ(t, x) = λu(λ2t, λx).

The scales are the same as for the Burgers or heat equations. Clearly, uλ is the solution of the following
equation:

(20)

{
uλ,t = uλuλ,x + uλ,xx + λ2(Kλ ∗ uλ − uλ) + λuλ,x, (t, x) ∈ (0,∞)× R,
uλ(0, x) = uλ,0(x) = λu0(λx), x ∈ R,

where Kλ(z) = λK(λz), z ∈ R.

Proposition 2.2. For each p ∈ [1,∞], there exists a constant C = C(p, ‖u0‖1) > 0, such that the
solution of equation (5) satisfies

(21) ‖ux(t)‖p ≤ Ct−
1
2 (1− 1

p )− 1
2 , ∀t > 0.

Proof. First, note that, for any τ > 0,

‖uλ,x(τ)‖p = λ2− 1
p ‖ux(λ2τ)‖p,

so proving (21) is equivalent to showing that for some τ > 0, ‖uλ,x(τ)‖p is uniformly bounded on λ > 0

and, afterwards, taking λ =
√
t/τ . Let us denote by Dt

λ the semigroup associated with the linear problem{
vt = λ2(Kλ ∗ v − v) + λvx, (t, x) ∈ (0,∞)× R,
v(0, x) = v0(x), x ∈ R.

It is immediate that Dt
λ is non-expansive in Lp(R), 1 ≤ p <∞,

1

p

d

dt

∫
R
|v|pdx = λ2

∫
R
(Kλ ∗ v − v)|v|p−1 sign(v)dx ≤ 0.

On the other hand, for all τ > 0, function uλ solution of (20) verifies the following integral equation:

uλ(t+ τ) = G(t) ∗Dt
λuλ(τ) +

∫ t

0

G(t− s) ∗Dt−s
λ

((
u2
λ(s+ τ)

2

)
x

)
ds,

where G(t) is the heat kernel. Using the fact that Dλ is non-expansive in Lp(R), 1 ≤ p < ∞, and
following the same arguments as in [10] we obtain the desired results. For complete details see [24]. �

2.3. Asymptotic expansion. The decay rates of the previous section will allow us to obtain the as-
ymptotic profile of solutions for (5). Note that taking λ =

√
t we have that

‖uλ(1)− uM (1)‖1 = ‖u(t)− uM (t)‖1,
due to the definition of uλ and the self-similar nature of uM . Thus, the aim is to compute the limit
λ→∞ in (20), which is equivalent to taking the limit t→∞ in (5) when p = 1.

Let us first observe that the estimates in Proposition 2.1 and Proposition 2.2 are also valid for uλ
defined in (19). The mass is conserved too. We state this in the following lemma.

Lemma 2.1. For each p ∈ [1,∞], there exists a constant C = C(p, ‖u0‖1) > 0 such that, for all λ > 0,
the solution of (20) satisfies

‖uλ(t)‖p ≤ Ct−
1
2 (1− 1

p ) and ‖uλ,x(t)‖p ≤ Ct−
1
2 (1− 1

p )− 1
2 , ∀t > 0.

Moreover, the mass of uλ is conserved in time.

Proof. We just have to use the definition of uλ in (19) and apply Proposition 2.1. For all t > 0 and λ > 0
we have

‖uλ(t)‖p = λ1− 1
p ‖u(λ2t)‖p ≤ Ct−

1
2 (1− 1

p ).

Same procedure applies to uλ,x, concerning Proposition 2.2. Regarding the last result, it is easy to see
that: ∫

R
uλ(t, x)dx =

∫
R
u(λ2t, x)dx =

∫
R
u0(x)dx,

which proves the mass conservation. �

In particular, this lemma implies that, for any finite time interval [τ, T ] with 0 < τ < T <∞, the set
{uλ}λ>0 is uniformly bounded in L∞([τ, T ], Lp(R)), 1 ≤ p ≤ ∞.
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2.3.1. Compactness of the family {uλ}λ>0. As we said at the beginning, we would like to pass to the
limit λ → ∞. We need the following theorem due to J. Simon [30], as an extension of the Aubin-Lions
Lemma, to assure the compactness of the set {uλ}λ>0.

Theorem 2.2 ([30, Theorem 5]). Let X, Z and Y be Banach spaces satisfying X ⊂ Z ⊂ Y with compact
embedding X ⊂ Z. Assume, for p ∈ [1,∞] and T > 0, that F is bounded in Lp(0, T ;X) and {∂tf : f ∈ F}
is bounded in Lp(0, T ;Y ). Then, F is relatively compact in Lp(0, T ;Z) and, in the case of p = ∞, also
in C(0, T ;Z).

Applying this result we can prove the following theorem regarding the relative compactness of the set
{uλ}λ>0. In the sequel, for any functions f and g, we denote f . g if there exists a constant C > 0, not
depending on the scaling parameter nor the time, such that f ≤ Cg.

Theorem 2.3. For every 0 < τ < T <∞, the set {uλ}λ>0 ⊂ C([τ, T ], L1(R)) is relatively compact.

Proof. Step 1: Compactness in C([τ, T ], L1
loc(R)). First, for any r > 0 we will show the relative com-

pactness in C([τ, T ], L2(I)), with I = [−r, r]. Let us consider the spaces X = H1(I), Z = L2(I) and
Y = H−1(I). We would like to apply Theorem 2.2 to the set F = {uλ}λ>0.

From Lemma 2.1 we know that {uλ}λ>0 and {uλ,x}λ>0 are bounded in L∞([τ, T ], L2(I)). In particular,
the first condition of Theorem 2.2 on F is fulfilled. Therefore, it suffices to check that uλ,t is bounded in
L∞([τ, T ], H−1(I)). Using (20), for every ϕ ∈ C∞c (I), we have:∣∣∣∣∫

R
uλ,tϕdx

∣∣∣∣ ≤ ∣∣∣∣∫
R
uλ uλ,xϕdx

∣∣∣∣+

∣∣∣∣∫
R
uλ,xxϕdx

∣∣∣∣+

∣∣∣∣∫
R

(
λ2(Kλ ∗ uλ − uλ) + λuλ,x

)
ϕdx

∣∣∣∣(22)

. ‖ϕx‖2‖uλ‖24 + ‖ϕx‖2‖uλ,x‖2 +

∣∣∣∣∫
R

(
λ2(Kλ ∗ uλ − uλ) + λuλ,x

)
ϕdx

∣∣∣∣ .
Obviously, the first two terms on the right hand side of (22) are uniformly bounded in [τ, T ], so let us
focus on the third one:

Iλ =

∣∣∣∣∫
R

(
λ2(Kλ ∗ uλ − uλ) + λuλ,x

)
ϕdx

∣∣∣∣ =

∣∣∣∣∫
R

(
λ2
(
K̂(ξ/λ)− 1

)
+ iλξ

)
ûλ(ξ)ϕ̂(ξ)dξ

∣∣∣∣ .
Let us denote

mλ(ξ) = λ2
(
K̂(

ξ

λ
)− 1

)
+ iλξ.

We claim that

(23) |mλ(ξ)| ≤ ξ2, ∀ξ ∈ R,∀λ > 0.

Using the Cauchy-Schwartz inequality, we have:

(24) Iλ =

∣∣∣∣∫
R
mλ(ξ)ûλ(ξ)ϕ̂(ξ)dξ

∣∣∣∣ . ‖ϕ‖H1(R) ‖uλ‖H1(R) .

Hence, going back to (22) and replacing (24), we obtain∣∣∣∣∫
R
uλ,tϕdx

∣∣∣∣ . ‖ϕ‖H1(R)

(
‖uλ‖24 + ‖uλ‖H1(R)

)
.

By Lemma 2.1, all the quantities in the right-hand side are uniformly bounded in [τ, T ]. Consequently,
the set {uλ}λ>0 is relatively compact in C([τ, T ], L2(I)).

It remains to prove claim (23). Observe that

(25) K̂(ξ) =
1

1 + iξ
, ξ ∈ R,

and, therefore,

|mλ(ξ)| =
∣∣∣∣λ2

(
1

1 + iξ/λ
− 1

)
+ iλξ

∣∣∣∣ =
λξ2√
λ2 + ξ2

≤ ξ2, ∀λ > 0.

Since L2(I) is continuously embedded in L1(I), the compactness in C([τ, T ], L2(I)) is clearly transferred
to C([τ, T ], L1(I)). To extend this local result to the globally we prove uniform, with respect to λ,
estimates on the tails of uλ.

Step 2: Uniform control of the tails. For every r > 0, let us define function ψr(z) = ψ(z/r), where ψ
is a nonnegative C∞(R) function such that

(26) ψ(z) =

{
0, |z| < 1,

1, |z| > 2.
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Since {uλ}λ>0 is relatively compact in C([τ, T ], L1(I)), it suffices to show that

(27) sup
t∈[τ,T ]

‖uλ(t)ψr‖1 −→ 0 as r →∞, uniformly for λ > 0.

We first observe that it is enough to consider nonnegative initial data. For any u0, v0 ∈ L1(R) satisfying
u0 ≤ v0 we can show that the corresponding solutions of (20) satisfy uλ ≤ vλ. Thus choosing v0 = |u0|
and v0 = −|u0| we can show that |uλ| ≤ ũλ where ũλ is the solution corresponding to |u0| initial data.
This reduces (27) to the case of non-negative solutions. Let us assume that uλ is a nonnegative solution.
We multiply (20) by ψr and integrate it over (0, t)× R. We obtain:∫ t

0

∫
R
uλ,sψrdxds = −1

2

∫ t

0

∫
R
u2
λψ
′
rdxds+

∫ t

0

∫
R
uλψ

′′
r dxds

+

∫ t

0

∫
R

(
λ2(Kλ ∗ uλ − uλ) + λuλ,x

)
ψrdxds.

and, therefore,∫
R
uλ(t)ψrdx ≤

∫
R
uλ,0ψrdx+

‖ψ′‖∞
2r

∫ t

0

‖uλ(s)‖22ds+
‖ψ′′‖∞
r2

∫ t

0

‖uλ(s)‖1ds(28)

+

∫ t

0

∫
R

(
λ2
(
Kλ ∗ uλ(s)− uλ(s)

)
+ λuλ,x(s)

)
ψrdxds.

We have to obtain an estimate on the last term in the integral, uniformly on λ. Let us denote

J =

∫
R

(
λ2
(
Kλ ∗ uλ(s)− uλ(s)

)
+ λuλ,x(s)

)
ψrdx.

A change of variables and integration by parts give us that

J = λ2

∫
R

∫
R
K(x− y)u(λ2s, y)ψλr(x)dydx− λ2

∫
R
u(λ2s, x)ψλr(x)dx− λ2

∫
R
u(λ2s, x)ψ′λr(x)dx(29)

= λ2

∫
R
u(λ2s, y)

(∫
R
K(x− y)

(
ψλr(x)− ψλr(y)− (x− y)ψ′λr(y)

)
dx
)
dy

≤ λ2‖u0‖1‖(ψλr)′′‖∞ =
‖u0‖1‖ψ′′‖∞

r2
.

Plugging (29) into (28) and using Proposition 2.1, we get:∫
R
uλ(t)ψrdx ≤

∫
R
u0ψλrdx+ C

(√
t

r
+

t

r2

)
where C > 0 depends only on ‖u0‖1 and ‖ψ‖W 2,∞(R), which are both bounded. For λ > 1, since
ψr(x) > ψλr(x), we get ∫

R
uλ(t, x)ψr(x)dx ≤

∫
R
u0(x)ψr(x)dx+ C

(√
t

r
+

t

r2

)
,

which tends to zero uniformly on λ when r → ∞. Therefore, we proved (27) and, consequently, we can
assure that {uλ}λ>0 is relatively compact in C([τ, T ], L1(R)). �

Modifying slightly the previous proof, we can also conclude the following lemma, regarding the initial
condition uλ,0.

Lemma 2.2. For every test function ϕ ∈ C2
b (R), there exists a constant C = C(ϕ, u0) > 0, such that∣∣∣∣∫

R
uλ(t, x)ϕ(x)dx−

∫
R
uλ,0(x)ϕ(x)dx

∣∣∣∣ ≤ C(t+
√
t), ∀t > 0,

holds uniformly on λ > 0.

Proof. We multiply (20) by ϕ ∈ C2
b (R) and integrate it over (0, t)× R. We get:∫ t

0

∫
R
uλ,tϕ =

∫ t

0

∫
R
uλuλ,xϕ+

∫ t

0

∫
R
uλ,xxϕ+

∫ t

0

∫
R

(
λ2(Kλ ∗ uλ − uλ) + λuλ,x

)
ϕ.
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Integrating by parts and making use of Lemma 2.1, we have∣∣∣∣∫
R
uλ(t)ϕdx−

∫
R
uλ,0ϕdx

∣∣∣∣ ≤ ‖ϕ′‖∞2

∫ t

0

‖uλ(s)‖22ds+ ‖ϕ′′‖∞
∫ t

0

‖uλ(s)‖1ds

+

∣∣∣∣∫ t

0

∫
R

(
λ2
(
Kλ ∗ uλ(s)− uλ(s)

)
+ λuλ,x(s)

)
ϕdxds

∣∣∣∣ .
To conclude the proof, it is enough to apply a similar argument as for (28) to get:∣∣∣∣∫

R
uλ(t)ϕdx−

∫
R
uλ,0ϕdx

∣∣∣∣ ≤ C(‖ϕ‖W 2,∞(R), ‖u0‖1)(
√
t+ t).

The proof is now finished. �

2.3.2. Passing to the limit. Now we have all the ingredients that we need to prove our main result on the
large-time behavior of solutions to problem (5), stated in Theorem 1.1.

Proof of Theorem 1.1. By Theorem 2.3, we know that for every 0 < τ < T < ∞, the family {uλ}λ>0 is
relatively compact in C([τ, T ], L1(R)). Consequently, there exists a subsequence of it (which we will not
relabel) and a function ū ∈ C((0,∞), L1(R)) such that

(30) uλ −→ ū ∈ C([τ, T ], L1(R)), as λ→∞.

We can also assume that uλ(t, x)→ ū(t, x) almost everywhere in (0,∞)× R as λ→∞.
Our claim is that, passing to the limit λ→∞, we obtain that ū is a weak solution of the equation:

(31)

{
ūt = ūūx + 2ūxx, (t, x) ∈ (0,∞)× R,
ū(0) = Mδ0.

Let us multiply equation (20) by a test function φ ∈ C∞c ((0,∞) × R) and integrate it over (0,∞) × R.
We have:

−
∫ ∞

0

∫
R
uλφt =

∫ ∞
0

∫
R
uλ uλ,xφ+

∫ ∞
0

∫
R
uλ,xxφ+

∫ ∞
0

∫
R

(λ2(Kλ ∗ uλ − uλ) + λuλ,x)φ.

Using the properties of {uλ}λ>0 shown in the previous section, it is sufficient to check that

lim
λ→∞

∫ ∞
0

∫
R

(
λ2
(
Kλ ∗ uλ(t)− uλ(t)

)
+ λuλ,x(t)

)
φ(t)dxdt =

∫ ∞
0

∫
R
ū(t)φxx(t)dxdt.

Let us focus on the integral over the spatial domain. Taking into account the definition of Kλ and that∫
R z

mK(z)dz = m! for m ∈ N ∪ {0} we obtain

Lλ(t) :=

∫
R

(
λ2
(
Kλ ∗ uλ(t)− uλ(t)

)
+ λuλ,x(t)

)
φ(t)dx(32)

=

∫
R

∫
R
uλ(t, x)K(y)

(
φ(t, x+

y

λ
)− φ(t, x)− y

λ
φx(t, x)

)
dxdy

= λ2

∫
R

∫
R

(
φ(t, x+

y

λ
)− φ(t, x)

)
K(y)uλ(t, x)dydx− λ

∫
R

∫
R
φx(t, x)yK(y)uλ(t, x)dydx,

Now, because of Taylor’s Theorem, we know that there exists a point ζ ∈ (x, x+ y/λ) such that

φ(t, x+
y

λ
)− φ(t, x) =

y

λ
φx(t, x) +

1

2

y2

λ2
φxx(t, x) +

1

6

y3

λ3
φxxx(t, ζ).

We introduce this in (32):

Lλ(t) =
1

2

∫
R
φxx(t, x)uλ(t, x)dx

∫
R
y2K(y)dy +O(‖φxxx(t)‖∞)

1

6λ

∫
R
uλ(t, x)dx

∫
R
y3K(y)dy

=

∫
R
φxx(t, x)uλ(t, x)dx+O(‖φxxx(t)‖∞)

1

λ

∫
R
uλ(t, x)dx

=

∫
R
φxx(t, x)uλ(t, x)dx+ λ−1O(‖φxxx(t)‖∞).

Since uλ(t)→ ū(t) in C([τ, T ], L1(R)) and φ has compact support, we obtain that

lim
λ→∞

∫ ∞
0

Lλ(t)dt =

∫ ∞
0

∫
R
φxx(t, x)ū(t, x)dxdt.
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It follows that ū satisfies

−
∫ ∞

0

∫
R
ūφt = −1

2

∫ ∞
0

∫
R
ū2φx + 2

∫ ∞
0

∫
R
ūφxx.

It remains to identify the behavior of ū as t→ 0. From Lemma 2.2, for any ϕ ∈ C2
b (R) we have∣∣∣∣∫

R
uλ(t, x)ϕ(x)dx−

∫
R
uλ,0(x)ϕ(x)dx

∣∣∣∣ ≤ C(t+
√
t)

and, due to (30) and the definition of uλ in (20), we deduce by letting λ→∞ that

lim
t↓0

∫
R
ū(t, x)ϕ(x)dx = Mϕ(0).

Using classical approximation arguments together with the uniform tail control of uλ in (27), we conclude
that ū(0) = Mδ0 in the sense of bounded measures.

Therefore, we can finally conclude that ū is the unique solution uM of (31), and that, indeed, the
whole family {uλ}λ>0 converges to uM in C((0,∞), L1(R)). In particular, we have:

lim
λ→∞

‖uλ(1)− uM (1)‖1 = 0.

Setting λ =
√
t and using the self-similar form of uM (see e.g. [10]), we obtain that

(33) lim
t→∞

‖u(t)− uM (t)‖1 = 0.

Finally, the convergence in the Lp-norms for p ∈ (1,∞) follows from (33), the decay estimate given in
Lemma 2.1 for p =∞ and the Hölder inequality. In fact, we have:

(34) ‖u(t)− uM (t)‖p ≤ (‖u(t)‖∞ + ‖uM (t)‖∞)
1− 1

p ‖u(t)− uM (t)‖
1
p

1 ≤ o(t
− 1

2 (1− 1
p )).

In the case of the L∞-norm, we use the decay of ux(t) given by Proposition 2.2 and the estimate

‖uM,x(t)‖2 . t−
3
4 , resulting from the explicit formula (12). Using the Gagliardo-Nirenberg interpola-

tion inequality and (34), we obtain:

(35) ‖u(t)− uM (t)‖∞ . (‖ux(t)‖2 + ‖uM,x(t)‖2)
1
2 ‖u(t)− uM (t)‖

1
2
2 ≤ o(t−

1
2 ).

The proof is now finished. �

3. Semidiscrete scheme

In this section, we focus on the semi-discrete numerical scheme for equation (5), defined in (7). In order
to prove Theorem 1.2, we need some preliminary results on the decay of u∆ similar to those obtained in
Section 2 for the solution of equation (5). For simplicity, for every h > 0, we define the operators d+

h and

d−h as follows:

d+
h f(x) :=

f(x+ h)− f(x)

h
and d−h f(x) :=

f(x)− f(x− h)

h
.

As in the continuous case, for µ > 0 we also introduce the family of rescaled solutions

(36) uµ(t, x) = µu∆(µ2t, µx), t ≥ 0, x ∈ R,

and analyze the behavior of uµ when µ → ∞. Note that function uµ is piecewise constant on space
intervals of length ∆x/µ. Moreover, it satisfies the following system:
(37)

uµt (t, x) =
1

4

(
d+

∆x/µ

(
uµ(t, x)2

)
+ d−∆x/µ

(
uµ(t, x)2

))
+∆x d+

∆x/µR
(
uµ(t, x− ∆x

µ ), uµ(t, x)
)

+ d−∆x/µ

(
d+

∆x/µu
µ(t, x)

)
+µ2

N∑
m=1

ωmu
µ(t, x−m∆x

µ )− µ2F∆
0 u

µ(t, x) + µF∆
1 d

+
∆x/µu

µ(t, x), t > 0, a.e. x ∈ R,

uµ(0, x) = µu0
∆(µx), a.e. x ∈ R,

where

(38) R(u, v) =
1

4∆x
(v|v| − u|u|).

Of course, the approximated solution u∆ defined in (6) and (7) satisfies (37) when µ = 1. Let us recall
that this decomposition of the numerical flux is called the viscous form of the scheme (see, for instance,
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Chapter III in [12]). Note also that R is homogeneous of degree 2, allowing the term containing it in (37)
to disappear as µ→∞, as observed in [14].

For any initial data u0
∆ ∈ L1(R), there exists a unique solution in C1([0,∞), L1(R)) for (37). The

local existence is obtained by Banach’s fixed point argument, whereas the following Lemma 3.1 excludes
blow-ups. Let us remark that the solution uµ of system (37) conserves the mass of the initial data u0

∆.
In fact, note that it is the same as the mass of u0, when u0

∆ is defined as in (7). Moreover, we show that
(37) defines a contractive semigroup. This will be useful to obtain the estimates for the compactness of
{uµ}µ>0. For the sake of clarity, we prove this lemma in the Appendix A.

Lemma 3.1. For any initial data u0
∆ ∈ L1(R), the solution uµ to (37) satisfies∫
R
uµ(t, x) =

∫
R
u0

∆(x), ∀t > 0.

Moreover, (37) defines a contractive semigroup in L1(R).

3.1. L1-Lp estimates. We are interested in the large-time behavior of u∆. The following two propo-
sitions are the discrete versions of Proposition 2.1 and Proposition 2.2. The way of proceeding will be,
indeed, very similar.

Proposition 3.1. For all p ∈ [1,∞] there exists a positive constant C(p) such that:

(39) ‖uµ(t)‖p ≤ C(p)‖u0
∆‖1t

− 1
2 (1− 1

p ), ∀t > 0.

for all solutions of (37) with initial data u0
∆ ∈ L1(R).

Proof. The case p = 1 follows from Lemma 3.1 with C(p) = 1. Let us consider the case µ = 1 and
p ∈ [2,∞). We multiply (37) by |u∆|p−2u∆ and integrate it over the whole space domain. We have:

1

p

d

dt
‖u∆(t)‖pp ≤ I1 +

∫
R
d−∆x

(
d+

∆xu∆(t, x)
)
|u∆(t, x)|p−2u∆(t, x)dx+ I2,(40)

where

I1 =
1

4

∫
R

(
d+

∆x

(
u∆(t, x)2

)
+ d−∆x

(
u∆(t, x)2

))
|u∆(t, x)|p−2u∆(t, x)dx

+ ∆x

∫
R
d+

∆xR
(
u∆(t, x−∆x), u∆(t, x)

)
|u∆(t, x)|p−2u∆(t, x)dx

and

I2 =

∫
R

(
N∑
m=1

ωmu∆(t, x−m∆x)− F∆
0 u∆(t, x) + F∆

1 d
+
∆xu∆(t, x)

)
|u∆(t, x)|p−2u∆(t, x)dx

=

N∑
m=1

ωm

(∫
R
u∆(t, x−m∆x)|u∆(t, x)|p−2u∆(t, x)dx−

∫
R
|u∆(t, x)|pdx

)
+
F∆

1

∆x

(∫
R
u∆(t, x+ ∆x)|u∆(t, x)|p−2u∆(t, x)dx−

∫
R
|u∆(t, x)|pdx

)
.

On the following, we will not make explicit the time dependence unless this is necessary.
Now, on the one hand, for any k ∈ Z, we have that∫
R
u∆(x+ k∆x)|u∆(x)|p−2u∆(x)dx ≤ p− 1

p

∫
R
|u∆(x+ k∆x)|pdx+

1

p

∫
R
|u∆(x)|pdx =

∫
R
|u∆(x)|pdx.

Therefore, I2 ≤ 0.
On the other hand, for i ∈ {−1, 0, 1} let us denote

U±i = {x ∈ R : ±u∆(x+ i∆x) > 0} and U0
i = {x ∈ R : u∆(x+ i∆x) = 0}.
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From the definition of R in (38), reordering I1 we get:

I1 =
1

4∆x

∫
R

(
u2

∆(x+ ∆x) + u∆(x+ ∆x)|u∆(x+ ∆x)|
)
|u∆(x)|p−2u∆(x)dx− 1

2∆x

∫
R
|u∆(x)|p+1dx

+
1

4∆x

∫
R

(
u∆(x−∆x)|u∆(x−∆x)| − u2

∆(x−∆x)
)
|u∆(x)|p−2u∆(x)dx

≤ 1

2∆x

∫
U+

0 ∩U
+
1

u2
∆(x+ ∆x)|u∆(x)|p−1dx− 1

2∆x

∫
R
|u∆(x)|p+1dx

+
1

2∆x

∫
U−−1∩U

−
0

u2
∆(x−∆x)|u∆(x)|p−1dx.

Using the following inequality

a2|b|p−1 ≤ 2

p+ 1
|a|p+1 +

p− 1

p+ 1
|b|p+1, ∀a, b ∈ R,

we obtain that

I1 ≤
1

2∆x

(
2

p+ 1

∫
U+

0 ∩U
+
1

|u∆(x+ ∆x)|p+1dx+
p− 1

p+ 1

∫
U+

0 ∩U
+
1

|u∆(x)|p+1dx

)
− 1

2∆x

∫
R
|u∆(x)|p+1dx

+
1

2∆x

(
2

p+ 1

∫
U−−1∩U

−
0

|u∆(x−∆x)|p+1dx+
p− 1

p+ 1

∫
U−−1∩U

−
0

|u∆(x)|p+1dx

)

=
1

2∆x

(
2

p+ 1

∫
U+
−1∩U

+
0

|u∆(x)|p+1dx+
p− 1

p+ 1

∫
U+

0 ∩U
+
1

|u∆(x)|p+1dx

)
− 1

2∆x

∫
R
|u∆(x)|p+1dx

+
1

2∆x

(
2

p+ 1

∫
U−0 ∩U

−
1

|u∆(x)|p+1dx+
p− 1

p+ 1

∫
U−−1∩U

−
0

|u∆(x)|p+1dx

)

≤ 1

2∆x

∫
U+

0

|u∆(x)|p+1dx− 1

2∆x

∫
R
|u∆(x)|p+1dx+

1

2∆x

∫
U−0

|u∆(x)|p+1dx

and, hence, I1 ≤ 0.
Thus, from (40) we deduce:

1

p

d

dt
‖u∆(t)‖pp ≤

∫
R
d−∆x

(
d+

∆xu∆(x)
)
|u∆(x)|p−2u∆(x)dx

(41)

= − 1

∆x2

∫
R

(u∆(x+ ∆x)− u∆(x))
(
|u∆(x+ ∆x)|p−2u∆(x+ ∆x)− |u∆(x)|p−2u∆(x)

)
dx.

Moreover, the following inequality (see [31, Lemma II.5.5, p. 22])∣∣∣|x|p/2 − |y|p/2∣∣∣2 ≤ p2

4(p− 1)
(x− y)

(
|x|p−2x− |y|p−2y

)
, ∀x, y ∈ R, ∀ p ∈ (1,∞),

guarantees that

(42)
d

dt
‖u∆(t)‖pp ≤ −

4(p− 1)

p

∫
R

∣∣∣∣ |u∆(x+ ∆x)|p/2 − |u∆(x)|p/2

∆x

∣∣∣∣2 = −4(p− 1)

p
‖d+

∆x

(
|u∆|p/2

)
‖22 ≤ 0.

This estimate and Lemma A.1 allow us to write

(43)
d

dt
‖u∆(t)‖pp +

(p− 1)

p

‖u∆(t)‖p(p+1)/(p−1)
p

‖u0
∆(t)‖2p/(p−1)

1

≤ 0.

Following the same arguments as in [10], we conclude that for any p ∈ [2,∞)

(44) ‖u∆(t)‖p ≤ C(p)‖u0
∆‖1 t

− 1
2 (1− 1

p ), ∀t > 0.

The case p ∈ (1, 2) follows by interpolation. The case p =∞ follows by tracking carefully the constants
in (43) as in [32].

Finally, the general case µ > 0 is immediate from (44) and the definition of uµ (36), since for any
p ∈ [1,∞] we have

‖uµ(t)‖p = µ1− 1
p ‖u∆(µ2t)‖p ≤ C(p)‖u0

∆‖1 t
− 1

2 (1− 1
p ).

The proof is now complete. �
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Now that we have estimates on the Lp-norms of the solution, we need to obtain a similar result for
the discrete gradient.

Proposition 3.2. For all p ∈ [1,∞] there exists a constant C = C(p, ‖u0
∆‖1) > 0 such that:

(45) ‖d+
∆x/µu

µ(t)‖p ≤ Ct−
1
2 (1− 1

p )− 1
2 , ∀t > 0,

for all solutions of (37) with initial data u0
∆ ∈ L1(R).

Proof. We proceed as in Proposition 2.2. Let us denote by Dt
µ the semigroup associated with

(46)


vt(t, x) = µ2

N∑
m=1

ωmv(t, x−m∆x

µ
)− µ2F∆

0 v(t, x) + µF∆
1 d

+
∆x/µv(t, x), t > 0, a.e. x ∈ R,

v(0, x) = v0(x), a.e. x ∈ R.

Multiplying (46) by sign(v(t, x)), integrating on R and using that∫
R
v(x− h) sign(v(x))dx ≤

∫
R
|v(x)|dx, ∀h ∈ R,

one shows that Dt
µ is non-expansive in L1(R).

Now, for every τ > 0 and µ > 0, the solution of (37) satisfies:

(47) uµ(t+ τ) = Gµ∆(t) ∗Dt
µu

µ(τ) +

∫ t

0

Gµ∆(t− s) ∗Dt−s
µ

(
H
(
uµ(s+ τ)

))
ds,

where

H(uµ(s, x)) =
1

4

(
d+

∆x/µ

(
uµ(s, x)2

)
+ d−∆x/µ

(
uµ(s, x)2

))
+ ∆x d+

∆x/µR
(
uµ(s, x− ∆x

µ
), uµ(s, x)

)
and Gµ∆ is the fundamental solution of the one-dimensional semi-discrete heat equation, defined by(

Gµ∆(t)
)
j

=
1

2π

∫ πµ/∆x

−πµ/∆x
e−

4tµ2

∆x2 sin2 ξ∆x
2µ eijξ

∆x
µ dξ, j ∈ Z,

It is well known (e.g. [3]) that, for any p ∈ [1,∞],

‖Gµ∆(t)‖p ≤ C(p)t−
1
2 (1− 1

p ), t > 0,

and

‖d+
∆x/µG

µ
∆(t)‖p ≤ C(p)t−

1
2 (1− 1

p )− 1
2 , t > 0.

Now let us apply the discrete operator d+
∆x/µ to (47). Then

(48) d+
∆x/µu

µ(t+ τ) = d+
∆x/µG

µ
∆(t) ∗Dt

µu
µ(τ) +

∫ t

0

d+
∆x/µG

µ
∆(t− s) ∗Dt−s

µ

(
H
(
uµ(s+ τ)

))
ds.

Using the decay properties of Gµ∆, Proposition 3.1 and the L1-stability of Dt
µ, we obtain

‖d+
∆x/µu

µ(t+ τ)‖1 ≤
∥∥∥d+

∆x/µG
µ
∆(t)

∥∥∥
1

∥∥Dt
µu

µ(τ)
∥∥

1
(49)

+

∫ t

0

∥∥∥d+
∆x/µG

µ
∆(t− s)

∥∥∥
1

∥∥∥Dt−s
µ

(
H
(
uµ(s+ τ)

))∥∥∥
1
ds

≤
∥∥∥d+

∆x/µG
µ
∆(t)

∥∥∥
1
‖uµ(τ)‖1 +

∫ t

0

∥∥∥d+
∆x/µG

µ
∆(t− s)

∥∥∥
1

∥∥H(uµ(s+ τ)
)∥∥

1
ds

≤ C ‖u0‖1 t
− 1

2 + C

∫ t

0

(t− s)− 1
2

∥∥H(uµ(s+ τ)
)∥∥

1
ds.

We now prove that for any p ∈ [1,∞), we have

(50) ‖H(uµ(s+ τ))‖p ≤ Cτ−
1
2 ‖d+

∆x/µu
µ(s+ τ)‖p

Observe that, in view of Proposition 3.1, we have

‖uµ(s+ τ)‖∞ . (s+ τ)−1/2‖uµ(0)‖1 . τ−1/2‖u0‖1.
Thus we obtain∥∥∥d+

∆x/µ

(
uµ(s+ τ)2

)∥∥∥
p
≤ 2 ‖uµ(s+ τ)‖∞

∥∥∥d+
∆x/µu

µ(s+ τ)
∥∥∥
p
≤ Cτ− 1

2

∥∥∥d+
∆x/µu

µ(s+ τ)
∥∥∥
p
.
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A similar result holds for d−∆x/µ. Moreover, from the definition of R in (38) we have:

∆x
∥∥∥d+

∆x/µR
(
uµ(s+ τ, x− ∆x

µ
), uµ(s+ τ, x)

)∥∥∥
p
≤ 1

2

∥∥∥d+
∆x/µ (uµ(s+ τ)|uµ(s+ τ)|)

∥∥∥
p

≤ ‖uµ(s+ τ)‖∞
∥∥∥d+

∆x/µu
µ(s+ τ)

∥∥∥
p
≤ Cτ− 1

2

∥∥∥d+
∆x/µu

µ(s+ τ)
∥∥∥
p
,

where we have used Proposition 3.1 and that∣∣x|x| − y|y|∣∣ ≤ 2|x− y|max{|x|, |y|}, ∀x, y ∈ R.

Therefore, introducing (50) with p = 1 in (49) we get

‖d+
∆x/µu

µ(t+ τ)‖1 ≤ Ct−
1
2 + Cτ−

1
2

∫ t

0

(t− s)− 1
2

∥∥∥d+
∆x/µu

µ(s+ τ)
∥∥∥

1
ds.

Applying fractional Gronwall’s Lemma (see for example [2, Lemma 2.4]) and taking t = τ , we conclude
that

(51) ‖d+
∆x/µ(uµ(2τ))‖1 ≤ Cτ , ∀µ > 0,

for some Cτ > 0 depending only on τ and ‖u0‖1. It is enough now to use the definition of uµ in (36),
taking τ = 1/2 to obtain ‖d+

∆x(u∆(µ2))‖1 ≤ C/µ, for all µ > 0. Putting µ2 = t we find

‖d+
∆x(u∆(t))‖1 ≤

C√
t
, ∀t > 0,

that is, (45) for µ = 1 and p = 1.
The case µ = 1 and p ∈ (1,∞) is immediate from (48), (50) and (51). Indeed, we have

‖d+
∆x/µu

µ(t+ τ)‖p ≤
∥∥∥d+

∆x/µG
µ
∆(t)

∥∥∥
p
‖uµ(τ)‖1 +

∫ t

0

∥∥∥d+
∆x/µG

µ
∆(t− s)

∥∥∥
p

∥∥H(uµ(s+ τ)
)∥∥

1
ds

≤ Cτ t−
1
2 (1− 1

p )− 1
2 + Cτ

∫ t

0

(t− s)−
1
2 (1− 1

p )− 1
2 ds.

with Cτ = C(p, τ, ‖u0‖1). Applying again fractional Gronwall’s Lemma and taking t = τ we obtain that

(52) ‖d+
∆x/µu

µ(2τ)‖p ≤ Cτ , ∀µ > 0,

This is equivalent to (45) for µ = 1 and p ∈ (1,∞).
Furthermore, repeating similar arguments, the case p = ∞ follows from (48) and estimates (50) and

(52):

‖d+
∆x/µu

µ(t+ τ)‖∞ ≤
∥∥∥d+

∆x/µG
µ
∆(t)

∥∥∥
∞
‖uµ(τ)‖1 +

∫ t

0

∥∥∥d+
∆x/µG

µ
∆(t− s)

∥∥∥
2

∥∥H(uµ(s+ τ)
)∥∥

2
ds

≤ Cτ t−1 + Cτ

∫ t

0

(t− s)− 3
4 ds.

where Cτ = C(τ, ‖u0‖1). It is now enough to take t = τ to conclude that

‖d+
∆x/µu

µ(2τ)‖∞ ≤ Cτ , ∀µ > 0,

which is equivalent to (45) for µ = 1 and p =∞.
Finally, the general case µ > 0 is immediate from the case µ = 1 and the definition of uµ (36), since

for any p ∈ [1,∞] we have

‖d+
∆x/µu

µ(t)‖p = µ2− 1
p ‖d+

∆xu∆(µ2t)‖p ≤ Ct−
1
2 (1− 1

p )− 1
2

This concludes the proof. �

3.2. Compactness of the set {uµ}µ>0. In this section, we prove the compactness of the trajectories of
the family {uµ(t)}µ>0 introduced in the previous section, in order to pass to the limit µ→∞. Unlike the
continuous case, we do not have estimates of uµ in H1(R), since uµ is piecewise constant. Nevertheless,
the following lemma makes possible the use of the compact embedding of Hs

loc(R) into L2
loc(R), with

0 < s < 1/2. The proof will be given in the Appendix.

Lemma 3.2. For any 0 < s < 1
2 , there exists a positive constant C = C(s) such that, for any mesh-size

0 < ∆x < 1, the following holds for all piecewise constant functions w as in (6):

‖w‖Hs(R) ≤ C
(
‖w‖2 + ‖d+

∆xw‖2
)
.
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Let us remark that, as a consequence of this lemma and Proposition 3.1 and Proposition 3.2, we obtain
a time-decay estimate for uµ in Hs(R) with 0 < s < 1/2 (this can be done since uµ is piecewise constant
on intervals of length ∆x/λ):

(53) ‖uµ(t)‖Hs(R) ≤ C
(
‖uµ(t)‖2 + ‖d+

∆x/µu
µ(t)‖2

)
≤ C

(
t−

1
4 + t−

3
4

)
, ∀t > 0,∀µ > 0.

Thus, we can use Theorem 2.2 to prove the compactness of the family {uµ}µ>0.

Theorem 3.1. For every 0 < τ < T <∞, the family {uµ}µ>0 ⊂ C([τ, T ], L1(R)) is relatively compact.

Proof. We will proceed in two steps, analogously to Theorem 2.3.
Step 1. First we will show the result locally in C([τ, T ], L1(I)), with I = [−r, r] for an arbitrary r > 0.

Let us consider the spaces X = Hs(I) with s ∈ (0, 1
2 ), Z = L2(I) and Y = H−1(I).

From (53) we know that the set {uµ}µ>0 is bounded in L∞([τ, T ], Hs
loc(R)). In particular, the first

condition of Theorem 2.2 is fulfilled. Thus, it suffices to check that uµt is bounded in L∞([τ, T ], H−1(I)).
Let us multiply (37) by a function ϕ ∈ C∞c (R) and integrate it over R. Using the definition of R in (38),
we have:∣∣∣∣∫

R
uµt ϕdx

∣∣∣∣ ≤ 1

4

∣∣∣∣∫
R

(
d+

∆x/µ

(
uµ(x)2

)
+ d−∆x/µ

(
uµ(x)2

))
ϕ(x)dx

∣∣∣∣
+ ∆x

∣∣∣∣∫
R
d+

∆x/µR
(
uµ(x− ∆x

µ
), uµ(x)

)
ϕ(x)dx

∣∣∣∣+

∣∣∣∣∫
R
d−∆x/µ

(
d+

∆x/µu
µ(x)

)
ϕ(x)dx

∣∣∣∣
+

∣∣∣∣∣
∫
R

(
µ2

N∑
m=1

ωmu
µ(x−m∆x

µ
)− µ2F∆

0 u
µ(x) + µF∆

1 d
+
∆x/µu

µ(x)

)
ϕ(x)dx

∣∣∣∣∣
≤ 1

2
‖d+

∆xϕ‖2‖u
µ‖24 +

1

2
‖d+

∆xϕ‖2‖u
µ‖24 + ‖d+

∆xϕ‖2‖d
+
∆xu

µ‖2

+

∣∣∣∣∣
∫
R

(
µ2

N∑
m=1

ωm
(
uµ(x−m∆x

µ
)− uµ(x)

)
+ µF∆

1 d
+
∆x/µu

µ(x)

)
ϕ(x)dx

∣∣∣∣∣ .
Obviously, the first three terms on the right hand side of the inequality are uniformly bounded for µ > 0,
so let us focus on the last one. Using the Fourier transform and the definition of F∆

0 in (9), we have

Iµ =

∣∣∣∣∣
∫
R

(
µ2

N∑
m=1

ωm
(
uµ(x−m∆x

µ
)− uµ(x)

)
+ µF∆

1 d
+
∆x/µu

µ(x)

)
ϕ(x)dx

∣∣∣∣∣
≤ µ2

∫
R

∣∣∣∣∣
N∑
m=1

ωm

(
e−im

∆x
µ ξ − 1

)
+ F∆

1

ei
∆x
µ ξ − 1

∆x

∣∣∣∣∣ ∣∣ûµ(ξ)
∣∣ |ϕ̂(ξ)| dξ.

If we take a = e−∆x and b = e−i
∆x
µ ξ on Lemma A.2 and use the definitions of ωm in (8) and F∆

1 in (9),
we have: ∣∣∣∣∣

N∑
m=1

ωm

(
e−im

∆x
µ ξ − 1

)
+ F∆

1

ei
∆x
µ ξ − 1

∆x

∣∣∣∣∣(54)

=
∣∣e∆x − 1

∣∣ ∣∣∣∣∣
N∑
m=1

e−m∆x
(
e−im

∆x
µ ξ − 1

)
+

N∑
m=1

me−m∆x(ei
∆x
µ ξ − 1)

∣∣∣∣∣
≤
∣∣e∆x − 1

∣∣ ∣∣∣e−i∆x
µ ξ − 1

∣∣∣2 e−∆x

(1− e−∆x)3
=
|e−i

∆x
µ ξ − 1|2

(1− e−∆x)2
.

Combining this inequality with the Cauchy-Schwartz inequality and the fact that

‖d+
∆x/µu

µ‖22 =

∫
R

∣∣∣ei∆x
µ ξ − 1

∆x/µ

∣∣∣2|ûµ(ξ)|2dξ.

we obtain

Iµ ≤
∆x2

(1− e−∆x)2
‖d+

∆x/µu
µ‖2‖d+

∆x/µϕ‖2.
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Thus, using that ‖d+
∆x/µϕ‖2 . ‖ϕ

′‖2, we get∣∣∣∣∫
R
uµt (t)ϕdx

∣∣∣∣ ≤ ‖d+
∆x/µϕ‖2‖u

µ(t)‖24 + ‖d+
∆x/µϕ‖2‖d

+
∆x/µu

µ(t)‖2 +
∆x2

(1− e−∆x)2
‖d+

∆x/µu
µ(t)‖2‖d+

∆x/µϕ‖2

≤ C‖ϕ‖H1(R)

(
‖uµ(t)‖24 + ‖d+

∆x/µu
µ(t)‖2

)
.

for any ϕ ∈ C∞c (I) and with C > 0 independent of µ. In view of Propositions 3.1 and 3.2, both norms of uµ

in the right-hand side are uniformly bounded in [τ, T ], so uµt is uniformly bounded in L∞([τ, T ], H−1(I)).
We conclude that the family {uµ}µ>0 is relatively compact in C([τ, T ], L2

loc(R)). Finally, compactness in
L2
loc(R) implies compactness in L1

loc(R), so {uµ}µ>0 is also relatively compact in C([τ, T ], L1
loc(R)).

Step 2. Now we need to extend the result globally. Let us consider again the same function ψr defined
in the third step of the proof of Theorem 2.3, such that ψr(z) = ψ(z/r) with ψ given by (26) and r > 0.
Since we know that {uµ}µ>0 is relatively compact in C([τ, T ], L1

loc(R)), it suffices to show that

(55) sup
[τ,T ]

‖uµ(t)ψr‖1 −→ 0 as r →∞, uniformly on µ ≥ 1.

A similar argument as in Theorem 2.3 shows that it is enough to prove (55) for nonnegative initial data
and solutions. Thus, we focus on those. Let us multiply (37) by ψr and integrate it over (0, t)× R. We
obtain: ∫

R
uµ(t, x)ψr(x)dx =

∫
R
uµ0 (x)ψr(x)dx(56)

+
1

4

∫ t

0

∫
R

(
d+

∆x/µ

(
uµ(s, x)2

)
+ d−∆x/µ

(
uµ(s, x)2

))
ψr(x)dxds

+ ∆x

∫ t

0

∫
R
d+

∆x/µ

(
R
(
uµ(s, x− ∆x

µ
), uµ(s, x)

))
ψr(x)dxds

+

∫ t

0

∫
R
d−∆x/µ

(
d+

∆x/µ

(
uµ(s, x)

))
ψr(x)dxds

+

∫ t

0

∫
R

(
µ2

N∑
m=1

ωm
(
uµ(s, x−m∆x

µ
)− uµ(s, x)

)
+ µF∆

1 d
+
∆x/µu

µ(s, x)

)
ψr(x)dxds.

We pass now the discrete derivatives to ψr and estimate the right-hand side using time-decay estimates
from Proposition 3.1:∫

R
uµ(t, x)ψr(x)dx .

∫
R
uµ0 (x)ψr(x)dx+ ‖ψ′‖∞

√
t

r
+ ‖ψ′′‖∞

t

r2
(57)

+

∫ t

0

∫
R

(
µ2

N∑
m=1

ωm
(
uµ(s, x−m∆x

µ
)− uµ(s, x)

)
+ µF∆

1 d
+
∆x/µu

µ(s, x)

)
ψr(x)dxds,

Let us focus on the last term. Using Taylor expansions and the definition of F∆
0 and F∆

1 from (9), we
have ∫

R

(
µ2

N∑
m=1

ωm
(
uµ(s, x−m∆x

µ
)− uµ(s, x)

)
+ µF∆

1 d
+
∆x/µu

µ(s, x)
)
ψr(x)dx

= µ2
N∑
m=1

ωm

∫
R
uµ(s, x)

(
ψr(x+m

∆x

µ
)− ψr(x)−m∆x

µ
d−∆x/µ(ψr(x))

)
dx

.

∥∥∥∥∥µ2
N∑
m=1

ωm

(
ψr(x+m

∆x

µ
)− ψr(x)−m∆x

µ
d−∆x/µ(ψr(x))

)∥∥∥∥∥
∞

‖uµ(s)‖1

.
‖ψ′′‖∞
r2

‖u0
∆‖1.

Thus, plugging this into (57) and using the non-negativity of the solution, we get∫
R
|uµ(t, x)|ψr(x)dx .

∫
R
|uµ0 (x)|ψr(x)dx+ ‖ψ′‖∞

√
t

r
+ ‖ψ′′‖∞

t

r2
,(58)

which tends to 0 uniformly on µ > 0 when r →∞. Therefore, we proved (55) and, consequently, we can
assure that {uµ}µ>0 is relatively compact in C([τ, T ], L1(R)). �
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A slight modification of the proof of the previous theorem gives as the necessary estimate to identify
the initial data, stated in the following proposition.

Lemma 3.3. For every test function ϕ ∈ C∞c (R), there exists C > 0, independent of µ, such that

(59)

∣∣∣∣∫
R
uµ(t, x)ϕ(x)dx−

∫
R
uµ0 (x)ϕ(x)dx

∣∣∣∣ ≤ C(t+
√
t).

Proof. It is enough to multiply (37) by ϕ ∈ C∞c (R) and integrate it over (0, t)×R. Then, integrating by
parts and repeating arguments similar to the ones in the second step of the proof for Theorem 3.1, we
deduce (59). �

3.3. Passing to the limit. Finally, we have everything that we need to prove our main result, stated
in Theorem 1.2, regarding the large-time behavior of the approximations to the solution of problem (5).

Proof of Theorem 1.2. By Theorem 3.1, we know that for every 0 < τ < T < ∞, the family {uµ}µ>0 is
relatively compact in C([τ, T ], L1(R)). Consequently, there exists a subsequence of it (which we will not
relabel) and a function ū ∈ C((0,∞), L1(R)) such that

(60) uµ −→ ū ∈ C([τ, T ], L1(R)), as µ→∞.

We can also assume that uµ(t, x)→ ū(t, x) almost everywhere in (0,∞)× R as µ→∞.
Now, we multiply equation (37) by a test function φ ∈ C∞c ((0,∞)×R) and integrate it over (0,∞)×R.

We have:

∫ ∞
0

∫
R
uµt (t, x)φ(t, x)dxdt =

1

4

∫ ∞
0

∫
R

(
d+

∆x/µ

(
uµ(t, x)2

)
+ d−∆x/µ

(
uµ(t, x)2

))
φ(t, x)dxdt

(61)

+ ∆x

∫ ∞
0

∫
R
d+

∆x/µR
(
uµ(t, x− ∆x

µ
), uµ(t, x)

)
φ(t, x)dxdt

+

∫ ∞
0

∫
R
d−∆x/µ

(
d+

∆x/µu
µ(t, x)

)
φ(t, x)dxdt

+

∫ ∞
0

∫
R

(
µ2

N∑
m=1

ωmu
µ(t, x−m∆x

µ
)− µ2F∆

0 u
µ(t, x) + µF∆

1 d
+
∆x/µu

µ(t, x)

)
φ(t, x)dxdt

Our claim is that, passing to the limit µ→∞, we obtain that ū is a weak solution of the equation:

(62)

{
ūt = ūūx + (1 + F∆

2 )ūxx, (t, x) ∈ (0,∞)× R,
ū(0) = Mδ0.

All the limits in (61) are known except for the last term. In fact, let us recall that the degree of
homogeneity of R makes the corresponding numerical viscosity term vanish as µ→∞, as shown in [14].

Thus, it is sufficient to check that we can take the limit µ→∞ in

Lµ(t) =

∫
R

(
µ2

N∑
m=1

ωmu
µ(t, x−m∆x

µ
)− µ2F∆

0 u
µ(t, x) + µF∆

1 d
+
∆x/µu

µ(t, x)

)
φ(t, x)dx.

First, we reorder Lµ:

(63) Lµ(t) = µ2

∫
R
uµ(t, x)

N∑
m=1

ωm

(
φ(t, x+m

∆x

µ
)− φ(t, x)−m∆x

µ
d−∆x/µ(φ(t, x))

)
dx.

Now, due to Taylor’s Theorem, for each m ∈ {1, . . . , N}

φ(t, x+m
∆x

µ
)− φ(t, x) = m

∆x

µ
φx(t, x) +

1

2
m2 ∆x2

µ2
φxx(t, x) +

1

µ3
O(‖φxxx(t)‖∞).

In the same way,

d−∆x/µ(φ(t, x)) = φx(t, x)− 1

2

∆x

µ
φxx(t, x) +

1

µ2
O(‖φxxx(t)‖∞).

We combine this into (63) and get

(64) Lµ(t) = F∆
2

∫
R
uµ(t, x)φxx(t, x)dx+O(‖φxxx(t)‖∞)

1

µ

∫
R
uµ(t, x)dx,
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where

F∆
2 =

∆x2

2

(
N∑
m=1

m(m− 1)ωm

)
.

Therefore, as uµ → ū in C([τ, T ], L1(R)), taking the limit µ→∞ in (64), we obtain:

lim
µ→∞

∫ ∞
0

Lµ(t) = F∆
2

∫ ∞
0

∫
R
ū(t, x)φxx(t, x)dx.

Remark 2. Let us emphasize the key role that the correcting factors F∆
0 and F∆

1 have on the limit above.
Note that the fact that ∫

R
K(z)dz =

∫
zK(z)dz = 1

played an important role in the proof of Theorem 2.3, allowing us to show that K ∗ uxx behaves as uxx
as t→∞. Moreover, this is related also with the decomposition of K in Dirac delta functions as in [9].
Now, at the discrete level, the corrector factors F∆

0 and F∆
1 had to be chosen accordingly. In this case,

due to the truncation of the integral, the use of a third factor F∆
2 is required, though. All the same, these

three coefficients are the discretized moments of the kernel K.

It follows that ū satisfies

−
∫ ∞

0

∫
R
ūφt = −1

2

∫ ∞
0

∫
R
ū2φx + (1 + F∆

2 )

∫ ∞
0

∫
R
ūφxx,

so it is a weak solution of the equation in (62). It remains to identify the behavior of ū as t→ 0. Due to
Lemma 3.3, for any ϕ ∈ C∞c (R) we have∣∣∣∣∫

R
uµ(t, x)ϕ(x)dx−

∫
R
uµ0 (x)ϕ(x)dx

∣∣∣∣ ≤ C(t+
√
t)

and from (60) we deduce ∣∣∣∣∫
R
ū(t, x)ϕ(x)dx−Mϕ(0)

∣∣∣∣ ≤ C(t+
√
t)

by letting µ → ∞. Passing to the limit t → 0 and using classical approximation arguments, we deduce
that ū(0) = Mδ0 in the sense of bounded measures. Thus, we conclude that ū is the unique solution uM
of equation (62), and that, in fact, the whole family {uµ}µ>0 converges to uM in C((0,∞), L1(R)).

Therefore, by (60), we have:

lim
µ→∞

‖uµ(1)− uM (1)‖1 = 0

and setting µ =
√
t and making use of the self-similar form of uM (see e.g. [10]) we obtain

(65) lim
t→∞

‖u∆(t)− uM (t)‖1 = 0.

Finally, the convergence in the Lp-norms for p ∈ (1,∞) follows from (65), the decay estimate of
Proposition 3.1 for p =∞ and the Hölder inequality. In fact, we have:

‖u∆(t)− uM (t)‖p ≤ (‖u∆(t)‖∞ + ‖uM (t)‖∞)
1− 1

p ‖u∆(t)− uM (t)‖
1
p

1 ≤ o(t
− 1

2 (1− 1
p )).

Using the piecewise constant interpolation of uM , which we denote S(uM ), and (71) from the Appendix,
the case p =∞ follows:

‖u∆(t)− uM (t)‖∞ ≤ ‖u∆(t)− S(uM (t))‖∞ + ‖S(uM (t))− uM (t)‖∞

. ‖u∆(t)− S(uM (t))‖
1
2
2 ‖d

+
∆x(u∆(t)− S(uM (t)))‖

1
2
2 + ∆x‖uM,x(t)‖∞

. (‖u∆(t)− uM (t)‖2 + ‖uM (t)− S(uM (t))‖2)
1
2 (‖d+

∆xu∆(t)‖2 + ‖d+
∆xS(uM (t))‖2)

1
2

+ ∆x‖uM,x(t)‖∞
≤ o(t− 1

2 + t−
3
4 + t−1).

Now the proof is complete. �
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3.4. Convergence of the scheme. To conclude this section, let us prove that u∆ converges to the
solution u of (5) as ∆x→ 0.

Theorem 3.2. Let u0 ∈ L1(R) and N = N(∆x) ∈ N such that N∆x → ∞ as ∆x → 0. The set of
approximated solutions {u∆}∆x>0 given by (7) converges in C((0,∞), L1(R)) to the solution u of (5) as
∆x→ 0.

Proof. Following the same arguments as in Theorem 3.1, one shows that for every 0 < τ < T < ∞, the
family {u∆}∆x>0 ⊂ C([τ, T ], L1(R)) is relatively compact. Thus, there exists a subsequence of it (which
we will not relabel) and a function ū ∈ C((0,∞), L1(R)) such that

(66) u∆ −→ ū ∈ C([τ, T ], L1(R)), as ∆x→ 0.

We can also assume that u∆(t, x)→ ū(t, x) almost everywhere in (0,∞)× R as ∆x→ 0.
Now, we take µ = 1 in equation (37), multiply it by a test function φ ∈ C∞c ((0,∞)×R) and integrate

it over (0,∞)× R. We have:∫ ∞
0

∫
R
u∆,t(t, x)φ(t, x)dxdt =

1

4

∫ ∞
0

∫
R

(
d+

∆x

(
u∆(t, x)2

)
+ d−∆x

(
u∆(t, x)2

))
φ(t, x)dxdt(67)

+ ∆x

∫ ∞
0

∫
R
d+

∆xR
(
u∆(t, x−∆x), u∆(t, x)

)
φ(t, x)dxdt

+

∫ ∞
0

∫
R
d−∆x

(
d+

∆xu∆(t, x)
)
φ(t, x)dxdt

+

∫ ∞
0

∫
R

(
N∑
m=1

ωmu∆(t, x−m∆x)− F∆
0 u∆(t, x) + F∆

1 d
+
∆xu∆(t, x)

)
φ(t, x)dxdt

Our claim is that, passing to the limit ∆x→ 0, we obtain that ū is a weak solution of the equation (5).
Using classical arguments, thanks to (66), Proposition 3.1 and Proposition 3.2, we can take all the limits
in (67), except for the last term. Thus, it is sufficient to check that we can also pass to the limit ∆x→ 0
in

L∆(t) =

∫
R

(
N∑
m=1

ωmu∆(t, x−m∆x)− F∆
0 u∆(t, x) + F∆

1 d
+
∆xu∆(t, x)

)
φ(t, x)dx

=

∫
R
u∆(t, x)

(
N∑
m=1

ωmφ(t, x+m∆x)− F∆
0 φ(t, x)− F∆

1 d
−
∆xφ(t, x)

)
dx.

First, let us first observe that

F∆
0 =

N∑
m=1

e−m∆x(e∆x − 1) = 1− e−N∆x → 1

and

F∆
1 = ∆x(e∆x − 1)

N∑
m=1

me−m∆x =
∆xe−N∆x(e(N+1)∆x − e∆x(N + 1) +N)

e∆x − 1
→ 1,

as long as N = N(∆x) is taken such that N∆x→∞ as ∆x→ 0. Moreover, using (25) and that

(e∆x − 1)
1− e−N∆x(1−iξ)

e(1−iξ)∆x − 1
→ 1

1− iξ
, as ∆x→ 0

we obtain∣∣∣∣∣
N∑
m=1

ωmφ(t, x+m∆x)− K̃ ∗ φ(t, x)

∣∣∣∣∣ ≤
∫
R
|φ̂(t, ξ)|

∣∣∣∣∣
N∑
m=1

ωme
im∆xξ − K̂(−ξ)

∣∣∣∣∣ dξ
=

∫
R
|φ̂(t, ξ)|

∣∣∣∣(e∆x − 1)
1− e−N∆x(1−iξ)

e(1−iξ)∆x − 1
− 1

1− iξ

∣∣∣∣ dξ → 0,

where K̃(z) = K(−z). Therefore

lim
∆x→0

L∆(t) =

∫
R
ū(t, x)

(
K̃ ∗ φ(t, x)− φ(t, x)− φx(t, x)

)
dx.

It follows that ū satisfies

−
∫ ∞

0

∫
R
ūφt = −1

2

∫ ∞
0

∫
R
ū2φx +

∫ ∞
0

∫
R
ūφxx +

∫ ∞
0

∫
R
ū(K̃ ∗ φ− φ− φx).
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so it is a weak solution of the equation in (5).
Now, it remains to identify the behavior of ū as t → 0. Using similar estimates as in the proof for

Lemma 3.3, we can show that for every test function ϕ ∈ C∞c (R) and ∆x < 1, there exists C > 0,
independent of ∆x, such that∣∣∣∣∫

R
u∆(t, x)ϕ(x)dx−

∫
R
u0

∆(x)ϕ(x)dx

∣∣∣∣ ≤ C(t+
√
t).

and from (66) and the definition of u0
∆ in (6), we deduce∣∣∣∣∫

R
ū(t, x)ϕ(x)dx−

∫
R
u0(x)ϕ(x)dx

∣∣∣∣ ≤ C(t+
√
t)

by letting ∆x → 0. Using an approximation argument we deduce that u(t) → u0 in L1(R) as t → 0.
Thus, we conclude that ū is the unique solution u of equation (5) and that, in fact, the whole family
{u∆}∆x>0 converges to u in C((0,∞), L1(R)). Now the proof is complete. �

4. Numerical experiments

The aim of this last section is to support the necessity of using large-time behavior preserving schemes
for the augmented Burgers equation. On the one hand, we show the importance of a numerical flux
that does not destroy the N-wave shape at the early stages. On the other, we emphasize the role of the
correcting factors F∆

0 and F∆
1 in the truncation of the convolution. Note that the former phenomenon

was already stated in [14] in the hyperbolic case, while the latter is an original contribution of the present
work.

Regarding the time discretization, we opt for the explicit Euler for its simplicity. Even if there is no
guarantee that the asymptotic behavior is preserved, numerical simulations exhibit a correct performance.
Thus, we consider it enough to illustrate the key points enumerated above. We need to take into account
that there is a stability condition that must be satisfied to ensure the convergence. It is easy to see (e.g.
[6, 12]) that a sufficient condition is that

(68)
∆t

∆x
max
j
{u0

j}+ 2ν
∆t

∆x2
+ c∆t

N∑
m=1

(m+ 1)ωm ≤ 1.

Let us choose the following compactly supported initial data.

(69) u0(x) =


− 1

10
sin
(x

2

)
, x ∈ [−π, 0],

− 1

20
sin(2x), x ∈ [0,

π

2
],

0, elsewhere

We take a mesh size ∆x = 0.1. In order to avoid boundary issues, we choose a large enough spatial
domain.

In Figure 1 we show the solution for ν = 10−2, c = 2 × 10−2 and θ = 1 at time t = 104, as well as
the corresponding asymptotic profile uM , defined in (12). As we can observe, the solution given by (7) is
already quite close to uM . However, a non-suitable viscous numerical flux like, for instance, the modified
Lax-Friedrichs (e.g. [12, Chapter 3]) can definitely modify the large-time behavior of the solution. In
fact, in this case a viscosity proportional to ∆x2/∆t is being added to the equation of the asymptotic
profile (see [14]), producing a more diffused wave. Nevertheless, the discretization of the non-linear term
is not the only one with the ability to perturb the dynamics of the model. Let us emphasize that an
inappropriate discretization of the non-local term also leads to an incorrect asymptotic profile. Note that
in Figure 1 we have the same scheme (7) but taking F∆

0 = F∆
1 = 1, which produces a translated solution.

The convergence rates, given in (10), are shown in Figure 2. The graphic highlights the different
performances mentioned above. In fact, the solution given by (7) is the only one for which the norm is
converging to zero with the corresponding rates.

To conclude, let us remark again the importance of taking a well-behaving numerical flux. In this
paper we have proved that the asymptotic profile of (5) is a diffusive wave. Therefore, any sign-changing
initial data will lose its positive or negative part, depending on the sign of its mass. As in the case of
the viscous Burgers equation [19], simulations show that N-waves are intermediate states. Therefore,
if the numerical viscosity is sufficiently large, the diffusion will become dominant much earlier than in
the continuous model and destroy these profiles. For instance, let us consider the case ν = 10−4 and
c = 2 × 10−4. In Figure 3, we can observe that at t = 100 the N-wave shape is not preserved if the
modified Lax-Friedrichs flux is used, while Engquist-Osher is able to keep the continuous dynamics. This
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Figure 1. Solution of ABE with ν = 10−2, c = 2 × 10−2 and θ = 1 at t = 104, using
scheme (7) discretized explicitly. We use EO (solid) and modified LF (dashed) numerical
fluxes for the nonlinearity, as well as EO without correcting factors (dotted), comparing
the solutions to the asymptotic profile (gray).
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Figure 2. Evolution of the norms of the difference between the asymptotic profile and

the solutions, multiplied by their corresponding rate t
1
2 (1− 1

p ). From left to right, L1, L2

and L∞ norms. We compare (7) (solid), modified LF numerical flux (dashed) and EO
with F∆

0 = F∆
1 = 1 (dotted).

numerical phenomenon was already observed in [14] in the context of scalar conservation laws. It is
interesting to see that the same pathology persist for viscous flows.

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08
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-10 -5  0  5

Solution for ABE (T=100)
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Using LFM

Figure 3. Solution of ABE with ν = 10−4, c = 2 × 10−4 and θ = 1 at t = 100,
using scheme (7) discretized explicitly. We use Engquist-Osher (solid) and modified
Lax-Friedrichs (dashed) numerical fluxes for the nonlinearity.

Appendix A. Auxiliary results

Here we prove some of the auxiliary results that we have used along the paper.
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Lemma A.1. For any piecewise constant function w defined as in (6) and ∆x > 0, the following holds:

‖w‖p(p+1)/(p−1)
p ≤ 4‖w‖2p/(p−1)

1 ‖d+
∆x|w|

p/2‖22

for all p ∈ (1,∞).

Proof. First, let us define a piecewise linear function v as follows:

v(x) := wj
xj+1 − x

∆x
+ wj+1

x− xj
∆x

, x ∈ [xj , xj+1].

On the one hand, we know that

(70) ‖v‖2∞ ≤ 2‖v‖2‖vx‖2.

On the other hand, we have that:

‖v‖22 = ∆x
∑
j∈Z

∫ 1

0

|wj(1− x) + wj+1x|2 dx ≤
1

2
∆x
∑
j∈Z

(
|wj |2 + |wj+1|2

)
= ‖w‖22.

Moreover, it is easy to see that ‖vx‖2 = ‖d+
∆xw‖2. Therefore, we can obtain a similar inequality as (70)

for w:

(71) ‖w‖2∞ = ‖v‖2∞ ≤ 2‖v‖2‖vx‖2 ≤ 2‖w‖2‖d+
∆xw‖2.

Applying this inequality to |w|p/2, we deduce:

‖w‖2p∞ = ‖|w|p/2‖4∞ ≤ 4‖|w|p/2‖22‖d+
∆x|w|

p/2‖22 = 4‖w‖pp‖d+
∆x|w|

p/2‖22.

Thus, combining this with

‖w‖2p
2/(p−1)

p ≤ ‖w‖2p∞‖w‖
2p/(p−1)
1 ,

we conclude

‖w‖p(p+1)/(p−1)
p ≤ 4‖w‖2p/(p−1)

1 ‖d+
∆x|w|

p/2‖22.

�

Proof of Lemma 3.1. For the first assertion, we simply integrate (37) over the whole space domain. We
observe that all terms on the right hand side vanish, so

d

dt

∫
R
uµ(t, x)dx = 0, ∀t ≥ 0,

for all µ > 0 and, hence, the mass is conserved. Using the definition of uµ, we conclude∫
R
uµ(t, x)dx =

∫
R
uµ(0, x)dx =

∫
R
µu0

∆(µx)dx =

∫
R
u0

∆(x)dx.

For the contractivity we prove that for any u0, v0 ∈ L1(R), their corresponding solutions uµ and vµ

satisfy

(72) ‖uµ − vµ‖1 ≤ ‖uµ0 − v
µ
0 ‖1.

For the sake of clarity, let us define wµ = uµ − vµ. Clearly, wµ verifies

wµt (t, x) =
1

4

(
d+

∆x/µ

(
uµ(t, x)2

)
+ d−∆x/µ

(
uµ(t, x)2

)
− d+

∆x/µ

(
vµ(t, x)2

)
− d−∆x/µ

(
vµ(t, x)2

))
+ ∆x d+

∆x/µR
(
uµ(t, x− ∆x

µ
), uµ(t, x)

)
−∆x d+

∆x/µR
(
vµ(t, x− ∆x

µ
), vµ(t, x)

)
+ d−∆x/µ

(
d+

∆x/µw
µ(t, x)

)
+ µ2

N∑
m=1

ωmw
µ(t, x−m∆x

µ
)− µ2F∆

0 w
µ(t, x) + µF∆

1 d
+
∆x/µw

µ(t, x).
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We multiply it by sign(wµ) and integrate it on all R. Using the definition of R in (38) and reordering the
terms we get

d

dt

∫
R
|wµ(x)|dx

(73)

=
1

4

∫
R
d+

∆x/µ

(
uµ(x)2 + uµ(x− ∆x

µ
)2 + uµ(x)|uµ(x)| − uµ(x− ∆x

µ
)|uµ(x− ∆x

µ
)|
)

sign(wµ(x))dx

− 1

4

∫
R
d+

∆x/µ

(
vµ(x)2 + vµ(x− ∆x

µ
)2 + vµ(x)|vµ(x)| − vµ(x− ∆x

µ
)|vµ(x− ∆x

µ
)|
)

sign(wµ(x))dx

+

∫
R
d−∆x/µ(d+

∆x/µ(wµ(x))) sign(wµ(x))dx

+ µ2
N∑
m=1

ωm

∫
R

(
wµ(x−m∆x

µ
)− wµ(x)

)
sign(wµ(x))dx+ µF∆

1

∫
R
d+

∆x/µw
µ(t, x) sign(wµ(x))dx

= I1 + I2 + I3 + I4 + I5.

For i = 0, 1, let us denote W±i = {x ∈ R : ±wµ(x − i∆x) > 0} and W 0
i = {x ∈ R : wµ(x − i∆x) = 0}.

Now we can split the domains of the integrals into several parts, according to the sign of wµ. On the one
hand, we have:

I1 + I2 = −1

4

∫
R

(
uµ(x)2 + uµ(x)|uµ(x)|

)
d−∆x/µ(sign(wµ(x)))dx

− 1

4

∫
R

(
uµ(x− ∆x

µ
)2 − uµ(x− ∆x

µ
)|uµ(x− ∆x

µ
)|
)
d−∆x/µ(sign(wµ(x)))dx

+
1

4

∫
R

(
vµ(x)2 + vµ(x)|vµ(x)|

)
d−∆x/µ(sign(wµ(x)))dx

+
1

4

∫
R

(
vµ(x− ∆x

µ
)2 − vµ(x− ∆x

µ
)|vµ(x− ∆x

µ
)|
)
d−∆x/µ(sign(wµ(x)))dx

= − µ

2∆x

∫
W−0 ∩W

+
1

(
uµ(x)2 + uµ(x)|uµ(x)| − vµ(x)2 − vµ(x)|vµ(x)|

)
sign(wµ(x))dx

− µ

2∆x

∫
W−0 ∩W

+
1

(
vµ(x− ∆x

µ
)2 − vµ(x− ∆x

µ
)|vµ(x− ∆x

µ
)|

− uµ(x− ∆x

µ
)2 + uµ(x− ∆x

µ
)|uµ(x− ∆x

µ
)|
)

sign(wµ(x− ∆x

µ
))dx

− µ

2∆x

∫
W+

0 ∩W
−
1

(
uµ(x)2 + uµ(x)|uµ(x)| − vµ(x)2 − vµ(x)|vµ(x)|

)
sign(wµ(x))dx

− µ

2∆x

∫
W+

0 ∩W
−
1

(
vµ(x− ∆x

µ
)2 − vµ(x− ∆x

µ
)|vµ(x− ∆x

µ
)|

− uµ(x− ∆x

µ
)2 + uµ(x− ∆x

µ
)|uµ(x− ∆x

µ
)|
)

sign(wµ(x− ∆x

µ
))dx

− µ

4∆x

∫
W 0

1

(
uµ(x)2 + uµ(x)|uµ(x)| − vµ(x)2 − vµ(x)|vµ(x)|

)
sign(wµ(x))dx

− µ

4∆x

∫
W 0

0

(
vµ(x− ∆x

µ
)2 − vµ(x− ∆x

µ
)|vµ(x− ∆x

µ
)|

− uµ(x− ∆x

µ
)2 + uµ(x− ∆x

µ
)|uµ(x− ∆x

µ
)|
)

sign(wµ(x− ∆x

µ
))dx.

Using that (
b(b+ |b|)− a(a+ |a|)

)
sign(b− a) ≥ 0, ∀a, b ∈ R,

and that (
a(a− |a|)− b(b− |b|)

)
sign(b− a) ≥ 0, ∀a, b ∈ R,

we conclude that I1 + I2 ≤ 0. On the other hand, since∫
R
wµ(x−m∆x

µ
) sign(wµ(x))dx ≤

∫
R
|wµ(x)|dx, ∀m ∈ Z,
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it is immediate that

I3 =
µ2

∆x2

∫
R

(
wµ(x− ∆x

µ
) + wµ(x+

∆x

µ
)− 2wµ(x)

)
sign(wµ(x))dx ≤ 0.

Moreover, for the same reason, we deduce that I4 ≤ and I5 ≤ 0. Therefore, from (73) we get that

d

dt

∫
R
|wµ(x)|dx ≤ 0,(74)

This guarantees the contractive property (72). �

Proof of Lemma 3.2. Let us consider the Fourier transform of w as

ŵ(ξ) =

∫
R
e−ixξw(x)dx, ξ ∈ R

and the discrete Fourier transform of the sequence {wj}j∈Z as

w(ξ) = ∆x
∑
j∈Z

wje
−ij∆xξ, ξ ∈ [− π

∆x
,
π

∆x
].

It is also clear that for a piecewise constant function w defined as in (6)

ŵ(ξ) =
2 sin( ξ∆x2 )

ξ∆x
w(ξ) and d̂+

∆xw(ξ) =
eiξ∆x − 1

∆x
ŵ(ξ).

Now, we know that

(75) ‖|D|sw‖22 =

∫
R
|ξ|2s|ŵ(ξ)|2dξ =

∫ π/∆x

−π/∆x
|ξ|2s|ŵ(ξ)|2dξ +

∑
j 6=0

∫ (2j+1)π/∆x

(2j−1)π/∆x

|ξ|2s|ŵ(ξ)|2dξ.

For each j 6= 0, we have∫ (2j+1)π/∆x

(2j−1)π/∆x

|ξ|2s|ŵ(ξ)|2dξ =

∫ (2j+1)π/∆x

(2j−1)π/∆x

|ξ|2s|w(ξ)|2
∣∣∣∣∣2 sin( ξ∆x2 )

ξ∆x

∣∣∣∣∣
2

dξ

=

∫ π/∆x

−π/∆x

∣∣∣ξ + 2j
π

∆x

∣∣∣2s |w(ξ)|2
∣∣∣∣∣2 sin( ξ∆x2 + jπ)

(ξ + 2j π
∆x )∆x

∣∣∣∣∣
2

dξ

=

∫ π/∆x

−π/∆x

∣∣∣∣ 2

∆x
sin(

ξ∆x

2
)

∣∣∣∣2s |w(ξ)|2
∣∣∣∣ 2

∆x
sin(

ξ∆x

2
)

∣∣∣∣2−2s ∣∣∣ξ + 2j
π

∆x

∣∣∣2s−2

dξ

≤
∫ π/∆x

−π/∆x
|ξ|2s|w(ξ)|2 |ξ|2−2s∣∣ξ + 2j π

∆x

∣∣2−2s dξ

≤ 1

|2|j| − 1|2−2s

∫ π/∆x

−π/∆x
|ξ|2s|w(ξ)|2dξ.

Therefore, replacing this in (75) and using that 0 < s < 1
2 , we get

‖|D|sw‖22 ≤
∫ π/∆x

−π/∆x
|ξ|2s|ŵ(ξ)|2dξ +

∑
j 6=0

1

|2|j| − 1|2−2s

∫ π/∆x

−π/∆x
|ξ|2s|w(ξ)|2dξ

=

∫ π/∆x

−π/∆x
|ξ|2s

∣∣∣∣∣2 sin( ξ∆x2 )

ξ∆x

∣∣∣∣∣
2

|w(ξ)|2dξ +
∑
j 6=0

1

|2|j| − 1|2−2s

∫ π/∆x

−π/∆x
|ξ|2s|w(ξ)|2dξ

.
∫ π/∆x

−π/∆x
|ξ|2s|w(ξ)|2dξ.

On the other hand, using analogous arguments, we also have

‖d+
∆xw‖

2
2 =

∫
R

∣∣∣∣eiξ∆x − 1

∆x

∣∣∣∣2 |ŵ(ξ)|2dξ =

∫
R

∣∣∣∣eiξ∆x − 1

∆x

∣∣∣∣2
∣∣∣∣∣2 sin( ξ∆x2 )

ξ∆x

∣∣∣∣∣
2

|w(ξ)|2dξ

&
∫ π/∆x

−π/∆x

∣∣∣∣eiξ∆x − 1

∆x

∣∣∣∣2 |w(ξ)|2dξ &
∫ π/∆x

−π/∆x
|ξ|2 |w(ξ)|2dξ
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Finally, we conclude

‖w‖2Hs(R) =

∫
R

(1 + |ξ|2s)|ŵ(ξ)|2dξ =

∫
R
|ŵ(ξ)|2dξ +

∫
R
|ξ|2s|ŵ(ξ)|2dξ

.
∫ π/∆x

−π/∆x
|w(ξ)|2dξ +

∫ π/∆x

−π/∆x
|ξ|2s|w(ξ)|2dξ .

∫ π/∆x

−π/∆x
(1 + |ξ|2s)|w(ξ)|2dξ

.
∫ π/∆x

−π/∆x
(1 + |ξ|2)|w(ξ)|2dξ . (‖w‖22 + ‖d+

∆xw‖
2
2).

�

Lemma A.2. Given any a ∈ (0, 1) and b ∈ C with |b| = 1, the following inequality holds:∣∣∣∣∣
N∑
m=1

am(bm − 1) +

(
N∑
m=1

mam

)(
1

b
− 1

)∣∣∣∣∣ ≤ |b− 1|2 a

(1− a)3
.

Proof. Using that |b| = 1, we have:∣∣∣∣∣
N∑
m=1

am(bm − 1) +

(
N∑
m=1

mam

)(
1

b
− 1

)∣∣∣∣∣ =

∣∣∣∣∣
N∑
m=1

amb(bm − 1)−

(
N∑
m=1

mam

)
(b− 1)

∣∣∣∣∣
= |b− 1|

∣∣∣∣∣
N∑
m=1

am
m−1∑
k=0

(bk+1 − 1)

∣∣∣∣∣ = |b− 1|2
∣∣∣∣∣∣
N∑
m=1

am
m−1∑
k=0

k∑
j=0

bj

∣∣∣∣∣∣
≤ 1

2
|b− 1|2

∞∑
m=1

m(m+ 1)am = |b− 1|2 a

(1− a)3
.

�
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