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Abstract—The applicability of time series data mining in many
different fields has motivated the scientific community to focus
on the development of new methods towards improving the
performance of the classifiers over this particular class of data.
In this context the related literature has extensively shown that
dynamic time warping is the similarity measure of choice when
univariate time series are considered. However, possible statistical
coupling among different dimensions make the generalization of
this metric to the multivariate case all but obvious. This has
ignited the interest of the community in new distance definitions
capable of capturing such inter-dimension dependences. In this
paper we propose a simple dynamic time warping based distance
that finds the best weighted combination between the dependent
– where multivariate time series are treated as whole – and
independent approaches – where multivariate time series are just
a collection of unrelated univariate time series – of the time series
to be classified. A benchmark of four heuristic wrappers, namely,
simulated annealing, particle swarm optimization, estimation of
distribution algorithms and genetic algorithms are used to evolve
the set of weighting coefficients towards maximizing the cross-
validated predictive score of the classifiers. In this context one of
the most recurring classifiers is nearest neighbor. This classifier
is couple with a distance that as afore mentioned, in most
cases, have been dynamic time warping. The performance of the
proposed approach is validated over datasets widely utilized in
the related literature, from which it is concluded that the obtained
performance gains can be enlarged by properly decoupling the
influence of each dimension in the definition of the dependent
dynamic time warping distance.

I. INTRODUCTION

Time series, conceived as a list of data points sorted
in time order, are present in many different fields such as
telecommunications, finance and biomedicine, among others
[1], [2], [3]. In such areas it is often the case that time series
are assigned a category or label (e.g. the chance of a customer
to churn from a telecommunications company based on the
record of transactions), which is of interest for the underlying
application (e.g. customer retention).

In order to predict the label associated to new time series,
supervised learning aims at building classification models
based on a record of past labeled time series. The most
common time series classification method is the k-nearest
neighbour (k-NN) scheme [4]: when this model is queried
for the label of a new item to be predicted, the distance to
each sample in the training set is computed, from which the

predicted label results as the majority class among the labels
of the k closest training examples. Thorough reviews on time
series classification algorithms are presented in [5], [6]. In
parallel to the more traditional approach to build these models
based on the extraction of features from the time series, a
research trend of vibrant activity in the literature gravitates
on the use of tailored distances between time series and their
exploitation in learning models that rely on pairwise similarity
measures. Hence to compute the distance between two time
series, not only feature-based similarity measures can be used
but also model and raw data-based distances [7]. Model- and
feature-based approaches assume a priori knowledge on the
properties of the sources that generated the time series. In this
paper we will focus on raw distance measures, which override
any assumption on the characteristics of the time series.

Multiple studies have shown that among all raw data-based
similarity measures, the so-called Dynamic Time Warping
(DTW) is the most competitive approach for time series classi-
fication [8]. In essence DTW is an elastic measure of similarity
capable of stretching and/or shrinking time series along time
prior to their distance computation in order to accommodate
local time shifts and warps. Hence, DTW computes the mini-
mum distance between two time series by aligning the coordi-
nates of the points comprising both sequences. Mathematically
speaking, consider two sequences t = (t1, t2, . . . , tN ) and
u = (u1, u2, . . . , uM ), and a N × M grid where each
coordinate pair (i, j) (i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}) is
assigned a value equal to the distance d(ti, uj) = (ti−uj)2. To
compute the optimal alignment between t and u, DTW finds
a warping path w from (1, 1) to (N,M) through the grid that
minimizes its total cumulative weight. Let this path be denoted
as w∗ = (w1, . . . , wl, . . . , wL), with wl = d(ti(l), uj(l)) and
(i(l), j(l)) being the coordinates of the l-th step of the warping
path through the grid. The DTW distance is given by

DTW(t,u) = min
w

√∑L
l=1 wl (1)

subject to (i(1), j(1)) = (1, 1), (2)
∆(i, j) ∈ {(1, 1), (0, 1), (1, 0)}, (3)
(i(L), j(L)) = (N,M), (4)

where ∆(i, j) = (i(l)−i(l−1), j(l)−j(l−1)) for l ≥ 2. Since
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the number of allowed paths increases exponentially with time
series length, dynamic programming is used for the search
of the minimum distance (path). This way, DTW(t,u) =√
γ(N,M) where γ(N,M) is the minimum cumulative dis-

tance in the final cell and
γ(i, j)=(ti-uj)2 + min{γ(i-1, j-1), γ(i-1, j), γ(i, j-1)} (5)

with γ(i, 0) = γ(0, j) = ∞, γ(0, 0) = 0. It is important to
bear in mind the computational cost of DTW(t,u); in partic-
ular, the complexity using the recurrence in (5) is O(NM).

When the constituent points of a time series have several
dimensions we deal with multivariate time series (MTS). A
straightforward approach to account for the multidimension-
ality of MTS in the above distance definition could be to
treat dimensions separately (independently) or jointly (depen-
dently). The first approach assumes that all features of the time
series under comparison are independent, yielding a measure
of warping distance computed as the sum of the DTW for each
dimension, i.e.

DTWI(T,U)
.
=

1

D

D∑

d=1

DTW(t(d),u(d)), (6)

where t(d) = (td1, . . . , t
d
N ) denotes the N -length time series

corresponding to the d-th dimension of multivariate sequence
T = (t(1), . . . , t(d), . . . , t(D)). However, this independence
does not necessarily hold in most practical applications, as
there may appear relationships between different dimensions
due to latent variables. The dependent distance measure,
DTWD(T,U), is the extension of the pairwise distance metric
in the N×M grid using, as the inner pairwise distance metric,
the multivariate version of the squared Euclidean distance
considering all dimensions, i.e.

d(ti,uj) =
D∑

d=1

(tdi − udj )2 (7)

where ti = (t1i , . . . , t
d
i , . . . , t

D
i ).

A. Related Work and Contribution

The design of a distance that properly captures and exploits
the exiting interrelationships between dimensions remains
an active research area in the field of multivariate time
series classification. Bankó and Abonyi in [9] presented a
classification algorithm that combines DTW and PCA-based
segmentation in a hybrid scheme coined as correlation based
dynamic time warping (CBDTW). The classification algorithm
segments MTS homogeneously using, as the segmentation cost
function, the Hotellings T 2 statistic (i.e. the MTS distance
to the origin in the principal components space) or the Q
reconstruction error, which represent the information loss
between the original data and its projection in the space of
principal components. Once the segmentation is done, the
DTW is computed. Likewise, [10] proposes a simple algorithm
which selects the DTW measure – either DTWI or DTWD –
that scores best when predicting the labels, using k-NN, of
the time series dataset under analysis. Interestingly for the
scope of this manuscript, the authors [10] discovered that the

threshold to select one distance or another depends on the
training data used for its calculation, which ultimately unveils
that practical databases feature a mixture of independence and
dependence relationships between their dimensions that should
be exploited in the definition of the distance between series.
Recently, Mei et al. in [11] propose a similarity measure called
Mahalanobis Distance based DTW (MDDTW) that combines
Mahalanobis Distance learning and DTW for classification
tasks. In the proposed method, DTWD is utilized to find the
distance between MTS. However, instead of using Expression
(7) as the pairwise distance, they use the generalized Maha-
lanobis distance given by

d(ti,uj) = (ti − uj)M(ti − uj)
T , (8)

where M is a symmetric positive semi-definite matrix. As
the authors conclude, the model learning is computationally
expensive due to the need for computing the DTW distance
for different values of M during the learning process.

Our work is aligned with the above noted need for com-
putationally efficient multivariate distance learning algorithms
and recent contributions dealing with parametric distance
measures for MTS classification [12]. Specifically, we pro-
pose a weighted distance that combines both independent
and dependent DTW components in its definition. Since the
selection of a proper metric is strongly biased by the dataset at
hand, we resort to a heuristic wrapper driven by the validated
predictor score. Then, the optimization is just a distance-based
learning problem operating on the modified distance space
spanned by the weighted combination of DTW metrics. This
technical approach is aligned with past contributions dealing
with the use of wrapping heuristics for distance-based learners
(e.g. [13]), where the distance measure along samples is
optimized by weighting the value of their features rather than
by tuning the metric itself. In this paper, in order to optimize
the weights, four nature-inspired evolutionary meta-heuristics
are used, simulated annealing, particle swarm optimization,
genetic algorithms and estimated distribution algorithms. The
four alternatives are evaluated and compared by computer
experiments over datasets utilized in the literature. From
the obtained results we will not only show the performance
improvements achieved by every heuristic, but also provide an
intuitive insight on how further gains could be achieved.

The remainder of the paper is organized as follows: Section
II introduces the definition of our DTW-based multivariate
distance and the optimization procedure by means of an
heuristic wrapper. Section III provides experimental results
and finally, Section IV concludes the paper.

II. PROPOSED DISTANCE METRIC FORMULATION

Specifically our proposal gravitates on reformulating the
similarity of two MTS, T and U as follows:

DTWopt(T,U) =

D∑

d=1

ωdDTW(t(d),u(d))

+

(
1−

D∑

d=1

ωd

)
DTWD(T,U), (9)
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where 0 ≤ ωd ≤ 1/D and 0 ≤ ∑D
d=1 ωd ≤ 1. Note from

the definition that both, DTWD and DTWI are computed and
storage in advance. Hence, in terms computational cost, the
optimization of ω = {ωd}Dd=1 values is more efficient. The
above definition allows for the flexibility required to tackle
distance-based multidimensional time series classification: de-
pending on the values given to (ω1, . . . , ωD), the resulting
distance could range from the total dependence assumption
(ωd = 0 ∀d ∈ {1, . . . , D}) to the case where all dimensions
are assumed to be independent of each other (

∑D
d=1 ωd = 1).

To speed up DTW calculations warping constraints such
as the so-called Sakoe-Chiba Band [14] or the Itakura Paral-
lelogram [15] have been extensively used in related works.
The use of warping windows introduces more restrictions
to the definition of the baseline DTW metric as per (1).
Consequently, the warping alignment between time series is
constrained to a certain time range and in the multidimensional
case, relations and statistical interactions among different
dimensions might be altered. Since the difference between
completely dependent and independent scenarios should rely
on the correlation between different dimensions, no warping
constraints will be applied in our DTW computations.

A. Optimization Procedure

As show in Figure 1 values of ω = {wd}Dd=1 are optimized
by means of a heuristic wrapper, where the score function is
the predictive accuracy of 1-NN. Since the predictive accuracy
is unknown we need to estimate it from data. Taking into
account that 1-NN is very sensitive to changes in the training
set and that it can suffer from over fitting, following [16], we
estimate the predictive accuracy using an estimator with low
variance. In particular we have used, the m-repeated k-fold
cross-validation(m× k-cv) with m = 10 and k = 2. The m×
k-cv estimator consists of averaging m different performance
estimates provided by a stratified k-fold cross-validation (k-
cv).

Heuristic wrapper

Distance
computation

ω

...

Training set

Test set

A
A
B
A

B

?
?
?

m-repeated k-fold
cross-validation

(training) (1-NN)

Prediction
Test score ηi

Stratified K-fold
Fold i

×K(1-NN)

CV score∑m

i=1
ε̂i/m

ωopt

Fig. 1: Schematic diagram of the proposed wrapper scheme
for distance metric optimization.

Algorithm 1 sketches the procedure to measure the fitness
of a set of ω candidate values for any given training dataset.
The k-cv error estimation procedure splits the training data
into mutually exclusive k-folds (line 3), from which training

and validation sets are successively constructed (lines 5 and
6). Given a value of ω the classifier is trained and evaluated
using Expression (9) as the distance among examples in the
1-NN model. The k-cv estimation results from averaging the
performance scores achieved with each fold.

Algorithm 1 Computation of the fitness for the wrapper

1: procedure FITNESS(k, m, ω, training data)
2: for i ∈ {1, . . . ,m} do
3: Shuffle the training data
4: Sample k stratified folds from the training data
5: for j ∈ {1, . . . , k} do
6: Set the j-th fold as the validation set
7: Set the rest of folds as the training set
8: for all sample in the validation set do
9: Compute DTWopt(·, ·) between the validation

sample and every sample in the training set
10: Predict the label for the validation sample to be

that of the training sample with min DTWopt

11: end for
12: Compute prediction score εj by comparing

predicted and true labels
13: end for
14: Calculate and store k-cv as ε̂i =

∑k
j=1 εj/k

15: end for
16: return fitness value given by

∑m
i=1 ε̂i/m

17: end procedure

Regarding the heuristic wrapper, four are the different
solvers utilized to seek the optimum value of weights ω =
{wd}Dd=1: Simulated Annealing (SA), Particle Swarm Opti-
mization (PSO), Estimated Distribution Algorithms (EDAs)
and Genetic Algorithms (GA). A brief description of each of
these methods is next provided:

• SA [17] is an iterative low-complexity optimization al-
gorithm known to efficiently tackle problems with small
number of variables. The search process underlying this
heuristic emulates the annealing technique in metallurgy,
by which a material is heated and cooled in a controlled
fashion so as to lead it to a state with minimum internal
energy and hence, maximum hardness. This search pro-
cess is controlled mainly by 1) the method to permute
the candidate solution at a given iteration; and 2) the
temperature T of the material, which sets the probability
that the mutated individual is accepted as the candidate
solution of the algorithm.

• PSO [18] consists of a swarm of particles moving in
the space of candidate solutions. Each individual in the
swarm is characterized by its position over the search
space (which in turn represents the solution ω proposed
by the particle), a velocity vector v and the memory of
both its own best solution and the global best achieved by
the entire swarm. The optimization procedure consists of
spreading the information about good solutions through
the swarm so that particles move over the space under a
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velocity vector biased by the positions of the aforemen-
tioned best solutions in the swarm.

• GA [19] are heuristic solvers inspired from observed pro-
cesses in the genetic inheritance among generations of in-
dividuals. The main stages of the algorithm are selection,
crossover, mutation and evaluation. The search technique
begins with a randomly generated initial population of
individuals, from which a number of breeding solutions
or parents are selected based on their fitness values.
Then, in the crossover stage two individuals are taken
randomly from the selected population and combined to
yield offspring solutions. Finally, each offspring solution
undergoes small perturbations of its compounding vari-
ables under probability pm. All offspring solutions are
then evaluated, replacing the previous population. The
procedure is repeated until the termination criteria is met.

• EDAs [20] are population-based optimization algorithms
that guide the search by sampling promising solutions
from learned generative probabilistic models, i.e. In
EDAs new individuals are sampled from a probability
distribution estimated from the previous generation of
solutions and their associated fitness values. In this work
we assume for simplicity a canonical EDAs where opti-
mization variables are assumed to be independent from
each other in the probabilistic model.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Our approach will be validated over different datasets uti-
lized in the literature related to time series classification. In
particular we will use the articulatory word [21], cricket and
Auslan (sign language used by the Australian deaf community)
[23] datasets. It is important to remark that for all datasets
time series have been normalized via Z-score so that every
dimension has zero mean and unit standard deviations, i.e.,
∀d ∈ {1, . . . , D} of any given time series T of every dataset,

t(d)norm =
t(d) − E[t(d)]√

Var[t(d)]
, (10)

where E[·] and Var[·] denotes expectation and variance, respec-
tively. In the following list a brief description of each data set
and the performed experiments is provided:

• The Auslan dataset comprises 95 different signs per-
formed by 5 signers, yielding a total of 6648 time
series, each with d = 15 dimensions [24]. From these
dimensions x, y, z and roll attributes have been selected
as predictors for a small subset of the overall dataset
corresponding to sequences labeled with all, answer,
boy, buy, cold, come, crazy, different, exit and forget.
On the one hand, x, y and z variables record the up-
down, right/left and forward/backward movements of
the signers’ hands, respectively. However, they should
not be taken to form orthogonal basis, hence relations
among variables are expected. On the other hand, the
roll dimension tracks the palm rotation.

• The cricket dataset consist of a collection of 12 referee
signals, each with ten repetitions. The data contains

observations of x, y and z axes motion measured with
an accelerometer placed on both, left and right wrists of
the umpires. As in [10] we will use different dimension
pairs to predict each signal.

• The articulatory word dataset contains tongue, lips and
head motion (using 12 sensors) of native English speakers
performing 25 different words. Altogether the dataset
amounts up to 575 time series, each comprising x, y and
z position of each sensor. From the total of D = 36
available dimensions, we will use different combinations
considering the sensors on the tongue tip (T1), the upper
(UL) and the lower lip (LL) as done in [10].

Regarding the nature-inspired solvers a summary of the
specific parameter values utilized for each method are listed
below. It must be noted that the same termination criterion is
utilized for all algorithms in the benchmark, i.e. the algorithm
is forced to stop when the fitness value of the best proposed
solution does not improve for maxgen generations.

• In the i-th iteration of the SA solver, the acceptance of
a new solution ωi+1 = ωi + n – where n is a random
variable given by a standard normal distribution, N (0, 1)
– is ruled by ωi+1, ωi and a temperature parameter Ti
that jointly define the solution acceptance probability. The
temperature of the algorithm is enforced to go from value
1 to 0 along the iterations of the algorithm as Ti+1 = ξTi
where 0 ≤ ξ < 1 is the cooling rate. In all simulations ξ
and maxgen have been set to 0.1 and 100, respectively.

• In PSO the parameters of the algorithm have been chosen
so that the movement of each particle in the search space
ω is governed by ωi+1 = ωi + αindv + αglobal + αneigh,
where i ∈ {1, . . . , I} denotes the iteration index and the
vectors in the right side αindv = 0.5(ωi−ωi−1), αglobal =
2.1nglobal(ωglobal−ωi) and αneigh = 2.1nneigh(ωneigh−ωi)
correspond to the tendency to move towards the previous
position, the influence to move towards the entire swarm
best solution, ωglobal, and the influence to move towards
the neighbours best solution, ωneigh, respectively. The
maximum number of generations, maxgen is set to 100
while nglobal and nbest are realizations of a continuous
random variable uniformly distributed in the range [0, 1].

• In GA the population size is 40 individuals, from which
the number of solutions in the selection step have been
set to 20. In the crossover stage, the chosen operator is
single-point crossover with probability pc = 0.9. Finally
the mutation of each offspring element ωd ∈ ω is changed
to ωd + n with mutation probability pm = 0.1 where
n ∼ N (0, 1). As in previous solvers the stopping criteria
have been set to maxgen = 100.

• In EDA the offspring values ωi of the i-th generation
are drawn from a multidimensional Gaussian distribution
N (µi,Σi) whose mean vector µi and covariance matrix
Σi are given by

µi = (µi
1, . . . , µ

i
d, . . . , µ

i
D), µi

d = E[ωi−1
d ] (11)

Σi = diag(Σi
1, . . . ,Σ

i
d, . . . ,Σ

i
D) : Σd = Var[ωi−1

d ] (12)
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TABLE I: Average, first quartile and third quartile scores for the simulated datasets and heuristic wrappers.
Dataset label Variables DTWI DTWD DTWSA

opt DTWPSO
opt DTWGA

opt DTWEDAs
opt

AUSLAN-XYZR x, y, z, roll 0.757, (0.714− 0.786) 0.789, (0.750− 0.812) 0.800, (0.786− 0.848) 0.814, (0.768− 0.848) 0.796, (0.786− 0.812) 0.793, (0.759− 0.821)
AUSLAN-XYZ x, y, z 0.805, (0.726− 0.857) 0.614, (0.583− 0.667) 0.805, (0.726− 0.857) 0.800, (0.726− 0.857) 0.814 (0.768− 0.848) 0.776, (0.714− 0.845)
CRICKET-XRXL xright, xleft 0.946, (0.917− 0.958) 0.921, (0.917− 0.927) 0.971, (0.958− 1.000) 0.971, (0.958− 1.000) 0.971, (0.958− 1.000) 0.971, (0.958− 1.000)
CRICKET-XRYL xright, yleft 0.954, (0.917− 0.990) 0.954, (0.917− 1.000) 0.975, (0.958− 1.000) 0.971, (0.958− 1.000) 0.958, (0.927− 0.990) 0.967, (0.958− 1.000)
CRICKET-YRXL yright, xleft 0.988, 1.000,−1.000 0.983, (1.000− 1.000) 0.992, (1.000− 1.000) 0.992, (1.000− 1.000) 0.992, (1.000− 1.000) 0.983, (1.000− 1.000)
CRICKET-YRYL yright, yleft 0.969, (0.979− 1.000) 0.988, (1.000− 1.000) 0.992, (1.000− 1.000) 0.988, (1.000− 1.000) 0.992, (1.000− 1.000) 0.992, (1.000− 1.000)
CRICKET-ZRZL zright, zleft 0.954, (0.917− 1.000) 0.975, (0.938− 1.000) 0.979, (0.969− 1.000) 0.979, (0.969− 1.000) 0.971, (0.969− 1.000) 0.971, (0.969− 1.000)
ARTI-UXTZ ULx, T1z 0.839, (0.830− 0.860) 0.863, (0.845− 0.880) 0.891, (0.883− 0.907) 0.902, (0.900− 0.920) 0.894, (0.880− 0.920) 0.894, (0.880− 0.917)
ARTI-TZLZ T1z , LLz 0.895, (0.880− 0.917) 0.941, (0.923− 0.960) 0.938, (0.923− 0.957) 0.940, (0.935− 0.945) 0.942, (0.935− 0.960) 0.944, (0.923− 0.960)
ARTI-TZLY T1z , LLy 0.887, (0.880− 0.917) 0.933, (0.920− 0.955) 0.933, (0.923− 0.955) 0.923, (0.900− 0.938) 0.926, (0.920− 0.940) 0.926, (0.920− 0.938)

ARTI-LXTYTZ LLx, T1y , T1z 0.923, (0.885− 0.960) 0.954, (0.950− 0.978) 0.966, (0.945− 0.985) 0.965, (0.945− 0.978) 0.963, (0.942− 0.978) 0.965, (0.945− 0.987)
ARTI-TYTZ T1y , T1z 0.892, (0.883− 0.917) 0.949, (0.925− 0.960) 0.944, (0.923− 0.960) 0.945, (0.925− 0.960) 0.943, (0.925− 0.960) 0.945, (0.925− 0.960)
ARTI-TYLZ T1y , LLy 0.863, (0.840− 0.880) 0.919, (0.902− 0.940) 0.924, (0.902− 0.940) 0.921, (0.900− 0.940) 0.924, (0.900− 0.955) 0.924, (0.900− 0.955)
ARTI-TXTYUZ T1x, T1y , ULy 0.912, (0.900− 0.920) 0.931, (0.920− 0.945) 0.944, (0.940− 0.957) 0.939, (0.925− 0.957) 0.940, (0.940− 0.947) 0.947, (0.940− 0.960)
ARTI-TXTYTZ T1x, T1y , T1z 0.928, (0.897− 0.955) 0.940, (0.920− 0.960) 0.945, (0.920− 0.960) 0.942, (0.920− 0.972) 0.945, (0.923− 0.975) 0.939, (0.925− 0.957)

where ωi−1
d = {ω1,i−1

d , . . . , ω100,i−1
d } corresponds to

the vector collecting the values of the d-th variable
along a 100-sized population of individuals drawn from
N (µi−1,Σi−1) at generation i− 1.

A. Discussion on Predictive Score Results

Besides the computation of a performance estimate to eval-
uate the fitness of the ω parameters proposed by the heuristic
wrapper, the goodness of the optimized classifier when trained
over DTWopt(·, ·) should be measured over unseen test data.
For this reason we will use again stratified K-fold cross
validation to first split the entire dataset in training and test
sets. Algorithm 2 drafts, for K partitions, the procedure to
compute the goodness measure. In essence, training and test
sets are constructed using K − 1 folds for the former and
the left-out fold for the latter. For all possible training-test
combinations, optimized ω values are found using an nature-
inspired algorithms (line 6). The average of the K computed
scores for the train-test splits will yield a measure of the
expected performance of the proposed wrapper when facing
new test samples.

Algorithm 2 Computation of the test score

1: procedure TESTSCORE(K, dataset)
2: Split dataset into K stratified folds
3: for i ∈ {1, . . . ,K} do
4: Set the i-th fold as the test set
5: Set the remaining folds as the training set
6: Optimize ω using the training set, a

heuristic solver and the fitness in Algorithm 1
7: Predict test set labels with the classifier using

DTWopt(·, ·) with the optimized ω
8: Compute performance score of this fold as ηi
9: end for

10: return K-cv test score as
∑K

i=1 ηi/K
11: end procedure

Table I shows the estimated accuracy rates as well
as first and third quartile rates obtained by the indepen-
dent (DTWI(·, ·)), dependent (DTWD(·, ·)) and optimized
(DTWopt(·, ·)) models for each solver. The bolded value in
the table indicates the best average accuracy rate among all
designed models. From these scores several observations can
be pointed out. To begin with, all wrappers have similar

performance being SA slightly more accurate than the rest of
the heuristic methods. Results for the Auslan dataset suggest
that DTWopt(·, ·) is more resilient to the selection of the
dataset variables, specially with SA and PSO algorithms, than
DTWI(·, ·) and DTWD(·, ·). Cricket scores are complex to
analyse because all distance models achieve high accuracies
over the simulated variable combinations. An exception is
the CRICKET-XRXL case, for which the predictive score
with the optimized distance is higher than its dependent and
independent counterparts for all utilized wrappers. Regarding
the rest of datasets, lower performance gains are noted; we
can conclude that in general, our model is at least as accurate
as the best among DTWI(·, ·) and DTWD(·, ·) regardless the
method we use.

B. Discussion on Optimized Coefficients Values

Although average accuracies allow comparing our model
with DTWI(·, ·) and DTWD(·, ·) in terms of model fitness,
they do not provide any insight on the statistical distribution
of such scores, nor do they shed any light on the values
of their associated weights ω. A further analysis of the
distribution of 10-fold cross-validation accuracy scores and the
optimized values of {ω1, . . . , ωD} values is done in Figures
2.a through 2.f in the form of boxplots. The subset of simulated
cases represented in these figures is a representative sample,
that illustrate best, the casuistry that occurs in all performed
experiments.

Figures 2.a and 2.d illustrate the outcomes of the PSO
solver where DTWopt(·, ·) outperforms both DTWD(·, ·) and
DTWI(·, ·), with non-zero values for all {ω1, . . . , ωD}. This
indicates that the relations between dimensions are important
for classification. Moreover, to verify that the performance
gaps for DTWopt(·, ·) and those of DTWD(·, ·) and DTWI(·, ·)
results are statistically significant we have performed a non-
parametric Wilcoxon signed-rank test to check whether result
samples come from distribution with different medians. Since
the obtained p-value falls below 0.05 for both cases the
hypothesis of statistical significance is confirmed. In particular,
we get p-value = 0.007 when the test is performed with
DTWopt(·, ·) and DTWD(·, ·) score samples and p-value =
0.01 with DTWopt(·, ·) and DTWI(·, ·). Although we have
mentioned before that SA is slightly more accurate, note that
for this particular case, PSO is among all solvers the procedure
with highest accuracy rates.

1996



IND DEP MODEL
0.5

0.6

0.7

0.8

0.9

1.0

TEST SCORES BOXPLOT

(a)
IND DEP MODEL

0.5

0.6

0.7

0.8

0.9

1.0

TEST SCORES BOXPLOT

(b)
IND DEP MODEL

0.5

0.6

0.7

0.8

0.9

1.0

TEST SCORES BOXPLOT

(c)

T1z ULx DEP
0.0

0.2

0.4

0.6

0.8

1.0
PARAMETERS BOX-PLOT

(d)
T1z LLy DEP

0.0

0.2

0.4

0.6

0.8

1.0
PARAMETERS BOX-PLOT

(e)
x y z DEP

0.0

0.2

0.4

0.6

0.8

1.0
PARAMETERS BOX-PLOT

(f)

Fig. 2: Boxplot corresponding to the test scores obtained via stratified 10-fold corresponding to the ARTI-TUXTZ (a),
ARTI-TZLY (b) and AUSLAN-XYZ (c) datasets, along with boxplots showing the distribution of the obtained weights ω
for each case – (d), (e) and (f), respectively. The red square indicates the mean value of the sample.

The discussion follows by Figures 2.b and 2.e, which
exemplifies, with the ARTI-TZLY dataset and SA solver,
the case when DTWopt(·, ·) and DTWD(·, ·) render a similar
predictive performance. As could be a priori expected, the
optimized (ω1, ω2) weights that gauge the contribution of each
dimension in isolation to the optimized distance in (9) are
close to zero in contrast to the dependet part contribution. By
contrast, SA results for the AUSLAN-XYZ dataset (Figures 2.c
and 2.f) unveil an identical performance of the independent
and optimized distance model and a notably worse behavior
of DTWD(·, ·). One would accordingly expect high values for
the weights {ω1, ω2, ω3} (close to 1/D = 1/3) so that the
independent part in (9) dominates over DTWD(·, ·). This does
not hold in the plotted results, where the the contribution of
both independent and dependent parts are similar; even more,
the dependent contribution is never negligible. The rationale
behind this contradictory effect might lie on the tight cou-
pling among variables imposed in the search for the warping
path in DTWD(·, ·). As imposed by the proposed definition
of DTWopt(·, ·) the optimization of the contribution of the
dependent part to this combined metric does not discriminate
between dimensions. Taking into account variability of y and
and more specifically z dimensions weights, Figure 2.f, indi-
cates that DTWD(·, ·) part is somehow compensated in order
to reduce the lack of predictability of one of both variables

equally weighted inside the dependent part. This observation
suggests that a generalization of the inner pairwise distance
between samples ti and uj to allow for the optimization of
each variable to the dependent DTW distance should overcome
this issue and achieve better accuracies.

IV. CONCLUSIONS AND FUTURE RESEARCH LINES

In this paper we have defined a simple similarity measure
for multidimensional time series classification that leverages
the ability to accommodate time warps featured by the DTW
distance and takes into account the existing relations among
dimensions. The proposed scheme is based on a heuristic
wrapper that optimizes the values of the weights balancing
the contribution of independent and dependent DTW distances
to the proposed measure. The optimization criterion is based
on the maximization of the cross-validated prediction score
of a distance-based classifier operating on the similarities
iteratively refined by the heuristic. A benchmark of four
heuristic solvers have been utilized SA, PSO, GA and EDAs.
When assessed over several datasets from the literature with
the mentioned heuristic solvers we have shown on one hand
that our proposed distance model with a 1-NN classifier
performs, in general, equal or better than the same learner with
independent and dependent DTW distances. On the other hand,
we have seen that there are not much difference in heuristic
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solver performance although in our case SA seems to return
slightly more accurate results.

Although the defined distance has proven to be competitive,
there are some open research paths that should be addressed
to further improve its predictive performance. We have seen
that the adaptability of the independent part is higher than
that of the dependent part. To ensure the variability of the
dependent part in equation (9), the definition of the inner
distance in DTWD(·, ·) should allow weighting differently
each dimension in the warping path discovery process as in
[11] trying to decrease additionally, the computation cost as
they conclude in their work. Other error rate functions such as
like larger-margin nearest neighbor formulation, which is often
utilized in distance learning tasks, [25] will also be studied.
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