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Abstract. Let Iν (x) be the modified Bessel functions of the first kind

of order ν, and Sp,ν (x) = Wν (x)2 − 2pWν (x) − x2 with Wν (x) =
xIν (x) /Iν+1 (x). We achieve necessary and sufficient conditions for the
inequality Sp,ν (x) < u or Sp,ν (x) > l to hold for x > 0 by estab-
lishing the monotonicity of Sp,ν(x) in x ∈ (0,∞) with ν > −3/2. In
addition, the best parameters p and q are obtained to the inequality

Wν (x) < (>) p+
√
x2 + q2 for x > 0. Our main achievements improve

some known results, and it seems to answer an open problem recently
posed by Hornik and Grün in [13].
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1. Introduction

Bessel functions as the solutions of Bessel’s equations occur frequently in ad-
vanced studies in applied mathematics, physics, and engineering. The modi-
fied Bessel function of the first kind of order ν, denoted by Iν (x) as usual (cf.
[33, page 77]), is a particular solution of the following second-order differential
equation:

x2y′′ (x) + xy′ (x)− (x2 + ν2)y (x) = 0, (1.1)

which is explicitly expressed by the infinite series

Iν (x) =

∞∑
n=0

(x/2)
2n+ν

n!Γ (ν + n+ 1)
=

(x/2)
ν

Γ (ν + 1)

∞∑
n=0

(x/2)
2n

n! (ν + 1)n
(1.2)
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for any x ∈ R and ν ∈ R\{−1,−2, · · · }, where (a)n is the Pochhammer
symbol defined by

(a)n = a (a+ 1) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)

for any n ∈ N with (a)0 = 1 for a 6= 0,−1,−2, · · · .
It follows from [33, page 79] that Iν satisfies the recurrence relations

xI ′ν (x) + νIν (x) = xIν−1 (x) , (1.3)

xI ′ν (x)− νIν (x) = xIν+1 (x) , (1.4)

which implies that

xI ′ν (x)

Iν (x)
=
xIν−1 (x)

Iν (x)
− ν =

xIν+1 (x)

Iν (x)
+ ν.

It is worth pointing out that the ratio xIν (x) /Iν+1 (x) plays an important
role in finite elasticity [29, 30] and epidemiological models [21, 22], while
another ratio Iν+1 (x) /Iν (x) has also appeared in probability and statistics
[10, 27, 12] with various applications in chemical kinetics [2, 18], optics [31]
and signal processing [15]. For convenience, for any x > 0 and p+ |q| ≥ 0 in
the context we write by

Wν (x) =
xIν (x)

Iν+1 (x)
, Ap,q (x) = p+

√
x2 + q2,

Rν (x) =
Iν+1 (x)

Iν (x)
, Gp,q (x) =

x

p+
√
x2 + q2

.

Obviously, Wν (x) = x/Rν (x).

Amos in 1974 first showed the bounds Gp,q (x) for the ratio Rν (x) (cf.
formulas (11) and (16) in [3]) that for x, ν ≥ 0 there hold

Gν+1,ν+1 (x) < Rν (x) < Gν,ν+2 (x) , (1.5)

Gν+1/2,ν+3/2 (x) < Rν (x) < Gν+1/2,ν+1/2 (x) . (1.6)

For this reason, Gp,q (x) is called Amos type bound for Rν (x) by Hornik and
Grün in [13]. For ν > −1 and p+ |q| ≥ 0 it is easily seen that

Wν (x) < (>)Ap,q (x) ⇐⇒ Rν (x) > (<)Gp,q (x) . (1.7)

So, one also calls Ap,q (x) as Amos type bound for Wν (x), and these inequal-
ities (1.7) above are called Amos type ones.

In 1984 Simpson and Spector gave an alternative type inequality involv-
ing the ratio Wν (x) as follows:

Wν (x)
2 − (2ν + 1)Wν (x)− (x2 + ν +

1

2
) > 0, ∀ν ≥ 0, (1.8)

for details to see Theorem 2 in [29]. For this, such an inequality similar to
(1.8) is called as Simpson-Spector type inequality for Wν (x). It is clear that
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Simpson-Spector type inequality (1.8) can be written that for ν ≥ 0,

A
ν+1/2,

√
(ν+1/2)(ν+3/2)

(x) = ν +
1

2
+

√
x2 +

(
ν +

1

2

)(
ν +

3

2

)
< Wν (x) .

(1.9)

We would like to remark that Neuman in [24, Proposition 5] presented
another Simpson-Spector type inequality for Wν (x) as follows:

Wν (x)
2 − (2ν + 1)Wν (x)− (x2 + ν +

1

2
) < ν +

3

2
, ∀ν > −3

2
, (1.10)

which extended the range of order ν from [0,∞) to (−1,∞) such that the
first inequality of (1.6) holds. A companion one of (1.10) is due to Baricz and
Neuman (cf. [4, Theorem 2.2]):

Wν (x)
2 − 2νWν (x)− x2 > 4 (ν + 1) , for all ν > −2, (1.11)

which indicates that the second inequality in (1.5) holds for ν > −1.

Recently, Hornik and Grün [13] systematically investigated the lower
and upper bounds for the modified Bessel functions ratio Rν = Iν+1/Iν
based on various results mentioned above and other involving achievements
for examples [23], [36, E1. (A.5)], [17, Theorem 1.1], [28, Formulas (22) and
(61)], [16]. They showed that the lower bound in (1.6) and upper bound in
(1.5) for ν > −1 are the best, and further extended the range of the inequality
(1.9) from ν ≥ 0 to ν ≥ −1/2. Moreover, they pointed out that the range
of −1 < ν < −1/2 deserves further investigation such that the inequality
Rν (x) < (>)Gp,q (x) holds for x > 0.

Other results concerning Amos type inequality or Simpson-Spector type
inequality can be found in [25], [5], [6], [7], [8] and references therein..

Motivated by Hornik and Grün’s work and recent results mentioned
above, the main aim of this paper is to study the monotonicity of the function

x 7→ Sp,ν (x) = Wν (x)
2 − 2pWν (x)− x2 (1.12)

on (0,∞) for ν > −3/2 by way of some power series expressions, and pro-
vide the necessary and sufficient conditions for the Simpson-Spector type
inequality Sp,ν (x) < u or Sp,ν (x) > l for any x > 0. The second aim is to
determine the best parameters p and q such that the Amos type inequality
Wν (x) < (>)Ap,q (x) holds for x ∈ (0,∞), which in fact give new proofs of
those inequalities mentioned previously and answers an open problem posted
by Hornik and Grün [13].

The rest of the paper is organized as follows. We first give some aux-
iliary lemmas in Section 2. In Section 3 we are devoted to dealing with the
monotonicity of Sp,ν(x) in accordance with the different ranges of p, and
use it to establish the necessary and sufficient conditions such that Simpson-
Spector type inequalities hold for ν > −3/2. In the last section we give sharp
constants p and q satisfying the Amos type inequality Wν (x) < (>)Ap,q (x)
for ν > −3/2, and present some new Amos type bounds Gp,q (x) for Rν(x)
in the case of −1 < ν < −1/2.
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2. Some lemmas

In order to prove our results, we need present some auxiliary lemmas. The
first lemma is crucial which first appeared in [32, (3.5)] (see also [14]).

Lemma 2.1. Let Iν be the modified Bessel functions of the first kind of order
ν given by (1.2). Then we have

Iu (x) Iν (x) =
1

Γ (u+ 1) Γ (ν + 1)

∞∑
n=0

(u+ ν + n+ 1)n
n! (u+ 1)n (ν + 1)n

(x
2

)2n+u+ν

,

(2.1)

Iν (x)
2

=
1

Γ (ν + 1)
2

∞∑
n=0

(2ν + n+ 1)n
n! (ν + 1)

2
n

(x
2

)2n+2ν

. (2.2)

The following two lemmas are powerful tools to treat the monotonicity
of ratios between two power series.

Lemma 2.2. ([11]) Let A (t) =
∑∞
k=0 akt

k and B (t) =
∑∞
k=0 bkt

k be two real
power series converging on (−r, r) for some r > 0 with bk > 0 for all k. If
the sequence {ak/bk} is increasing (or decreasing) for all k, then the function
t 7→ A (t) /B (t) is also increasing (or decreasing) on (0, r).

Lemma 2.3. ([35, Corollary 2.3.], [34]) Let A (t) =
∑∞
k=0 akt

k and B (t) =∑∞
k=0 bkt

k be two real power series converging on R with bk > 0 for all k.
If for certain m ∈ N, the non-constant sequence {ak/bk} is increasing (or
decreasing) for 0 ≤ k ≤ m and decreasing (or increasing) for k > m, then
there is a unique t0 ∈ (0,∞) such that the function A/B is increasing (or
decreasing) on (0, t0) and decreasing (or increasing) on (t0,∞).

Remark 2.4. The condition in [35, Corollary 2.3.] that ”the non-constant
sequence {ak/bk} is increasing (or decreasing) for 0 ≤ k ≤ m and decreasing
(or increasing) for k ≥ m” contains the two special cases: ak/bk = a0/b0 for
0 ≤ k ≤ m and ak/bk = am/bm for k ≥ m. In the two cases, the conclusion
of [35, Corollary 2.3.] is obviously not true. Consequently, the range of k that
”0 ≤ k ≤ m” should be modified as ”0 ≤ k < m”, or replaced ”k ≥ m” by
”k > m”. The same modification should also apply to [35, Theorem 2.1 ].

Lemma 2.5. ([26, Problems 85, 94]) If two given sequences {an}n≥0 and
{bn}n≥0 satisfy the following conditions:

bn > 0,

∞∑
n=0

bnt
n converges for all values of t , and lim

n→∞

an
bn

= s;

then,
∑∞
n=0 ant

n must be convergent for all values of t too, and

lim
t→∞

∑∞
n=0 ant

n∑∞
n=0 bnt

n
= s.
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3. Monotonicity of Sp,ν and Simpson-Spector type inequalities

In this section, we are devoted to investigating the monotonicity of Sp,ν(x)
in accordance with the different ranges of p, and use it to attain Simpson-
Spector type inequalities. Let

f1 (x) := x2Iν (x)
2 − 2pxIν (x) Iν+1 (x)− x2Iν+1 (x)

2
,

f2 (x) := Iν+1 (x)
2
.

Then Sp,ν (x) can be expressed by

Sp,ν (x) =
x2Iν (x)

2 − 2pxIν (x) Iν+1 (x)− x2Iν+1 (x)
2

Iν+1 (x)
2 =

f1 (x)

f2 (x)
.

Combining the formulas (2.1) and (2.2) yields

f1 (x) = x2Iν (x)
2 − 2pxIν (x) Iν+1 (x)− x2Iν+1 (x)

2

=
4

Γ (ν + 1)
2

∞∑
n=0

(2ν + n+ 1)n
n! (ν + 1)

2
n

(x
2

)2n+2ν+2

− 4p

Γ (ν + 2) Γ (ν + 1)

∞∑
n=0

(2ν + n+ 2)n
n! (ν + 2)n (ν + 1)n

(x
2

)2n+2ν+2

−
(x

2

)2 4

Γ (ν + 2)
2

∞∑
n=0

(2ν + n+ 3)n
n! (ν + 2)

2
n

(x
2

)2n+2ν+2

=
4

Γ (ν + 1)
2

ν − p+ 1

ν + 1

(
x2

4

)ν+1

+
4

Γ (ν + 1)
2

(
x2

4

)ν+1

×
∞∑
n=1

(2ν + n+ 2)n
n! (ν + 1)

2
n

(2ν − 2p+ 1)n− (2ν + 1) (p− ν − 1)

(2n+ 2ν + 1) (n+ ν + 1)

(
x2

4

)n
:=

1

Γ (ν + 1)
2

(
x2

4

)ν+1 ∞∑
n=0

an

(
x2

4

)n
,

where

an = 4
(2ν − 2p+ 1)n+ (2ν + 1) (ν + 1− p)

(2n+ 2ν + 1) (n+ ν + 1)

(2ν + n+ 2)n
n! (ν + 1)

2
n

. (3.1)

In a similar way, we have

f2 (x) = Iν+1 (x)
2

=
1

Γ (ν + 1)
2

∞∑
n=0

(2ν + n+ 3)n
n! (ν + 1)

2
n+1

(x
2

)2n+2ν+2

=
1

Γ (ν + 1)
2

(
x2

4

)ν+1 ∞∑
n=0

bn

(
x2

4

)n
,

where

bn =
2

(n+ ν + 1) (n+ 2ν + 2)

(2ν + n+ 2)n
n! (ν + 1)

2
n

. (3.2)
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Therefore

Sp,ν (x) =
f1 (x)

f2 (x)
=

1
Γ(ν+1)2

(
x2

4

)ν+1∑∞
n=0 an

(
x2

4

)n
1

Γ(ν+1)2

(
x2

4

)ν+1∑∞
n=0 bn

(
x2

4

)n =

∑∞
n=0 an

(
x2/4

)n∑∞
n=0 bn (x2/4)

n ,

and
an
bn

= 2
n+ 2ν + 2

2n+ 2ν + 1

(
(2ν − 2p+ 1)n+ (2ν + 1) (ν + 1− p)

)
. (3.3)

It is easily seen that

Sp,ν (0) = lim
x→0

f1 (x)

f2 (x)
=
a0

b0
= 4 (ν + 1) (ν + 1− p) , (3.4)

and from Lemma 2.5 it is deduced that

Sp,ν (∞) = lim
x→∞

f1 (x)

f2 (x)
= lim
n→∞

an
bn

=


−∞, if p > ν + 1

2 ,

ν + 1
2 , if p = ν + 1

2 ,

∞, if p < ν + 1
2 .

(3.5)

To determine the monotonicity of Sp,ν , by Lemmas 2.2 and 2.3 it suffices to
observe the monotonicity of the sequence {an/bn}. To that end, we observe

an+1

bn+1
− an
bn

= −2
(
p− hn (ν)

)
, (3.6)

where

hn (ν) = (2ν + 1)
2n2 + 4 (ν + 1)n+ ν (2ν + 3)

(2n+ 2ν + 1) (2n+ 2ν + 3)
.

A simple computation yields

hn+1 (ν)− hn (ν) =
2 (2ν + 1) (2ν + 3)

(2n+ 2ν + 1) (2n+ 2ν + 3) (2n+ 2ν + 5)

=

 > 0, if ν > −1/2,
> 0, if − 3/2 < ν < −1/2 and n = 0,
< 0, if − 3/2 < ν < −1/2 and n ≥ 1,

(3.7)

which shows that for ν > −1/2,

ν = h0 (ν) < hn (ν) < h∞ (ν) = ν +
1

2
, n ≥ 0; (3.8)

and for −3/2 < ν < −1/2,

ν = h0 (ν) < hn (ν) < h1 (ν) =
(2ν + 1) (ν + 2)

2ν + 5
, n = 0, 1; (3.9)

ν +
1

2
= h∞ (ν) < hn (ν) < h1 (ν) =

(2ν + 1) (ν + 2)

2ν + 5
, n ≥ 1. (3.10)

We are now in a position to discuss the monotonicity of Sp,ν in accor-
dance with the different cases of ν and p.
Case 1. While ν ≥ −1/2, it can be divided into three subcases to discuss.

Subcase 1.1. If p ≥ ν+1/2, from relations (3.6) and (3.8) then it is clearly
seen that an+1/bn+1−an/bn ≤ 0 for all n ≥ 0, which means that the sequence
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{an/bn}n≥0 is decreasing. By Lemma 2.2 it follows that x 7→ f1 (x) /f2 (x) is
decreasing on (0,∞). Therefore

−∞, if p > ν + 1
2

ν + 1
2 , if p = ν + 1

2

}
= lim

n→∞

an
bn

= lim
x→∞

f1 (x)

f2 (x)
<
f1 (x)

f2 (x)

< lim
x→0

f1 (x)

f2 (x)
=
a0

b0
= 4 (ν + 1) (ν + 1− p) .

Subcase 1.2. If p ≤ ν, similarly we have an+1/bn+1 − an/bn ≥ 0 for
n ≥ 0, that is to say, then the sequence {an/bn}n≥0 is increasing. By Lemma
2.2 it follows that x 7→ f1 (x) /f2 (x) is increasing on (0,∞). Hence,

4 (ν + 1) (ν − p+ 1) = lim
x→0

f1 (x)

f2 (x)
<
f1 (x)

f2 (x)
< lim
x→∞

f1 (x)

f2 (x)
=∞.

Subcase 1.3. If ν < p < ν + 1/2, as mentioned previously then the
sequence {hn (ν)}n≥0 is increasing, so {p − hn (ν)}n≥0 is decreasing. This
together with

p− h0 (ν) = p− ν > 0 and p− h∞ (ν) = p−
(
ν +

1

2

)
< 0

reveals that there is an n0 ≥ 1 such that p− hn (ν) > 0 for 0 ≤ n ≤ n0, and
p − hn (ν) < 0 for n ≥ n0. Combining with (3.6) yields that the sequence
{an/bn} is decreasing for 0 ≤ n ≤ n0 and increasing for n ≥ n0. By Lemma
2.3, it is deduced that there is an x0 > 0 such that f1/f2 is decreasing on
(0, x0) and increasing on (x0,∞). Thus

λp,ν =
f1 (x0)

f2 (x0)
<
f1 (x)

f2 (x)
< lim
x→0

f1 (x)

f2 (x)
= 4 (ν + 1) (ν − p+ 1) , ∀x ∈ (0, x0) ,

(3.11)

λp,ν =
f1 (x0)

f2 (x0)
≤ f1 (x)

f2 (x)
< lim
x→∞

f1 (x)

f2 (x)
=∞, ∀x ∈ (x0,∞) ,

which implies that
f1 (x)

f2 (x)
≥ λp,ν , ∀x ∈ (0,∞) .

We now summarize these results above. More precisely, we have

Theorem 3.1. Let Sp,ν be defined on (0,∞) by (1.12) for ν > −1/2. Then we
have
(i) If p > ν + 1/2, then the function Sp,ν is decreasing from (0,∞) onto
(−∞, 4 (ν + 1) (ν + 1− p)).
(ii) If p = ν + 1/2, then the function Sp,ν is decreasing from (0,∞) onto
(ν + 1/2, 2 (ν + 1)).
(iii) If ν < p < ν + 1/2, then there is an x0 > 0 such that Sp,ν is decreasing
on (0, x0) and increasing on (x0,∞), with the estimate

λp,ν ≤ Sp,ν (x) <∞,
where λp,ν = Sp,ν (x0), x0 is a unique solution of the equation Sp,ν (x) = 0
on (0,∞).
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(iv) If p ≤ ν, then one has that the function Sp,ν is increasing from (0,∞)
onto (4 (ν + 1) (ν + 1− p) ,∞).

Remark 3.2. It is well known that W−1/2 (x) = x cothx, so we easily check
that Theorem 3.1 is also true for ν = −1/2.

Thanks to Theorem 3.1 together with the remark above, we immediately
conclude the following statement.

Theorem 3.3. Let ν ≥ −1/2. Then we have
(i) Sp,ν (x) < u holds for all x > 0 if and only if u ≥ 4 (ν + 1) (ν + 1− p)
and p ≥ ν + 1/2;
(ii) l < Sp,ν (x) holds for all x > 0 if and only if

l ≤ L1 (p, ν) =


ν + 1

2 , if p = ν + 1
2 ,

λp,ν > 0, if ν < p < ν + 1
2 ,

4 (ν + 1) (ν + 1− p) , if p ≤ ν,

(3.12)

where λp,ν = Sp,ν (x0), and x0 is a unique solution of the equation Sp,ν (x) =
0 on (0,∞).

Case 2. While −3/2 < ν < −1/2, as shown previously the sequence
{hn (ν)}n≥0 is increasing for n = 0, 1 and decreasing for n ≥ 1. Then we have

h0 (ν) = ν < ν +
1

2
= h∞ (ν) < hn (ν) ≤ h1 (ν) =

(2ν + 1) (ν + 2)

2ν + 5
.

We now distinguish four subcases to discuss.
Subcase 2.1. If p ≥ maxn≥0 (hn (ν)) = (2ν + 1) (ν + 2) / (2ν + 5), from

relations (3.6), (3.9) and (3.10) we clearly see that an+1/bn+1 − an/bn ≤ 0
for n ≥ 0, that is, the sequence {an/bn}n≥0 is decreasing, and so is f1/f2 on
(0,∞) due to Lemma 2.2. Therefore

−∞ = lim
x→∞

f1 (x)

f2 (x)
<
f1 (x)

f2 (x)
< lim
x→0

f1 (x)

f2 (x)
=
a0

b0
= 4 (ν + 1) (ν + 1− p)

for all x > 0.
Subcase 2.2. If p ≤ minn≥0 (hn (ν)) = ν, then we clearly have an+1/bn+1−

an/bn ≥ 0 for n ≥ 0, which implies that the sequence {an/bn}n≥0 is increas-
ing, and so is f1/f2 on (0,∞) due to Lemma 2.2. It follows that

4 (ν + 1) (ν + 1− p) =
a0

b0
= lim
x→0

f1 (x)

f2 (x)
<
f1 (x)

f2 (x)
< lim
x→∞

f1 (x)

f2 (x)
=∞

hold for all x > 0.
Subcase 2.3. If ν = h0 (ν) < p ≤ h∞ (ν) = ν+1/2, from (3.6), (3.9) and

(3.10) then we have

a1

b1
− a0

b0
= −2 (p− ν) < 0, (3.13)

an+1

bn+1
− an
bn

= −2 [p− hn (ν)] > 0, for n ≥ 1.
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This shows that the sequence {an/bn}n≥0 is decreasing only for n = 0, 1; and
increasing for n ≥ 1. By Lemma 2.3 there exists an x0 > 0 such that f1/f2

is decreasing on (0, x0) and increasing on (x0,∞), and so we have that for
x ∈ (0, x0),

λp,ν =
f1 (x0)

f2 (x0)
<
f1 (x)

f2 (x)
< lim
x→0

f1 (x)

f2 (x)
= 4 (ν + 1) (ν + 1− p)

and for x ∈ (x0,∞),

λp,ν =
f1 (x0)

f2 (x0)
<
f1 (x)

f2 (x)
< lim
x→∞

f1 (x)

f2 (x)
=

{
ν + 1

2 , if p = ν + 1/2,
∞, if ν < p < ν + 1/2;

or

λp,ν ≤
f1 (x)

f2 (x)
<

{
2ν + 2, if p = ν + 1/2,
∞, if ν < p < ν + 1/2.

Subcase 2.4. If ν+1/2 = h∞ (ν) < p < h1 (ν) = (2ν + 1) (ν + 2) / (2ν + 5),
from (3.13) we see that the sequence {an/bn} is decreasing for n = 0, 1. Note
that {hn (ν)}n≥1 is decreasing, so {p − hn (ν)}n≥1 is increasing, which to-
gether with the facts that

p− h1 (ν) = p− (2ν + 1) (ν + 2)

2ν + 5
< 0 and p− h∞ (ν) = p−

(
ν +

1

2

)
> 0

reveals that there is an n1 > 1 such that p − hn (ν) < 0 for 1 ≤ n ≤ n1,
and p − hn (ν) > 0 for n ≥ n1. Combining (3.6) we see that the sequence
{an/bn} is increasing for 1 ≤ n ≤ n1 and decreasing for n ≥ n1. It thus can
be seen that the sequence {an/bn} is decreasing for n = 0, 1 and increasing
for 1 ≤ n ≤ n0 then decreasing for n ≥ n0.

Obviously, we are not able to describe the monotone pattern of f1/f2

by directly using Lemmas 2.2 and 2.3. However, we can show that

−∞ <
f1 (x)

f2 (x)
< lim
x→0

f1 (x)

f2 (x)
=
a0

b0
, ∀x > 0. (3.14)

In fact, for any n ≥ 1 we have

an
bn
− a0

b0

=
2(n+ 2ν + 2)

2n+ 2ν + 1

(
(2ν − 2p+ 1)n+ (2ν + 1)(ν + 1− p)

)
− 4(ν + 1)(ν + 1− p)

= − 2n

2n+ 2ν + 1

(
p (2n+ 2ν + 1)− (2ν + 1)n− (ν + 1) (2ν − 1)

)
< − 2n

2n+ 2ν + 1

[(
(ν +

1

2
)(2n+ 2ν + 1)− (2ν + 1)n− (ν + 1) (2ν − 1)

)]
= −n 2ν + 3

2n+ 2ν + 1
< 0,

where the inequality holds due to −3/2 < ν < −1/2 and ν + 1/2 < p <
(2ν + 1) (ν + 2) / (2ν + 5). This implies that an/bn ≤ a0/b0 for any n ≥ 0.
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Since bn > 0 for n ≥ 0, we have

f1 (x)

f2 (x)
=

∑∞
n=0 an

(
x2/4

)n∑∞
n=0 bn (x2/4)

n <

∑∞
n=0 (a0/b0) bn

(
x2/4

)n∑∞
n=0 bn (x2/4)

n =
a0

b0
.

On the other hand, it is evident that

lim
x→∞

f1 (x)

f2 (x)
= lim
n→∞

an
bn

= sgn (2ν − 2p+ 1)∞ = −∞,

which proves (3.14).
By summarizing the subcases 2.1–2.4, we conclude the following results.

Theorem 3.4. For −3/2 < ν < −1/2, let Sp,ν be defined by (1.12).
(i) If p ≥ (2ν + 1) (ν + 2) / (2ν + 5), then the function Sp,ν is decreasing
from (0,∞) onto (−∞, 4 (ν + 1) (ν + 1− p)).
(ii) If ν + 1/2 < p < (2ν + 1) (ν + 2) / (2ν + 5), then we always have

−∞ < Sp,ν (x) < 4 (ν + 1) (ν − p+ 1) , ∀x > 0.

(iii) If p = ν + 1/2, then there exists an x0 > 0 such that Sp,ν is decreasing
on (0, x0) and increasing on (x0,∞) with the estimates

λp,ν ≤ Sp,ν (x) < 2ν + 2, ∀x > 0,

where λp,ν = Sp,ν (x0), and x0 is a unique solution of the equation S′p,ν (x) =
0 on (0,∞).
(iv) If ν < p < ν + 1/2, then there is an x0 > 0 such that Sp,ν is decreasing
on (0, x0), and increasing on (x0,∞) with

λp,ν ≤ Sp,ν (x) <∞, ∀x > 0,

where λp,ν = Sp,ν (x0), and x0 is a unique solution of the equation S′p,ν (x) =
0 on (0,∞).
(v) If p ≤ ν, then one has that the function Sp,ν is increasing from (0,∞)
onto (4 (ν + 1) (ν + 1− p) ,∞).

Theorem 3.5. Let −3/2 < ν < −1/2. Then we have
(i) the inequality Sp,ν (x) < u holds for all x > 0 if and only if u ≥
4 (ν + 1) (ν + 1− p) and p ≥ ν + 1/2;
(ii) the inequality l < Sp,ν (x) holds for all x > 0 if and only if

l ≤ L2 (p, ν) =

{
λp,ν , if ν < p ≤ ν + 1

2 ,

4 (ν + 1) (ν + 1− p) , if p ≤ ν,

where λp,ν = Sp,ν (x0), and x0 is a unique solution of the equation S′p,ν (x) =
0 on (0,∞).

On the basis of Theorems 3.3 and 3.5, we immediately obtain the fol-
lowing corollary.

Corollary 3.6. Let ν > −3/2. Then the inequality Sp,ν (x) < u holds for all
x > 0 if and only if u ≥ 4 (ν + 1) (ν + 1− p) and p ≥ ν + 1/2.
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Remark 3.7. In particular, by taking p = ν+1/2 and u = 4 (ν + 1) (ν + 1− p)
we deduces (1.10) which was first proved in [24, Proposition 5].

Corollary 3.8. Let ν > −3/2. Then the inequality l < Sp,ν (x) holds for all
x > 0 if and only if

l ≤ L (p, ν) =



ν + 1
2 , if p = ν + 1

2 , ν > −
1
2 ,

λp,ν , if p = ν + 1
2 ,

3
2 < ν < − 1

2 ,

λp,ν , if ν < p < ν + 1
2 ,

4 (ν + 1) (ν + 1− p) , if p ≤ ν,

(3.15)

where λp,ν = Sp,ν (x0), and x0 is a unique solution of the equation S′p,ν (x) =
0 on (0,∞).

Remark 3.9. Taking p = ν + 1/2 and l = L (p, ν) for ν > −1/2 in Corollary
3.8, we derive inequality (1.8) proved in [29]. Letting p = ν and l = L (p, ν)
yields inequality (1.11) for ν > −3/2. We claim that inequality (1.11) is valid
for ν > −2, which suffices to show that the sequence {an/bn}n≥0 is increasing
for ν > −2 by Lemma 2.2. Indeed, if p = ν > −2 then we have

b0 =
1

(ν + 1)
2 > 0, b1 =

2

(ν + 1)
2

(ν + 2)
> 0

and bn > 0 for n ≥ 2, and

a1

b1
− a0

b0
= 0,

a2

b2
− a1

b1
=

4

2ν + 5
> 0,

an+1

bn+1
− an
bn

=
4n (n+ 2ν + 2)

(2n+ 2ν + 1) (2n+ 2ν + 3)
> 0 for n ≥ 2.

4. Amos type inequalities for Wν (x)

In this section, we mainly are devoted to showing the necessary and sufficient
conditions for the Amos type inequality

Wν (x) =
xIν (x)

Iν+1 (x)
< (>)p+

√
x2 + q2 = Ap,q (x) , ∀x > 0. (4.1)

Similar to [13, Theorem 1], we have the following lemma.

Lemma 4.1. Let ν > −3/2 and p ∈ R, q ≥ 0. If Amos type inequality (4.1)
holds for all x > 0, then it is necessary to ensure

p ≥ (≤)ν +
1

2
, and p+ q ≥ (≤)2 (ν + 1) .

Proof. Using the asymptotic formulas

Iν (x) ∼
(x

2

)ν
/Γ (ν + 1) as x→ 0, (4.2)

Iν (x) ∼ ex√
2πx

(
1− 4ν2 − 1

1! (8x)

)
as x→∞ (4.3)
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listed in [1, page 375 and 377], we have

xIν (x)

Iν+1 (x)
−
(
p+

√
x2 + q2

)
∼

x
(
x
2

)ν
/Γ (ν + 1)(

x
2

)ν+1
/Γ (ν + 2)

−
(
p+

√
x2 + q2

)
−→ 2 (ν + 1)− (p+ q) , as x→ 0,

and

xIν (x)

Iν+1 (x)
−
(
p+

√
x2 + q2

)
∼

x ex√
2πx

(
1− 4ν2−1

8x

)
ex√
2πx

(
1− 4(ν+1)2−1

8x

) − (p+
√
x2 + q2

)

=
x
(
8x− 4ν2 + 1

)
8x− (2ν + 3) (2ν + 1)

− p−
√
x2 + q2 −→ ν +

1

2
− p, as x→∞.

Therefore, it is an important observation that if the inequality (4.1) holds for
all x > 0, then we get

− (p+ q) ≤ (≥) 0 and ν +
1

2
− p ≤ (≥) 0,

which proves the desired assertion. �

Lemma 4.2. For any ν > −2, the function x 7→ Wν (x) is increasing from
(0,∞) onto (2ν + 2,∞).

Proof. The monotonicity of Wν on (0,∞) has been proven in [4, Theorem
2.2], and it suffices to show Wν (0+) = 2ν+ 2 and Wν (∞) =∞, which easily
follow from the asymptotic formulas (4.2) and (4.3). In fact, utilizing the
expansion (1.2) we have

Wν (x) =
xIν (x)

Iν+1 (x)
∼ x (x/2)

ν
/Γ (ν + 1)

(x/2)
ν+1

/Γ (ν + 2)
= 2 (ν + 1) as x→ 0,

Wν (x) =
xIν (x)

Iν+1 (x)
∼ x→∞ as x→∞.

�

4.1. The necessary and sufficient conditions for Wν (x) < (>)Ap,q (x)

Theorem 4.3. Let ν > −3/2. Then the the following inequality

Wν (x) < p+
√
x2 + p2 + u = A

p,
√
p2+u

(x) (4.4)

holds for all x > 0 if and only if (p, u) ∈ Ω with

Ω =
{
ν+

1

2
≤ p ≤ 2 (ν + 1) , u ≥ 4 (ν + 1) (ν + 1− p)

}
∪
{
p > 2 (ν + 1) , u ≥ −p2

}
.

Furthermore, for all x > 0 we have

min
(p,u)∈Ω

A
p,
√
p2+u

(
x
)

= ν +
1

2
+

√
x2 +

(
ν +

3

2

)2

. (4.5)
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Proof. If the inequality (4.4) holds for all x > 0, then by Lemma 4.1 we have

(p, u) ∈
{
p ≥ ν +

1

2
, p2 + u ≥ 0, p+

√
p2 + u ≥ 2(ν + 1)

}
:= D1.

Hence, it suffices to show D1 = Ω. Indeed, D1 can be written as

D1 =
{
ν +

1

2
≤ p ≤ 2 (ν + 1) , p2 + u ≥ 0, p+

√
p2 + u ≥ 2 (ν + 1)

}
∪
{
p ≥ max

(
ν +

1

2
, 2 (ν + 1)

)
, p2 + u ≥ 0, p+

√
p2 + u ≥ 2 (ν + 1)

}
:= D11 ∪D12.

It is obvious that

D12 =
{
p > 2 (ν + 1) , p2 + u ≥ 0

}
.

While p ≤ 2 (ν + 1), the inequality p+
√
p2 + u ≥ 2 (ν + 1) is equivalent to

u ≥ 4 (ν + 1) (ν + 1− p) ,

which implies

p2 + u ≥ p2 + 4 (ν + 1) (ν + 1− p) = (2ν + 2− p)2 ≥ 0.

Therefore,

D11 =
{
ν +

1

2
≤ p ≤ 2 (ν + 1) , u ≥ 4 (ν + 1) (ν + 1− p)

}
,

which realizes the necessity.
Let us now prove the sufficiency. If (p, u) ∈ D11, that is, ν + 1/2 ≤ p ≤

2 (ν + 1) and u ≥ 4 (ν + 1) (ν + 1− p), by considering

Sp,ν (x) =
(
Wν (x)− p+

√
x2 + p2 + u

)(
Wν (x)− p−

√
x2 + p2 + u

)
and Wν (x) > 2 (ν + 1) ≥ p due to Lemma 4.2, we have Wν (x) − p +√
x2 + p2 + u > 0 for all x > 0. This means that the inequality Sp,ν (x) < u

holds for all x > 0 is equivalent to Wν (x) < A
p,
√
p2+u

(x) for all x > 0 due

to Theorem 3.6.
On the other hand, we claim that

min
(p,u)∈D11

A
p,
√
p2+u

(x) = Aν+1/2,ν+3/2 (x) = ν +
1

2
+

√
x2 +

(
ν +

3

2

)2

.

In fact, for the case of (p, u) ∈ D11 we get

A
p,
√
p2+u

(x) = p+
√
x2 + p2 + u ≥ p+

√
x2 + p2 + 4 (ν + 1)

2 − 4 (ν + 1) p

= p+

√
x2 + (2ν + 2− p)2

:= Bp (x) .

It is easy to check that p 7→ Bp (x) is increasing on R, then we have

Bp (x) ≥ Bν+1/2 (x) = ν +
1

2
+

√
x2 +

(
ν +

3

2

)2

= Aν+1/2,ν+3/2 (x) .
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To our aim, it remains to prove that (4.4) holds for all x > 0 if (p, u) ∈
D12 =

{
p > 2 (ν + 1) , p2 + u ≥ 0

}
. It is easy to see that

A
p,
√
p2+u

(x) = p+
√
x2 + p2 + u > 2 (ν + 1) + x,

which implies

min
(p,u)∈D12

A
p,
√
p2+u

(x) = 2 (ν + 1) + x.

A simple computation gives

min
(p,u)∈D12

A
p,
√
p2+u

(x)− min
(p,u)∈D11

A
p,
√
p2+u

(x)

= 2 (ν + 1) + x−

(
ν +

1

2
+

√
x2 +

(
ν +

3

2

)2
)

= x+
(
ν +

3

2

)
−
√
x2 +

(
ν +

3

2

)2

> 0.

Then we conclude that for (p, u) ∈ D12, the inequality Wν (x) < A
p,
√
p2+u

(x)

also holds for all x > 0. This also proves (4.5) and the proof is completed. �

Setting p2 + u = q2, the above theorem can be equivalently stated as
follows.

Theorem 4.4. Let ν > −3/2 and p ∈ R, q ≥ 0. Then the inequality

Wν (x) < p+
√
x2 + q2 = Ap,q (x) (4.6)

holds for all x > 0 if and only if (p, q) ∈ Ω∗, where

Ω∗ =

{
p ≥ ν +

1

2
and p+ q ≥ 2 (ν + 1)

}
.

Furthermore, we have

min
(p,q)∈Ω∗

Ap,q (x) = Av+1/2,v+3/2 (x) .

Remark 4.5. Clearly, when ν > −1 and p+ q ≥ 0, Theorem 4.4 implies that
another Amos type inequality Rν (x) > Gp,q (x) holds for x > 0 if and only if
(p, q) ∈ Ω∗ with max(p,q)∈Ω∗ Gp,q (x) = Gv+1/2,v+3/2 (x), which is Theorem 3
in [13]. Here, we in fact give a new proof of this theorem.

As shown in the proof of Theorem 4.3, if p < 2 (ν + 1), then Wν (x)−p+√
x2 + p2 + u > 0 for all x > 0, which means that the inequality l < Sp,ν (x)

is equivalent to A
p,
√
p2+l

(x) < Wν (x) if p2 + l ≥ 0. Therefore, from Theorem

3.8 we immediately get

Theorem 4.6. Let ν > −3/2. Then the following inequality

A
p,
√
p2+l

(x) = p+
√
x2 + p2 + l < Wν (x) (4.7)
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holds for all x > 0 if and only if (p, l) ∈ ∆1 ∪∆2 ∪∆3, where

∆1 :=
{
−
(
ν +

1

2

)2

≤ l ≤ ν +
1

2
, p = ν +

1

2
, ν ≥ −1

2

}
,

∆2 :=
{
− p2 ≤ l ≤ λp,ν , ν < p < ν +

1

2

}
,

∆3 :=
{
− p2 ≤ l ≤ 4 (ν + 1) (ν + 1− p) , p ≤ ν

}
with λp,ν = Sp,ν (x0), and x0 is a unique solution of the equation S′p,ν (x) = 0

on (0,∞) with p2 + λp,ν ≥ 0 for ν < p < ν + 1/2. Moreover,

max
(p,l)∈∆1

A
p,
√
p2+l

(x) = ν +
1

2
+

√
x2 +

(
ν +

1

2

)(
ν +

3

2

)
, (4.8)

max
(p,l)∈∆3

A
p,
√
p2+l

(x) = ν +

√
x2 + (ν + 2)

2
. (4.9)

Proof. By Lemma 4.1, a necessary condition for the inequality A
p,
√
p2+l

(x) <

Wν (x) to hold for all x > 0 is stated to be

(p, l) ∈
{
p ≤ ν +

1

2
, p2 + l ≥ 0, p+

√
x2 + p2 + l ≤ 2 (ν + 1)

}
=

{
p ≤ ν +

1

2
, p2 + l ≥ 0, l ≤ 4 (ν + 1) (ν + 1− p)

}
:= D2.

Let

∆11 :=
{
l ≤ ν + 1

2 , p = ν + 1
2 , ν ≥ −

1
2

}
,

∆12 :=
{
l ≤ λp,ν , p = ν + 1

2 ,
3
2 < ν < − 1

2

}
,

∆′2 :=

{
l ≤ λp,ν , ν < p < ν +

1

2

}
,

∆′3 := {l ≤ 4 (ν + 1) (ν + 1− p) , p ≤ ν} .

Then, by Theorem 3.8 the inequality A
p,
√
p2+l

(x) < Wν (x) holds for all

x > 0 if and only if

(p, l) ∈ (∆11 ∪∆12 ∪∆′2 ∪∆′3) ∩D2.

(i) From (3.14) we see that λν+1/2 < ν + 1/2 and

p2 + l ≤
(
ν + 1

2

)2
+
(
ν + 1

2

)
=
(
ν + 1

2

) (
ν + 3

2

)
< 0

for any −3/2 < ν < −1/2, which means that ∆12∩D2 = Φ. While ∆11∩D2 =
∆1 is obvious, hence (∆11 ∪∆12) ∩D2 = ∆1. In addition, for all (p, l) ∈ ∆1

we have

A
p,
√
p2+l

(x) = ν+
1

2
+

√
x2 +

(
ν +

1

2

)2

+ l ≤ ν+
1

2
+

√
x2 +

(
ν +

1

2

)2

+
(
ν +

1

2

)
,

which proves (4.8).
(ii) From (3.11) and (3.14) it reveals that λp,ν < 4 (ν + 1) (ν + 1− p), which
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indicates that ∆′2 ∩D2 = ∆2.
(iii) It is obvious that ∆′3 ∩D2 = ∆3. For all (p, l) ∈ ∆3, we deduce that

A
p,
√
p2+l

(x) = p+
√
x2 + p2 + l

≤ p+
√
x2 + p2 + 4 (ν + 1) (ν + 1− p) = Bp (x) .

As mentioned in the proof of Theorem 4.3, the function p 7→ Bp (x) is in-
creasing on R, and therefore, for p ≤ ν,

Bp (x) ≤ Bν (x) = ν +

√
x2 + (ν + 2)

2
,

which proves (4.9). Thus we complete the proof of this theorem. �

Let p2 + l = q2. Then the above theorem can be equivalently stated as
follows.

Theorem 4.7. Let ν > −3/2 and p ∈ R, q ≥ 0. Then the following inequality

Ap,q (x) = p+
√
x2 + q2 < Wν (x) (4.10)

holds for all x > 0 if and only if (p, q) ∈ ∆∗1 ∪∆∗2 ∪∆∗3, where

∆∗1 :=
{
p = ν +

1

2
, q ≤

√(
ν +

1

2

)(
ν +

3

2

)
, ν ≥ −1

2

}
,

∆∗2 :=
{
ν < p < ν +

1

2
, p2 + λp,ν ≥ 0, q ≤

√
p2 + λp,ν

}
,

∆∗3 :=
{
p ≤ ν, q ≤ 2ν + 2− p

}
here λp,ν = Sp,ν (x0), and x0 is a unique solution of the equation S′p,ν (x) = 0
on (0,∞). Furthermore, we have

max
(p,q)∈∆∗

1

Ap,q (x) = A
v+1/2,

√
(ν+1/2)(ν+3/2)

(x) ,

max
(p,q)∈∆∗

3

Ap,q (x) = Av,v+2 (x) .

Remark 4.8. If the conditions ”ν > −1 and p+q ≥ 0” are added to Theorem
4.7, then we deduce that another Amos type inequality Rν (x) < Gp,q (x)
holds for x > 0 if and only if (p, q) ∈ ∆∗1 ∪∆∗2 ∪∆∗3.

Clearly, the assertions that inequality Rν (x) < Gp,q (x) holds for x > 0
if (p, q) ∈ ∆∗i (i = 1, 2, 3) correspond to Theorems 9, 10 (v ≥ −1/2) and 6
in [13], respectively. From this it is easy to see that Theorem 4.7 under the
conditions ”ν > −1 and p + q ≥ 0” improves Hornik and Grün’s results in
[13] and solves the open problem posted by them.

Additionally, letting u, l = 4 (ν + 1) (ν + 1− p) in Theorems 4.3 and 4.6
we have

Corollary 4.9. Let ν > −3/2. Then the double inequality

p1 +

√
x2 + (2ν + 2− p1)

2
< Wν (x) < p2 +

√
x2 + (2ν + 2− p2)

2

hold for x > 0 if and only if p1 ≤ ν and p2 ≥ ν + 1/2.
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Remark 4.10. The above corollary contains two rational bounds for Wν (x).
Indeed, if taking p1 = ν, −∞ and p2 = ν + 1/2, 2ν + 2, then by the mono-
tonicity of p 7→ Bp (x) mentioned in the proof of Theorem 4.3, we have

2ν+2 < ν+

√
x2 + (ν + 2)

2
< Wν (x) < ν+

1

2
+

√
x2 +

(
ν +

3

2

)2

< 2ν+2+x

for all x > 0.

4.2. Some computable lower bounds Ap,q (x) for Wν (x) if −3/2 < ν < p <
ν + 1/2

Although the necessary and sufficient conditions for Wν (x) > Ap,q (x) or
Rν (x) < Gp,q (x) to hold for x > 0 have been given in Theorem 4.7, the maxi-

mal q =
√
p2 + λp,ν for ν < p < ν+1/2 is related to a variable λp,ν . As shown

in Section 3, λp,ν = Sp,ν (x0) for ν < p < ν + 1/2, where x0 is a unique solu-
tion of the equation S′p,ν (x) = 0 on (0,∞) and λp,ν < 4 (ν + 1) (ν − p+ 1).
In general, λp,ν is not computable, and it is of practical value to find some
lower bounds for λp,ν by elementary functions.

In [13, Theorem 7], Hornik and Grün presented a class of new upper
bounds Gp,q∗ν(p) (x) for Rν (x) for −1 < v < p < min (v + 1/2, 2v + 1) := pbν ,
where

q∗ν (p) =
√

2 (ν + 1/2− p) +
√

(p+ 1) (2ν + 1− p). (4.11)

It is undoubted that{
Gp,q∗ν(p) (x) : −1 < v < p < pbν

}
⊆

{
G
p,
√
p2+λp,ν

(x) : −1 < ν < p < ν +
1

2
, p2 + λp,ν ≥ 0

}
,

but we are not able to check it. In this subsection, by the definition of λp,ν and
an/bn given in (3.3) we give some easily computable lower bounds Ap,q (x)
for Wν (x) if −3/2 < ν < p < ν + 1/2, and compare with Ap,q∗ν(p) (x) in the
case of v > −1.

Corollary 4.11. Let ν ≥ −1/2. Then, for ν < p < ν + 1/2 the inequality

Ap,ξp (x) = p+
√
x2 + ξ2

p < Wν (x) (4.12)

holds for all x > 0 with

ξp =

√
(2ν + 3− p)2 − (3ν + 11/2);

For ν < p ≤ (ν + 2) (2ν + 1) / (2ν + 5) < ν + 1/2, we have

Ap,θp (x) = p+
√
x2 + θ2

p < Wν (x) (4.13)

for all x > 0, where

θp =

√
(2ν + 3− p)2 − (2ν + 5). (4.14)
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Proof. We fist prove that if −1/2 ≤ ν < p < ν + 1/2, then

an
bn
≥ c (p) = (2ν + 3) (2ν + 1− 2p) + ν +

1

2
> 0

hold for all n ≥ 0. For this, we write an/bn given in (3.3) as

an
bn

= (n+ 2ν + 2) (2ν + 1− 2p) +
(
ν +

1

2

)2n+ 4ν + 4

2n+ 2ν + 1
.

Then, by a simple calculation we obtain

a0

b0
− c (p) = 4 (ν + 1) (ν + 1− p)−

(
(2ν + 3) (2ν + 1− 2p) + ν +

1

2

)
=

1

2
(4p− 2ν + 1) >

1

2
(4ν − 2ν + 1) = ν +

1

2
≥ 0,

and for n ≥ 1,

an
bn
− c (p) = (n− 1) (2ν + 1− 2p) +

(
ν +

1

2

) 2ν + 3

2n+ 2ν + 1
> 0.

Thus

λp,ν =
f1 (x0)

f2 (x0)
=

∑∞
n=0 an

(
x2

0/4
)n∑∞

n=0 bn (x2
0/4)

n >

∑∞
n=0 c (p) bn

(
x2

0/4
)n∑∞

n=0 bn (x2
0/4)

n = c (p) ,

and

p2 + λp,ν > p2 + c (p) = p2 + (2ν + 3) (2ν + 1− 2p) + ν +
1

2
= ξ2

p,

which proves (4.12) due to Theorem 4.7.
Similarly, we easily check that

a0

b0
− a1

b1
= 2 (p− ν) > 0,

and for n ≥ 2,

an
bn
− a1

b1
= (n− 1) (2ν + 1− 2p)− (2ν + 1)

n− 1

2n+ 2ν + 1

≥ (n− 1)

(
2ν + 1− 2

(ν + 2) (2ν + 1)

(2ν + 5)

)
− (2ν + 1)

n− 1

2n+ 2ν + 1

= 2 (2ν + 1)
(n− 1) (n− 2)

(2ν + 5) (2n+ 2ν + 1)
≥ 0.

Therefore, we have

λp,ν =
f1 (x0)

f2 (x0)
=

∑∞
n=0 an

(
x2

0/4
)n∑∞

n=0 bn (x2
0/4)

n >

∑∞
n=0 (a1/b1) bn

(
x2

0/4
)n∑∞

n=0 bn (x2
0/4)

n =
a1

b1
,

and

p2 + λp,ν > p2 +
a1

b1
= p2 + (2ν + 3) (2ν − 2p+ 1) + 2ν + 1 = θ2

p,

which proves (4.13). �
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Remark 4.12. Since p + ξp > 0, Corollary 4.11 implies a new upper bound
Gp,ξp (x) for Rν (x) for −1/2 ≤ ν < p < ν+1/2. However, the bound Gp,ξp (x)
is weaker than Gp,q∗ν(p) (x) for −1/2 ≤ ν < p < ν+1/2 given in [13, Theorem
7]. In fact, we have

q∗ν (p)
2 − ξ2

p =
(√

2 (ν + 1/2− p) +
√

(p+ 1) (2ν + 1− p)
)2

−
[
(2ν + 3− p)2 − (3ν + 11/2)

]
= 2

√
2 (ν + 1/2− p)

√
(p+ 1) (2ν + 1− p)− 1

2
(2p− 4ν − 3) (2p− 2ν − 1)

:= Φ1 (p)− Φ2 (p) ,

Φ2
1 (p)− Φ2

2 (p) =
1

2

(
ν +

1

2
− p
)

Φ3 (p) ,

where

Φ3 (p) = 8p3−4 (10ν + 11) p2+2
(
32ν2 + 60ν + 15

)
p−(4ν + 7) (4ν − 1) (2ν + 1) .

Since

Φ′′3 (p) = 8 (6p− 10ν − 11) < 8

(
6

(
ν +

1

2

)
− 10ν − 11

)
= −32 (ν + 2) < 0,

and

Φ3 (ν) = (6ν + 7) (2ν + 1) > 0,

Φ3

(
ν +

1

2

)
= 4 (2ν + 3) (2ν + 1) > 0,

by the property of the concave function we have that for −1/2 < v < p <
v + 1/2,

Φ3 (p) >
v + 1/2− p

1/2
Φ3 (ν) +

p− ν
1/2

Φ3

(
ν +

1

2

)
> 0,

which implies that q∗ν (p)− ξp > 0, and so Gp,q∗ν(p) (x) < Gp,ξp (x) for x > 0.

Similarly, for ν < p < ν + 1/2 there exist some ν ∈ (−3/2,−1/2) such
that p2 + λp,ν is positive and explicitly characterized. For example, from
Subcase 2.3 we see that for n ≥ 0,

an
bn
− a1

b1
= (n− 1) (2ν + 1− 2p)− (2ν + 1)

n− 1

2n+ 2ν + 1
≥ 0.

Then for ν ∈ (−3/2,−1/2) the inequality (4.13) also holds for x > 0 but the
parameter p has to satisfy

θ2
p = (2ν + 3− p)2 − (2ν + 5) ≥ 0,

that is, v < p ≤ 2ν+3−
√

2ν + 5 < ν+1/2. This can be stated as a corollary.
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Corollary 4.13. Let −3/2 < ν < −1/2 and ν0 = 2ν + 3 −
√

2ν + 5. Then,
for ν < p ≤ ν0 < ν + 1/2 the inequality (4.13) also holds for all x > 0. In
particular, while −1 < ν < p ≤ (ν + 2) (2ν + 1) / (2ν + 3) < ν0 we have

Rν (x) <
x

p+
√
x2 + θ2

p

= Gp,θp (x) , ∀x > 0. (4.15)

Proof. It remains to prove (4.15). To this end, it suffices to determine the
range of p such that p+ θp ≥ 0. We easily verify that the function p 7→ p+ θp
is decreasing on (ν, ν0], and

(p+ θp)|p=ν = 2 (ν + 1) > 0, and (p+ θp)|p=ν0 = ν0 < 0,

which means that there exists a unique p0 = (ν + 2) (2ν + 1) / (2ν + 3) such
that p+ θp ≥ 0 for p ∈ (ν, p0], and p+ θp < 0 for p ∈ (p0, ν0]. Consequently,
for −1 < ν < p ≤ p0 the inequality (4.13) is equivalent to another Amos type
one, that is, (4.15) holds for x > 0. This completes the proof. �

Remark 4.14. Corollary 4.13 gives another new upper bound Gp,θp (x) for
Rν (x) when ν < p ≤ (ν + 2) (2ν + 1) / (2ν + 3) and −1 < ν < −1/2. Clearly,
the set of bounds Gp,θp (x) can be divided into two parts:

{Gp,θp (x)}

=
{
Gp,θp (x) : ν < p ≤ 2ν + 1

}
∪
{
Gp,θp (x) : 2ν + 1 < p ≤ (ν+2)(2ν+1)

(2ν+3)

}
.

Comparing Gp,θp (x) with Gp,q∗ν(p) (x) we find that

Gp,q∗ν(p) (x) < Gp,θp (x)

for ν < p < 2ν+ 1 < 0. This shows that the Hornik and Grün’s upper bound
Gp,q∗ν(p) (x) in [13, Theorem 7] is superior to Gp,θp (x) for ν < p ≤ 2ν + 1.
While the upper bound Gp,θp (x) for 2ν + 1 < p ≤ (ν + 2) (2ν + 1) / (2ν + 3)
is a new one.
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