SHARP WEIGHTED ESTIMATES INVOLVING ONE SUPREMUM

KANGWEI LI

Abstract. In this note, we study the sharp weighted estimate involving one supremum. In particular, we give a positive answer to an open question raised by Lerner and Moen [13]. We also extend the result to rough homogeneous singular integral operators.

1. Introduction and main result

Our main object is the following so-called sparse operator:

\[A_S(f)(x) = \sum_{Q \in S} \langle f \rangle_Q \chi_Q(x), \]

where \(S \subset D \) is a sparse family, i.e., for all (dyadic) cubes \(Q \in S \), there exists \(E_Q \subset Q \) which are pairwise disjoint and \(|E_Q| \geq \gamma |Q| \) with \(0 < \gamma < 1 \), and \(\langle f \rangle_Q = \frac{1}{|Q|} \int_Q f \). We only consider the sparse operator because it dominates Calderón-Zygmund operator pointwisely, see [2, 14, 9, 8, 11].

We are going to study the sharp weighted bounds of \(A_S \). Before that, let us recall

\[[w]_{A_p} = \sup_Q A_p(w, Q) := \sup_Q \langle w \rangle_Q \langle w^{1-p'} \rangle_Q^{p-1}, \]

\[[w]_{A_\infty} = \sup_Q A_\infty(w, Q) := \sup_Q \frac{\langle M(w\chi_Q) \rangle_Q}{\langle w \rangle_Q}. \]

In [6], Hytönen and Lacey proved the following estimate:

\[\|A_S\|_{L^p(w)} \leq c_n [w]_{A_p} \left([w]_{A_\infty}^{\frac{1}{p}} + [w^{1-p'}]_{A_\infty}^{\frac{1}{p'}} \right), \]

which generalizes the famous \(A_2 \) theorem, obtained by Hytönen in [5] (We also remark that when \(p = 2 \), (1.1) was obtained by Hytönen and Pérez in [7]). It was also conjectured in [6] that

\[\|A_S\|_{L^p(w)} \leq c_n ([w]_{A_p} \left[A_p A_\infty \right]^{\frac{1}{2}} + [w^{1-p'}]_{A_\infty}^{\frac{1}{2}}), \]

Date: July 26, 2017.

The author is supported by Juan de la Cierva-Formación 2015 FJCI-2015-24547, the Basque Government through the BERC 2014-2017 program and Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013-0323.
where

\[[w]_{A_p A_r}^\alpha := \sup_{Q} A_p(w, Q)^\alpha A_r(w, Q)^\beta. \]

This conjecture, which is usually referred to as the one supremum conjecture, is still open. Before this conjecture was formulated, Lerner [10] obtained the following mixed \(A_p - A_r\) estimate:

\[
\| A_s \|_{L^p(w)} \leq c_{n,p,r} \left([w]_{A_p}^{1 - \frac{1}{p'}} \frac{1}{A_r^{1 - \frac{1}{p'}}} + [w^{1-p'}]_{A_{p'}^{p'-1}} \frac{1}{A_r^{p'-1}} \right),
\]

which was further extended by Lerner and Moen [13] to the \(r = \infty\) case with Hrusčěv \(A_\infty\) constant:

\[
\| A_s \|_{L^p(w)} \leq c_{n,p} \left([w]_{A_p}^{1 - \frac{1}{p'}} \frac{1}{(A_\infty^{\exp})^{1 - \frac{1}{p'}}} + [w^{1-p'}]_{A_{p'}^{p'-1}(A_\infty^{\exp})^{1 - \frac{1}{p'}}} \right),
\]

where \(A_\infty^{\exp}(w, Q) = \langle w \rangle_Q \exp(\langle \log w \rangle_Q^{-1})\). Some further extension can be also found in [15]. Comparing this result with the one supremum conjecture, besides replacing the Fujii-Wilson \(A_\infty\) constant by Hrusčěv \(A_\infty\) constant, the main difference is that the power of \(A_p\) constant is larger, leading to a result which is weaker than the one supremum conjecture. However, there is also another idea, which is replacing \(A_p\) by \(A_q\), where \(q < p\). Our main result follows from this idea and it is formulated as follows

Theorem 1.2. Let \(1 \leq q < p\) and \(w \in A_q\). Then

\[
\| A_s \|_{L^p(w)} \leq c_{n,p,q} [w]_{A_q}^{1 - \frac{1}{p'}}.
\]

This result was conjectured by Lerner and Moen, see [13, p.251]. It improves the previous result of Duoandikoetxea [3], i.e.,

\[
\| A_s \|_{L^p(w)} \leq c_{n,p,q} [w]_{A_q},
\]

proved by means of extrapolation. In the next section, we will give a proof for this theorem. Extensions to rough homogeneous singular integrals will be provided in Section 3.

2. Proof of Theorem 1.2

Before we state our proof, we would like to demonstrate our understanding of this \(A_q\) condition, which allows us to avoid extrapolation or interpolation completely. We can rewrite the \(A_q\) condition in the following form:

\[
\langle w \rangle_Q \langle w^{1-q'} \rangle_Q^{q-1} = \langle w \rangle_Q \langle w^{(1-p') \frac{q-1}{q-1}} \rangle_Q^{q-1} = \langle w \rangle_Q \langle \sigma^{1/p} \rangle_{A,Q},
\]

where \(A(t) = t^p(p-1)/(q-1) = t^p_{p-1} \) and as usual, \(\sigma = w^{1-p'}\). So we have seen that \(A_q\) condition is actually power bumped \(A_p\) condition! Now we are
ready to present our proof. Without loss of generality, we can assume $f \geq 0$. By duality, we have

$$\|A_S(f)\|_{L^p(w)} = \sup_{\|g\|_{L^p'(w)} = 1} A_S(f)g w$$

$$= \sup_{\|g\|_{L^p'(w)} = 1} \sum_{Q \in S} \langle f \rangle_Q \langle g \rangle_Q w(Q)$$

$$\leq \sup_{\|g\|_{L^p'(w)} = 1} \sum_{Q \in S} \langle f \rangle_Q \langle w^{-\frac{1}{p}} \rangle_Q \langle g \rangle_Q \langle w \rangle_Q |Q|$$

$$\times \exp((\log w^{-1})_Q)^{\frac{1}{p'}} \exp((\log w)_Q)^{\frac{1}{p'}}$$

$$\leq [w]_A^\frac{1}{p} (A^{exp}_\infty)^\frac{1}{p'} \sup_{\|g\|_{L^p'(w)} = 1} \left(\sum_{Q \in S} \langle f \rangle_Q^{\frac{1}{p'}} \exp((\log w)_Q) |Q| \right)^{\frac{1}{p'}}$$

$$\times \left(\sum_{Q \in S} \langle g \rangle_Q^{\frac{1}{p'}} \exp((\log w)_Q) |Q| \right)^{\frac{1}{p'}}$$

$$\leq c_n \gamma^{-1} \|MA\|_{L^p(w)} [w]_A^\frac{1}{p} (A^{exp}_\infty)^\frac{1}{p'} \|f\|_{L^p(w)},$$

where in the last step, we have used the sparsity and the Carleson embedding theorem.

3. Rough homogeneous singular integral operators

Recall that the rough homogeneous singular integral operator T_Ω is defined by

$$T_\Omega(f)(x) = \text{p.v. } \int_{\mathbb{R}^n} \frac{\Omega(y')}{|y|^n} f(x - y) dy,$$

where $\int_{S^{n-1}} \Omega = 0$. The quantitative weighted bound of T_Ω with $\Omega \in L^\infty$ has been studied in [8], based on refinement of the ideas in [4], see also a recent paper by the author and Pérez, Rivera-Ríos and Roncal [16], relying upon the sparse domination formula established in [1].

Our main result in this section is stated as follows.

Theorem 3.1. Let $1 \leq q < p$, $w \in A_q$ and $\Omega \in L^\infty(S^{n-1})$. Then

$$\|T_\Omega\|_{L^p(w)} \leq c_{n,p,q} [w]_A^\frac{1}{p} (A^{exp}_\infty)^\frac{1}{p'},$$

Proof. The proof is again based on the sparse domination formula [1] (see also a very recent paper by Lerner [12]). It suffices to prove

$$\|A_{r,S}\|_{L^p(w)} \leq c_{n,p,r,q} [w]_A^\frac{1}{p} (A^{exp}_\infty)^\frac{1}{p'},$$

where $1 < r < \frac{p}{q}$ and

$$A_{r,S}(f) = \sum_{Q \in S} \langle |f| \rangle_{Q}^\frac{1}{r} \chi_Q.$$
Denote $\tilde{B}(t) = t^{r'(\frac{1}{r}-1)} = t^{\frac{1}{[r]}}$. Again, we assume $f \geq 0$. By duality, we have

$$
\|A_{r,S}(f)\|_{L^p(w)} = \sup_{\|g\|_{L^{p'}(w)} = 1} \int A_{r,S}(f)gw \\
= \sup_{\|g\|_{L^{p'}(w)} = 1} \sum_{Q \in S} \langle f\rangle_{\tilde{Q}}^\frac{1}{r} \langle g\rangle_{\tilde{Q}}^w w(Q) \\
\leq \sup_{\|g\|_{L^{p'}(w)} = 1} \sum_{Q \in S} \langle f\rangle_{B,Q}^{\frac{1}{2}} \langle w^{-\frac{1}{p'}}\rangle_{B,Q}^{\frac{1}{2}} \langle g\rangle_{Q}^{w} w(Q) |Q| \\
\times \exp(\log^{-1}(Q)\frac{1}{p'}) \exp(\log w(Q)\frac{1}{p'}) \\
\leq \left[|w| \right]^\frac{1}{p'} \left[A_{\infty}^p \right]^\frac{1}{p'} \sup_{\|g\|_{L^{p'}(w)} = 1} \left(\sum_{Q \in S} \langle f\rangle_{B,Q}^{\frac{1}{2}} \langle g\rangle_{Q}^{w} \right) \left(\sum_{Q \in S} \langle g\rangle_{Q}^{w} \right) \left(\sum_{Q \in S} \langle g\rangle_{Q}^{w} \right) \frac{1}{p'} \\
\times \left(\sum_{Q \in S} \langle g\rangle_{Q}^{w} \right) \frac{1}{p'} \\
\leq c_n \gamma^{-1} p \|\mathcal{M}B\|_{L^{p'/r}} \left[|w| \right]^\frac{1}{p'} \left[A_{\infty}^p \right]^\frac{1}{p'} \|f\|_{L^p(w)},
$$

where again, in the last step we have used the sparsity and the Carleson embedding theorem. \hfill \square

References

BCAM, Basque Center for Applied Mathematics, Mazarredo, 14, 48009 Bilbao Basque Country, Spain

E-mail address: kli@bcamath.org