
SUPPORTING INFORMATION
Adaptive splitting integrators for enhancing sampling efficiency of

modified Hamiltonian Monte Carlo methods in molecular simulation

Elena Akhmatskaya∗1,2, Mario Fernández-Pendás1, Tijana Radivojević1, and J.M. Sanz-Serna3

1BCAM - Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009
Bilbao, Spain

2Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
3Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad

30, E-28911 Leganés (Madrid), Spain

Contents
1 Derivation of the function ρ used in MAIA and e-MAIA algorithms S1

2 Flowchart of MAIA and e-MAIA algorithms S5

3 Validation of the chosen simulation length for the villin benchmark S6

1 Derivation of the function ρ used in MAIA and e-MAIA algo-
rithms

In order to derive integrators with optimal conservation properties, we adopt a strategy similar to
the one proposed in ref 1, namely to find the parameters of integrators that minimize the expected
value of the energy error. In the present study, the energy error resulting from numerical integration
is in terms of the modified Hamiltonian and the expected value is taken with respect to the modified
density

π̃(q,p) ∝ exp
(
−βH̃ [k](q,p)

)
.

As in the case when considering the error in the true Hamiltonian,1 one may prove that the
expected error in the modified Hamiltonian E[∆H̃ [4]] is also positive. Our objective is, therefore, to
find a function ρ(h, b) that upperbounds E[∆H̃ [4]], i.e.,

0 ≤ E[∆H̃ [4]] ≤ 1
β
ρ(h, b),

where b is the parameter of the two-stage integrators family

ψ∆t = φB
b∆t ◦ φA

∆t/2 ◦ φ
B
(1−2b)∆t ◦ φ

A
∆t/2 ◦ φ

B
b∆t. (S1)
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Such family is defined in terms of solution flows of the equations of motion1

φA
t (q,p) = (q,p− t∇U(q)) (S2)

and
φB

t (q,p) = (q + tM−1p,p). (S3)

We consider the one-dimensional harmonic oscillator with potential U(q) = (k/2)q2 (k > 0 a
constant) and mass M , whose equations of motion are

dq
dt = p

M
,

dp
dt = −kq. (S4)

Using a linear change of variables q̄ =
√
kq, p̄ = p/

√
M and denoting the non-dimensional time step

as h = ω∆t, where ω =
√
k/M , lead to the dynamics

dq̄
dt = ωp̄,

dp̄
dt = −ωq̄, (S5)

with Hamiltonian
H(q̄, p̄) = 1

2 p̄
2 + 1

2 q̄
2

and the fourth order modified Hamiltonian for integrators of the family eq S1

H̃ [4](q̄, p̄) = 1
2 p̄

2 + 1
2 q̄

2 + h2λp̄2 + h2µq̄2. (S6)

The numerical integration of the system eq S5 in the new variables q̄, p̄ is equivalent to the application
of the above change of variables to the numerical solution q, p obtained by integration of the system
eq S4.

In order to find the error in the modified Hamiltonian after L integration steps of the dynamics
eq S5 with a time step h, i.e.,

∆H̃ [4] = H̃ [4](Ψh,L(q̄, p̄))− H̃ [4](q̄, p̄), (S7)

we first find the numerical solution to the dynamics eq S5 for a single time step (q̄n+1, p̄n+1) =
ψh(q̄n, p̄n). In matrix form this is given by[

q̄n+1
p̄n+1

]
= M̃h

[
q̄n

p̄n

]
, M̃h =

[
Ah Bh

Ch Ah

]
,

where the coefficients Ah, Bh, Ch depend on the integrator. After L integration steps the state of the
system (q̄L, p̄L) = Ψh,L(q̄, p̄) is given by[

q̄L

p̄L

]
= M̃h . . . M̃h︸ ︷︷ ︸

L times

[
q̄
p̄

]
= M̃L

h

[
q̄
p̄

]
. (S8)

For the two-stage family of integrators the matrix M̃h can be calculated as

M̃h = B (b) ·A
(1

2

)
·B (1− 2b) ·A

(1
2

)
·B (b) ,

where
A(a) =

[
1 ah
0 1

]
, B(b) =

[
1 0
−bh 1

]
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correspond to the flows φA
h and φB

h , respectively (eqs S2 and S3). The resulting entries of M̃h are

Ah = h4

4 b(1− 2b)− h2

2 + 1

Bh = −h
3

4 (1− 2b) + h (S9)

Ch = −h
5

4 b
2(1− 2b) + h3b(1− b)− h.

It is well known that if time step h is such that |Ah| < 1 the integration is stable.2,3 In that case
one may define variables

ζh := arccosAh, χh := Bh/ sin ζh,

for which the one-step and L-steps integration matrices M̃h and M̃L
h , respectively, are

M̃h =
[

cos(ζh) χh sin(ζh)
−χ−1

h sin(ζh) cos(ζh)

]

and
M̃L

h =
[

cos(Lζh) χh sin(Lζh)
−χ−1

h sin(Lζh) cos(Lζh)

]
. (S10)

In order to calculate the expected value of the error eq S7 we follow ideas from the proof of
Proposition 3 in ref 1 and denote

c = cos(Lζh),
s = sin(Lζh),
S1 = 1 + 2h2µ,

S2 = 1 + 2h2λ.

Substituting eqs S6, S10 and S8 into eq S7 leads to

2∆H̃ [4] = S1 (cq̄ + χhsp̄)2 + S2

(
− 1
χh
sq̄ + cp̄

)2
− S1q̄

2 − S2p̄
2

= s2
(

1
χ2

h

S2 − S1

)
q̄2 + s2

(
χ2

hS1 − S2
)
p̄2 + 2sc

(
S1χh − S2

1
χh

)
q̄p̄.

Since the expectations are taken with respect to the modified density π̃,

E[q̄2] = 1
βS1

, E[p̄2] = 1
βS2

, E[q̄p̄] = 0,

it follows that
2E[∆H̃ [4]] = 1

β
s2
( 1
χ2

h

S2
S1

+ χ2
h

S1
S2
− 2

)
.

The last expression can be simplified by defining

χ̃2
h := χ2

h

S1
S2

= χ2
hS,

to obtain
E[∆H̃ [4]] = 1

β
s2ρ(h, b),
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where

ρ(h, b) = 1
2
(
χ̃h −

1
χ̃h

)2
=

(
SBh + Ch

)2

2S(1−A2
h)

(S11)

and
S = 1 + 2h2µ

1 + 2h2λ
.

We note that the conditions for stable integration and positivity of ρ(h, b) are that |Ah| < 1 and
S > 0. For the two-stage integrators and the fourth order modified Hamiltonian this is equivalent to
the following conditions

h <
√

12/(1− 6b) for b < 1
6 ,

h >
√

12/(1− 6b) for b > 1
6 ,

0 < h < min
{√

2/b,
√

1/(1− 2b)
}
,

which are always satisfied for b ∈ (0, 1
2).

Finally, by substituting eq S9 into eq S11 we obtain the expression

ρ(h, b) =
h8
(
b
(
12 + 4b(6b− 5) + b(1 + 4b(3b− 2))h2)− 2

)2

4
(
2− bh2

)(
4 + (2b− 1)h2

)(
2 + b(2b− 1)h2

)(
12 + (6b− 1)h2

)(
6 + (1 + 6(b− 1)b)h2

) , (S12)

which bounds the expected error in the modified Hamiltonian. This function is then used within
an optimization routine to find the value b that provides the optimal conservation of the modified
Hamiltonian for a specific system.
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2 Flowchart of MAIA and e-MAIA algorithms

Input
* Modified .mdp file
* Standard GROMACS input

Adaptivity

MAIA
1. As 1. in No adaptivity case
2. Calculate the fastest period T̃ and

the dimensionless time step h̃ (16)
3. Set ψ(h, b) = ρ(h, b) (15)
4. Find b∗ as arg min

b∈(0,1/4]
max

h∈(0, h̃)
ψ(h, b)

5. Set ϕ∗ = ϕ0

e-MAIA

e-MAIA
1. Calculate the slowest period T̄ and

the dimensionless time step h̄ (23)
2. Calculate ϕ∗ from (24)

1. Set new ARp

2. Go to e-MAIA step 2

1. Set ψ(h, b) = σ(h, b, ϕ0) (25)
2. Go to MAIA step 4

ϕ∗ < ϕ0

Decrease ARp

No adaptivity
1. For all pairs of particles:

1.a. Calculate period T
1.b. If 5∆t ≥ T , STOP
1.c. If 10∆t ≥ T , WARNING

2. Pass value of ‘integrator’ to .tpr

Pass b∗ and ϕ∗ to .tpr

.tpr file

* Define the integrator in the Trotter
factorization form

* Run MD

yes no

no

yes

yes

no

no

yes

Runner (mdrun)

Preprocessor (grompp)

Figure S1: Flowchart of the Modified Adaptive Integration Approach (MAIA) and the extended
MAIA (e-MAIA) as implemented in MultiHMC-GROMACS. The references (15)-(16) and (23)-(25)
correspond to the equations in the paper.
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3 Validation of the chosen simulation length for the villin bench-
mark
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Figure S2: Evolution with time of the relative radii of gyration (RG) observed for each simulation
method with respect to the RG found in MD simulations. The dashed lines represent the RG at half
of the simulation time (2.5 ns) whereas the solid lines are used for the full simulations of 5 ns. The
efficiency of GSHMC with e-MAIA, relative to MD, expressend in terms of radii of gyration, increases
with simulation time. This suggests that simulations longer than those presented in this study are at
least as favorable to the proposed algorithms as we claim; they may be even more favorable as the
simulations become longer.
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